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Abstract

The anonymous communication (AC) protocol Tor constitutes the most widely deployed tech-
nology for providing anonymity for user communication over the Internet. Tor has been subject
to several analyses which have shown strong anonymity guarantees for Tor. However, all previous
analyses ignore time-sensitive leakage: timing patterns in web traffic allow for attacks such as website
fingerprinting and traffic correlation, which completely break the anonymity provided by Tor. For
conducting a thorough and comprehensive analysis of Tor that in particular includes all of these
time-sensitive attacks, one of the main obstacles is the lack of a rigorous framework that allows for
a time-sensitive analysis of complex AC protocols.

In this work, we present TUC (for Time-sensitive Universal Composability): the first universal
composability framework that includes a comprehensive notion of time, which is suitable for and
tailored to the demands of analyzing AC protocols. As a case study, we extend previous work and
show that the onion routing (OR) protocol, which underlies Tor, can be securely abstracted in TUC,
i.e., all time-sensitive attacks are reflected in the abstraction. We finally leverage our framework and
this abstraction of the OR protocol to formulate a countermeasure against website fingerprinting
attacks and to prove this countermeasure secure.
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1 Introduction

Anonymous communication protocols, as provided by the Tor network [45], are an increasingly popular
way for users to protect their privacy by hiding the user’s location. The Tor network is currently
used by hundreds of thousands of users around the world [44]. Sudden increases in Tor’s usage have
furthermore been shown to correlate to privacy-invasive political events which demonstrates the global
political importance of the Tor network [13].

In order to precisely understand the anonymity guarantees provided by Tor, several rigorous analyses
have been conducted [43, 8, 18, 2]. These analyses show strong anonymity guarantees for the onion
routing protocol used by Tor; however, all of these analyses use an asynchronous communication model
and abstract from all attacks that involve measuring timing patters, which arguably form the most
important class of attacks against Tor’s anonymity guarantees [38, 20, 11, 47, 39, 37, 27, 16, 29, 35]. One
of the main obstacles in including such time-sensitive attacks into a rigorous analysis is the lack of a
theoretical framework for the modular analysis of complex protocols against time-sensitive adversaries.

In this paper, we follow the successful line of research on simulation-based, composable security
started with Goldreich et al. [22] and put forward by Canetti [9], which enable the modular analysis
of complex cryptographic protocols by using the notion of secure realization: a complex cryptographic
protocol is proven to be as secure as a simpler protocol (called ideal functionality), which is easier to
analyze and sometimes even trivially secure. All such previous frameworks however are asynchronous
and thus do not allow for analyses which consider time-sensitive adversaries.

Contribution. We introduce a simulation-based composability framework (with sequential activation)
that includes a comprehensive notion of time that is suitable for and tailored to the demands of analyzing
anonymous communication protocols. In particular, we extend a modified version of GNUC [25], which
addresses many of the problems faced by earlier designs, by introducing a local clock to every party in
the GNUC’s sequential activation network model.

We discuss how the basic network model has to be altered in order to adequately account for time
and show solutions for problems that occur when handling time-sensitive interaction between different
parties over the network. We then show that, even after adding a fine-grained notion of time, classic
properties of composable security such as universal composability and the joint-state theorem for secure
realization also hold in our time-sensitive network model.

Finally, we exemplify the usefulness of our model by showing that a previously introduced abstraction
for the onion routing protocol [2] is also securely realized in our time-sensitive model, albeit with small
modifications in order to account for timing-related leakage. This paves the way for future analyses of the
onion routing protocol which also account for timing attacks. As a result of our analysis, we additionally
propose a small change to the onion routing protocol which counters the website fingerprinting attacks [7,
40, 24] known for Tor traffic using the HTTP [19] protocol for web surfing.

Outline. Section 2 discusses related work. Section 3 presents our extension of the sequential network
model presented in the GNUC framework [25] with time. We present the general layout of the network
model and discuss alterations made to account for timing. Section 4 then introduces the notion of secure
realization into this time sensitive network model and shows that classic results of composable security
are preserved in the time sensitive setting.

In Sections 5 and 6 we then exemplify the use of our framework by giving as secure abstraction of
the onion routing protocol in the timed setting based on the abstraction provided in [2] and provide an
improvement for the onion routing protocol that counters website fingerprinting attacks.

2 Related Work

This work contributes to the successful line of work on simulation-based universal composability frame-
works [9, 41, 10, 5, 33, 25]. Composability frameworks allow for a modular analysis of large and complex
multi-party protocols, where the security of the whole protocol is derived from the security analysis of
the sub-protocols of which it is composed. The GNUC framework, presented by Hofheinz and Shoup [25],
elegantly solves some of the problems that haunt earlier designs, such as correct definitions for protocol
composition and polynomial time run time bounds in a system of interacting Turing machines. All pre-
vious work, however, only considered asynchronous systems, in particular time-sensitive attackers were
ignored, i.e., attackers that can perform time-measurements. Thus, all previous frameworks were not
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suited for analyzing low-latency anonymous communication protocols, such as the onion routing pro-
tocol, which underlies Tor [45]. Our framework TUC is based on the asynchronous GNUC framework
but introduces a comprehensive notion of time that is suitable for analyzing anonymous communica-
tion protocols yet preserving all valuable properties such as universal composability or the Joint State
Theorem.

There has been work [12, 28, 6, 34, 31, 32] on the time sensitive analysis of cryptographic protocols
using timed automata or networks of timed automata. These analyses however are mainly concerned
with protocols which make use of timestamps and the verification of safety properties of such protocols,
and less with time sensitive adversaries which use timing information to break security. Furthermore,
only simplified adversary models are considered, such as Dolev-Yao style adversaries. In particular, the
timed automata model is not expressive enough to model arbitrary, turing complete adversaries, which
is of large interest in the analysis of anonymous communication protocols. We therefore stick with a
network model which consists of interacting turing machines.

Tor [45] is one of the most used anonymous communication protocols to date [44] and implements
the onion routing protocol introduced by Goldschlag et al. [23]. There has been significant work in
analyzing the anonymity guarantees provided by Tor using different approaches [17, 18, 8, 43, 3]. In [2]
an UC-secure abstraction of Tor is presented and in [3] the AnoA framework is presented, which uses this
abstraction to quantify the anonymity guarantees provided by Tor. The major shortcoming of all these
pieces of work is that they do not consider timing features of network traffic, which in particular lead
to timing based traffic analysis. Considering the amount of proposed attacks [15, 38, 20, 11, 7, 40, 24]
and countermeasures [48, 49, 36, 1] in the literature that use these timing features, it is clear that a
formal model for the analysis of anonymous communication protocols against time-sensitive adversaries
is required. TUC provides such a model, and we present how TUC can be used to prove a countermeasure
secure against a variant of the prominent class of website fingerprinting attacks [7, 40, 24].

3 Time-sensitive Network Model

In this section we present TUC, the first simulation-based composability framework that considers a
time-sensitive adversary. TUC builds upon previous asynchronous simulation-based frameworks, such
as GNUC [25] and the framework by Unruh [46], but fundamentally extends these frameworks by incor-
porating a notion of time while preserving the highly desired properties such as universal composability
and the joint state theorem.

