
Probabilistic Anonymity via Coalgebraic Simulations

Ichiro Hasuo1⋆ and Yoshinobu Kawabe2

1 Radboud University Nijmegen, the Netherlands
http://www.cs.ru.nl/˜ichiro

2 NTT Communication Science Laboratories, NTT Corporation, Japan
http://www.brl.ntt.co.jp/people/kawabe

Abstract. There is a growing concern on anonymity and privacy on the Internet,
resulting in lots of work on formalization and verification of anonymity. Espe-
cially, importance of probabilistic aspect of anonymity is claimed recently by
many authors. Among them are Bhargava and Palamidessi who present the defi-
nition of probabilistic anonymityfor which, however, proof methods are not yet
elaborated. In this paper we introduce a simulation-based proof method for prob-
abilistic anonymity. It is a probabilistic adaptation of the method by Kawabe et
al. for non-deterministic anonymity: anonymity of a protocol is proved byfinding
out a forward/backward simulation between certain automata. For the jumpfrom
non-determinism to probability we fully exploit a generic, coalgebraic theory of
traces and simulations developed by Hasuo and others. In particular, anappro-
priate notion of probabilistic simulations is obtained by instantiating a generic
definition with suitable parameters.

1 Introduction

Nowadays most human activities rely on communication on theInternet, hence on com-
munication protocols. This has made verification of communication protocols a trend in
computer science. At the same time, the variety of purposes of communication proto-
cols has identified new verification goals—orsecurity properties—such as anonymity,
in addition to rather traditional ones like secrecy or authentication.

Anonymity properties have attracted growing concern from the public. There are
emerging threats as well: for example, the European Parliament in December 2005 ap-
proved rules forcing ISPs to retain access records. Consequently more and more re-
search activities—especially from the formal methods community—are aiming at veri-
fication of anonymity properties (see [2]).

Formal verification of anonymity properties is at its relative youth compared to au-
thentication or secrecy. The topic still allows for definitional work (such as [4,7,8,11,16])
pointing out many different aspects of anonymity notions. Notably many authors [4,8,20,21]
claim the significant role ofprobability in anonymity notions. This is the focus of this
paper.

Bhargava and Palamidessi [4] define the notion ofprobabilistic anonymitywhich is
mathematically precise and which subsumes many competing notions of anonymity

⋆ This work was done during the first author’s stay at NTT Communication Science Laboratories
in September–October 2006.

in probabilistic settings. However, it is not yet elaborated how we can verify if an
anonymizing protocol satisfies this notion of probabilistic anonymity.

In this paper we introduce a simulation-based proof method for probabilistic anonymity
as defined by Bhargava and Palamidessi. It is a probabilisticextension of the method by
Kawabe et al. [13,12] for a non-deterministic (as opposed toprobabilistic) setting. The
basic scenario is common in both non-deterministic and probabilistic cases:

1. First we model an anonymizing protocol to be verified as a certain kind of automa-
tonX .

2. Second we construct theanonymizedversionan(X) of X . The automatonan(X)
satisfies the appropriate notion of anonymity because of theway it is constructed.

3. We prove that

(trace semantics ofX) = (trace semantics ofan(X)) .

Then, since the notion of anonymity is defined in terms of traces, anonymity of
an(X) yields anonymity ofX . The equality is proved by showing that the (appro-
priate notion of) inclusion order⊑ holds in both directions.

– ⊑ holds because of the construction ofan(X).
– ⊒ is proved by finding a (forward or backward)simulationfrom an(X) to X .

Here we appeal to soundness theorem of simulations—existence of a simula-
tion yields trace inclusion.

Hence the anonymity proof ofX is reduced to finding a suitable forward/backward
simulation.

There is an obvious difficulty in conducting this scenario ina probabilistic setting.
The theory of traces and simulations in a non-deterministicsetting is well studied e.g.
by [14]; however appropriate definitions of probabilistic traces and simulations are far
from trivial.

For the jump from non-determinism to probability we exploita generic, coalgebraic
theory of traces and simulations developed by Hasuo, Jacobsand Sokolova [9,10]. In the
generic theory, fundamental notions such as systems (or automata), trace semantics and
forward/backward simulations are identified as certain kinds of coalgebraic constructs.
On this level of abstraction the general soundness theorem—existence of a (coalgebraic)
simulation yields (coalgebraic) trace inclusion—is provedby categorical arguments.

The theory is generic in that, by fixing two parameters appearing therein, it in-
stantiates to a concrete theory for various kinds of systems. In particular, according
to the choice of one parameter, systems can be non-deterministic or probabilistic.3 In
this work a complex definition of probabilistic simulationsis obtained as an instance
of the general, coalgebraic definition. Moreover, this definition is anappropriateone:
soundness theorem comes for free from the general soundnesstheorem.

The paper is organized as follows. In Section 2 we illustratethe probabilistic as-
pect of anonymity properties using the well-known example of Dining Cryptographers.

3 Unfortunately the combination of both non-determinism and probability—which is e.g. in
probabilistic automata [19]—is not covered in this paper. In fact this combination is a no-
torious one [6,23]: many mathematical tools that are useful in a purely non-deterministic or
probabilistic setting cease to work in the presence of both.

