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Abstract. Recent work has focused on hiding explicit network identi-
fiers such as hardware addresses from the link layer to enable anony-
mous communications in wireless LANs. These protocols encrypt entire
wireless packets, thereby providing unlinkability. However, we find that
these protocols neglect to hide identifying information that is preserved
within the wireless physical layer. We propose a technique using com-
modity wireless hardware whereby packets can be linked to their re-
spective transmitters using signal strength information, thus degrading
users’ anonymity. We discuss possible countermeasures, but ultimately
we argue that controlling information leakage at the physical layer is
inherently difficult.

1 Introduction

The inherent broadcast nature of wireless communications coupled with the
widespread availability of commodity receivers poses a significant privacy con-
cern for users of wireless technology. The threat that third parties who eavesdrop
on communications may profile users and track their movements is well under-
stood [1,2]. Even when message confidentiality is provided by standards such as
WPA for 802.11, only the payload is protected and every user’s identifying MAC
address is revealed. This enables any third party within signal range to monitor
and track other users in the network.

To eliminate the transmission of identifying information at the link layer,
recent work has focused on providing identifier-free link layer protocols that en-
crypt all transmitted bits to increase privacy with respect to third party eaves-
droppers [3,4,5]. By obfuscating all bits of the frames including the addresses,
these protocols attempt to provide unlinkability, since it is difficult for unin-
tended recipients to associate sequences of packets to their source transmitters.

Despite these protocols, we demonstrate that information derived from the
physical layer can be applied to classify packets by their respective transmitters,
thereby violating this unlinkability property. While we focus our study on a vari-
ant of 802.11, we believe that the fundamental problem of information leakage
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at the physical layer exists in a wide variety of other wireless protocols including
WiMax, 3G, 4G, and future protocols that do not protect the physical layer.

Our approach is based on recording the strength of received signals from de-
vices at several locations and applying a clustering algorithm to perform packet
source classification. The method is practical, since it utilizes commodity hard-
ware instead of expensive signal analyzers (as in previous work [6,7]) and requires
no training or cooperation from the wireless devices in the network.

While this approach can determine which packets originated at the same
source, it won’t identify sources by name. However, we demonstrate that the
packet source classification is accurate enough to enable complex traffic analysis
attacks which use features such as packet size to reveal more about who the user
is and what he/she is doing. Examples of the types of information that can be
inferred through traffic analysis attacks include videos watched [8], passwords
typed [9], web pages viewed [10,11], languages and phrases spoken [12,13], and
applications run [14]. These traffic analysis attacks become more dangerous when
coupled with additional information such as visual identification of users.

Results. In order to demonstrate the efficacy of this method, we evaluate the
technique by conducting experiments in a real indoor office building environ-
ment. We apply the packet clustering technique, which uses well-known statis-
tical methods, and the results show that packets are correctly linked to their
transmitting devices with 77–85% accuracy, depending on the number of trans-
mitters in the network. As more sophisticated techniques may be applied in the
future, we consider these results as a lower bound on attainable accuracy.

Since the clustering method is often imprecise, we evaluate how the recon-
structed sequences of packets can be used to perform a previously described
website fingerprinting traffic analysis attack [10,11]. While any number of traffic
analysis tasks could be performed, we chose website fingerprinting because web
browsing is among the most common on-line activities. Our results indicate that
a website can be identified 40–55% of the time from source classified packets,
depending on the number of devices in the network.

Toward Solutions. Finally, we explore methods to mitigate the effectiveness
of source classification using information derived from the physical layer. We
evaluate solutions based on transmit power control and directional antennas and
show that these techniques make source classification more difficult. However, we
observe that altering the properties of the wireless physical layer is fundamentally
challenging and we recognize that additional research attention should be focused
on addressing information leaks at the physical layer.

Contributions. This paper has three primary contributions:

1. We explore a source of identifying information contained within the wire-
less physical layer and show that it can be used to violate the unlinkability
property of anonymous link layer protocols.

2. We present and experimentally validate an unsupervised statistical technique
to perform packet source classification that is robust to the inherent noise
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of the RF space and is accurate enough to enable complex traffic analysis
tasks to be performed.