A general overview. We introduce time by capturing via a timer the current global time for every
machine in the network. Whenever a machine is activated, its timer is updated based on the number
of steps done by the machine and the speed of it. The speed of a machine is either predetermined if
it already existed at initialization, or is determined by the protocol that it executes if the machine is
created during runtime. Furthermore, we require that the actual local time experienced by each machine
is given by a strictly monotonically increasing function of its current global time, thereby modeling
unsynchronized clocks.

We stick to the classic sequential activation model; however, by introducing a notion of time we
inherently also allow parallel computation. Therefore, it can happen that one machine is already far
in the future while all other machines are still in the past. In order to achieve consistency, i.e. to
achieve that no party receives messages from the future, we introduce a distinguished machine, called
the execution. This execution basically manages the timer of each machine and the timely delivery of
messages between machines.

The execution attaches to each message that is sent through the network a time-stamp, which is
only visible to the execution. This time-stamp, loosely speaking, denotes the local time of the sending
party when the message was sent.

The environment and the attacker might consist of several machines that work in parallel. A natural
way of modeling this capability is to represent these environment and the attacker as a set of parallel
machine. While such a model is more accurate, we decided for the sake simplicity to over-approximate
this strength of the environment and the attacker by allowing both parties to make an arbitrary (but
poly-bounded) amount of computation steps in one time-step.

As in GNUC, a protocol is formalized as a runtime library that assigns to each machine the program
code to be executed by the respective machine and the speed of the machine that executes the code. We
stress that a network has only one such runtime library, i.e. one protocol.
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Initialization: All input tapes are set to empty, all timer-variables are set to the initial value and no links
are compromised.
Machine Activation: Every time a party Mi ∈ M gives control to the network execution, to current
global time Ti for Mi is updated according to

Ti := Ti +
n

ci
,

where n is the number of steps done by Mi in its last activation and ci is its throughput.

upon input (time) from Mi ∈M
1: retrieve Ti
2: compute local time ti := fi(Ti).
3: activate Mi with input ti on the time tape.

upon input (increase) from M ∈ {Env,A}
1: set TM := TM + 1
2: activate M

Figure 1: Timing and Initialization in EXEC with machine set M

3.1 Execution

The network is run inside a machine, called the execution (EXEC). The execution runs all parties in
the network as sub-machines, delivers messages between these sub-machines, and maintains a timer for
every sub-machine.

The network execution starts when the execution EXEC is activated with the security parameter k
and an input x, which is forwarded to the environment. We define the output of the network execution
as the output of the environment Env after observing the communication between the involved parties
during the network execution.

We capture this output by introducing the random variable EXECk(Π,A,Env, x), where Π is the
set of protocols used in the network, Env denotes the environment and A the network adversary. The
value of EXECk(Π,A,Env, x) is the result of the random experiment of running EXEC with all of the
aforementioned components.

We first describe the single aspects of the execution EXEC in the subsequent subsections, and at the
end of this section we present the full description of EXEC in Figure 9.

3.1.1 Timing

In order to introduce the notion of time into our model, we assign to every machine in the system a
local time. The local time of a machine is a function of the global time managed by the execution.
We call this the machine’s local-time function.

For every machine Mi, the execution maintains a machine timer Ti. This timer records the current
global time of Mi and is updated every time Mi returns control to EXEC. Ti is initialized to 0 at the
beginning of the execution.

In order to capture that each machine provides different performance, each machine Mi is character-
ized by a throughput constant ci, also called Mi’s speed, which specifies how many computation steps
Mi does per time unit. Hence, the timer Ti for Mi is updated by

Ti := Ti +
n

ci

where n is the number of steps Mi did in its last activation. The only exception to this rule are the
machines representing the adversary and the environment: These machines are timeless, i.e. they decide
when their timers are set forward, and tell EXEC when to do it (see Fig. 1).

Another important aspect here is how you assign a throughput coefficient to machines in the network.
While the coefficients can be predetermined for machines which already exist at initialization, they
somehow have to be determined for the machines which are dynamically created during runtime.

We propose following simple solution: The protocol Π used in the network not only determines the
code executed for each basename, but also provides a distribution over throughput coefficients. The
execution can now draw the throughput coefficient from these distributions whenever a new machines is
created during runtime. Note that this offers only one of many possible solutions. Other variants might
be used for specific application scenarios.

Whenever a message m is sent from machine Mi to machine Mj through the network, EXEC records
a time stamp Tm for this message. This time stamp is set to the current time Ti of the sender Mi
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〈pid, ((main, sp))〉

〈pid, ((main, sp), (prot1, sp1))〉

〈pid, ((main, sp), (prot1, sp1), (prot2, sp2))〉

〈pid, ((main, sp), (prot1, sp
′
1))〉

〈pid, ((main, sp), (prot1, sp
′
1), (prot3, sp3))〉

〈env〉

Figure 2: The Tree Structure of Parties in TUC

after updating it. When delivering m, EXEC puts the tuple (m,Tm, p) into the input queue Qj of Mj ,
from which messages are retrieved whenever Mj listens for new incoming messages. Here p denotes the
port through which Mj receives the message m. We use ports to differentiate between network and
inner party communication and elaborate further on our communication model in Section 3.1.4. A tuple
(m,Tm, p) retrieved from Qj is only forwarded to Mj if Tm ≤ Tj , i.e. Mi has progressed far enough in
time in order to receive the message. The methods involved in message passing are presented in Figure 4
in Section 3.1.4.

Each machine Mi can requests its local time by sending a (time) request to the execution (see Fig. 1).
EXEC then computes the local time of Mi by applying Mi’s local time function fi to its current global
time Ti. Formally, the local-time function is a strictly monotonically increasing function from rational
numbers to rational numbers, f : Q→ Q, which is efficiently computable and invertible. This is necessary
as EXEC needs to invert the local time function in order to process delayed message sending, which is
an option for protocol machines in the network and will be required in our constructions in Section 6.

3.1.2 Protocol Machines & Session Identifiers

In order to adequately represent complex protocols in our model, we adopt the notion of protocol
machines from GNUC [25].1 Here, each party P participating in network communication is represented
by a tree of machines, which each provide the sub-protocols used by P . This tree structure allows for a
clean definition of composition which we present in Section 3.2.1. This is structure is in line with what
is presented as a structured system of interactive machines presented in [25, Section 3].

Each machine M in the network is identified by a unique machine ID idM . The machine ID is a
tuple id = 〈pid, sid〉, where pid is the party identifier and sid the session identifier.

Machines can have the same party ID. They then belong to the same party, defining the set of
machines this party works with. The form of this set is defined by the session IDs. These session IDs are
structured as paths (α1, . . . , αk). We call a machine M parent of another machine M ′, if pidM = pidM ′

and sidM ′ is a one-step extension of sidM , i.e. sidM = (α1, . . . , αk−1) and sidM ′ = (α1, . . . , αk). We then
also call M ′ a child of M .

Machines in different parties can still have the same session IDs. We call machines with different pid,
but the same sid peers.

The last component αk of a session ID is the basename of the respective machine. The basename
will be of the form αk = (protNAME, sp), where protNAME specifies the name of the protocol executed
by the machine, and sp contains specific session parameters. The protocol name is used to determine
the code executed by the respective machine, as detailed in Section 3.2.

