
Crafting Web Counters into Covert Channels

Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang

Department of Computing
The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong, SAR, China
{csxluo|cswwchan|csrchang}@comp.polyu.edu.hk

Abstract. We present in this paper a new network storage channel
WebShare that uses the plentiful, public Web counters for storage.
Therefore, the physical locations of the WebShare encoder and decoder
are not restricted to a single path. To make WebShare practical, we have
addressed a number of thorny issues, such as the “noise” introduced by
other legitimate Web requests, and synchronization between encoder
and decoder. For the proof-of-concept purpose, we have experimented a
WebShare prototype in the Internet, and have showed that it is practi-
cally feasible even when the Web counter and the encoder/decoder are
separated by more than 20 router hops.

1 Introduction

Using a network covert channel, two Internet hosts can communicate with each
other such that others are not even aware of its existence. Therefore, it is not
surprising that a network covert channel has been perceived as a serious threat
to the national security and enterprise security, because it can be a handy tool
for data exfiltration and large-scale attack coordination. On the other hand,
network covert channels have found useful applications in leaking news from
some countries, and allowing privacy-concerned communities to bypass censor-
ship and privacy intrusion devices [1, 2].

Similar to the classic covert channels in trusted computer systems, network
covert channels are broadly classified into network storage channels and net-

work timing channels [3, 4]. Since the network timing channels are not the
focus of this paper, we will not further consider them in the rest of this paper.
In a network storage channel, an encoder embeds messages into a storage loca-
tion that can be read by a decoder. The storage locations are usually packets’
header fields in the previously proposed storage channels. Moreover, to further
conceal the covert channel, the encoder could send the cover traffic to a third
part. Therefore the decoder has to eavesdrop the communication path from the
encoder to the third party. However, eavesdropping an Internet link generally
requires a special setup and is not reliable [5]. As a result, we turn to the tradi-
tional sense of storage channels investigated for multilevel secure systems [6, 7].
That is, we select a publicly shared state in the Internet as a storage. In this
paper we use Web counters as the storage and demonstrate its practicality by

2 Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang

presenting WebShare, a new network storage channel based on Web counters.
Danezis [8] first mentioned the idea of using Web counters but did not provide
any details to realize it.

Furthermore, there are other publicly shared states that could also be ex-
ploited for covert communications. In [9], Rowland proposes to encode into the
sequence number (SN) of a TCP packet that is “bounced” to a decoder by a
TCP server; thus, the SN can be considered as a TCP-layer shared state. Al-
though this method is simple, it can be easily detected based on spoofed source
IP address and an unusually large number of TCP SYN packets. As another ex-
ample, Danezis has recently proposed exploiting the IPID field in the IP header
as a shared state [8]. However, the global IPID counter is not supported by
all systems. Moreover, the global IPID counter has been exploited for scanning
idle ports since 1998 [10]; consequently, many IDSes and firewalls are able to
detect and defeat it. As we will show later, the plentiful Web counters used by
WebShare do not suffer from the above problems.

Although the basic idea of WebShare is simple, we will show in the rest of
the paper that we have overcome many inherent technical issues in the design of
WebShare. Notable ones include allowing the encoder and decoder to maintain
only loose time synchronization, using multiple counters to increase the capac-
ity, and proposing a site-hopping approach to further camouflage WebShare and
boost the capacity. We have also experimented a WebShare prototype in the
Internet and have evaluated its performance under different parameter settings.
The initial results show that WebShare is practically feasible.

We structure the rest of this paper as follows. Section 2 introduces WebShare
and details our approaches to resolving a number of design issues. In section
3, we report the experiment results and findings. Section 4 briefly summarizes
the existing works on network storage channels and the defense methods. We
finally conclude this paper in section 5.

2 WebShare

To communicate covertly through a WebShare channel, both the WebShare en-
coder and decoder agree on the start time T0, and the Web counter to use.
As will be explained in subsection 2.2, WebShare does not require strict time
synchronization between the encoder and decoder. However, to simplify the dis-
cussion, we assume for the time being that the times are perfectly synchronized,
and we will later propose methods to mitigate the impact of time desynchro-
nization.

The decoder first fetches the Web counter value before T0. After that, the
encoding period TE and decoding period TD alternate between themselves, and
the periods are also known to them beforehand. Moreover, define a run as
TA = TE + TD. During each TE , the encoder requests the corresponding Web
counter once for transmitting bit 1 but does not send any for bit 0. In the next
TD, the decoder fetches the Web counter value for message decoding.