3. We experimentally investigate methods to mitigate source classification by
altering signal strength properties. While these techniques mitigate the accu-
racy of packet source classification and subsequent traffic analysis to some ex-
tent, we argue that information leakage at the wireless physical layer presents
a particularly challenging privacy threat.

2 Background

Traditional anonymity. Anonymous communications have historically been
facilitated by mix networks [15] and onion routing networks [16]. Fundamentally,
these networks attempt to hide a message’s sender and receiver from an adversary
residing within the network. This requires that network layer identifiers such as
source and destination IP addresses and other transport and application layer
identifiers be hidden.

However, due to the inherent broadcast nature of wireless, there is a significant
threat that an eavesdropper within range of a wireless signal may use persistent
explicit identifiers found at the link layer (such as a MAC address) to uniquely
identify users, and subsequently track their movements and profile their activity.
This threat presents a serious privacy concern for users of wireless technology
such as the ubiquitous 802.11 standard and an even greater threat to users of
wide area networking devices, such as WiMax and 4G. These long range pro-
tocols allow an attacker potentially up to one mile away from the transmitting
device the ability to eavesdrop. While mix network and onion routing techniques
hide identifiers at the network layer and above, they were not designed to pro-
vide anonymity at the link layer. Thus, additional anonymity mechanisms are
necessary to obscure these identifiers found at the link layer.

Anonymity in wireless networks. Several strategies have been proposed to
address the leakage of identifying information within wireless networks. Grute-
ser and Grunwald suggest that disposable interface identifiers replace explicit
identifiers such as the MAC address to mitigate location tracking and user pro-
filing [17]. Arkko et al. propose a generic technique that replaces identifiers such
as the MAC address with pseudo-random values drawn from a random number
generator seeded with a shared secret [18]. This approach may also be used to ob-
fuscate other identifiers at higher layers of the protocol stack such as IP addresses
and TCP sequence numbers. During the session initiation, a mutually agreed-
upon seed value is derived by the wireless client and access point. However, it
is necessary to share seed values for every potential identifier and this general
approach does not hide identifying information revealed by the application layer.
A similar approach has been proposed using protocol stack virtualization [19].
This general approach enables the identifiers to change for each packet sent,
thereby increasing the size of a wireless client’s anonymity set to the number of
clients participating in the wireless LAN.
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To address the limitations of this general approach, link layer encryption has
been proposed to obfuscate all bits transmitted in the wireless frames [3,4,5].
This hides any identifying information contained in the transmission, including
explicit identifiers. At the link layer and above, these packets are unlinkable to
their senders. However, we show that these protocols that hide explicit identifiers
are limited since they do not address the physical layer.

Physical device fingerprinting. Recent advances in physical device finger-
printing technology have introduced the possibility of identifying specific de-
vices. Kohno et al. demonstrate that minute, yet distinguishable variations in a
device’s clock skew persist over time and can be detected remotely without any
cooperation from the targeted device [20]. This technique has also been extended
for the purpose of locating hidden services within the Tor network. [21,22].

Beyond the identifying characteristics of clock skew, RF-based device iden-
tification techniques have been previously proposed. Gerdes et al. show that
Ethernet interface cards can be uniquely fingerprinted by their varying RF prop-
erties [23]. In the wireless context, techniques have emerged for fingerprinting
distinct 802.11 interface cards based on the observation that minor flaws in de-
vice manufacturing are often manifested as modulation errors [6,7]. Both works
propose a machine learning-based identification framework to detect specific
modulation errors and empirically demonstrate that the techniques can identify
distinct 802.11 cards with over 99% accuracy. While these techniques require
expensive signal analyzer hardware, they represent a significant privacy risk to
wireless users, especially if the required hardware becomes inexpensive.

Device driver, OS, and user fingerprinting. In addition to physical de-
vice fingerprinting, techniques have been developed to remotely identify device
drivers of wireless network interface cards, a device’s operating system, and even
specific users. Probing tools such as Nmap [24] and p0f [25] are widely available
to remotely scan ports, determine what operating system (and version) is run-
ning, and obtain information about packet filters and firewalls. Such information
could potentially be used to aid in identifying and profiling devices. Franklin et
al. present a passive device driver fingerprinting technique based on the wire-
less device driver’s active probing behavior that can identify specific drivers with
high accuracy [26]. Device driver information could also contribute to identifying
and profiling wireless devices. Pang et al. and Aura et al. show that implicitly
identifying information can inadvertently leak during wireless communication
sessions [1,2]. Examples of such information include service discovery for specific
wireless networks, file shares, and networked printers. Even more latent informa-
tion sources can be uniquely identifying, such as websites viewed or applications
used.