We model anonymizing protocols as a special kind of automatacalled (probabilistic)
anonymity automata. This notion is introduced in Section 3; the definition of prob-
abilistic anonymity following [4] is also there. Finally inSection 4 we describe our
simulation-based proof method for anonymity and prove its correctness. In Section 5
we conclude.

Notations In the sequel the disjoint union of setsX andY is denoted byX + Y .
The set of lists over an alphabetX with length≥ 1 is denoted byX∗X in a regular-

expression-like manner: obviously we haveX∗ = X∗X + {〈〉}. This appears as a
domain of trace semantics for anonymity automata.

2 Motivating example: dining cryptographers (DC)

In this section—following [4]—we shall illustrate the probabilistic aspect of anonymity,
using the well-knowndining cryptographers(DC) protocol [5].

2.1 The DC protocol

There are three cryptographers (or users) dining together.The payment will be made
either by one of the cryptographers, or NSA (U.S. National Security Agency) which
organizes the dinner. Who is paying is determined by NSA; if one of the cryptographers
is paying, she has been told so beforehand.

The goal of the DC protocol is as follows. The three cryptographers announce
whether one of them is paying or not; but if it is the case, the information onwhich
cryptographer is paying should be disguised from the viewpoint of an observer (called
theadversaryin the sequel) and also from that of the cryptographers who are not pay-
ing. This is where anonymity is involved.

The protocol proceeds in the following way. Three cryptographersCrypti for i =
0, 1, 2 sit in a circle, each with a coinCoini. The coins are held in such a way that they
can be seen by the owner and one of the other two: in the following figure→ denotes
the “able-to-see-her-coin” relation.

Crypt
0

Crypt
1

Crypt
2

Then the coins are flipped; each cryptographer, comparing the two coins she can see,
announces to the public whether theyagree(showing the same side) ordisagree. The
trick is that the one who is paying—if there is—lies on the announcement. For example,
given thatCrypt0 is paying, then the configuration of coins

(h, t, h) that is h
t h

,

results in the announcement

(a, d, a) that is
a

d a .

This announcement is the only thing the adversary can observe; occurrence of an odd
number ofd’s reveals the presence of a liar, hence the presence of a payer among the
cryptographers.

Can the adversary say which cryptographer is paying? No. In fact, given an an-
nouncement with an odd number ofd’s and any payerCrypti, we can construct a coin
configuration which yields the given announcement. For example, the announcement
(a, d, a) above can be yielded by any of the following configurations.

Crypt0 pays, and coins are(h, t, h) or (t, h, t)
Crypt1 pays, and coins are(h, h, h) or (t, t, t)
Crypt2 pays, and coins are(h, h, t) or (t, t, h)

2.2 Probabilistic anonymity in DC

Up to now the arguments have been non-deterministic: now we shall explain how prob-
abilistic aspects in DC emerge. Assume that the coins are biased: each of threeCoini’s
gives head with the probability9/10. Provided thatCrypt0 is paying, the announcement
(a, d, a) occurs with the probability(9 · 1 · 9 + 1 · 9 · 1)/103, because it results from
(h, t, h) or (t, h, t). Similar calculations lead to the following table of probabilities.

(d, a, a) (a, d, a) (a, a, d) (d, d, d)
Crypt0 pays 0.73 0.09 0.09 0.09
Crypt1 pays 0.09 0.73 0.09 0.09
Crypt2 pays 0.09 0.09 0.73 0.09

Are the cryptographers still “anonymous”? We would not say so. For example, if the
adversary observes an announcement(d, a, a), it is reasonable for her to suspectCrypt0
more than the other two.

Nevertheless, if the coins are not biased, we cannot find any symptom of broken
anonymity. Therefore we want to obtain the following two things.

The first is an appropriate notion of “probabilistic anonymity” which holds with
fair coins but is violated with biased coins—this is done in [4]. The intuition is quite
similar to the one behind the notion ofconditional anonymity[8]. The adversary has a
priori knowledge on “who is likely to be blamed”; however, after observing a run of an
anonymizing protocol, the adversary should not gain any additional information—each
user looks as suspicious as it did before the actual execution.

The second is an effective proof method to verify this notionof anonymity: this is
what we aim at in the current work.

3 Probabilistic anonymity

3.1 Anonymity automata: models of anonymizing protocols

In this work anonymizing protocols are formalized as a specific kind of probabilistic
systems which we shall call (probabilistic)anonymity automata. The notion is simi-
lar to probabilistic automata [19]: however, in anonymity automata branching is purely

probabilistic without any non-determinism. This modification, together with other mi-
nor ones, is made so that the coalgebraic framework in [9] applies.

The features of an anonymity automaton are as follows.

– By making a transition it can either
• execute an action and successfully terminate (x

a
→ X), or

• execute an action and move to another state (x
a
→ y).

