Probabilistic Anonymity via Coalgebraic Simulations

Ichiro Hasud* and Yoshinobu KawaBe

! Radboud University Nijmegen, the Netherlands
http://www.cs.ru.nl/"ichiro
2 NTT Communication Science Laboratories, NTT Corporation, Japan
http://www.brl.ntt.co.jp/people/kawabe

Abstract. There is a growing concern on anonymity and privacy on the Internet,
resulting in lots of work on formalization and verification of anonymity. Espe
cially, importance of probabilistic aspect of anonymity is claimed recently by
many authors. Among them are Bhargava and Palamidessi who ptieeeatefi-
nition of probabilistic anonymityor which, however, proof methods are not yet
elaborated. In this paper we introduce a simulation-based proof methpdob-
abilistic anonymity. It is a probabilistic adaptation of the method by Kawabe et
al. for non-deterministic anonymity: anonymity of a protocol is provedihging

out a forward/backward simulation between certain automata. For thefjomp
non-determinism to probability we fully exploit a generic, coalgebraic thebr
traces and simulations developed by Hasuo and others. In particulappao-
priate notion of probabilistic simulations is obtained by instantiating a generic
definition with suitable parameters.

1 Introduction

Nowadays most human activities rely on communication onrttexnet, hence on com-
munication protocols. This has made verification of comroatidon protocols a trend in
computer science. At the same time, the variety of purpoesramunication proto-
cols has identified new verification goals—s®curity properties-such as anonymity,
in addition to rather traditional ones like secrecy or autleation.

Anonymity properties have attracted growing concern frdm public. There are
emerging threats as well: for example, the European Pagliiin December 2005 ap-
proved rules forcing ISPs to retain access records. Comesglgumore and more re-
search activities—especially from the formal methods comitga—are aiming at veri-
fication of anonymity properties (see [2]).

Formal verification of anonymity properties is at its relatiyouth compared to au-
thentication or secrecy. The topic still allows for defioital work (such as [4,7,8,11,16])
pointing out many different aspects of anonymity notionstdtbly many authors [4,8,20,21]
claim the significant role oprobability in anonymity notions. This is the focus of this
paper.

Bhargava and Palamidessi [4] define the notioprobabilistic anonymityvhich is
mathematically precise and which subsumes many compettigns of anonymity

* This work was done during the first author’s stay at NTT Communicatmer8e Laboratories
in September—October 2006.

in probabilistic settings. However, it is not yet elabothteow we can verify if an
anonymizing protocol satisfies this notion of probabitisthonymity.

In this paper we introduce a simulation-based proof metbogrobabilistic anonymity
as defined by Bhargava and Palamidessi. It is a probabiistension of the method by
Kawabe et al. [13,12] for a non-deterministic (as opposegatababilistic) setting. The
basic scenario is common in both non-deterministic andatsidistic cases:

1. First we model an anonymizing protocol to be verified asrtagekind of automa-
ton X.

2. Second we construct tlEmonymizedrersionan(X’) of X. The automatonn(X)
satisfies the appropriate notion of anonymity because ofvtheit is constructed.

3. We prove that

(trace semantics of’) = (trace semantics afn (X)) .

Then, since the notion of anonymity is defined in terms ofdsa@nonymity of
an(X) yields anonymity oft’. The equality is proved by showing that the (appro-
priate notion of) inclusion order holds in both directions.
— L holds because of the constructionaof X').
— Jis proved by finding a (forward or backwardimulationfrom an(X) to X'.
Here we appeal to soundness theorem of simulations—exestena simula-
tion yields trace inclusion.

Hence the anonymity proof ot is reduced to finding a suitable forward/backward
simulation.

There is an obvious difficulty in conducting this scenari@iprobabilistic setting.
The theory of traces and simulations in a non-determingiting is well studied e.qg.
by [14]; however appropriate definitions of probabilistiades and simulations are far
from trivial.

For the jump from non-determinism to probability we expkeneric, coalgebraic
theory of traces and simulations developed by Hasuo, JacabSokolova [9,10]. In the
generic theory, fundamental notions such as systems (omeué), trace semantics and
forward/backward simulations are identified as certairdkinf coalgebraic constructs.
On this level of abstraction the general soundness theoretisteace of a (coalgebraic)
simulation yields (coalgebraic) trace inclusion—is probgccategorical arguments.

The theory is generic in that, by fixing two parameters appgatherein, it in-
stantiates to a concrete theory for various kinds of systémgarticular, according
to the choice of one parameter, systems can be non-detstimiai probabilistic In
this work a complex definition of probabilistic simulatioissobtained as an instance
of the general, coalgebraic definition. Moreover, this dgfin is anappropriateone;
soundness theorem comes for free from the general sounthezssm.