Crafting Web Counters into Covert Channels 3

In terms of the threat model, we assume that the encoder’s incoming and
outgoing traffic is all under a passive warden’s close scrutiny for the purpose of
covert channel detection. We further assume that the Web sites whose counters
are used by WebShare do not conduct cooperative intrusion detection [11].
This assumption is reasonable, because the Web sites exploited by WebShare
are randomly selected from a vast number of public Web sites. It is therefore
very difficult, if not impossible, for them to share the Web access information.
Furthermore, the WebShare traffic may not easily trigger an alarm in these Web
sites, because it may not increase the counter values frequent enough.

2.1 Noise handling

As the Web counter value could also be increased by other legitimate visitors,
additional noise will be introduced to the covert messages. Therefore, it is not
sufficient to simply send 0 or 1 HTTP request as discussed before. Instead, we
set a high enough threshold Q∗ for determining whether the increase in the
counter value is due to a covert message. The choice of Q∗ obviously depends
on the Webpage’s popularity, and we will elaborate the impact of Q∗ on the
decoding accuracy in section 3.

We adopt the following notations for explaining the WebShare encoding and
decoding algorithms when taking into account of the channel noise.

– V Ci: the bit (0 or 1) sent during the ith TE.
– V Wi: the Web counter value at the end of the ith TE .
– V Ei: the number of HTTP requests sent for V Ci.

To transmit bit 0 during the ith TE , the encoder does not send any HTTP
requests, i.e., V Ei = 0. To transmit bit 1, the encoder sends a number of
contiguous HTTP requests, such that V Wi − V Wi−1 ≥ Q∗. To account for
possible request losses, it is prudent to set V Ei > Q∗. At the end of the ith
TD, V Ci is decoded to bit 0 if V Wi − V Wi−1 < Q∗, and to bit 1, otherwise.
Figure 1 shows the alternating pattern of TE and TD, and the change in V Wi

when both sides are perfectly synchronized in time.

0

E

E

D

D E D

E D

D

0 1 2

1 2 3

Start to encode

Start to decode

Fig. 1. The alternate encoding and decoding periods in WebShare when the encoder
and decoder are perfectly synchronized in time.

To conduct a more formal analysis, let µ = V Ei

TE
be the encoder’s average

request sending rate for encoding bit 1 and λ be other visitors’ average request

4 Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang

arrival rate. Then the following inequalities must be satisfied in order to decode
correctly.

(TE + TD)λ < Q∗. (1)

(TE + TD)λ + TE(1 − Ploss)µ ≥ Q∗, (2)

where Ploss is the probability of a request loss. Note that the encoder could
dispatch all requests at the beginning of TE or send them out with the constant
rate µ.

2.2 Mitigating the effect of time desynchronization

In this subsection we show that WebShare requires only loose time synchro-
nization which is made possible by tuning the values of TE, TD, and Q∗. We
first let Te (or Td) denote the difference between the encoder’s (or decoder’s)
local time and the standard time, and Ti = |Te − Td|. In order not to affect the
next run’s decoding, Ti should be less than min{TE, TD}. The special case of
Te = Td = 0 is therefore the same as the case of perfect synchronization. In the
following, we discuss two extreme cases when Ti = |Te| + |Td| which serves as
the upper bound for the time difference between the encoder and decoder. The
same result also applies to other cases, i.e. Ti < |Te| + |Td|.

Time
T
0

T
e
T
d

T
E

T
E

T
D

T
D

Encoder

Decoder

T
i

T
E
 T
D

T
E
 T
D

T
D

VW
0
 VW
1
 VW
2

VE
1
 VE
2
 VE
3

Start
to
encode
 Start
to
decode

(a) Te < 0 < Td.

Time
T
0

T
e
T
d

T
E
 T
D

Encoder

Decoder

T
E
 T
D
T
D

VW
0
 VW
1
 VW
2

T
E
 T
D
 T
E

VE
1
 VE
2

T
i

Start
to
encode
 Start
to
decode

(b) Td < 0 < Te.

Fig. 2. Two time desynchronization scenarios for WebShare.