We also adopt all of the constraints listed in [25, Section 4,5]. These make sure that in the end, our
network is well-formed and that each party really consists of a tree of machines.

1Currently, our framework uses Turing machines as a machine model, but for analyzing timing leakage of algorithms
other machine models might be better suited, such as Random Access Machines, or a machine model that even incorporates
cache. We leave such extension for future work.
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〈pid, (α1)〉

〈pid, (α1, α2)〉

〈pid, (α1, α2, α3)〉

〈pid, (α1, α
′
2)〉

〈pid, (α1, α
′
2, α4)〉

〈env〉

〈adv, (β1, β2)〉

〈adv, (β1)〉

〈adv, (β1, β3)〉

〈adv, (β1, β4)〉

Figure 3: Network Adversary and Communication in TUC

Inside a party, a node in the machine tree can create new machines as children nodes by simply
sending a message to the yet non-existent machine. The execution then checks whether the message sent
induces a valid extension – where validity is defined by the protocol used in the network, see Section 3.2–
of the machine tree and creates the new machine. Figure 2 illustrates the machine trees used in our
model.

The tree structure for machines presented here is the same as in GNUC; we therefore refer to the
GNUC paper [25, Section 4] for a more extensive presentation.

3.1.3 Environment and Adversary

Influences to network communication outside of the regular parties are traditionally captured in two
special parties called environment and adversary: the environment represents user behavior, operating
systems or other entities that control the actions of the network parties, while the adversary represents
adversarial behavior in the network.

We identify the network adversary and the environment with special machine IDs: all machines that
belong to the party representing the adversary A have the party ID pid = adv, whereas the environment
Env consists of only one machine with machine ID idEnv = 〈env〉.

The adversary A also serves as scheduler that is activated every time it is not clear what happens
next in the network. Similarly to the other parties, A consists of a machine-tree, where A has a sub-
adversary for each basename in the network. Each of these sub-adversaries has its own clk port, which
is triggered by the execution EXEC whenever a machine with the corresponding basename causes a
scheduling exception. The tree-structure of the adversary is depicted in Figure 3.

In the real world, the environment and the adversary might consist of several machines that work in
parallel. A natural way of modeling this strength is to represent the environment and the adversary as
a set of parallel machines. While such a model is more accurate, for the sake of simplifying proofs, we
abstract this strength of the environment and the adversary by allowing both parties to make an arbitrary
(but poly-bounded) amount of computation steps in one time-step, i.e., by making these parties timeless.
Technically, a party P is timeless if its timer is not increased by the network execution but by the party
P itself. This design decision will also be crucial in the proofs for the composability results we present
in Section 4.1.

3.1.4 Communication Model

We differentiate between inner party communication and network communication: inner party commu-
nication captures all communication between children and parent nodes inside a machine tree, but also
communication between the environment and root machines, while network communication comprises
all communication between parties, which we would typically expect to happen over open networks.
Figure 3 illustrates this with thick lines for inner party communication and dashed lines for network
communication.

Formally, we model these communication options using ports, which roughly correspond to the real
world equivalent of ports which enable a single machine to communicate over different channels. We make
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upon (m, id) on port net from Mi ∈ M at time
Ti

1: if Mid is a peer of Mi then
2: if (i, id) ∈ C then
3: put (m,Ti, net) into QAi of the correspond-

ing sub-adversary Ai.
4: activate Ai.
5: else
6: put (m,Ti, net) into Qid

7: activate Mid’s scheduler Ai with scheduling
request

8: else
9: return error to Mi

upon (delay,m, t) on port q from Mi ∈ M \
{Env,A}
1: if t ≥ fi(Ti) then
2: compute global time T = f−1

i (t)
3: execute appropriate send message for m with

time stamp T for port q
4: else
5: return error to Mi

upon m on port p 6= net from Mi ∈ M at time
Ti

1: if there is a machine with input port p then
2: let id be the machine ID of the unique machine

with input port p
3: put (m,Ti, p) into Qid
4: activate Mid’s scheduler Ai
5: else
6: if p = pid(Mi).sid(Mi).sid′∧

sid′ proper extension of sid(Mi) then
7: let (protNAME, sp) = basename(sid′)
8: let (cd ,S) = Π(protNAME)
9: sample speed c′ from S

10: create a new machine M with code cd ,
11: sid(M) := sid′

12: c(M) := c′

13: set up translation of M ’s environment port
to p

14: put (m,Ti, p) into Q〈pid,sid′〉
15: activate M ’s scheduler Ai
16: else
17: return error to Mi

Figure 4: Communication methods in EXEC with machine set M and protocol Π

use of four different kinds of ports: network ports, environment ports, subroutine ports, and scheduling
ports. Technically, each port consists of an input-output port pair. We give each port pair a single name
p and subscripts in for the input port pin and out for output port pout.

For communication over the network, M sends its messages over its network port, addressing the
recipient using the recipient’s machine id. All incoming messages are received through M ’s network
port. A machine M can only send messages over the network to another machine M ′ if either M ′ is a
peer of M or M ′ is the network adversary.

Each machine M has an environment port sid(M).Env which it uses to communicate with its parent
node: If M is a root machine of a party, this is used to communicate directly to the environment. On
the other hand, if M is a child of another node in the same party, M uses this port to communicate with
its parent.

For all connections towards children inside the same party, a machine M has a set S of subroutine
ports: every message sent by M through a subroutine port p ∈ S is sent to the unique child node M ′

with a corresponding port of the same name. In case M wants to create a new machine M ′ as a child,
M creates a new port p′ in S and addresses M ′ through this port. EXEC then recognizes that p′ is not
in use yet and creates a new machine M ′, as detailed in Figure 4.

Inner party ports follow the naming convention pid.sid1.sid2. Here pid is the process ID of the party,
sid1 is the session ID of the parent node Mp, and sid2 the session ID of the child node Mc. Note that
Mc communicates to its parent via its environment ports. The execution therefore makes an implicit
port translation between environment ports of children nodes and inner party communication ports as
defined above. Through this, we realize a variant of what is introduced as Caller ID Translation
in [25, Section 4].

Additionally, all machines with party id adv have a special input port clk called the scheduling
port. These machines are activated whenever a machine in the network releases control without sending
a message to another machine. Which scheduler is activated at a given point is determined by the sid of
the scheduler and the sid of the machine that was activated last. The network execution is responsible
for correctly activating the correct scheduler. The methods used for message passing inside EXEC are
presented in Figure 4.