Internal, silent actions are not explicitly present.
– An actiona can be either

• anobservable actiono which can be seen by the adversary, or
• anactor actionblame(i) which denotes that a useri has performed the action

whose performer we want to disguise (such as payment in DC).
– Each state comes with a probability subdistribution over the set of possible transi-

tions. By “sub”distribution it is meant that the sum of all the probabilities is≤ 1
rather than= 1: the missing probability is understood as the probability for dead-
lock.

Here is a formal definition.

Definition 3.1 (Anonymity automata) An anonymity automatonis a5-tuple(X,U ,O, c, s)
where:

– X is a non-empty set called thestate space.
– U is a non-empty set ofusers.4

– O is a non-empty set ofobservable actions.
– c : X → D

(

A× {X} + A× X
)

is a function which assigns to each statex ∈ X
a probability subdistributionc(x) over possible transitions. The setA is the set of
actionsand defined by

A = O + { blame(i) | i ∈ U} .

The operationD gives the set of subdistributions: for a setY ,

DY =
{

d : Y → [0, 1] |
∑

y∈Y

d(y) ≤ 1
}

. (1)

This operationD canonically extends to a monad5 which we shall call thesubdis-
tribution monad.
For example, the valuec(x)(a,X)6 in [0, 1] is the probability with which a statex
executesa and then successfully terminate (i.e.x

a
→ X).

– s is a probability subdistribution over the state spaceX. This specifies which state
would be astarting(or initial) one.

4 A user is called ananonymous userin [4].
5 Monadsare a categorical notion. Interested readers are referred to [3] forthe details.
6 To be precise this should be written asc(x)

`

κ1(a, X)
´

, whereκ1 : A× {X} → A× {X}+
A× X is the inclusion map.

Example 3.2 (Anonymity automatonXDC for DC) To model the DC protocol, we
take

U = {0, 1, 2} , O = {a, d} × {a, d} × {a, d} =
{

(x, y, z) | x, y, z ∈ {a, d}
}

.

We need to fix the a priori probability distribution on who will make a payment, in view
of the conditional notion of probabilistic anonymity. Let us denote bypi the probability
with which a useri pays.

The DC protocol (with its a priori probability distributiongiven bypi’s) is naturally
described as follows. Probability for each transition is presented in square brackets;
otherwise the transition occurs with probability1.

↓

blame(0) [p0]

h0[
1
2]

h1[
1
2]

h2[
1
2]

X

(d
,a,a)

t2[
1
2]

X

(d
,d

,d
)

t1[
1
2]

h2[
1
2]

X

(a,d
, a)

t2[
1
2]

X

(a, a, d
)

t0[
1
2]

h1[
1
2]

h2[
1
2]

X

(a,a,d
)

t2[
1
2]

X

(a,d
,a)

t1[
1
2]

h2[
1
2]

X

(d
,d

,d
)

t2[
1
2]

X

(d
,a,a)

...
blame(1) [p1] ...

blame(2) [p2]
τ [1 − p0 − p1 − p2]

h0[
1
2]

h1[
1
2]

h2[
1
2]

X

(a,a,a)
t2[

1
2]

X

(a,d
,d

)
t1[

1
2]

h2[
1
2]

X

(d
,d

,a)

t2[
1
2]

X

(d
,a,d

)

t0[
1
2]

h1[
1
2]

h2[
1
2]

X

(d
,a,d

)

t2[
1
2]

X

(d
,d

,a)

t1[
1
2]

h2[
1
2]

X

(a,d
,d

)

t2[
1
2]

X

(a, a, a)

Hereτ denotes an internal action with the intention of “NSA pays”.
However, the actionshi andti—with their obvious meanings—must not be present

because they are not observable by the adversary. These actions are replaced byτ ’s.
Moreover, for technical simplicity we do not allowτ ’s to appear in an anonymity au-
tomaton. Hence we take the “closure” of the above automaton in an obvious way, and
obtain the following.

x

↓
X

(a, a, a)[1−p0−p1−p2

4]

X

(a, d, d)[1−p0−p1−p2

4]

X

(d, a, d)[1−p0−p1−p2

4]

X

(d, d, a)[1−p0−p1−p2

4]
y0

blame(0) [p0]

X

(d
,a,a)[

14
]

X

(a,d
,a)[

14
]

X

(a,a,d
)[

14
]

X

(d
,d

,d
)[

14
]

y1

blame(1) [p1]

X

(d
,a,a)[

14
]

X

(a,d
,a)[

14
]

X

(a,a,d
)[

14
]

X

(d
,d

,d
)[

14
]

y2

blame(2) [p2]

X

(d
,a,a)[

14
]

X

(a,d
,a)[

14
]

X

(a,a,d
)[

14
]

X

(d
,d

,d
)[

14
]

The start state distributions is: x 7→ 1. This anonymity automaton we shall refer to as
XDC.

3.2 Anonymity automata reconciled as coalgebras

The generic, coalgebraic theory of traces and simulations in [9] applies to anonymity
automata. The generic theory is developed with two parametersT andF :

– a monadT onSets specifies thebranching-type, such as non-determinism or prob-
ability;

– a functorF on Sets specifies thetransition-type, i.e., what a system can do by
making a transition.