Figure 2(a) depicts one of the desynchronization scenarios where Te < 0 <
Td. As shown, the encoder starts earlier than what the decoder expects. We can

Crafting Web Counters into Covert Channels 5

also observe from the figure that each TE is sandwiched between two consecutive
decoding epoches. For example, although V E1 requests are dispatched before
T0 + Td, its effect is still registered by V W1 − V W0. Hence, it is not difficult to
see that if Eqs. (1)-(2) hold, the decoding can still be done correctly.

Figure 2(b) shows an opposite scenario: Td < 0 < Te. As a result, the decoder
might interpret part of the HTTP requests from the previous run as the current
run’s when the requests are sent out with a constant rate µ. To decode correctly,
we need to consider all four possible cases for any two adjacent bits: {0 0}, {1
1}, {0 1}, and {1 0}. The same analysis can be done for the first bit in a covert
message as if it were preceded by a 0.

For the case of {0 0}, since the encoder does not dispatch HTTP requests,
the decoder could correctly extract the two bits if Eq. (1) is satisfied. For the
case of {0 1}, Eq. (3) must also be fulfilled to decode the bit 1 correctly:

(TE − Ti)(1 − Ploss)µ + (TE + TD)λ ≥ Q∗. (3)

For the cases of {1 1} and {1 0}, note that the first bit 1 could be correctly
decoded if Eq. (3) is fulfilled. The requirements, however, are different for the
second bits. For the case of {1 1}, V Ei is given by the HTTP requests leftover
from the previous run and a portion of the HTTP requests from the current
run. Hence, the decoder could extract the correct value if Eq. (2) is satisfied.
For the case of {1 0}, Eq. (4) must be fulfilled:

Ti(1 − Ploss)µ + (TE + TD)λ < Q∗. (4)

The remaining issue is to mitigate the adverse impact of Ploss, λ, and Ti on
the channel quality. First, we can estimate Ploss from the loss rate of the normal
requests and mitigate its effect by increasing the values of µ and the related
parameters, i.e. TE and Q∗. Similarly, we can also estimate λ (see section 3
for the methodology) and alleviate its impact by increasing the value of Q∗.
As for Ti, we can minimize its impact by employing the network time protocol
(NTP), or by exploiting the random beacons widely available in the Internet,
e.g., stock indices [12]. Hence, Ti could be made as small as 100ms. To further
mitigate the impact, the encoder could transmit the HTTP requests in bursts
at the beginning of TE . In this way, HTTP requests will not show up during
Ti, thus minimizing the impact of Ti for the cases of {1 0}, {0 1}, and {1 1}.

2.3 Increasing the bit rate

WebShare’s data rate is limited by the frequency of incrementing the Web
counter. We employ three approaches to improve it. The first approach is to
dispatch V Ei requests for encoding 1 through V Ei parallel HTTP connections,
HTTP request pipelining in a single HTTP connection, or a mixture of the two.

The second approach is to transmit multiple bits in parallel. To do so, the
encoder and decoder pre-agree on a set of ordered Web counters. During each
TE , the encoder sends 1 bit of information to each Web counter. The decoder
can therefore retrieve multiple bits from the set of counters in the next TD.

6 Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang

The third approach is based on multilevel quantization. Take a uniform quan-
tization as an example. To convey an M -bit message, where M > 1, we parti-
tion the increased value of the Web counter into M intervals with an interval
size of Q∗. If the increased value falls into the interval of [iQ∗, (i + 1)Q∗),
0 ≤ i < M − 1, then the message is decoded as i. If the number is larger than
or equal to (M − 1)Q∗, then the message is decoded as M − 1. As a result, the
encoder could deliver log2 M bits within a run.

2.4 Site-hopping

Recall that one of the methods of increasing WebShare’s data rate is to use a set
of Web counters. Using a fixed set of Web counters repeatedly, however, could
increase the vulnerability of being detected. To remove this static behavior, we
propose to change the set of Web counters dynamically. This idea is similar to
frequency hopping in the spread spectrum communication [13]; therefore, we
name it as site-hopping. For example, the encoder and decoder can use two sets
of nonoverlapping Web counters alternately.

Besides the advantage of further camouflaging WebShare, this approach in
fact helps increase the channel throughput, provided that any two consecutive
sets of S counters do not have any overlap. To see why, consider the previous
example again. Now it is possible to parallelize the encoding and decoding
operations: while the encoder is sending S bits to the first (or second) set of
Web counters, the decoder can simultaneously read S bits from the second (or
first) set of Web counters.