The paper is organized as follows. In Section 2 we illustth&e probabilistic as-
pect of anonymity properties using the well-known examglBining Cryptographers.

3 Unfortunately the combination of both non-determinism and probability—wigce.g. in
probabilistic automata [19]—is not covered in this paper. In fact this é¢oation is a no-
torious one [6,23]: many mathematical tools that are useful in a puaydeterministic or
probabilistic setting cease to work in the presence of both.

We model anonymizing protocols as a special kind of autoroali@d (probabilistic)
anonymity automataThis notion is introduced in Section 3; the definition of Ipro
abilistic anonymity following [4] is also there. Finally iBection 4 we describe our
simulation-based proof method for anonymity and prove d@secrtness. In Section 5
we conclude.

Notations In the sequel the disjoint union of seXsandY is denoted byX + Y.

The set of lists over an alphah&twith length> 1 is denoted byX* X in a regular-
expression-like manner: obviously we ha¥e = X*X + {()}. This appears as a
domain of trace semantics for anonymity automata.

2 Motivating example: dining cryptographers (DC)

In this section—following [4]—we shall illustrate the probkdtic aspect of anonymity,
using the well-knowrdining cryptographer¢DC) protocol [5].

2.1 The DC protocol

There are three cryptographers (or users) dining togefier.payment will be made
either by one of the cryptographers, or NSA (U.S. Nationatusiéy Agency) which
organizes the dinner. Who is paying is determined by NSA, & ofthe cryptographers
is paying, she has been told so beforehand.

The goal of the DC protocol is as follows. The three cryptphexs announce
whether one of them is paying or not; but if it is the case, tiferiation onwhich
cryptographer is paying should be disguised from the vientpaf an observer (called
theadversaryin the sequel) and also from that of the cryptographers wbmat pay-
ing. This is where anonymity is involved.

The protocol proceeds in the following way. Three crypt@iyersCrypt, for i =
0,1, 2 sitin a circle, each with a coifioin;. The coins are held in such a way that they
can be seen by the owner and one of the other two: in the falipfigure— denotes
the “able-to-see-her-coin” relation.

Crypt
v YPty X
Crypt, Crypt,

Then the coins are flipped; each cryptographer, compariegwo coins she can see,
announces to the public whether thegree(showing the same side) disagree The
trick is that the one who is paying—if there is—lies on the ammamment. For example,
given thatCrypt, is paying, then the configuration of coins

(h,t,h) thatis < hs ,
t _h
~
results in the announcement

(a,d,a) thatis 70
\%

This announcement is the only thing the adversary can obseocurrence of an odd
number ofd’s reveals the presence of a liar, hence the presence of a panang the
cryptographers.

Can the adversary say which cryptographer is paying? Noad¢h, fiven an an-
nouncement with an odd numberdi§ and any paye€rypt;, we can construct a coin
configuration which yields the given announcement. For g@tanthe announcement
(a,d, a) above can be yielded by any of the following configurations.

Crypt, pays, and coins arg, t, h) or (t, h,t)
Crypt, pays, and coins argh, h, h) or (t,t,t)
Crypt, pays, and coins arh, h, t) or (t,t, h)

2.2 Probabilistic anonymity in DC

Up to now the arguments have been non-deterministic: nowhak explain how prob-
abilistic aspects in DC emerge. Assume that the coins asethigach of thre€oin;’s
gives head with the probabiliy/10. Provided tha€rypt, is paying, the announcement
(a,d,a) occurs with the probabilityf9-1-9+1-9-1)/103, because it results from
(h,t,h) or (t, h, t). Similar calculations lead to the following table of probaies.

(d,a,a) (a,d,a) (a,a,d) (d,d,d)
Crypty pays 0.73 009 0.09 0.09
Crypt, payg 0.09 073 0.09 0.09
Crypt, pays 0.09 0.09 073 0.09

Are the cryptographers still “anonymous™? We would not sayFor example, if the
adversary observes an announcenten, a), it is reasonable for her to susp&atpt,
more than the other two.

Nevertheless, if the coins are not biased, we cannot find smp®m of broken
anonymity. Therefore we want to obtain the following tworidys.

The first is an appropriate notion of “probabilistic anonyyhiwhich holds with
fair coins but is violated with biased coins—this is done ih [Ehe intuition is quite
similar to the one behind the notion ebnditional anonymity8]. The adversary has a
priori knowledge on “who is likely to be blamed”; howevertexfobserving a run of an
anonymizing protocol, the adversary should not gain anytaaél information—each
user looks as suspicious as it did before the actual exetutio

The second is an effective proof method to verify this notibanonymity: this is
what we aim at in the current work.