Systems for which traces/simulations are defined are called(T, F)-systemsin the generic
theory, making the parameters explicit. The theory is coalgebraic because a(T, F)-
system is essentially a coalgebra in a suitable category.

Anonymity automata fit in the generic theory. They are(T, F)-systems with the
following choice of parametersT andF .

– T is the subdistribution monadD, modeling purely probabilistic branching.
– FX = A×{X}+A×X, modeling the transition-type of “(action and terminate)

or (action and next state)”.

It is immediately seen that for this choice ofF , the setA∗A carries the following initial
algebra inSets. We denote its structure map byα.

A× {X} + A× (A∗A)
∼=α

κ1(a,X) κ2(a,a)

A∗A 〈a〉 a · a ,

where〈a〉 denotes a list of length1, anda ·a is what would be written as(cons a a) in
L ISP. Therefore [9, Corollary 5.2] suggests that the setA∗A is the appropriate domain
of (finite) trace semantics for anonymity automata: this is actually the case later in
Definition 3.3.

3.3 Trace semantics for anonymity automata

The trace semantics for anonymity automata is used in defining probabilistic anonymity.
In a non-deterministic setting, trace semantics yields asetof lists of actions which can
possibly occur. In contrast, trace semantics of a probabilistic system is aprobability
subdistributionover lists.

Definition 3.3 (Trace semantics for anonymity automata)Given an anonymity au-
tomatonX = (X,U ,O, c, s), its trace

PX ∈ D(A∗A)

is defined as follows. For a list of actions〈a0, a1, . . . , an〉 with a finite lengthn ≥ 1,

PX (〈a0, a1, . . . , an〉) =
∑

x0,x1,...,xn∈X

PX (x0
a0→ x1

a1→ · · ·
an−1

→ xn
an→ X) ,

where the probability

PX (x0
a0→ x1

a1→ · · ·
an−1

→ xn
an→ X)

= s(x0) · c(x0)(a0, x1) · · · · · c(xn−1)(an−1, xn) · c(xn)(an,X)

is for the event thatX starts atx0, follows the path
a0→ x1

a1→ · · ·
an−1

→ xn and finally
terminates with

an→ X.

Intuitively the valuePX (a) ∈ [0, 1] for a list a ∈ A∗A is the probability with which
the systemX executes actions ina successively and then terminates. Our concern is on
actions (observable actions or actor actions) the system makes but not on the states it
exhibits.

The following alternative characterization allows us to apply the generic, coalge-
braic theory of traces in [9,10].

Lemma 3.4 (Trace semantics via the generic theory)Given an anonymity automa-
tonX , let (s, c) be a(T, F)-system identified withX as in Section 3.2.

The tracePX ofX coincides with the coalgebraic tracetr(s,c) defined in the generic
theory [9, Definition 5.7] for(s, c). ⊓⊔

Example 3.5 (Dining cryptographers) For the anonymity automatonXDC in Exam-
ple 3.2, its tracePXDC

is the following probability subdistribution.

〈 blame(i), (d, a, a) 〉 7→ pi/4
〈 blame(i), (a, d, a) 〉 7→ pi/4
〈 blame(i), (a, a, d) 〉 7→ pi/4
〈 blame(i), (d, d, d) 〉 7→ pi/4

〈 (a, a, a) 〉 7→ (1 − p0 − p1 − p2)/4
〈 (a, d, d) 〉 7→ (1 − p0 − p1 − p2)/4
〈 (d, a, d) 〉 7→ (1 − p0 − p1 − p2)/4
〈 (d, d, a) 〉 7→ (1 − p0 − p1 − p2)/4

(for i = 0, 1, 2)

The other lists inA∗A have probability0.

In this work we assume that in each execution of an anonymizing protocol there
appears at most one actor action. This is the same assumptionas [4, Assumption 1] and
is true in all the examples in this paper.

Assumption 3.6 (At most one actor action)LetX = (X,U ,O, c, s) be an anonymity
automaton anda ∈ A∗A. If a contains more than one actor actions, then

PX (a) = 0 .

3.4 Definition of probabilistic anonymity

In this section we formalize the notion of probabilistic anonymity following [4]. First,
for the sake of simplicity of presentation, we shall introduce the following notations for
predicates (i.e. subsets) onA∗A.

Definition 3.7 (Predicates[blame(i)] and [o]) – For eachi ∈ U , a predicate[blame(i)]
onA∗A is defined as follows.

[blame(i)] = {a ∈ A∗A | blame(i) appears ina}

By Assumption 3.6, it is the set of lists obtained by augmenting blame(i) with
observable actions: in a regular-expression-like notation,

[blame(i)] = O∗ blame(i)O∗ .

Moreover,[blame(i)] ∩ [blame(j)] = ∅ if i 6= j.

– For eacho ∈ O∗, a predicate[o] onA∗A is defined as follows.

[o] = {a ∈ A∗A | removeActor(a) = o} ,

where the functionremoveActor : A∗A → O∗—which is defined by a suitable
induction—removes actor actions appearing in a list. The set[o] ⊆ A∗A consists
of those lists which yieldo as the adversary’s observation. It is emphasized that[o]
is not the set of lists which containo as sublists: we remove only actor actions, but
not observable actions.