3.1.5 Scheduling

Other simulation-based traditionally make use of a network model that uses a sequential activation model:
machines in the network directly activate each other by sending messages. Keeping to this traditional
sequential activation model, however, causes several problems as soon as you introduce time: messages

8



upon input (listen) from Mi ∈M
1: if Qi is not empty then
2: Pull next message (m,Tm, p) from Qi
3: if Tm ≤ Ti∧∀Mj ∈M\{Mi} : Tj ≥ Tm then
4: activate Mi with m on port p
5: else
6: Put (m,Tm, p) into Qi
7: activate Mi’s scheduler Ai with scheduling re-

quest

upon activation by Mi ∈M without output

1: activate Mi’s scheduling machine Ai with
scheduling request

upon input (activate,Mj) from Ai
1: if Mj in listen state then
2: if Qj is not empty then
3: Pull next message (m,Tm, p) from Qj
4: if Tm ≤ Tj ∧ ∀Mi ∈ M \ {Mj} : Ti ≥ Tm

then
5: activate Mj with input m on port p.
6: else
7: activate Ai with a scheduling request
8: activate Mj without input

Figure 5: Scheduling methods in EXEC with machine set M

from the past arrive at nodes which are already in the future or the environment can push certain nodes
arbitrarily far into the future.

Example 1: Inconsistencies with regular sequential scheduling.
Consider machines M and M ′ which go into a timeout state if they do not receive a message upto some
point in time T ∗

1: Env repeatedly actives machine M through A, which causes M to activate for one step and then
return to the listening state. This effectively pushes M to time T > T ∗ the future.

2: M goes into the timeout state, as it did not receive any message until time T ∗

3: Env tells machine M ′ to send a message to M at time T0. Including processing the command, the
message is sent at time T ′

4: M receives a message from time T ′ < T ∗ at time T ∗.

M now erroneously went into the timeout state, even though M ′ sent a message to M before the timeout
should have occurred. �

To avoid such inconsistencies, we deviate slightly from the traditional sequential activation model to
what we call consistency enforcing scheduling: Whenever a machine Mi listens for a new message,
Mi will only be activated again as soon as all other machines Mj have at least progressed as far in time
as the earliest message in Mi message queue Qi. If Qi is empty, Mi will remain inactive until Tj ≥ Ti
for all other machines Mj .

Consistency enforcing scheduling resolves inconsistencies regarding timing that might otherwise occur
in decisions made by machines in the network: for example, a machine deciding to cause a time-out after
not receiving messages upto some point in time T can be sure that it will not receive any messages “from
the past” after doing so, contrary to above example. Methods in EXEC involved with scheduling are
shown in Figure 5.

3.1.6 Shared Memory

As in other simulation-based framework, our goal is to analyze complex protocols by simplifying them to
ideal functionalities which have additional capabilities. We captures these capabilities in form of shared
memory between all ideal peers in the network. Access to shared memory is granted via a special port,
through which parties can request read/write actions on the memory.

With regard to timing, the shared memory is special: We want to allow for data in the shared memory
to be accessed at all times, while each request is answered with the current version of the data for the
time of the request. We therefore call the shared memory omni-time: If a machine accesses the memory,
it gets the version from the current time of the machine. If some other machine in the future already
modified the memory, this modification will not be visible to the requesting machine until it lives in the
same time as well.

Figure 6 gives a possible pseudo-code implementation of a shared-memory unit in the time-sensitive
network model.

Consistency enforcing scheduling for shared memory. Similar to the scheduling of machine
activations (see Section 3.1.5), the concept of an omni-time shared memory causes consistency issues:
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Upon activation:

1: if there is an input (lookup, D,Mi, Ti) then
2: put the request (lookup, D,Mi, Ti) into the

lookup queue QL
3: remove request (lookup, D′,Mj , Tj) with smallest

time stamp Tj from QL
4: call lookup(D′,Mj , Tj)

Upon input (write, D, d,Mi, Ti):

1: write value d into data set D with time stamp Ti
2: return confirmation to Mi

lookup(D,Mi, Tj)

1: request current time of all machines Mj ∈MMEM

with access to MEM.
2: if ∀Mj ∈MMEM : Tj ≥ Ti then
3: return data set D to requesting party Mi at

time Ti
4: else
5: queue up the request (lookup, D,Mi, Ti) in the

lookup queue QL

Figure 6: The shared memory MEM

For example, what happens if a party that lives in the past changes a data set a party living in the future
already read (in the future)?

Example 2: Consistency issues in omni-time memory.
Consider two machines M (living at time TM ) and M ′ (living at time TM ′ << TM ) which both access the
shared memory MEM to read/modify a data-set d.

1: Env tells M to read d from MEM
2: M reads d from MEM at time TM + δ
3: Env tells M ′ to modify d in MEM
4: M ′ modifies d in MEM at time TM ′ + δ′ < TM + δ

M now has read the value of d which is actually no longer correct, as M ′ modified d in the past after M
read it. �

We solve these consistency issues by using a variant of consistency enforcing scheduling, which restricts
the scheduling of memory access requests as follows: Lookup requests by a machine M are only processed
by the shared memory MEM if all machines with access to MEM, denoted by the setMMEM, are at least
at the same time as M (or further).

If this condition is not true, the shared memory puts the request together with its time stamp into a
time-ordered queue QL, which sorts all unanswered requests by their time stamps. Upon every activation,
MEM checks QL for unanswered lookup requests and retrieves the one with the smallest time stamp.
MEM then checks the lookup request for validity (based on its time stamp), and processes it if it is.

In case MEM cannot process any lookup requests, it finishes the execution without sending a confir-
mation message, causing a scheduling request to the scheduler.

As a consequence we get Corollary 1 which ensures consistency of shared memory entries read by ma-
chines in the network.

Corollary 1. If a data set D is read by a party M from a shared memory MEM at time T , then any
changes to D will only happen at a point in time T ′ ≥ T .

3.1.7 Compromisation

We assume that inner-party communication, i.e. communication between children and parent nodes,
cannot be intercepted.

Previous composability frameworks assume a global adversary which intercepts all messages sent
between parties over the network. This is a necessity for realization proofs between protocols which do not
inherently leak information to the adversary. However, in the special case of anonymous communication
(AC) protocols, a global adversary poses a problem, as e.g. Tor is not secure against global adversaries [47,
39, 37, 11], and is not even designed against global adversaries.

Partial compromisation of the network can be modeled by introducing special network functionalities,
which are used as a link between parties. This approach is exemplified in [2].

To simplify the analysis however, especially with regards to AC protocols, we assume an, initially
uncompromised network. The environment Env however can compromise network communication links
between two machines by sending a compromise message to the execution EXEC indicating which link
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upon (compromise, id1) from parent of Mid1

1: if Mid1
/∈ CM then

2: replace Mid1 code to cdcomp
3: CM := CM ∪ {Mid1}
4: send (compromise) to Mid1

5: else
6: return error to Env

upon input (compromise, id1, id2) from Env

1: CL := CL ∪ {(id1, id2)}
2: activate Env with (compromised, id1, id2) as

input.

Figure 7: Corruption Commands in EXEC for Adaptive Compromisation

upon (compromise, id1) from parent of Mid1

1: if Mid1
/∈ CM ∧M did not receive a message yet then

2: replace Mid1
’s code to cdcomp

3: CM := CM ∪ {Mid1}
4: send (compromise) to Mid1

5: else
6: return error to Env

Figure 8: Machine Corruption in EXEC for Static Compromisation

should be compromised. Afterwards, any communication on the compromised link is forwarded to the
adversary, who then decides on how to proceed with the message (see Fig 7).