To deploy the site-hopping approach, we have to resolve two important
design issues. The first is to let both the encoder and decoder agree on the same
set of Web counters each time. However, because of the additional overhead,
we do not prefer to use the covert channel to communicate this information.
The second is to ensure that any two adjacent sets of S Web counters do not
overlap, which is required for achieving the parallelism and for reducing the
decoding errors.

We propose a novel, and yet simple, approach based on enumerative com-
binatorics [14] to resolve the two issues. Assume that both the encoder and
decoder have agreed on the list of N , where N >> S, available Web counters
and a shared secret key K0. We partition the N Web counters into two groups
with N1 = LS counters and N2 > S counters, respectively. Therefore, for a
given order of N1 counters, we could send L S-bit segments of the message
using nonoverlapped sets of counters. After sending the first L segments, we
could consider a different order of the N1 counters, and perform the similar
steps. However, there may be overlapping between the last set of S counters
for the ith N1-bit block and the first set of S counters for the (i + 1)th N1-bit
block. Our solution to this problem is to use a randomly selected set of S Web
counters from the second group as a separator between the two adjacent blocks.
Therefore, at least S bits of information can be transmitted before revisiting a
Web counter.

Crafting Web Counters into Covert Channels 7

To agree on the same set of counters for each S-bit message, both the en-
coder and decoder must first agree on the exact order of the N1 counters to use
for each N1-bit block, and there are NCP = N1! of them. Both must also agree
on the set and order of the S counters from the second group after sending each

N1-bit block; there are a total of NCC =

(

N2

S

)

S! = N2!
(N2−S)! such sequences.

From the field of enumerative combinatorics, there exist unranking algorithms
for permutations [15] (or binomial coefficients [14]) that map a positive integer
uniquely to each permutation (or combination). For this purpose, we have de-
signed an algorithm to index the NCC sequences. Therefore, if both the encoder
and decoder could come up the same indices for permutations or combinations,
they could use the unranking algorithms to agree on the same set of Web coun-
ters. We use the following procedures to generate the indices securely. Let IdxP

and IdxC be the indices for the permutations and combinations, respectively.
Let HP and HC be good hash functions that output pseudo-random values in
the range of [1, NCP] and [1, NCC], respectively. The indices can be computed
randomly according to the following rules:

IdxP,i−1 = HP (Ki−1) and IdxC,i−1 = HC(Ki−1),

Ki = IdxP,i−1 ⊕ IdxC,i−1, i > 0.

3 Experiment Results

We have prototyped WebShare encoder and decoder using Perl 5.8 under Linux
kernel v2.6.8. Altogether we have conducted experiments on 220 randomly se-
lected Web counters, whose hosting servers are located in ten different geograph-
ical locations. The Web counters increase their values on receiving an HTTP
request. The encoder and decoder run on different machines in our campus net-
work; their round-trip times (RTTs) to each Web counter are therefore very
similar. Moreover, to make Ti as small as possible, we use the NTP to synchro-
nize the encoder’s and decoder’s clocks. We have also examined the impact of
Ti on the decoding accuracy, and the results validate our arguments in section
2.

As recalled, one of the major factors affecting the decoding accuracy is the
unavoidable noise from legitimate visitors. This factor directly affects the choice
of Q∗, which determines whether the counter increment should be accepted
as bit 1. To obtain a suitable value of Q∗ for our target Webpages, we have
performed a one-week measurement to study their popularity. During the mea-
surement period, a node at our campus network queried the counter values of
the 220 Webpages every hour. Figure 3(a) shows the empirical CDF (ECDF) of
the average rate of requesting the Web counters, denoted by λ requests/second.
Over 95% of the measured Web counters have their λs smaller than 0.01, while
the λs for all the Web counters are no greater than 0.08. Thus, it is reasonable
to choose Q∗ = 2 to mitigate the noise-induced errors.

8 Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang

3.1 An evaluation of WebShare

Distribution of Web counters’ write times We report the distributions of
seven Web counters’ write times, and we select these Web counters randomly
from the original set. The write time is defined as the duration between a node’s
transmission of a TCP SYN packet (for initiating an HTTP connection) to a
Web server and its reception of the counter’s value from the server’s responses.
The write time could affect the channel accuracy, and the choices of TE and
TD.