Note that we are overriding the notation[]: no confusion would arise since the argu-
ments are of different types. Values such asPX ([blame(i)]) are defined in a straight-
forward manner:

PX ([blame(i)]) =
∑

a∈[blame(i)]

PX (a) .

This is the probability with whichX yields an execution in which a useri is to be
blamed.

We follow [4] and adopt the following definition of anonymity.

Definition 3.8 (Probabilistic anonymity [4]) We say an anonymity automatonX is
anonymousif for eachi, j ∈ U ando ∈ O∗,

PX ([blame(i)]) > 0 ∧ PX ([blame(j)]) > 0

=⇒ PX ([o] | [blame(i)]) = PX ([o] | [blame(j)]) .

HerePX ([o] | [blame(i)]) is a conditional probability: it is given by

PX ([o] | [blame(i)]) =
PX ([o] ∩ [blame(i)])

PX ([blame(i)])
.

The intuition behind this notion—sketched in Section 2.2—is similar to the one behind
conditional anonymity [8]. In fact, it is shown in [4] that under reasonable assumptions
the two notions of anonymity coincide. For completeness thedefinition of conditional
anonymity (adapted to the current setting) is also presented.

Definition 3.9 (Conditional anonimity [8]) An anonymity automatonX satisfiescon-
ditional anonymityif for eachi ∈ U ando,o′ ∈ O∗,

PX ([blame(i)] ∩ [o]) > 0

=⇒ PX ([blame(i)] | [o]) = PX ([blame(i)] |
⋃

j∈U

[blame(j)]) .

The notion in Definition 3.8 is (one possibility of) probabilistic extension oftrace
anonymityin [18]. It is emphasized that these anonymity notions are based on trace
semantics which is at the coarsest end in the linear time-branching time spectrum [22].
Hence our adversary has less observation power than one in [1] for example where secu-
rity notions are bisimulation-based. A justification for having such a weaker adversary
is found in [13].

4 Anonymity proof via probabilistic simulations

In this section we extend the proof method [13,12] for anonymity to the probabilistic
setting. In the introduction we have presented the basic scenario. Now we shall describe
its details, with all the notions therein (traces, simulations,etc.) interpreted probabilis-
tically.

4.1 Anonymized automatonan(X)

We start with the definition ofan(X), the anonymized versionof an anonymity au-
tomatonX . Recall that our notion of anonymity is conditional: the adversary has a pri-
ori knowledge on who is more suspicious. In an anonymity automatonX , the a priori
probability with which a useri does wrong is given byPX ([blame(i)]). Its normalized,
conditional version

ri
def.
= PX ([blame(i)] |

⋃

j∈U

[blame(j)]) =
PX ([blame(i)] ∩

⋃

j∈U [blame(j)])

PX (
⋃

j∈U [blame(j)])

=
PX ([blame(i)])

∑

j∈U PX ([blame(j)])

(the equalities are due to Assumption 3.6) plays an important role in the following
definition ofan(X). The valueri is the conditional probability with which a useri is to
be blamed, given that there is any user to be blamed; we have

∑

i∈U ri = 1. Of course,
for the valuesri to be well-defined, the anonymity automatonX needs to satisfy the
following reasonable assumption.

Assumption 4.1 (There is someone to blame)For an anonymity automatonX ,
∑

j∈U

PX ([blame(j)]) 6= 0 .

Intuitively, an(X) is obtained fromX by distributing an actor actionblame(i) to
each userj, with the probability distributed in proportion torj .

Definition 4.2 (Anonymized anonymity automatonan(X)) Given an anonymity au-
tomatonX = (X,U ,O, c, s), itsanonymized automatonan(X) is a 5-tuple(X,U ,O, can, s),
wherecan is defined as follows. For eachx ∈ X,

can(x)(blame(i), u) =
∑

j∈U ri · c(x)(blame(j), u) for i ∈ U andu ∈ {X} + X,
can(x)(o, u) = c(x)(o, u) for o ∈ O andu ∈ {X} + X.

On the first equation, the summandri · c(x)(blame(j), u) results from distributing the

probabilityc(x)(blame(j), u) for a transitionx
blame(j)
−→ u, to a useri. This is illustrated

in the following figure: hereU = {0, 1, . . . , n} andq = c(x)(blame(j), u).

•In X

blame(j) [q]

•In an(X)

blame(0) [r0 · q] · · · blame(n) [rn · q]

• •

(2)

The automatonan(X) is “anonymized” in the sense of the following lemmas.

Lemma 4.3 Let X be an anonymity automaton. In its anonymized versionan(X) =
(X,U ,O, can, s) we have

rj · c
an(x)(blame(i), u) = ri · c

an(x)(blame(j), u)

for anyi, j ∈ U , x ∈ X andu ∈ {X} + X.

Proof. Obvious from the definition ofcan. ⊓⊔

Lemma 4.4 (an(X) is anonymous) For an anonymity automatonX , an(X) is anony-
mous in the sense of Definition 3.8.