The machines themselves can be compromised by the environment Env by sending a special compromise
message to the respective machine. Upon receiving this compromisation message, EXEC replaces the code
executed by the receiving machine M to the code of a compromised machine cdcomp: Whenever M re-
ceives a message, it is forwarded to the adversary, who can then tell M how to proceed. EXEC then
forwards the corruption message to M , which in turn responds with an answer to Env containing the
current state of M and from then on is under full control of the adversary (see Fig. 7).

The analysis of AC protocols usually differentiates between two important classes of Compromisation:
On the one hand static compromisation, where the adversary can only compromise at the beginning of
the execution, and on the other hand adaptive compromisation, where the adversary can also compromise
during the execution. While the presentation of EXEC in Figure 9 works for the adaptive case, we need
to make some changes for the static case.

EXEC for Static Compromisation. In the static case, a set of machines and links is already com-
promised at the beginning of the execution and corruption commands are no longer available for the
environment during the execution.

Compromised machines however can still create new machines. These new machines should be com-
promisable before the start to interact with the rest of the network. We therefore allow for a modified
machine compromisation method in the static case, which only forwards the compromise command if it
is the first message the newly created machine receives (see Fig. 8).

3.1.8 Runtime Bounds

Correctly addressing polynomial runtime bounds for networks of machines has been a point of major
debate in the literature [26]. We adopt the solution put forward in [25, Section 6]. We only give a high
level idea of the notion of a probabilistic polynomial time network and refer to the GNUC paper for a
thorough discussion [25, Section 6].

We require that each message sent through the network begins with the string 1η, where η is the
security parameter used in the execution. If a machine is activated without a message, it receives
the string 1η on a special activation input port. We call a machine in the network probabilistic,
polynomial time (PPT) if it is probabilistic and makes a polynomial number of steps in its input
length on each activation.

We then limit the accumulated length of all messages sent through the network during the execu-
tion, denoted Flowη[Π,A,Env], to be bound by a polynomial in η, and call a protocol Π probabilistic,
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Initialization: All input tapes are set to empty, all timer-variables are set to the initial value and no links
are compromised.
Machine Activation: Every time a party Mi ∈ M gives control to the network execution, to current
global time Ti for Mi is updated according to Ti := Ti + n

ci
, where n is the number of steps done by Mi in

its last activation and ci is its throughput.

upon m on port p 6= net from Mi ∈ M at time
Ti

1: if there is a machine with input port p then
2: let id be the machine ID of the unique machine

with input port p
3: put (m,Ti, p) into Qid
4: activate Mid’s scheduler Ai
5: else
6: if p = pid(Mi).sid(Mi).sid′∧

sid′ proper extension of sid(Mi) then
7: let (protNAME, sp) = basename(sid′)
8: let (cd ,S) = Π(protNAME)
9: sample speed c′ from S

10: create a new machine M with code cd ,
11: sid(M) := sid′

12: c(M) := c′

13: set up translation of M ’s environment port
to p

14: put (m,Ti, p) into Q〈pid,sid′〉
15: activate M ’s scheduler Ai
16: else
17: return error to Mi

upon (m, id) on port net from Mi ∈ M at time
Ti

1: if Mid is a peer of Mi then
2: if (i, id) ∈ C then
3: put (m,Ti, net) into QAi of the correspond-

ing sub-adversary Ai.
4: activate Ai.
5: else
6: put (m,Ti, net) into Qid

7: activate Mid’s scheduler Ai with scheduling
request

8: else
9: return error to Mi

upon input (activate,Mj) from Ai ∈ A
1: if Mj in listen state then
2: if Qj is not empty then
3: Pull next message (m,Tm, p) from Qj
4: if Tm ≤ Tj ∧ ∀Mi ∈ M \ {Mj} : Ti ≥ Tm

then
5: activate Mj with input m on port p.
6: else
7: activate Ai with a scheduling request
8: activate Mj without input

upon input (time) from Mi ∈M
1: retrieve Ti
2: compute local time ti := fi(Ti).
3: activate Mi with input ti on the time tape.

upon input (increase) from M ∈ {Env} ∪ A
1: set TM := TM + 1
2: activate M

upon (delay,m, t) on port q from Mi ∈ M \
{Env} ∪ A
1: if t ≥ fi(Ti) then
2: compute global time T = f−1

i (t)
3: execute appropriate send message for m with

time stamp T for port q
4: else
5: return error to Mi

upon activation by Mi ∈M without output

1: activate Mi’s scheduling machine Ai with
scheduling request

upon input (compromise, id1, id2) from Env

1: C := C ∪ {(id1, id2)}
2: activate Env with (compromised, id1, id2) as in-

put.

upon (compromise, id1) from parent of Mid1

1: if Mid1 /∈ CM then
2: replace Mid1 code to cdcomp
3: CM := CM ∪ {Mid1}
4: send (compromise) to Mid1

5: else
6: return error to Env

upon input (listen) from Mi ∈M
1: if Qi is not empty then
2: Pull next message (m,Tm, p) from Qi
3: if Tm ≤ Ti∧∀Mj ∈M\{Mi} : Tj ≥ Tm then
4: activate Mi with m on port p
5: else
6: Put (m,Tm, p) into Qi
7: activate Mi’s scheduler Ai with scheduling re-

quest

Figure 9: The full description of the execution EXEC for the time-sensitive network execution with adap-
tive compromisation. The machine set M denotes all machines, including environment and adversary,
A denotes all machines in the adversary party.

polynomial-time, if the accumulated number of steps of all machines running Π at the end of the execution
does not exceed a polynomial in Flowη[Π,A,Env].

This gives us a system of interacting Turing machines, which overall use a polynomial number of
steps in the security parameter η.
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3.2 Protocols

A protocol is a runtime library that assigns to each protocol name used in session IDs the respective
program code to be executed by the respective machine and the speed of the machine that executes the
code. Recall that a network has only one such runtime library, i.e., one protocol. This library assigns to
all parties the respective code and speed for the single machines.

In the definition below, we denote with Dist(N) ⊂ N→ [0, 1] the set of distributions over the natural
numbers (without 0).

Definition 2. A protocol is a runtime library π : D → {0, 1}∗ × Dist(N), which for every protocol-
name d in its domain D gives the code c ∈ {0, 1}∗ run by every machine with protocol name d and
a efficiently computable speed-distribution S ∈ Dist(N) from which the execution EXEC can draw the
speed coefficient for newly created machines.
A protocol π′ is a subprotocol of π over domain D′ if D′ ⊆ D and π restricted to D′ equals π.

A protocol Π also restricts the set of protocol-names {d1, . . . dl} ⊂ D that a protocol-name d ∈ D can
call as subroutines. By the requirements listed in in [25, Section 5], these restrictions constitute an
acyclic call graph on the protocol-names with a unique root r. We then call Π rooted at r. With
this, the machine-trees representing a party in the network effectively are a protocol-tree, representing
the different protocols and subprotocols used by a party for communication in the network.

Note that this design requires protocol names to be unique: machines having the same protocol name
will execute the same code. If differentiation in behavior is required, this has to be either encoded in
the session parameter included in the basename of each machine, or different protocol names have to be
utilized.