We measure the write times for the seven Web counters and obtain a total
of 2,880 samples; each measurement is conducted with a single HTTP request.
Figure 3(b) shows the box-and-whisker plot of the write time measurements,
and we identify the Web counters by their geographical locations. Each box
includes the lower quartile, median, and upper quartile values of the write time
samples. The whiskers extended from the box represent 1.5 interquartile range of
the samples. We have summarized the statistics and their respective hop counts
in Table 1. Although the mean write time for each Web counter is smaller than
2s, the measured write times could range from 0.120s to 82.684s. Moreover,
the variations of the write times for some Web counters, such as those in SG,
AU, and US, are much larger than others. As shall see shortly, the write time
variations can adversely affect Webshare’s accuracy.

0 0.02 0.04 0.06 0.08
0

0.2

0.4

0.6

0.8

1

λ

E
m

pi
ri

ca
l C

D
F

(a) ECDF of legitimate visitors’ aver-
age arrival rates (λ).

JP HK SE SG AU US RU
0

0.5

1

1.5

2

2.5
W

ri
te

 T
im

e
(s

)

Webpage’s Location

JP − Japan
HK − Hong Kong
SE − Sweden
SG − Singapore
AU − Australia
US − United States
RU − Russia

(b) Distribution of the seven Web
counters’ write times.

Fig. 3. Some measured characteristics of the Web counters under consideration.

Choices of TE and TD We have measured WebShare’s performance under
various configurations of TE and TD (TE , TD ∈ {0.25, 0.50, 1.00}s) using the
seven Web counters. For these experiments, we set Q∗ = 2, and the encoder
conveys a random 16-bit message to the decoder. Moreover, the encoder employs
one Web server for each measurement, and sends V Ei = 3 requests in parallel
in order to mitigate the error due to encoding delays and request losses. For
each configuration of (TE ,TD), we measure the raw bit error rate (BER) on the

Crafting Web Counters into Covert Channels 9

decoder side for 30 times, in terms of the Hamming distance. The acceptable
BER depends on various factors, such as the forward error correction code in
use and the application requirement.

Table 1. Measured BERs for seven Web counters under different (TE, TD). The four
values under the column of “Write Time” represent the lower limit of and the upper
limit of the 95% confidence intervals for the sample means, the sample means, and
the standard deviation, respectively.

TE with TD = 1s TD with TE = 1s TE = TDLocations Hops Write Time (s)
250ms 500ms 250ms 500ms = 1s

JP 16 .1695/.1928/.1811/.3192 .0479 .0146 .4708 .4667 0
HK 14 .7353/.7935/.7644/.9876 .0750 .0167 .4708 .4625 .0063
SE 17 1.042/1.0582/1.0501/.2211 0 .0125 .4688 .4604 .0208
SG 16 1.5631/1.6352/1.5991/.9870 .1667 .0958 .4646 .4562 .1146
AU 23 1.6296/1.8069/1.7182/2.4280 .3083 .2875 .4813 .4250 .2604
US 18 1.6632/1.7743/1.7188/1.5214 .1500 .0333 .4729 .4292 .0729
RU 15 1.8297/1.8496/1.8397/.2713 .3979 .3521 .4604 .4396 .0531

As shown in Table 1, the channel accuracy depends greatly on the Webpages’
write times. Notice that when TE = TD = 1s, WebShare performs very well with
the BERs of less than 3% for some locations, such as JP, HK, and SE. We have
verified that the errors are mostly due to the background legitimate requests
and dropping of the encoder’s and decoder’s requests. However, Webshare shows
poorer performance for some other locations, especially for AU, SG, and US
whose write times exhibit very high variations, or whose mean write times are
greater than TE and TD. A simple way to relieve this problem is to ensure that
the values of TE and TD are greater than the Webpages’ write times.

Besides, we observe that it is more likely to incur a higher BER for TD < TE ;
however, a small TE generally has less impact on the channel performance. We
conjecture that the errors may be due to the interference from the encoder’s
next counter update. Depending on the design of the Web counter and the
Web server’s program design, the server may not produce the HTTP response
immediately after the counter update. On the other hand, even if TE is small,
the Web server can still produce the response for the decoder’s request based
on the current counter value, as long as TD is long enough and no later request
interferes the current value. Thus, it’s prudent to assign a longer TD in order
to increase the decoding accuracy.