Physical device localization. Localization systems such as Place Lab allow
wireless devices to passively localize themselves in physical space [27]. A wireless
device can identify its location by comparing their beacon observations that iden-
tify the nearby stationary wireless infrastructure to a database of prior beacon
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observations tagged with physical location information. Widely deployed com-
mercial services such as Skyhook [28] use this technique to help wireless devices
perform self-localization.

There also exist a variety of techniques that enable the wireless infrastruc-
ture to localize wireless devices based on the physical layer properties of their
transmitted signals. The most common approach to infrastructure-based wireless
localization applies a supervised learning approach and uses commodity wireless
cards. During the training phase, signal strength measurements are collected
from several positions throughout a target environment (such as an office space)
to train a machine learning algorithm. RADAR uses the k-nearest neighbors
classifier to compute the wireless signal’s physical position [29]. Other methods
use a näıve Bayes classifier for location estimation [30]. While the training pro-
cedure can be expensive and time consuming, they are relatively accurate in
practice. Other approaches often require specialized non-commodity hardware.
Such approaches include estimating a signal’s angle of arrival and applying trian-
gulation [31], calculating time of arrival (i.e., the global positioning system) [32],
and applying time difference of arrival techniques [33].

The ease with which a device’s location can be estimated from its signal
properties presents significant privacy risks. Gruteser and Grunwald present al-
gorithms and middleware that enable anonymous usage of location-based ser-
vices [34]. Their approach is based on manipulating the resolution of location
information along space and time dimensions. However, this solution assumes
that the wireless client provides its own location information to a location server
that implements the location privacy middleware. It does not address the sce-
nario in which an adversary uses signal strength information to locate and track
other users. Jiang et al. propose a solution to enhance location privacy based
on randomized MAC address pseudonyms and silent periods to help decouple
pseudonyms from devices [35]. In addition, this work explores the application
of transmit power control to reduce the precision of localization algorithms by
reducing devices’ transmit power levels such that a only minimal number of
listening access points can hear and localize the signals.

Inferring identity from the physical layer. Physical layer information has
previously been used to detect identity-based attacks (such as MAC address
spoofing) in wireless networks [36]. Since signal strength varies with physical
location, a rogue device has distinct signal strength readings from the expected
device, assuming that they are transmitting at different locations. Therefore, a
device’s identity is linked to its physical location. This observation can be useful
for determining whether an identity-based attack is taking place. We rely on this
fact in the design of our packet source classification technique.

3 Packet Source Classification

In this section, we first provide the necessary background and intuition behind
the packet source classification techniques. Next, we describe the design of the
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RSS-Localization based technique that can be used to perform packet source
classification. However, it requires an expensive training process to learn the
relationship between signal strength and physical location. To address this lim-
itation, we present RSS-Clustering, a packet source classification method that
does not require training.
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Fig. 1. A visualization of the RSSI values from transmitters at five different locations

3.1 Background and Intuition

When a commodity 802.11 wireless card receives a packet, it records the signal
strength of the received packet as a received signal strength indication (RSSI)
value. The RSSI value reported by standard 802.11 hardware is measured only
during the reception of a message’s preamble, which is transmitted at the lowest
rate (1 Mb/s). In a simplified signal propagation model, wireless signals fade
with distance as they propagate over physical space. Thus, the RSSI values are
(roughly) inversely proportional with the distance between the transmitter and
receiver. This means that the same transmission will be received at different
RSSI values depending on the distance between the transmitter and receiver.
Using these RSSI values, we show that it is possible to passively associate a set
of packets to their source device.