Proof. Let o = 〈o1, o2, . . . , on〉 ∈ O∗ andi, j ∈ U . Moreover, assume

Pan(X)([blame(i)]) 6= 0 and Pan(X)([blame(j)]) 6= 0 ,

henceri 6= 0 andrj 6= 0. Then

Pan(X)([o] ∩ [blame(i)])

= Pan(X)(〈blame(i), o1, o2, . . . , on〉)

+ Pan(X)(〈o1, blame(i), o2, . . . , on〉)

+ · · · + Pan(X)(〈o1, o2, . . . , on, blame(i)〉)

=
∑

x0,x1,...,xn∈X

s(x0) · c
an(x0)(blame(i), x1) · c

an(x1)(o1, x2) · · · · · c
an(xn)(on,X)

+
∑

x0,x1,...,xn∈X

s(x0) · c
an(x0)(o1, x1) · c

an(x1)(blame(i), x2) · · · · · c
an(xn)(on,X)

+ · · ·

+
∑

x0,x1,...,xn∈X

s(x0) · c
an(x0)(o1, x1) · c

an(x1)(o2, x2) · · · · · c
an(xn)(blame(i),X) .

We have the same equation forj instead ofi. Hence by Lemma 4.3 we have

rj · Pan(X)([o] ∩ [blame(i)]) = ri · Pan(X)([o] ∩ [blame(j)]) . (3)

This is used to show the equality of two conditional probabilities.

Pan(X)([o] | [blame(i)]) =
Pan(X)([o] ∩ [blame(i)])

Pan(X)([blame(i)])

=
ri

rj

·
Pan(X)([o] ∩ [blame(j)])

Pan(X)([blame(i)])
By (3)

=
Pan(X)([o] ∩ [blame(j)])

Pan(X)([blame(j)])
By definition ofri, rj

= Pan(X)([o] | [blame(j)]) . ⊓⊔

4.2 Forward/backward simulations for anonymity automata

We proceed to introduce appropriate notions of forward and backward simulations. The
(tedious) definition and soundness theorem—existence of a forward/backward simula-
tion implies trace inclusion—come for free from the generic theory in [9]. This forms a
crucial part of our simulation-based proof method.

Definition 4.5 (Forward/backward simulations for anonymity automata) Let X =
(X,U ,O, c, s) andY = (Y,U ,O, d, t) be anonymity automata which have the same
sets of users and observable actions.

A forward simulationfrom X to Y—through whichY forward-simulatesX—is a
function

f : Y −→ DX

which satisfies the following inequalities in[0, 1].

s(x) ≤
∑

y∈Y t(y) · f(y)(x) for anyx ∈ X,
∑

x∈X f(y)(x) · c(x)(e,X) ≤ d(y)(e,X) for anyy ∈ Y ande ∈ A,
∑

x∈X f(y)(x) · c(x)(e, x′) ≤
∑

y′∈Y d(y)(e, y′) · f(y′)(x′)

for anyy ∈ Y , e ∈ A andx′ ∈ X.

A backward simulationfromX toY—through whichY backward-simulatesX—is
a function

b : X −→ DY

which satisfies the following inequalities in[0, 1].
∑

x∈X s(x) · b(x)(y) ≤ t(y) for anyy ∈ Y ,

c(x)(e,X) ≤
∑

y∈Y b(x)(y) · d(y)(e,X) for anyx ∈ X ande ∈ A,
∑

x′∈X c(x)(e, x′) · b(x′)(y′) ≤
∑

y∈Y b(x)(y) · d(y)(e, y′)

for anyx ∈ X, e ∈ A andy′ ∈ Y .

The definition definitely looks puzzling. Why does a forward simulation have the type
Y → DX? Why is a backward simulation not of the same type? How come thecomplex
inequalities? How do we know that the inequalities are in thecorrect direction?

In fact, this definition is an instantiation of the general, coalgebraic notions of for-
ward/backward simulations [9, Definitions 4.1, 4.2]. More specifically, the two param-
etersT andF in the generic definition are instantiated as in Section 3.2.

Theorem 4.6 (Soundness of forward/backward simulations)Assume there is a for-
ward (or backward) simulation from one anonymity automatonX to anotherY. Then
we have trace inclusion

PX ⊑ PY ,

where the order⊑ is defined to be the pointwise order: for eacha ∈ A∗A,

PX (a) ≤ PY(a) .

Proof. We know (Lemma 3.4) that the notions of traces and simulations for anonymity
automata are instantiations of the general, coalgebraic notions in [9,10]. Therefore we
can appeal to the general soundness theorem [9, Theorem 6.1]. ⊓⊔

4.3 Probabilistic anonymity via simulations

We shall use the materials in Sections 4.1 and 4.2 to prove thevalidity of our simulation-
based proof method (Theorem 4.11).

The following lemma—which essentially saysPX ⊑ Pan(X)—relies on the way
an(X) is constructed. The proof is a bit more complicated than in the non-deterministic
setting [13,12].