Performance gain of the site-hopping approach As discussed in Sec-
tion 2.4, the site-hopping approach helps enhance both the throughput and
the channel accuracy. To measure the performance gain obtained by the site-
hopping approach, we adopt the same experiment settings as the last section:
Q∗ = 2 and V Ei = 3, and the encoder conveys a random 16-bit message to
the decoder. To avoid overlapping between two adjacent sets of Web coun-
ters, the encoder and decoder agree on two distinct sets of randomly selected
S ∈ {2, 4, 8, 16} Web counters from the original 220 Web counters. The encoder
issues HTTP requests to the S Web counters concurrently during each TE.

10 Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang

Figure 4 shows the measured BERs for TE ∈ {0.25, 0.50, 1.00, 2.00}s and S.
As the results show, the site-hopping approach can improve the WebShare chan-
nel accuracy. For example, when TE ≥ 1s, all measured BERs are no greater
than 1%. Even when TE = 250ms, the channel’s BER with S = 2 can stay
below 5%. These results confirm that site-hopping can effectively mitigate the
interference from the encoder’s next counter update. Furthermore, since the en-
coder transmits at most S bits in parallel, and both the encoding and decoding
processes are conducted in parallel, we expect that the site-hopping approach
can improve the channel throughput by a factor of [(TE + TD)S]/TE. Our ex-
periment results are indeed close to the expected results. For instance, when
TE = 250ms and TD = 1s, Webshare with site-hopping achieves a throughput
of 57.816 bits/s, whereas that without site-hopping is only 0.789 bits/s.

0 0.05 0.1 0.15 0.2 0.25

2

4

8

16

BER

S

TE=2s TE=1s TE=500ms TE=250ms

TES
250ms 500ms 1s 2s

2 .0425 .0071 .0088 .0078

4 .2025 .0133 .0099 .0058

8 .2046 .0683 .0053 .0016

16 .2174 .0921 .0060 .0014

Fig. 4. Measured BERs for WebShare with site-hopping, Q∗ = 2, and V Ei = 3 for
various values of S and TE .

4 Related Works

There have been quite a number of TCP/IP-based network storage channels
proposed for the past few years. In the network layer, many methods have
been proposed to hide data in the IP packets and ICMP packets. Virtually all
possible fields in the IP headers have been exploited for storage covert channels
[9, 16, 17, 18]. The fields in the TCP header are also equally exploited for
embedding storage covert channels [9, 19, 20, 17]. On the application layer,
HTTP not only has been used as a substrate for tunneling other protocols [21],
but also utilized to implement covert channels [1, 22, 2, 23], some of which have
been deployed to facilitate anonymous communications [1, 23].

On the defense side, neural network and support vector machines have been
adopted to detect storage covert channels based on the ISN of TCP flows [24,
25, 17]. Moreover, statistical approaches have been proposed to detect covert
channels over HTTP [26, 2]. Besides detection, another approach is to neutralize
covert channels by performing active operations on the traffic.

The basic idea of frequency-hopping has also been used in the Infranet
system to avoid widespread discovery and blocking [27, 23]. However, there

Crafting Web Counters into Covert Channels 11

are important differences between our site-hopping approach and the ones in
[27, 23]. First, all Web counters in WebShare are essentially “victims.” In other
words, the encoder and decoder just need to find and use these Web counters.
However, the proxies in the Infranet system need extra cooperation and in-
stallation. Second, our pseudo-random sequence algorithm, which is based on
enumerative combinatorics, not only could generate pseudo-random sequences,
but also guarantee that there are no overlapping in the consecutive sets of
members. The algorithm in Infranet, however, does not provide this feature.

5 Conclusions

In this paper, we have proposed WebShare, a new network storage channel
using Web counters to relay covert messages. A WebShare decoder can be lo-
cated anywhere to read the messages written by an encoder. We have shown
that WebShare requires only loose time synchronization between the encoder
and decoder. The channel data rate can also be increased by various schemes,
such as using multiple counters and the site-hopping technique. Moreover, we
have demonstrated its feasibility by prototyping the WebShare encoder and de-
coder and performed extensive experiments in the Internet. We have measured
its decoding accuracy and studied the impact of different parameters on its
performance.

Besides, we have conducted an information-theoretic analysis of WebShare’s
capacity and have proposed a new detection system designed for WebShare.
However, due to the paper limit, we could not present them in this paper. We
are in the process of reporting them in the forthcoming paper.