Example 3: Protocol. Consider a network run by an execution EXEC with protocol Π and a machine
M with machine ID idM = (pid, ((main, x))) wants to invoke a new TLS connection to another machine in
the network. M would then address a new machine M ′ with machine ID idM ′ = (pid, ((main, x), (tls, x′)))
over the port pid.((main, x)).((main, x), (tls, x′)). EXEC recognizes that M ′ does not yet exist and checks
whether ((main, x), (tls, x′)) is a proper extension of ((main, x)) (i.e. main is allowed to invoke tls as a
subprotocol). If the check succeeds, EXEC creates a new machine, queries (cd ,S) ← Π(tls) and assigns
the new machine cd as its code and a throughput coefficient c′ drawn from S as its speed. �

3.2.1 Composition

Composition of protocols is a useful tool for analyzing complex protocols by breaking them down into
simpler to analyze, smaller sub protocols. In Section 4 we present the universal composability theorem
which allows us to derive the security of a composed protocol from the security of its parts.

The following definitions are in line with the definitions for composition in GNUC [25, Section 5].

Definition 3. The sub-protocol Π′ = Π|x of Π is the restriction of Π to D′, the set of all base-names
reachable from the base-name x.

We denote with Π\x the protocol over all protocol names which are reachable from the root r without
going through a node with base-name x.

Definition 4. Let Π′ = Π|x be a sub-protocol of Π and let Π′1 be a protocol rooted at x. Π′1 is substi-
tutable for Π′ if for all y ∈ D(Π \ x) it holds that Π(y) = Π′1(y)

We denote the substitution of Π′ in Π as Π1 = Π[Π′/Π′1]. That is, Π1|x = Π′1 and Π1 \ x = Π \ x.
Composition in our network model comes down to replacing sub-trees inside the machine-tree of a

party. Figure 10 gives an example for such a substitution. On the protocol level, composition comes
down to replacing the code provided for all base names in a sub-tree of the acyclic call graph of base
names.

3.3 Ideal Functionalities

In our time-sensitive network model, machines which interact with each other might live in different points
in time. This time-difference does not allow us to use a central ideal functionality as the abstraction of
a multi-party protocol, as it is done in other asynchronous composability frameworks [9, 25].

To solve this problem, we require that every party contains a copy of the ideal functionality in its
protocol tree, and all of these copies share a common state (see Section 3.1.6). Since such a copy of the
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〈pid, (α1)〉

〈pid, (α1, α2)〉

〈pid, (α1, α2, α3)〉

〈pid, (α1, α
′
2)〉

〈pid, (α1, α
′
2, α4)〉

〈env〉

〈adv, (β1, β2)〉

〈adv, (β1)〉

〈adv, (β1, β3)〉

〈adv, (β1, β4)〉

(a) Real Protocol

〈pid, (α1)〉

〈pid, (α1, α2)〉

〈pid, (α1, α2, α3)〉

〈pid, (α1, α
′
2)〉

〈pid, (α1, α
′
2, αideal)〉

〈env〉

〈adv, (β1, β2)〉

〈adv, (β1)〉

〈adv, (β1, β3)〉

〈adv, (β1, βideal)〉

F

S

(b) Substitution with Ideal Functionality

Figure 10: Substitution operation and the construction for the universal composability theorem – a
sub-protocol is substituted for an ideal functionality F and its sub-adversary by the simulator S used in
the universal composability proof

ideal functionality is part of the protocol tree, we allow the basenames of each machine to require ideal
or real protocol code, instead of classifying ideal machines by their party IDs, as in GNUC [25].

We furthermore make the relaxation that we allow ideal machines to have children. Whenever ideal
machines use common routines, such as communication channels, it is very convenient to be able to
formalize such a routine as a child, e.g., as an ideal functionality for communication channels.

Apart from these changes, we adopt the restriction from GNUC that ideal machines can only commu-
nicate with ideal peers in the network and that ideal machines cannot be compromised by the adversary.

3.3.1 Centralized Ideal Functionalities and Dummy Nodes

The following counter example shows why using a central ideal functionality, as done in UC [9] or
GNUC [25], does not work as soon as we allow the distinguisher to measure the response time. Thereafter,
we show that using a replicated ideal functionality is as secure as using a central ideal functionality, and
without having a notion of time, we show that having a central ideal functionality is as secure as having
a replicated ideal functionality.

In order to be able to define a setting with centralized ideal functionalities, we need to introduce
so-called dummy nodes. A dummy node is linked to one machine M , typically a (centralized) ideal
functionality. Upon receiving a messages from its parent node, a dummy node forwards this message to
the machine M . Analogously, upon receiving a message from the machine M , the dummy node forwards
this message to its parent node. A dummy node can not have any children. Similar to functionality
nodes, dummy node can not be compromised.

If dummy nodes were ordinary nodes they would always add one additional step by forwarding the
messages. Hence, we treat dummy nodes as re-wirings, i.e., reroutings. Formally, dummy nodes do not
have a machine timer, i.e., they live in all points in time at once.

A centralized ideal functionality is a machine without parent that is linked, as defined above, to
dummy parties.

In contrast to a centralized ideal functionality, we call an ideal functionality as considered in our
framework, i.e., that consists of several nodes with the same code and a shared memory, a replicated
ideal functionality. We call each of these nodes a replica of that ideal functionality.

We define for every centralized ideal functionality a corresponding replicated ideal functionality.
Each replica uses the same code of the centralized ideal functionality but we replace each memory access
with an access to the shared memory. Analogously, we define for every replicated ideal functionality a
centralized ideal functionality by using the one code that all machines share and replacing each access
to the shared memory with access to the local memory.2

Example 4: Centralized ideal functionality. Assume that a real protocol is replaced by a dummy
party and a centralized ideal functionality. Then, there is a pair of protocols Π and ideal functionality F
such that Π cannot securely realize F . The counter-example works for any pair of multi-party protocol
Π and functionality F that answers with an acknowledgement message upon a single bit as input the
subroutine (implemented by Π or F , respectively); in particular Π and F do not do any communication.

2Formally, we actually require that the states of the Turing machine of the centralized ideal functionality are the cartesian
product Sk of the states S of the Turing machine of the replicated ideal functionality, where k is the number of parties.
Otherwise, moving the reading head of the program tape does not take the same amount of steps for the centralized ideal
functionality.
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Initially,let Env be in time t0. Let fi be the local-time functions of party i and ci be the throughput
(i.e., the speed) of party i. Let δ be the number of steps that the a ping operation takes. As a
response towards this initial operation, party i sends an acknowledgment message ack. A environment
Env that performs the following steps can distinguish the real protocol Π from the ideal functionality
F .