3 Probabilistic anonymity

3.1 Anonymity automata: models of anonymizing protocols

In this work anonymizing protocols are formalized as a sfie&ind of probabilistic
systems which we shall call (probabilistiaghonymity automatarhe notion is simi-
lar to probabilistic automata [19]: however, in anonymitit@mata branching is purely

probabilistic without any non-determinism. This modificat together with other mi-
nor ones, is made so that the coalgebraic framework in [jegp
The features of an anonymity automaton are as follows.

— By making a transition it can either
e execute an action and successfully terminate’(v'), or
e execute an action and move to another staté(y).
Internal, silent actions are not explicitly present.
— An actiona can be either
e anobservable actiol which can be seen by the adversary, or
e anactor actionblame(¢) which denotes that a uséhas performed the action
whose performer we want to disguise (such as payment in DC).

— Each state comes with a probability subdistribution overdét of possible transi-
tions. By “sub”distribution it is meant that the sum of alktbrobabilities is< 1
rather than= 1: the missing probability is understood as the probabilitydead-
lock.

Here is a formal definition.

Definition 3.1 (Anonymity automata) An anonymity automatois a5-tuple(X,U, O, c, s)
where:

— X is a non-empty set called tistate space

— U is a non-empty set afsers?

— O is a non-empty set aibservable actions

- c¢: X - D(Ax {v}+ A x X) is afunction which assigns to each state X
a probability subdistributiom(x) over possible transitions. The sdtis the set of
actionsand defined by

A =0+ {blame(i) | i € U} .

The operatiorD gives the set of subdistributions: for a §&t

DY ={d:Y —[0,1]| > d(y) <1} . (1)

yey

This operatiorD canonically extends to a moraghich we shall call thesubdis-
tribution monad
For example, the valuez)(a, v')® in [0, 1] is the probability with which a state
executes: and then successfully terminate (ize=> v').

— sis a probability subdistribution over the state spaceThis specifies which state
would be astarting (or initial) one.

4 A user is called amnonymous usen [4].

5 Monadsare a categorical notion. Interested readers are referred to [8)datetails.

® To be precise this should be written&s’) (r1(a, v')), wherex; : A x {v'} — Ax {v} +
A x X is the inclusion map.

Example 3.2 (Anonymity automatonXp¢ for DC) To model the DC protocol, we
take

U=1{0,1,2}, O=1{ad}x{ad}x{ad ={(xy.2)|xy.ze{ad} .

We need to fix the a priori probability distribution on who Ivitake a payment, in view
of the conditional notion of probabilistic anonymity. Let denote by, the probability
with which a usei pays.

The DC protocol (with its a priori probability distributiogiven byp;’s) is naturally
described as follows. Probability for each transition isgemted in square brackets;
otherwise the transition occurs with probability

1

blame(0) [po] blame(1) [p1] /\ blame(2) [pa] 7[1—po—p1—p2]

ho[/ \)[] o ho[%/ to3]
hlm/\n[b 1/ \n hlm/\nm h[l]/\lm
ha[2 tz[] hz[to] ha[3 t2[2 b hz[] A to]
AN R A

l\“’/ J‘& /\\'”/ l& /‘3 l3 /\& /‘\'”/ ErE s s
Herer denotes an internal action with the intention of “NSA pays”.
However, the actions; andt;—with their obvious meanings—must not be present
because they are not observable by the adversary. Thesasetie replaced by's.
Moreover, for technical simplicity we do not allows to appear in an anonymity au-
tomaton. Hence we take the “closure” of the above automat@miobvious way, and
obtain the following.

(l a_
5}

v v v v
The start state distributionis: = — 1. This anonymity automaton we shall refer to as
Xbe.

3.2 Anonymity automata reconciled as coalgebras

The generic, coalgebraic theory of traces and simulatinriSJiapplies to anonymity
automata. The generic theory is developed with two paramétand F:

— amonadl’ onSets specifies théranching-typesuch as non-determinism or prob-
ability;

— a functor F' on Sets specifies thdransition-type i.e., what a system can do by
making a transition.

Systems for which traces/simulations are defined are céllefl)-systemn the generic
theory, making the parameters explicit. The theory is celalgic because €', F')-
system is essentially a coalgebra in a suitable category.

Anonymity automata fit in the generic theory. They &#e F')-systems with the
following choice of parameters and F'.

— T is the subdistribution mona®, modeling purely probabilistic branching.
- FX = Ax {v}+ Ax X, modeling the transition-type of “(action and terminate)
or (action and next state)”.