However, several factors affect a packet’s RSSI value in real world environ-
ments, which makes accurately associating packets to their transmitting devices
using physical layer information a very challenging task. At one receiver, the
RSSI values of different packets from the same transmitter often vary over time
due to noise factors such as multipath interference and unpredictable fading [37].
Figure 1(a) shows the RSSI values recorded from multiple packets sent over time
from five distinct transmitting devices whose corresponding physical locations
are given in Figure 1(b). While the values are similar for each device, there
is some unpredictable, but small fluctuation due to the inherent noise in the
physical environment.
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3.2 RSS-Based Localization

RF-based localization is a well-studied problem in which wireless devices are
physically located using the signal strengths of their transmitted packets. There-
fore, it is reasonable to try this localization strategy to perform packet source
classification, since these methods have been shown to provide accurate device
localization to within about three meters of the device’s true location [29].

The localization technique uses the k-nearest neighbors supervised learning
framework, as in previous work [29] to perform packet source classification.1 Be-
yond source classification, this approach has the ability to add semantic location
information, which could be used to associate packets to a particular device or
user and thereby reconstruct persistent identities.

However, localization requires that the adversary collect training data for
every environment in which they wish to perform this attack. Furthermore, the
training process must be repeated if environmental changes occur. This training
data collection is very expensive and even unnecessary, since our goal is not to
localize packets, but instead is to perform packet source classification.

3.3 RSS-Based Clustering

To address the limitations of the localization approach, we propose RSS-
Clustering, an unsupervised technique to perform packet source classification.
Since the RSSI values are inherently noisy, we use the k-means clustering algo-
rithm [38] to group packets by their respective transmitting devices. In order
to perform source classification, k-means requires the RSSI feature vectors and
the number of devices (k), which we assume is known (or can be closely esti-
mated) by the attacker using visual information or one of many techniques to
determine the number of clusters in a data set [39,40,41,42]. While k-means is
a computationally efficient linear-time algorithm, it is stochastic and therefore,
not guaranteed to produce a globally optimal clustering solution. For this rea-
son, it is common to execute k-means several times on a data set to arrive at a
stable clustering result.

There exist several classes of cluster analysis algorithms, including hierarchi-
cal, partitional, and spectral techniques [38]. We chose k-means for its simplicity
and strong performance on our clustering task. However, it is possible that other
clustering algorithms may offer better performance or relax the requirement that
the number of clusters be known in advance. Consequently, we consider the re-
sults obtained with k-means to be a lower bound on attainable performance.

4 Threat Model

In this section, we enumerate our assumptions about the attack, the adversary,
and the victims.

1 Since these localization techniques have a certain amount of error, it is necessary to
cluster the imprecisely localized packets by estimated location.
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Attack. An eavesdropper first performs packet source classification and subse-
quently uses the sequences of encrypted packets associated with their respective
transmitters to perform complex traffic analysis tasks. The attack is completely
passive, so users can be subjected to it without their knowledge. In addition,
this technique requires only commodity 802.11 hardware.

Adversary. We consider the adversary to be a person or group of people with
limited resources and access to only commodity 802.11 hardware. The adversary
has the ability to place n passive commodity 802.11 wireless sensors in cho-
sen positions around a target location (such as a building). For each received
packet pi, the RSSI values across all sensors are combined into a feature vector
(RSSIi1, RSSIi2, ..., RSSIin). Also, the attacker has the ability to estimate how
many devices are present in the area.

Victims. It is trivial to classify packets when it is known that only a single device
is active at any particular time, e.g., at a public hotspot. However, we assume a
more common situation in which several devices may transmit at arbitrary times,
possibly with interspersed transmissions. A prior analysis of wireless traces has
shown that there are often many simultaneously active devices at tight time
scales [4].

The victims use a standard 802.11 wireless device to communicate using an
identifier-free link layer protocol and transmit at a constant power level. Also,
the victims use a common application such as a web browser. They remain
stationary while they transmit, but are free to move when their transmitters are
silent.

5 Experimental Validation

To demonstrate the efficacy of the physical layer source classification technique,
we present a series of experiments conducted with 802.11 devices in a real indoor
office building environment. In this section, we describe the methodology used
to collect real RSSI values. To understand how the packet source classification
techniques performs in practice, we present metrics with which to evaluate their
ability to accurately associate packets to wireless devices. We characterize the
clustering technique’s performance with respect to how the number of devices
effects clustering accuracy and how the number of listening sensors effects accu-
racy. Our results show that this method is highly accurate even when 25 devices
are active at the same time and requires few sensors.