1: Send a bit 0 to party 1 in time t0 over the environment input port towards party 1.
2: Send a bit 0 to party 2 in time t0 over the environment input port towards party 2.
3: Proceed in time, and wait for the acknowledgement messages ack from party 2.
4: Measure the time at which the acknowledgement message arrives and store it in t1.
5: Send a bit 0 to party 2 in time t2.
6: Proceed in time, and wait for the acknowledgement messages ack from party 2.
7: Measure the time at which the acknowledgement message arrives and store it in t3.
8: if t3 − t2 > t1 − t0 then
9: Output 0

10: else
11: Output 1

For the real protocol Π, both acknowledgement messages can be sent in parallel, i.e., t1− t0 = δ/c2 =
t3 − t2 = δ/c2. For a centralized ideal functionality F , the activation order requires that first the first
bit is processed t1 − t0 = δ/cF + δ/cF > δ/cF = t3 − t2.3 �

Time-unaware network attackers and environments. As a next step, we show that for attack-
ers and environments that cannot measure the time, a replicated ideal functionality is the same as a
centralized ideal functionality. We call a machine time-unaware if it consists of a sandbox UM that
runs another machine M inside such that the sandbox intercepts all time measurements request towards
the network execution and replaces the response of the network execution with 0. This lemma basically
follows from the consistency requirement of a shared memory (see Section 3.1.6). We say π ≥t ρ for
time-unaware attackers and environments if for all PPT adversaries A there is a PPT simulator
S such that for all PPT environments Env,

EXEC(π, UA, UEnv) ≈ EXEC(ρ,S,UEnv)

Corollary 5. Let Fr be a replicated ideal functionality and Fc be the corresponding centralized ideal
functionality. Then, Fr ≥t Fc and Fc ≥t Fr for time-unaware attackers and environments.

Proof. This lemma directly follows from Corollary 1, i.e., from the consistency enforcing scheduling of a
shared memory: every write operation is scheduled before any other read operations that take place by
parties that are already in the future.

This concludes the presentation of the time-sensitive network model used in TUC on which we want to
base our time-sensitive analysis of anonymous communication protocols. The next section presents the
security notion we will use for this analysis.

4 Secure Realization

We present the notion of security adopted in TUC and show that important properties such as the
completeness of the dummy adversary and universal composability also hold in TUC.

In the same spirit as in other simulation-based frameworks, we adopt the notion of secure real-
ization. A protocol π is compared to a simplified protocol ρ and is shown to be at least as secure: π
securely realizes ρ, if every attack against π is also possible against ρ.4

More formally we require that the output distribution of the execution running the protocol π, an
adversary A and an environment Env is indistinguishable from the output distribution of the execution
running the simplified protocol ρ with a simulator S and the same environment Env. We define the
indistinguishability of different execution as follows. This definition is a reformulation of the indistin-
guishability of binary random variable ensembles in [9].

3Reading the input and sending a response takes more than one step.
4Recall that the speed of a protocol party is determined by the protocol description (see Section 3.2), more specifically

by speed-distribution that is assigned to every protocol role.
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Definition 6 (Indistinguishability). Two ensembles (EXECη(Π,A,Env, x))η∈N and (EXECη(Π′,A′,Env′, x))η∈N
are indistinguishable, denoted

EXEC(Π,A,Env) ≈ EXEC(Π′,A′,Env′),

if for every c ∈ N there is a η0 ∈ N such that for all security parameters η > η0 and all inputs x we have
that

|Pr[EXECη(Π,A,Env, x) = 1]− Pr[EXECη(Π′,A′,Env′, x) = 1]| < η−c

Using this definition, we can now formalize secure realization.

Definition 7 (Secure Realization). A protocol π securely realizes another protocol ρ, written π ≥t ρ, if
for all PPT adversaries A there is a PPT simulator S such that for all PPT environments Env

EXEC(π,A,Env) ≈ EXEC(ρ,S,Env)

As the notion of secure realization is based on the definition of indistinguishability above, we get as a
direct consequence the transitivity and reflexivity of ≥t.

Corollary 8 (Transitivity and Reflexivity).

Π1 ≥t Π2 ∧Π2 ≥t Π3 =⇒ Π1 ≥t Π3 and Π ≥t Π

Proof. The theorem follows directly from the transitivity and reflexivity of ≈, on which we based
our definition of ≥t: Due to Π1 ≥t Π2, there is a simulator S1 such that EXEC(Π1,Ad,Env) ≈
EXEC(Π2,S1,Env). But since Π2 ≥t Π3, there exists a simulator S2 for S1 such that EXEC(Π2,S1,Env) ≈
EXEC(Π3,S2,Env) holds. Due to the transitivity of ≈ we therefore get as required

∀Env : EXEC(Π1,Ad,Env) ≈ EXEC(Π3,S2,Env).

Reflexivity can be shown similarly.

4.1 Properties of ≥t

In order to simplify the analysis of complex protocols, traditional composability frameworks depend on
central properties of secure realization in their frameworks. We show that these properties hold in our
model as well. The most important design decisions in this regard include making Env and A timeless
(see Section 3) as well as having machines run with different performance coefficients (speed).

The proofs for the following results are largely the same as the proofs for their counterparts in classic
composability frameworks, such as presented in [25]. However they need to be extended in order to
account for timing.

4.1.1 Completeness of the Dummy Adversary

The definition of secure realization quantifies over all possible adversaries for the realizing protocol. In
order to simplify this, we show that is is enough to only consider the dummy adversary Ad, which just
forwards all messages between environment and network parties.

Lemma 9 (Completeness of the dummy adversary). If there exists an adversary S for a protocol Π such
that for all environments Env,

EXEC(Π′,Ad,Env) ≈ EXEC(Π,S,Env)

then Π′ ≥t Π.

Proof. Take any adversary A for Π. We split this adversary into two machines A′ and Ad are simulated
inside one adversary machine A∗ s.t. Ad simply forwards all messages from the network to A′, which in
turn communicates with the environment and executes the same code as A.

As A∗ is timeless, it can simulate the interaction between A′ and Ad without introducing any addi-
tional delays. As Env does not learn about the existence of Ad in any way, both of these scenarios are
indistinguishable.

In the next step, we replace Env and A’ with a single machine Env’, which internally simulates Env
and A’: All messages incoming from Ad are internally sent to A’. Then the communication between

16



Env and A’ is simulated and the output of Env’ is defined as the output of the simulated instance of
Env.

As Env’ generates the same output as Env and does not generate any additional delays due to its
timelessness, this third configuration is not distinguishable from the second above.

Now we are in a situation with some environment, the dummy adversary and the network. Thus we
can use our assumption and replace Π with Π′ and Ad with S. By assumption, this fourth scenario is
indistinguishable from above third.

Reverting Env’ to Env and A′ and combining S with A′ to a new simulator S ′ then gives us the
theorem.

4.1.2 Composition Theorem

The central building block of simulation-based security is the notion of composability: the composition
of secure protocols is secure as well. The construction in the proof is exemplified in Figure 10.

Theorem 10 (Composition Theorem). Let Π be a protocol and Π′ = Π|x a sub-protocol of Π rooted at
x. Suppose that Π′1 is a protocol rooted at x such that Π′1 ≥t Π′. Then

Π[Π′ \Π′1] ≥t Π.

Proof. We construct a simulator S for Π, which tries to simulate the interaction between Π1 and Ad.
By the completeness of the dummy adversary, this is enough to show realization.

Scenario 1: Original network consisting of parties running protocol Π, environment Env and the
dummy adversary Ad.

Scenario 2: We split the sub-protocol Π′ from the protocol Π and the dummy-sub-adversary Ad that
belongs to Π′ from Ad. We do not create separate entities, but just see that these are different
machines with the following property: All scheduling requests and messages from Π′ go directly to
A′d.
As the network is otherwise the same as in Scenario 1, Scenario 2 and Scenario 1 are both indis-
tinguishable.