Lemma 4.7 LetX be an anonymity automaton. Assume there exists a forward or back-
ward simulation froman(X) toX—through whichX simulatesan(X). Then their trace
semantics are equal:

PX = Pan(X) .

Proof. By the soundness theorem (Theorem 4.6) we have

PX ⊒ Pan(X) , (4)

where⊒ refers to the pointwise order between functionsA∗A ⇉ [0, 1]. We shall show
that this inequality is in fact an equality.

First we introduce an operationobs which acts on anonymity automata. Intuitively,
obs(Y) is obtained fromY by replacing all the different actor actionsblame(i) with sin-
gle blame(sb)—sb is for “somebody”. This conceals actor actions inY; henceobs(Y)
only carries information on the observable actions ofY.

•In X

blame(0) [q0] · · · blame(n) [qn]

•In obs(X)

blame(sb) [q0 + · · · + qn]

• •

(5)

Formally,

Definition 4.8 (Anonymity automaton obs(Y)) Given an anonymity automatonY =
(Y,U ,O, d, t), we define an anonymity automatonobs(Y) as the 5-tuple(Y, {sb},O, dobs, t)
where:

– sb is a fresh entity,
– dobs is a function

dobs : Y −→ D
(

Aobs × {X} + Aobs × Y
)

whereAobs = O + {blame(sb)}, defined by:

dobs(y)(blame(sb), u) =
∑

i∈U d(y)(blame(i), u) for y ∈ Y andu ∈ {X} + Y ,
dobs(y)(o, u) = d(y)(o, u) for y ∈ Y , o ∈ O andu ∈ {X} + Y .

The following fact is obvious.

Sublemma 4.9For an anonymity automatonX , obs(X) andobs(an(X)) are identical.
⊓⊔

The following sublemma is crucial in the proof of Lemma 4.7. Two automataY and
obs(Y), although their trace semantics distributes over different sets, have the same
sum of probabilities taken over all executions.

Sublemma 4.10For an anonymity automatonY,

∑

a∈A∗A

PY(a) =
∑

a
′∈(Aobs)∗Aobs

Pobs(Y)(a
′) .

Recall thatA = O + {blame(i) | i ∈ U} andAobs = O + {blame(sb)}.

Proof. From the definition of trace semantics (Definition 3.3), the sublemma is proved
by easy calculation. ⊓⊔

We turn back to the proof of Lemma 4.7. We argue by contradiction—assume that
the inequality in (4) is strict. That is, there existsa0 ∈ A∗A such thatPX (a0)

Pan(X)(a0). Then, by (4) we have
∑

a∈A∗A PX (a)

∑

a∈A∗A Pan(X)(a). However,

∑

a∈A∗A PX (a) =
∑

a
′∈(Aobs)∗Aobs Pobs(X)(a

′) By Sublemma 4.10

=
∑

a
′∈(Aobs)∗Aobs Pobs(an(X))(a

′) By Sublemma 4.9

=
∑

a∈A∗A Pan(X)(a) . By Sublemma 4.10

This contradiction concludes the proof of Lemma 4.7. ⊓⊔

Now we are ready to state the main result.

Theorem 4.11 (Main theorem: probabilistic anonymity via simulations) If there ex-
ists a forward or backward simulation froman(X) toX , thenX is anonymous.

Proof. By Lemma 4.7 we havePX = Pan(X). Moreover, by Lemma 4.4,an(X) is
anonymous. This proves anonymity ofX : recall that probabilistic anonymity is a prop-
erty defined in terms of traces (Definition 3.8). ⊓⊔

Example 4.12 (Dining cryptographers) We demonstrate our proof method via simu-
lations by applying it to the DC protocol.

LetX = {x, y0, y1, y2} be the state space ofXDC. Its anonymized versionan(XDC)
has the same state space: for notational convenience the state space ofan(XDC) is
denoted byX ′ = {x′, y0

′, y1
′, y2

′}. It is verified by easy calculation that the following
functionf : X → D(X ′) is a forward simulation froman(XDC) toXDC.

f(x) = [x′ 7→ 1] f(y0) = f(y1) = f(y2) =





y0
′ 7→ p0

p0+p1+p2

y1
′ 7→ p1

p0+p1+p2

y2
′ 7→ p2

p0+p1+p2





By Theorem 4.11 this proves (probabilistic) anonymity ofXDC, hence of the DC pro-
tocol.

5 Conclusion and future work

We have extended the simulation-based proof method [13,12]for non-deterministic
anonymity to apply to the notion of probabilistic anonymitydefined in [4]. For the
move we have exploited a generic theory of traces and simulations [9,10] in which
the difference between non-determinism and probability isjust a different choice of a
parameter.

The DC example in this paper fails to demonstrate the usefulness of our proof
method: for this small example direct calculation of trace distribution is not hard. A
real benefit would arise in theorem-proving anonymity of an unboundedly large sys-
tem (which we cannot model-check). In fact, the non-deterministic version of our proof
method is used to theorem-prove anonymity of a voting protocol with arbitrary many
voters [12]. A probabilistic case study of such kind is currently missing.