5.1 Experimental Setup

In order to understand how our physical layer packet clustering technique works
in practice, we deployed five 802.11 wireless devices to act as sensors in the “Cen-
ter for Innovation and Creativity” building located on the University of Col-
orado’s Boulder campus. Deploying five sensors ensures that signals can be
received when transmitted from nearly any position in the building, and multiple
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overlapping sensors also increases the accuracy of our method. This single-storey
office building measures 75 m × 50 m. Each sensor, a commodity Linux desktop
machine, passively listens for packets on a fixed 802.11 channel. This allows the
sensors to record RSSI values from all audible packets on that particular channel.
To collect RSSI measurements, we used a laptop computer to transmit 500 pack-
ets at a constant power level of 16 dBm at 58 distinct physical locations through-
out the office space (see Appendix A for detailed hardware specifications).

In addition, to evaluate the localization approach, we collect RSSI readings
from 179 additional training locations at a constant 16 dBm transmit power level.
The k-nearest neighbors algorithm is used for localization and we verify that
the median localization error is approximately 3.5 meters, which is consistent
with prior work [29]. The layout of the office space marked with the positions
of the passive sensors, training locations, and device locations is provided in
Appendix B.

To evaluate how the number of devices effects the accuracy, we vary the net-
work size from 5, 10, 15, 20, to 25 devices. Since we only used a single wireless
device to transmit packets at multiple locations, to construct scenarios with mul-
tiple devices we generated traces of packets transmitted at multiple locations.
However, during the data collection, there were other wireless devices transmit-
ting which added interference to the RF space. In order to ensure that there is no
bias in the selection of the devices’ locations that may influence performance, we
generate 100 randomly chosen device location configurations for each network
size2. Next, we perform clustering on these device location configurations. Recall
that since k-means is not guaranteed to provide a globally optimal solution, it
is necessary to perform the clustering several times to arrive at a stable cluster-
ing solution. We observed that the algorithm stabilized after approximately 100
runs, which takes approximately one minute to complete on a 3.6GHz Pentium
computer. Therefore, we perform k-means clustering 100 times on each device
location configuration.

To measure clustering accuracy, we apply the standard F-Measure metric from
information retrieval. The F-Measure is a weighted harmonic mean precision
and recall in which both are weighted equally [43]. Within the context of our
clustering problem, precision captures the homogeneity of each cluster. Recall
measures the extent to which packets from a given device are clustered together.

5.2 Packet Source Classification Results

We next present the results of the physical layer packet clustering technique in
terms of its ability to accurately associate packets with their respective trans-
mitting devices. In particular, we examine two factors that we believe to be
significant with respect to clustering accuracy: (1) the number of devices in the
observation space, and (2) the number of sensors in the observation space.

2 Although we collected RSSI measurements at 58 distinct positions, we chose to limit
the number of devices to 25 in any experiment to allow for variety in the randomly
chosen locations of the devices included in the experiments.
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Fig. 2. Packet source classification accuracies as the number of devices increases

Effect of number of devices on accuracy. The average packet source classi-
fication accuracy ranged from 85–77% as the number of devices in the network
was varied from 5–25, as shown in Figure 2. In general, the accuracies decrease
as the number of devices increases. In other words, the clustering algorithm per-
forms better on a smaller number of devices and produces additional clustering
errors as more devices are introduced. However, the 20 and 25 device experiments
produced similar clustering accuracies, so there is evidence that the clustering
accuracy may, in fact, level off as the number of devices reaches a critical thresh-
old. Additionally, within all device configurations, the RSS-Clustering method
provided slightly better accuracy than the RSS-Localization approach.
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Fig. 3. Mean source classification accura-
cies (with 95% confidence intervals) for each
device configuration as the number of sen-
sors varies

Effect of number of sensors on
accuracy. As shown in Figure 3,
the clustering accuracy is surprisingly
high, ranging from 75–47%, when just
one sensor is used for clustering. How-
ever, as more sensors are added, the
accuracy for each configuration in-
creases gradually, with diminishing
returns: as the number of sensors in-
creases from three to five, the accuracy
only improves by at most 3%. This in-
dicates that the resources required—
in terms of number of sensors to
deploy—are very minimal, making the
packet clustering technique practical
for a low resource adversary.