Itis immediately seen that for this choice Bf the set4* A carries the following initial
algebra inSets. We denote its structure map by

AxX{V I+ Ax (A*A) ki(a,V) kz2(a,a)

o=~ 1 1
A* A (a) a-a ,

where(a) denotes a list of length, anda - a is what would be written a&ons a a) in
Lisp. Therefore [9, Corollary 5.2] suggests that the dét4 is the appropriate domain
of (finite) trace semantics for anonymity automata: thisdtually the case later in
Definition 3.3.

3.3 Trace semantics for anonymity automata

The trace semantics for anonymity automata is used in dgfprivbabilistic anonymity.
In a non-deterministic setting, trace semantics yieldstaf lists of actions which can
possibly occur. In contrast, trace semantics of a prolsilgilsystem is grobability
subdistributionover lists.

Definition 3.3 (Trace semantics for anonymity automata)Given an anonymity au-
tomatonX = (X, U, O, ¢, s), itstrace

Py € D(A*A)
is defined as follows. For a list of actiokig, a1, - . . , a,,) with a finite lengthn > 1,
Px((ag, a1, ..., an)) = Z Px(zg By & "5 2,)
Z0,T1,--,Tn €X

where the probability

Px(xoﬂx‘lg..-agleLﬂ)

= s(xo) - c(xo)(ao,z1) - -+ - c(Tn_1)(@n-1,%pn) - c(zn)(an, V)
is for the event thaft’ starts atz, follows the path® z; % ... “*3" z, and finally

terminates withs v.

Intuitively the valuePx (a) € [0,1] for a lista € A* A is the probability with which
the systemY’ executes actions ia successively and then terminates. Our concern is on
actions (observable actions or actor actions) the systekesniaut not on the states it
exhibits.

The following alternative characterization allows us t@lgpthe generic, coalge-
braic theory of traces in [9,10].

Lemma 3.4 (Trace semantics via the generic theory{siven an anonymity automa-
ton X, let (s, ¢) be a(T, F)-system identified witk” as in Section 3.2.

The tracePx of X coincides with the coalgebraic trace,) defined in the generic
theory [9, Definition 5.7] for(s, c). O

Example 3.5 (Dining cryptographers) For the anonymity automatakpc in Exam-
ple 3.2, its trac&’y,, is the following probability subdistribution.

(blame(i), (d,a,a)) — p:/4 ((a,a,a)) — (1 —po—p1—p2)/4

(blame(i),(a,d,a)) = pi/4 ((avdvd)> = (1—]70_]71—]72)/4

(blame(i), (a,a,d)) — p:/4 ((da,d)) = (1 —po—p1—p2)/4

(blame(i), (d,d,d)) — pi/4 ((d,d,a)) = (L—po—p1—p2)/4
(for: =0,1,2)

The other lists in4*.4 have probability0.

In this work we assume that in each execution of an anonygnigiotocol there
appears at most one actor action. This is the same assunagt[dnAssumption 1] and
is true in all the examples in this paper.

Assumption 3.6 (At most one actor action)Let X = (X,U, O, ¢, s) be an anonymity
automaton ana € A*A. If a contains more than one actor actions, then

P/y(a) =0.

3.4 Definition of probabilistic anonymity

In this section we formalize the notion of probabilistic agity following [4]. First,
for the sake of simplicity of presentation, we shall introduhe following notations for
predicates (i.e. subsets) off A.

Definition 3.7 (Predicateslblame(i)] and [o]) — Foreach € U, a predicatgblame(i)]
on A* A is defined as follows.

[blame(i)] = {a € A*A | blame(i) appears ira}

By Assumption 3.6, it is the set of lists obtained by augmentilame(¢) with
observable actions: in a regular-expression-like notatio

[blame(i)] = O* blame(i) O* .

Moreover,[blame(i)] N [blame(j)] = 0 if i # j.

— For eacho € O*, a predicatéo] on.A* A is defined as follows.
[0] = {a € A" A | removeActor(a) = o} ,

where the functionemoveActor : A*A — O*—which is defined by a suitable
induction—removes actor actions appearing in a list. Théajet .4*.A consists

of those lists which yiel@ as the adversary’s observation. It is emphasized[that
is notthe set of lists which contaia as sublists: we remove only actor actions, but
not observable actions.