In [4] the probabilisticπ-calculus is utilized as a specification language for au-
tomata. We have not yet elaborated which subset of the calculus is suitable for describ-
ing our notion of anonymity automata.

There is a well-established body of work on verification of probabilistic information-
hiding properties such as non-interference [24,17]. Our proof method could be recon-
ciled in this context by, for example, finding a translation of anonymity into a non-
interference property.

The significance of having both non-deterministic and probabilistic branching in
considering anonymity is claimed in [15]. However the current method cannot handle
this combination due to the lack of suitable coalgebraic framework. Elaboration in this
direction would also help better understanding of the nature of the (notorious) combi-
nation of non-determinism and probability.

AcknowledgmentsThanks are due to Ken Mano, Peter van Rossum, Hideki Sakurada,
Ana Sokolova, Yasuaki Tsukada and the anonymous referees for helpful discussions
and comments. The first author is grateful to his supervisor Bart Jacobs for encourage-
ment.

References

1. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The Spi calculus. In
Fourth ACM Conference on Computer and Communications Security, pages 36–47. ACM
Press, 1997.

2. Anonymity bibliography.
http://freehaven.net/anonbib/ .

3. M. Barr and C. Wells.Toposes, Triples and Theories. Springer, Berlin, 1985.
4. M. Bhargava and C. Palamidessi. Probabilistic anonymity. In M. Abadiand L. de Alfaro,

editors,CONCUR 2005, volume 3653 ofLect. Notes Comp. Sci., pages 171–185. Springer,
2005.

5. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journ. of Cryptology, 1(1):65–75, 1988.

6. L. Cheung.Reconciling Nondeterministic and Probabilistic Choices. PhD thesis, Radboud
Univ. Nijmegen, 2006.

7. F.D. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provable anonymity. In R. K̈usters
and J. Mitchell, editors,3rd ACM Workshop on Formal Methods in Security Engineering
(FMSE05), pages 63–72, Alexandria , VA, U.S.A., November 2005. ACM Press.

8. J.Y. Halpern and K.R. O’Neill. Anonymity and information hiding in multiagent systems.
Journal of Computer Security, to appear.

9. I. Hasuo. Generic forward and backward simulations. In C. Baier and H. Hermanns, editors,
International Conference on Concurrency Theory (CONCUR 2006), volume 4137 ofLect.
Notes Comp. Sci., pages 406–420. Springer, Berlin, 2006.

10. I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace theory. InN. Ghani and J. Power, ed-
itors, International Workshop on Coalgebraic Methods in Computer Science (CMCS 2006),
volume 164 ofElect. Notes in Theor. Comp. Sci., pages 47–65. Elsevier, Amsterdam, 2006.

11. D. Hughes and V. Shmatikov. Information hiding, anonymity and privacy: A modular ap-
proach.Journal of Computer Security, 12(1):3–36, 2004.

12. Y. Kawabe, K. Mano, H. Sakurada, and Y. Tsukada. Backwardsimulations for anonymity.
In International Workshop on Issues in the Theory of Security (WITS ’06), 2006.

13. Y. Kawabe, K. Mano, H. Sakurada, and Y. Tsukada. Theorem-proving anonymity of infinite
state systems.Information Processing Letters, 101(1), 2007.

14. N. Lynch and F. Vaandrager. Forward and backward simulations. I. Untimed systems.Inf. &
Comp., 121(2):214–233, 1995.

15. C. Palamidessi. Probabilistic and nondeterministic aspects of anonymity. In MFPS ’05,
volume 155 ofElect. Notes in Theor. Comp. Sci., pages 33–42. Elsevier, 2006.

16. A. Pfitzmann and M. K̈ohntopp. Anonymity, unobservability, and pseudonymity: A proposal
for terminology. Draft, version 0.17, July 2000.

17. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
Proceedings of the 13th IEEE Computer Security Foundations Workshop(CSFW’00), pages
200–214, 2000.

18. S. Schneider and A. Sidiropoulos. CSP and anonymity. InESORICS ’96: Proceedings of the
4th European Symposium on Research in Computer Security, pages 198–218, London, UK,
1996. Springer-Verlag.

19. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.Nordic Journ.
Comput., 2(2):250–273, 1995.

20. A. Serjantov.On the Anonymity of Anonymity Systems. PhD thesis, University of Cambridge,
March 2004.

21. V. Shmatikov. Probabilistic model checking of an anonymity system.Journ. of Computer
Security, 12(3):355–377, 2004.

22. R. van Glabbeek. The linear time-branching time spectrum (extendedabstract). In J. Baeten
and J. Klop, editors, ProceedingsCONCUR ’90, Theories of Concurrency: Unification and
Extension,Amsterdam, August 1990, volume 458 ofLect. Notes Comp. Sci., pages 278–297.
Springer-Verlag, 1990.

23. D. Varacca and G. Winskel. Distributing probabililty over nondeterminism. Math. Struct. in
Comp. Sci., 16(1):87–113, 2006.

24. D.M. Volpano and G. Smith. Probabilistic noninterference in a concurrent language.Journ.
of Computer Security, 7(1), 1999.