6 Traffic Analysis Application: Website Fingerprinting

Having evaluated the packet source classification techniques in isolation, we now
explore how they can be used to perform complex traffic analysis attacks. In
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particular, we demonstrate that the ability to achieve short-term linking with
relatively high accuracy provides sufficient information to perform a sophisti-
cated website fingerprinting traffic analysis attack in which the source of an
encrypted HTTP session is discovered using only packet count and size informa-
tion [10,11]. While we could have chosen to demonstrate the utility of our packet
clustering technique with a variety of other classes of traffic analysis attacks,
website fingerprinting is a sufficiently complex problem which can be practically
implemented by an attacker. In addition, through such traffic analysis, it may
be possible to uniquely identify users based on their browsing habits.

In this section, we first present the traffic analysis methodology. Next, using
our real RSSI data in combination with encrypted HTTP traces, we demon-
strate the efficacy of a website fingerprinting attack using packets that have
been classified by their source.

6.1 Traffic Analysis Methodology

In order to apply our real RSSI data to the problem of website fingerprinting,
it is necessary to combine the RSSI data with an encrypted HTTP data set.
Liberatore and Levine [10] provide a data set consisting of several instances of
encrypted connections to many distinct real websites over the course of several
months. A website instance consists of the number of packets and their respective
sizes.

To perform a simplified website fingerprinting traffic analysis attack after
packet source classification, we extract multiple instances of 25 distinct websites
from this data set. In general, to perform a website fingerprinting attack it is
necessary to partition the website trace data into two disjoint sets, a training set,
and a validation (or testing) set, and consider the task of website identification
as a classification problem. We construct the website training set by collecting
precisely 20 instances of each of the 25 websites that we wish to identify. The
validation set is constructed by affixing an RSSI vector onto a packet that is taken
from a new instance (i.e., not in the training set) of one of the 25 websites. For the
website classification, we apply the näıve Bayes classifier provided by Weka [44],
as in Liberatore and Levine [10].

Similar to the experiments presented in Section 5, we construct realistic sce-
narios by varying the number of wireless devices from 5, 10, 15, 20, to 25 and
fix the number of sensors at 5. However, instead of including an equal number of
generic packets, we make the assumption that every device downloads a single
randomly selected webpage and include all packets with affixed RSSI vectors
from a randomly selected position.

6.2 Traffic Analysis Results

We first explore the performance of the clustering algorithm on the website
data. A key distinguishing feature of the website data is that each website has
an arbitrary number of packets. For some websites, the device transmits several
hundred packets, while for others the device transmits less than ten packets.
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Fig. 4. Website fingerprinting accuracies as the number of devices increases

Clustering devices that transmit an unequal number of packets does not appear
to be a significant factor. The accuracy for the website data is only marginally
lower (72–82% accuracy) than for the equal packet data (given in Figure 2).

Given the clustering algorithm’s ability to accurately classify encrypted web-
site data, we next perform a website fingerprinting attack on packets that are
grouped by wireless device. The website fingerprinting accuracies for each ex-
periment are shown in Figure 4. Using the näıve Bayes classifier, the attack is
able to correctly identify the encrypted web page between 40–55% of the time.
This accuracy is significantly greater than random chance, in which an adver-
sary guesses the website. In this case, the expected accuracy is 1/25 = 4%. For
comparison, if packets are perfectly clustered, the website fingerprinting attack
achieves 92% accuracy for each device configuration. The accuracy of the web-
site identification is strongly linked to the accuracy of the clustering result. For
example, in the 5 device network, both the clustering and website identification
accuracies are the highest, and each respective accuracy degrades as the number
of devices increases. The website fingerprinting accuracy when the localization
approach is applied is slightly worse than the clustering approach.

7 Discussion

In this section, we discuss techniques for reconstructing persistent identifiers,
mitigating source classification, the benefits of large crowds for anonymity in the
wireless context, and the potential for using jamming and frequency hopping to
protect privacy.

7.1 Reconstructing Persistent Identifiers

The packet source classification technique as presented enables short-term link-
ing, but cannot directly reconstruct the persistent identifiers that are necessary
to enable user tracking or profiling across sessions. Once short-term linking has
been accomplished, it becomes possible to perform a variety of traffic analysis
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tasks to identify such information about the device including its wireless NIC
driver, operating system, firewall settings, and/or more specific user behavior.
This information can sometimes be used to uniquely identify devices across ses-
sion, and thus could be used to reconstruct persistent identifiers. For instance,
a device with an obscure OS/NIC driver combination may be easy to uniquely
identify.