Note that we are overriding the notatign]: no confusion would arise since the argu-
ments are of different types. Values suchfas([blame(¢)]) are defined in a straight-
forward manner:

Px([blame(i)]) = > Px(a) .

ac[blame(z)]

This is the probability with whichY yields an execution in which a uséilis to be
blamed.
We follow [4] and adopt the following definition of anonymity

Definition 3.8 (Probabilistic anonymity [4]) We say an anonymity automatoi is
anonymoud for eachi, j € U ando € O*,

Px([blame(i)]) >0 A Px([blame(j)]) >0
= Px([o] [[blame(i)]) = Px([o] | [blame(j)]) -

Here Px([o] | [blame(7)]) is a conditional probability: it is given by

Px([o] | [blame(4)]) = PXI(DQ[(O(][EIE:TLZZ;(Z))])

The intuition behind this notion—sketched in Section 2.2—#silar to the one behind
conditional anonymity [8]. In fact, it is shown in [4] that der reasonable assumptions
the two notions of anonymity coincide. For completenessdiifnition of conditional
anonymity (adapted to the current setting) is also presente

Definition 3.9 (Conditional anonimity [8]) An anonymity automatoft’ satisfiecon-
ditional anonymityif for eachi € U ando, o’ € O*,

Py ([blame(i)]N[o]) >0

= Px([blame(i)] | [0]) = Px([blame(i)] | U [blame(5)]) .
jeu
The notion in Definition 3.8 is (one possibility of) probasilc extension ofrace
anonymityin [18]. It is emphasized that these anonymity notions aretiaon trace
semantics which is at the coarsest end in the linear timeehiag time spectrum [22].
Hence our adversary has less observation power than ongfor fixample where secu-

rity notions are bisimulation-based. A justification fonvireg such a weaker adversary
is found in [13].

4 Anonymity proof via probabilistic simulations

In this section we extend the proof method [13,12] for anoityito the probabilistic

setting. In the introduction we have presented the basitast® Now we shall describe
its details, with all the notions therein (traces, simuas,etc) interpreted probabilis-
tically.

4.1 Anonymized automatonan(X’)

We start with the definition oéin(X’), the anonymized versioof an anonymity au-
tomatonX’. Recall that our notion of anonymity is conditional: the adsary has a pri-
ori knowledge on who is more suspicious. In an anonymity @aton X', the a priori

probability with which a user does wrong is given by ([blame(4)]). Its normalized,
conditional version

Py ([blame()] N Ujeu [blame(j)])
P (U;ey [blame(j)])
_ Px([blame(7)])
Zjeu Py ([blame(j)])

(the equalities are due to Assumption 3.6) plays an impomale in the following
definition ofan(X’). The valuer; is the conditional probability with which a usérs to
be blamed, given that there is any user to be blamed; we haye, ; = 1. Of course,
for the valuesr; to be well-defined, the anonymity automatéhneeds to satisfy the
following reasonable assumption.

def
=" Px([blame(?)] | U [blame(j
JeEU

Assumption 4.1 (There is someone to blamefror an anonymity automatof,

ZPX ([blame()]) #0 .

JeEU

Intuitively, an(X’) is obtained fromX by distributing an actor actioblame(¢) to
each usey, with the probability distributed in proportion tg.

Definition 4.2 (Anonymized anonymity automatonan(X’)) Given an anonymity au-
tomaton¥ = (X,U, O, ¢, s), itsanonymized automatam(X) is a 5-tuple X, U, O, ™", s),
wherec®" is defined as follows. For eache X,

™ (x)(blame(i),u) = 37,y i - c(x)(blame(j),u) fori € U andu € {V'} + X,
A" (x)(o,u) = c(z)(o,u) foroec O andu € {V} + X.

On the first equation, the summang- c¢(x)(blame(j),) results from distributing the

probability ¢(x) (blame(y),) for a transitionx blame(3) u, to a uset. This is illustrated

in the following figure: heré/ = {0, 1,...,n} andg = c(z)(blame(j), u).

. In an
blame(yj) [q]l blame(0) [ro - ¢ Q Dblame [rn-q (2)

The automatonn(X) is “anonymized” in the sense of the following lemmas.

Lemma 4.3 Let X be an anonymity automaton. In its anonymized versioft') =
(X,U,0, ™", s) we have

rj - " (x)(blame(i), u) = r; - " (x)(blame(j), u)
foranyi,j e U,z € X andu € {v'} + X.

Proof. Obvious from the definition of2". a

Lemma 4.4 @n(X) is anonymous) For an anonymity automatod’, an(X) is anony-
mous in the sense of Definition 3.8.