Acknowledgment

The work described in this paper was partially supported by a grant from
the Research Grant Council of the Hong Kong Special Administrative Region,
China (Project No. PolyU 5080/02E) and a grant from the Cisco University
Research Program Fund at Community Foundation Silicon Valley.

References

1. M. Bauer. New covert channels in HTTP: Adding unwitting Web browsers to
anonymity sets. In Proc. ACM Workshop on Privacy in the Electronic Society,
2003.

2. K. Borders and A. Prakash. Web Tap: Detecting covert Web traffic. In Proc.

ACM CCS, 2004.
3. DoD US. Department of defense trusted computer system evaluation criteria

(orange book). Technical Report DoD 5200.28-STD, National Computer Security
Center, Dec. 1985.

12 Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang

4. V. Gligor. A guide to understanding covert channel analysis of trusted systems
(light pink book). Technical Report NCSC-TG-030, National Computer Security
Center, Nov. 1993.

5. E. Cronin, M. Sherr, and M. Blaze. The eavesdropper’s dilemma. Technical
Report MS-CIS-05-24, University of Pennsylvania, February 2006.

6. R. Kemmerer. Shared resource matrix methodology: A practical approach to
indetifying covert channels. ACM Transactions on Computer Systems, 1(3), 1983.

7. C. Tsai and V. Gligor. A bandwidth computation model for covert storage chan-
nels and its applications. In Proc. IEEE Symp. Security and Privacy, 1988.

8. G. Danezis. Covert communications despite traffic data retention.
http://homes.esat.kuleuven.be/∼gdanezis/cover.pdf, 2006.

9. C. Rowland. Covert channels in the TCP/IP protocol suite. First Monday: Peer-

reviewed Journal on the Internet, 2(5), 1997.
10. Fyodor. Idle scanning and related IPID games.

http://www.insecure.org/nmap/idlescan.html.
11. F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion detection

framework. In Proc. IEEE Symp. Security and Privacy, 2002.
12. H. Lee, E. Chang, and M. Chan. Pervasive random beacon in the Internet for

covert coordination. In Proc. Information Hiding Workshop, 2005.
13. M. Simon, J. Omura, R. Scholtz, and B. Levitt. Spread Spectrum Communications

Handbook. McGraw-Hill, 2002.
14. D. Kreher and D. Stinson. Combinatorial Algorithms: Generation, Enumeration

and Search. CRC press, 1998.
15. W. Myrvold and F. Ruskey. Ranking and unranking permutations in linear time.

Information Processing Letters, 79:281–284, 2001.
16. K. Ahsan and D. Kundur. Practical data hiding in TCP/IP. In Proc. Workshop

on Multimedia Security, 2002.
17. S. Murdoch and S. Lewis. Embedding covert channels into TCP/IP. In Proc.

Information Hiding Workshop, 2005.
18. C. Abad. IP checksum covert channels and selected hash collision.

http://www.gray-world.net/papers/ipccc.pdf, 2001.
19. J. Giffen, R. Greenstadt, P. Litwack, and R. Tibbetts. Covert messaging through

TCP timestamps. In Proc. PET Workshop, 2002.
20. J. Rutkowska. The implementation of passive covert channels in the Linux kernel.

In Proc. Chaos Communication Congress, 2004.
21. K. Moore. On the use of HTTP as a substrate. RFC 3205, Feb. 2002.
22. Gray-World Team. Covert channel and tunneling over the HTTP pro-

tocol detection: GW implementation theoretical design. http://www.gray-
world.net/projects/papers/cctde.txt, 2003.

23. N. Feamster, M. Balazinska, W. Wang, H. Balakrishnan, and D. Karger. Thwart-
ing Web cenorship with untrusted messenger discovery. In Proc. PET Workshop,
2003.

24. J. Seo T. Sohn and J.Moon. A study on the covert channel detection of TCP/IP
header using support vector machine. In Proc. ICICS, 2003.

25. E. Tumoian and M. Anikeev. Network based detection of passive covert channels
in TCP/IP. In Proc. IEEE LCN, 2005.

26. D. Pack, W. Streilein, S. Webster, and R. Cunningham. Detecting HTTP tunnel-
ing activities. In Proc. IEEE Annual Information Assurance Workshop, 2002.

27. N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and D. Karger. Infranet:
Circumventing censorship and surveillance. In Proc. USENIX Security Symp.,
2002.