In addition, semantic location information can augment the packet source clas-
sification with a physical location binding. Such information could also be used
to link source classified packets back to a specific source. The RSS localization-
based source classification technique ostensibly provides the device’s location,
but it comes at the cost of collecting training data for the target environment.

7.2 Mitigating Packet Source Classification

We next explore techniques using transmit power control and directional anten-
nas to reduce the effectiveness of packet source classification.

Intuition. For a given transmitter’s location, the expected received signal
strength at each sensor is predictable within some variance. However, if the
transmitter’s signal strength is reduced or amplified, then it becomes more likely
that the received signal strengths observed at each sensor may overlap with those
from other wireless devices. The result of a single transmitter varying its power
levels often results in a cluster that encompasses a different portion of the signal
space. In addition, directional antennas attenuate the wireless signal in certain
directions while amplifying the signal in other directions, enabling the packets
sent in each direction to form their own distinct clusters.3 This phenomenon, as
we will demonstrate, has an adverse effect on clustering accuracy and therefore
reduces an adversary’s ability to perform traffic analysis attacks on the source
classified packets.

Transmit Power Control. We conduct experiments to understand the extent
to which variable transmission power levels can be used to protect devices from
short-term linking at the physical layer (see Appendix A for detailed hardware
specifications). All other devices in the network transmit their packets at a fixed
16 dBm. Experiments are conducted with 15 total devices in which 1, 3, 6, 9,
and 12 devices transmit their packets at a randomly chosen power level. As
the number of devices with variable transmit power levels increases, the source
classification accuracy using the clustering method varies between 61–72%.4 The
accuracy decreases by 10–15% from the results in Section 5.2. The reduction in
clustering accuracy has a negative impact on the website fingerprinting traffic
analysis. The traffic analysis accuracy is approximately 30%, an improvement

3 We also conducted informal experiments in which the throughput is measured wh-
ile manipulating a single transmitter’s power levels. We found that the impact on
throughput was insignificant. Similarly, pointing a directional antenna in different
orientations also had an insignificant impact on throughput.

4 The localization-based source classification method performed similarly.
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Fig. 5. For a 15 device network, the effect of introducing 0–12 devices using transmit
power control in combination with directional antennas is shown

over the results from Section 6. However, devices that do not use this strategy
show the same vulnerability to traffic analysis.

Directional Antennas. Low-cost directional antennas, such as sectored or
MIMO antennas, are becoming widely deployed with the 802.11n standard. We
next explore how directional antennas can be used to alter physical layer in-
formation, by repeating the same experiments as above except using directional
antenna transmitters in place of variable transmit power level devices. The direc-
tional antenna was oriented in four different directions as the device transmitted
packets. We found that the clustering accuracy decreases in a similar fashion
as the experiments with the variable transmit power levels. The website finger-
printing traffic analysis attack also achieves about 30% accuracy for directional
devices while non-directional devices obtain no protection from traffic analysis.

Combined Effect. The most significant reduction in source classification ac-
curacy occurs when devices utilize transmit power control in combination with
directional antennas. Figure 5 shows that the mean clustering accuracy decreases
to nearly 50% as more devices use the combined strategy. The traffic analysis
attack’s accuracy also decreases to 26% for devices that utilize this strategy.

Hiding Signal Strength Information is Hard. The relative success of the
source classification and subsequent traffic analysis despite these defensive tech-
niques highlights the inherent difficulty of manipulating the properties of the
physical layer. Ultimately, intentionally changing RSSI values is a hard problem,
since there are many unobservable and environmental factors including multi-
path fading and attenuation that are difficult to isolate and predict. Furthermore,
it is necessary to transmit at a level that is sufficient to reach an access point.
Thus, these observations are consistent with prior findings that there are funda-
mental limitations to the extent to which the signal strength properties of the
physical layer can be altered [45,46].
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7.3 Anonymity Still Loves Company

Anonymity mechanisms for wireless networks (discussed in Section 2) such as
link layer encryption achieve sender anonymity for wireless clients by effectively
randomizing explicit identifiers. At the link layer and above, wireless packets are
unlinkable to their senders. However, in order for this condition to hold, there is
an implicit assumption that there are significantly many wireless clients in the
network. For instance, if only one client uses the network, it is trivial to link
their traffic to a user.