Proof. Leto = (01,02, ...,0,) € O* andi, j € U. Moreover, assume

Pan(X)([blame(z)]) # 0 and Pan(X)([blame(])]) 7£ 0,
hencer; # 0 andr; # 0. Then

Pan(x)([o] N [blame(7)])
= Pan(xy((blame(i), 01,02,...,0n))
+ Pan(x)((01, blame(i), 00, .., 0p))
+ -+ Panx)((01,02,...,0p, blame(i)))

= Z s(xq) - A" (xo)(blame(i), 1) - A" (x1) (01, 22) « -+ - A" (x) (0n, V')

LOsTLyeeey Tp€X

+ Z s(xo) - A" (zo)(01,21) - A" (x1) (blame(i), xg) - - - - - ANz (0n, V)

LO,L1ye-ey Tz, €X

+ Z s(xo) - A" (xo) (01, 21) - A" (1) (02, 22) - - - - - " (2,) (blame(), v) .

LO,L1ye-y Tz, €X
We have the same equation fpinstead ofi. Hence by Lemma 4.3 we have
7+ Pan(xy ([0] N [blame(4)]) = 7; - Panar)([0] N [blame(j)]) . €©)
This is used to show the equality of two conditional prokiibs.

Pan(x)([o] | [blame(i)]) = Par}gz)(;[)(’(][zli:ae’("i‘;](;)])
_ i Pangay([0] N [blame(j)])
T Pango([blame(d)])
 Paay([o] N [blame(3)])
~ Pa([blame(j)])
= Pun(x)([o] | [blame(7)]) - -

By (3)

By definition ofr;, r;

4.2 Forward/backward simulations for anonymity automata

We proceed to introduce appropriate notions of forward aackivard simulations. The
(tedious) definition and soundness theorem—existence afaafd/backward simula-
tion implies trace inclusion—come for free from the genehiedry in [9]. This forms a
crucial part of our simulation-based proof method.

Definition 4.5 (Forward/backward simulations for anonymity automata) Let X =
(X,U,0,¢,s) and) = (Y,U,O,d,t) be anonymity automata which have the same
sets of users and observable actions.

A forward simulationfrom X' to Y—through which)’ forward-simulatest—is a
function

f:Y—DX
which satisfies the following inequalities 0, 1].
s(z) < Dyey t) - fy)(x) foranyz € X,
Yowex fW)(@) - c(x)(e,v') < d(y)(e, V) foranyy € Y ande € A,

dwex fW)(@) - c(@)(e,2") <32, ey dy)(ey') - f(y) (@)
foranyy € Y,e € Aandz’ € X.

A backward simulatiofirom X’ to))—through which) backward-simulate&’—is
a function

b: X — DY
which satisfies the following inequalities 0, 1].
> vex S(@) - b(z)(y) < t(y) foranyy e Y,
c(x)(e,v) < yey b(@)(y) - d(y)(e, v) foranyz € X ande € A,

Diarex c(x)(e, @) - b(@)(y) < Xoyey b(2) () - d(y)(e, y)

foranyz € X,e € Aandy’ €Y.

The definition definitely looks puzzling. Why does a forwamhslation have the type
Y — DX?Whyis abackward simulation not of the same type? How comectimplex
inequalities? How do we know that the inequalities are incitveect direction?

In fact, this definition is an instantiation of the generalalgebraic notions of for-
ward/backward simulations [9, Definitions 4.1, 4.2]. Mopesifically, the two param-
etersT” and F' in the generic definition are instantiated as in Section 3.2.

Theorem 4.6 (Soundness of forward/backward simulations)Assume there is a for-
ward (or backward) simulation from one anonymity automatomo another). Then
we have trace inclusion

Py C Py ,

where the ordef is defined to be the pointwise order: for eagte A*A,
Px(a) S Py((l) .

Proof. We know (Lemma 3.4) that the notions of traces and simulatfonanonymity
automata are instantiations of the general, coalgebrdionsin [9,10]. Therefore we
can appeal to the general soundness theorem [9, Theorem 6.1] O

4.3 Probabilistic anonymity via simulations

We shall use the materials in Sections 4.1 and 4.2 to proveatidity of our simulation-
based proof method (Theorem 4.11).

The following lemma—uwhich essentially say% C P,,x)—T'elies on the way
an(X) is constructed. The proof is a bit more complicated thanémtbn-deterministic
setting [13,12].

Lemma 4.7 Let X’ be an anonymity automaton. Assume there exists a forwardak-b
ward simulation froman(X’) to XY—through whicht’ simulatesain(X’). Then their trace
semantics are equal:

Py = Pan(.)() .

Proof. By the soundness theorem (Theorem 4.6) we have
PXgPan(X)) (4)

whereJ refers to the pointwise order between functiofisd = [0, 1]. We shall show
that this inequality is in fact an equality.

First we introduce an operatiarbs which acts on anonymity automata. Intuitively,
obs(Y) is obtained fromy by replacing all the different actor actiohkme(<) with sin-
gle blame(sb)—sb is for “somebody”. This conceals actor action)inhenceobs())
only carries information on the observable actiong/of

In obs(X)

- -
blame(0) [qo] g . D blame(n) [gy] blame(sb) [go + -+ - + qn}l (5)

Formally,

Definition 4.8 (Anonymity automaton obs()’)) Given an anonymity automatgh =
(Y,U, O, d,t), we define an anonymity automatelss()') as the 5-tupléY, {sb}, O, d°*, t)
where:

— sbis a fresh entity,
— d°" is a function

d°* Y — D(A® x {vV} + A x V)
whereA°> = O + {blame(sb)}, defined by:

d°®s () (blame(sb), u) = > icu d(y)(blame(i),u) fory € Y andu € {V'} +7Y,
d°®s () (o, u) = d(y)(o,u) foryeY,oeOandue{v}+Y.

The following fact is obvious.

Sublemma 4.9 For an anonymity automataft’, obs(X’) andobs(an(X’)) are identical.
O

The following sublemma is crucial in the proof of Lemma 4.WwoTlautomatg) and
obs(Y), although their trace semantics distributes over diffesais, have the same
sum of probabilities taken over all executions.

Sublemma 4.10For an anonymity automatop,
Y Pyla)= Y Payyla) .
acA* A a/e(Aobs)*Aobs
Recall thatd = O + {blame(i) | i € U} and.A°** = O + {blame(sb)}.

Proof. From the definition of trace semantics (Definition 3.3), thelemma is proved
by easy calculation. O

We turn back to the proof of Lemma 4.7. We argue by contraafiettassume that
the inequality in (4) is strict. That is, there exisis € A*A such thatPy(ay) >
Pan(X) (ao)' Thenv by (4) we haanG.A*.A PX(O’) Z ZaeA*A Pan(X) (a) However,

PacaaPx(@) =374 aobsy- aovs Pobs(x) (@) By Sublemma 4.10
= D are(Asbey+ Asvs Lobs(an(x)) (@) By Sublemma 4.9
= aca-a Panxy(a) . By Sublemma 4.10
This contradiction concludes the proof of Lemma 4.7. ad

Now we are ready to state the main result.

Theorem 4.11 (Main theorem: probabilistic anonymity via smulations) If there ex-
ists a forward or backward simulation froam(X') to X', thenX’ is anonymous.

Proof. By Lemma 4.7 we havé’y = P,nx). Moreover, by Lemma 4.4n(X) is
anonymous. This proves anonymity &f recall that probabilistic anonymity is a prop-
erty defined in terms of traces (Definition 3.8). ad

Example 4.12 (Dining cryptographers) We demonstrate our proof method via simu-
lations by applying it to the DC protocol.

Let X = {x,yo, y1, Y2} be the state space & . Its anonymized versiom (Xpc)
has the same state space: for notational convenience tieesgiace otin(Apc) is
denoted byX’ = {2/, yo’, y1', y2"}. It is verified by easy calculation that the following
function f : X — D(X’) is a forward simulation froman(Xpc) to Apc.

I Po
—
Yo po+p1+p2

fl@)=[2" = 1] fo) = fly1) = fy2) = ylePUJéﬁ

Y2 = po+p1+p2
By Theorem 4.11 this proves (probabilistic) anonymityX§§, hence of the DC pro-
tocol.

5 Conclusion and future work

We have extended the simulation-based proof method [13¢k2hon-deterministic
anonymity to apply to the notion of probabilistic anonymdgfined in [4]. For the
move we have exploited a generic theory of traces and sifon&{9,10] in which
the difference between non-determinism and probabilifyss a different choice of a
parameter.

The DC example in this paper fails to demonstrate the use$slrof our proof
method: for this small example direct calculation of traégtribution is not hard. A
real benefit would arise in theorem-proving anonymity of aaundedly large sys-
tem (which we cannot model-check). In fact, the non-deteistic version of our proof
method is used to theorem-prove anonymity of a voting ptadth arbitrary many
voters [12]. A probabilistic case study of such kind is cathg missing.

In [4] the probabilisticr-calculus is utilized as a specification language for au-
tomata. We have not yet elaborated which subset of the calésisuitable for describ-
ing our notion of anonymity automata.

There is a well-established body of work on verification aflpaibilistic information-
hiding properties such as non-interference [24,17]. Ooopmethod could be recon-
ciled in this context by, for example, finding a translatidhamonymity into a non-
interference property.

The significance of having both non-deterministic and pbilistic branching in
considering anonymity is claimed in [15]. However the catrmethod cannot handle
this combination due to the lack of suitable coalgebraim&eork. Elaboration in this
direction would also help better understanding of the reatfrthe (notorious) combi-
nation of non-determinism and probability.