Since signal strength varies with physical distance, devices that are closer to
one another typically have similar signal strengths. A group of devices within
close physical proximity may be more difficult to distinguish using their sig-
nal strengths. Thus, as with traditional anonymity, a larger user base enables
stronger anonymity properties than a smaller one [47]. In the wireless case, the
caveat is that these users should physically arrange themselves close to each
other so their signal strengths are less distinguishable to the source classification
method.

7.4 Wireless Cover Traffic

Cover traffic is a well-known strategy to frustrate traffic analysis [15]. In wire-
less networks, cover traffic may be another tool to mitigate traffic analysis, but
there are additional challenges posed by the wireless medium. First, the wireless
medium is a shared resource and adding additional traffic may degrade every-
one’s performance. In addition, wireless devices are often battery powered and,
thus try to conserve energy. Contributing cover traffic could have serious impli-
cations for power consumption and may reduce a device’s lifetime. Cover traffic
increases the number of packets on which an adversary could perform source
classification, but the subsequent traffic analysis tasks may become more diffi-
cult. A complete study of cover traffic in the wireless context is beyond the scope
of this work.

7.5 Physical Space Security, Jamming, and Frequency Hopping

Beyond hiding the contents of a communication session with cryptography, other
radical approaches have been proposed that aim to reduce the number of packets
that can be overhead by an eavesdropper. Lakshmanan et al. and Sheth et al.
demonstrate this by using directional antennas to focus transmissions within a
secure physical space that is free of eavesdroppers [48,49].

In addition, jamming has been suggested as another method to mitigate an
eavesdropper’s ability to overhear wireless packets [50]. An intelligent jamming
strategy aimed at the locations of potential eavesdroppers can effectively raise
the noise floor at their positions, which makes it difficult to distinguish between
wireless signals and normal background noise on the wireless medium. While
jamming may be an effective way to neutralize eavesdroppers, it may also inter-
fere with legitimate communications and degrade the network’s performance.
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Another potential technique to evade eavesdroppers is to use frequency agility
to transmit on different channels in a certain pattern [51]. However, the 802.11
standard limits transmissions to the 2.4GHz and 5GHz frequency bands, wh-
ich have a limited number of channels; thus, an eavesdropper could feasibly
monitor all channels simultaneously. To mitigate harmful interference among
devices, most governments in developed nations regulate the allocation and us-
age of wireless spectrum for specific wireless devices. Consequently, spectrum is
a scarce resource, which impedes the effectiveness of frequency hopping to evade
eavesdroppers.

8 Conclusion

In this paper, we demonstrate that even when explicit identifiers are removed
from wireless packets at the link layer, a significant amount of information re-
mains preserved within the wireless physical layer. We provide a packet source
classification technique that uses this information to achieve short-term linking.
The proposed packet source classification approach is unsupervised and requires
no specialized hardware.

Through experiments, we show that this approach provides sufficient accu-
racy to enable complex traffic analysis tasks. As an example, we conduct a
website fingerprinting attack on source-classified packets with reasonably high
success. To mitigate the effectiveness of the packet source classification, we eval-
uate methods to alter the transmitted signal strength of packets, thereby intro-
ducing additional noise which degrades the accuracy of both the packet source
classification and the subsequent traffic analysis. We hope that this work will
bring more awareness to the privacy problems that are present at the wireless
physical layer and encourage further exploration of methods to mitigate these
types of attacks.
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A Hardware Used in Experiments

Device type Wireless NIC type Antenna type

Sensors D-Link DWL-AG530
Omni directional dipole an-
tenna 2-4 dBi

Transmitters WNC WLAN Cardbus Adaptor CB9
Omni directional dipole an-
tenna 2-4 dBi

Directional
Transmitters

WNC WLAN Cardbus Adaptor CB9
“Super Cantenna” 12 dBi 30
degree beam width direc-
tional antenna
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B Building Floorplan for Experiments
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Wireless devices are placed at 58 distinct physical locations in an office building.
The training locations for the localization approach are also shown.
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