Acknowledgment§ hanks are due to Ken Mano, Peter van Rossum, Hideki Sakurada
Ana Sokolova, Yasuaki Tsukada and the anonymous referedsefpful discussions
and comments. The first author is grateful to his supervisot Bacobs for encourage-
ment.

References

1. M. Abadi and A. Gordon. A calculus for cryptographic protocol&eTSpi calculus. In
Fourth ACM Conference on Computer and Communications Secpates 36-47. ACM
Press, 1997.

2. Anonymity bibliography.
http://freehaven.net/anonbib/

3. M. Barr and C. WellsToposes, Triples and TheorieSpringer, Berlin, 1985.

4. M. Bhargava and C. Palamidessi. Probabilistic anonymity. In M. AbadiL. de Alfaro,
editors, CONCUR 2005volume 3653 oL ect. Notes Comp. Scpages 171-185. Springer,
2005.

5. D. Chaum. The dining cryptographers problem: Unconditionaleiesdd recipient untrace-
ability. Journ. of Cryptology1(1):65-75, 1988.

6. L. Cheung.Reconciling Nondeterministic and Probabilistic Choic&hD thesis, Radboud
Univ. Nijmegen, 2006.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. FE.D. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provabte/mity. In R. Kisters

and J. Mitchell, editors3rd ACM Workshop on Formal Methods in Security Engineering
(FMSEOQ5) pages 63—72, Alexandria , VA, U.S.A., November 2005. ACM fres

. J.Y. Halpern and K.R. O’Neill. Anonymity and information hiding in multsg systems.

Journal of Computer Securityo appear.

. |. Hasuo. Generic forward and backward simulations. In C. Baieth Hermanns, editors,

International Conference on Concurrency Theory (CONCUR 2088ume 4137 of_ect.
Notes Comp. Scipages 406-420. Springer, Berlin, 2006.

I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace theomy. Ghani and J. Power, ed-
itors, International Workshop on Coalgebraic Methods in Computer ScienbES& 2006)
volume 164 ofElect. Notes in Theor. Comp. S@ages 47-65. Elsevier, Amsterdam, 2006.
D. Hughes and V. Shmatikov. Information hiding, anonymity andagsi: A modular ap-
proach.Journal of Computer Securityt2(1):3—-36, 2004.

Y. Kawabe, K. Mano, H. Sakurada, and Y. Tsukada. Backsiandlations for anonymity.
In International Workshop on Issues in the Theory of Security (WITS 2006.

Y. Kawabe, K. Mano, H. Sakurada, and Y. Tsukada. Thegmaving anonymity of infinite
state systemdnformation Processing Letterd01(1), 2007.

N. Lynch and F. Vaandrager. Forward and backward simulatiobstimed systemsinf. &
Comp, 121(2):214-233, 1995.

C. Palamidessi. Probabilistic and nondeterministic aspects of anonymityiIFPS '05
volume 155 ofElect. Notes in Theor. Comp. S@ages 33—42. Elsevier, 2006.

A. Pfitzmann and M. Bhntopp. Anonymity, unobservability, and pseudonymity: A proposal
for terminology. Draft, version 0.17, July 2000.

A. Sabelfeld and D. Sands. Probabilistic noninterference for muétatted programs. In
Proceedings of the 13th IEEE Computer Security Foundations WorKs##p\W’00) pages
200-214, 2000.

S. Schneider and A. Sidiropoulos. CSP and anonymitizS®RICS '96: Proceedings of the
4th European Symposium on Research in Computer Seqoaityes 198—218, London, UK,
1996. Springer-Verlag.

R. Segala and N. Lynch. Probabilistic simulations for probabilisticegeesNordic Journ.
Comput, 2(2):250-273, 1995.

A. SerjantovOn the Anonymity of Anonymity SystefBD thesis, University of Cambridge,
March 2004.

V. Shmatikov. Probabilistic model checking of an anonymity systéourn. of Computer
Security 12(3):355-377, 2004.

R. van Glabbeek. The linear time-branching time spectrum (exteatmtdhct). In J. Baeten
and J. Klop, editors, ProceedinG©ONCUR '90, Theories of Concurrency: Unification and
ExtensionAmsterdam, August 1990, volume 458lafct. Notes Comp. Scpages 278-297.
Springer-Verlag, 1990.

D. Varacca and G. Winskel. Distributing probabililty over nondeterminiglath. Struct. in
Comp. Sci.16(1):87-113, 2006.

D.M. Volpano and G. Smith. Probabilistic noninterference in a caratitanguageJourn.

of Computer Security7(1), 1999.