Scenario 3: We define a new environment Env′ which internally simulates Env, all protocol parties not
running Π′, which we denote as Π\Π′ and part of the dummy Adversary that does not communicate
with Π′, which we denote with Ad \ A′d. Unfortunately, Π \ Π′ is not timeless, hence we will have
to take care with the simulation and make sure that all timestamps are propagated correctly.

Env′ simulates the interaction of Ad \ A′d, Π \ Π′ and Env as usual, but only increases its time
whenever Env does. This especially means that messages from Π \ Π′ to Π′ are not forwarded
directly, but queued for sending when the time is set forward(that is, whenever Env increases its
timer, Env’ does not increases it timer by the full difference, but in minimal steps, making sure
all messages are sent out at the right time). In order to make sure that Env and Ad \ A′d still get
the correct messages from the rest of the network at the right time, Env′ also simulates the rest
of the network internally, based on the messages sent out by Π \Π′.

As in the proof of the dummy adversary, the output of Env′ is defined as the output of Env.

With this construction, all timestamps remain the same as in Scenario 2. As all messages exchanged
are also the same, Scenario 3 and Scenario 2 are indistinguishable.

Scenario 4: In scenario 3 we have the situation where parties running protocol Π′ communicate with
the corresponding dummy adversary A′d and the environment Env′. Using our assumption, we can
now replace Π′ with Π′1 and A′d with the simulator S ′ which is constructed in the realization proof
of Π′ being realized by Π′1, while remaining indistinguishable from Scenario 3.

Scenario 5: We now split Env′ and recombine Π \ Π′ with Π′1 to get Π1 and Ad \ A′d with S ′ to get
the simulator S. Due to what Env′ simulated, Scenario 5 is indistinguishable to Scenario 4.

Using the transitivity of the indistinguishability, we get our claim.
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4.2 Joint State Theorem

A Joint State Theorem [10, 25] simplifies the analysis of a multi-session protocol Π which uses several
instances of a single-session protocol π with a joint state between the multiple instances. For example,
consider the situation where you give several sub-processes on your machine access to a key exchange
process which always uses the same private-/public-key-pair. Here, the Joint State Theorem allows for
the reduction of the security analysis of Π to the analysis of a single session ideal functionality F which
is realized by π.

The Joint State Theorem also holds in our time-sensitive model. While the proof is along the lines of
the proof in [25, Section 9], we have to make several changes to the general construction of multi-session
functionalities due to the existence of time: we cannot combine several machines of the network into a
single machine, as the single machine cannot adequately simulate the different timers of each machine
it simulates. Instead we introduce the concept of an interface, through which communication to a set
of nodes in the network is filtered. This allows us to view the machines behind such an interface as a
combined unit while still preserving the independence of their timers.

4.2.1 Multi-Session Functionality

In order to analyze multi-session protocols with a joint-state, we will need to combine several instances of
a single session functionality F into a single instance. The multi-session functionality F̂ collects instances
of F in the protocol tree of a single party and combines them with a single interface to their callers. This
interface filters and distributes incoming messages to the single instances of F based on virtual session
IDs called vsid.

To this end, F̂ requires messages to be of the form (m, vsid). The message m is then forwarded to
the instance F of F with session id vsid. Any message m′ going out from an instance F ′ of F is again
brought into the form (m′, vsid′), where vsid′ is the corresponding session id of F ′.

In the regular network model without time, F̂ can be realized by a single machine which internally
simulates the instances of F , as done in GNUC [25]. In our model however, the existence of time makes
this approach infeasible: Having one machine simulate all instances of F forces these instances to all live
in the same point of time, as F̂ would not be able to simulate several instances of F living in different
points in time. We would thus neglect all situations where the single sessions operate independently in
time.

We solve this problem by instead introducing a interface through which all communication to the
instances of F are filtered. This allows us to sum up all single instances of F into one entity F̂ while
still preserving the time-independence of each instance. Note that the interface we add is omni-time, i.e.
the interface receives messages at any point in time and works without progressing in time. Figure 11
exemplifies the construction of F̂ .

4.2.2 Boxed Protocols

Unfortunately we get following problem as soon as we introduce multi-session protocols and function-
alities: As these can be used by many different nodes in the protocol tree of a single party, the single
caller rule that is used in GNUC [25] is no longer be enforced. As this rule is essential for the notion of
composition and the universal composition theorem, we need to circumvent this problem by introducing
so-called boxed protocols, as introduced in [25]: the protocol tree outside of the instances of F is
boxed inside a single TM M , which simulates every node in the tree. Additionally, all messages sent
to a multi-session protocol or functionality are modified to come from M . Messages received from the
multi-session instance are distributed to the nodes in the tree by M based in the session ids used in the
messages.

Again, as we consider time as well, we have to make small alterations: We cannot have a single TM
simulate the full protocol tree, as a single TM cannot simulate several nodes which live in different points
in time. We solve this problem by implementing boxing in terms of an additional, omni-time interface
N which is put between a protocol Π and the multi-session instance. This interface basically works
as a network address translation: ports used for communication between machines in the machine tree
and instances of the ideal functionality are instead redirected to N : A message m incoming on input
port pid.sid1.sid2 is then forwarded as (m, sid2) to the interface of F̂ , which receives this message on its
environmental port. On the other hand, a message (m, sid) received from F̂ is forwarded as message m
through the unique output port pid.sid1.sid2, where sid2 = sid.
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〈env〉
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(a) Ordinary Protocol
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F̂

(b) Boxed Protocol

Figure 11: Boxed Protocol [Π]F and Multi-Session Functionality F̂

From now on, we denote with [Π]F the boxed protocol which consists of the F-hybrid protocol Π, which
is virtually boxed by the interface N as described above and interacts with the multi-session variant F̂
of F . Using the boxing technique described above gives multi-session functionalities and protocols an
interface through which they communicate with only a single caller, allowing us to keep the tree-like
structure of parties in the network and use the same notions of composition we also use for single session
functionalities and protocols. Figure 11 exemplifies the construction for the boxed protocol [Π]F together
with a multi-session functionality F̂ .

In contrast to classic constructions, our boxing technique allows us to keep the time-independence of
each single session instance of a multi session protocol. This can be used to more accurately model real
world multi-session protocols, where for example different session are executed on different machines.

The classic construction would imply that all sessions are parallelized on the same machine and
progress through time at the same pace. This can still be captured in our model by requiring that a set
of sessions run on the same machine in F̂ . This requires a small modification in the proof below, where
set of instances F of F that are on the same machine in F̂ are delayed by the simulator by the same
amount whenever a single instance Fi ∈ F is activated.

4.2.3 Timed Joint State Composition Theorem

We now present the Joint State Composition Theorem in the time-sensitive setting.

Theorem 11 (Timed Joint State Composition Theorem). Let F be a poly-time ideal functionality and
Π be a poly-time, F-hybrid protocol. Then [Π]F ≥t F .

Proof. We construct a simulator S such that following holds:

EXEC(Π,S,Env) ≈ EXEC([Π]F , Ad,Env)

Due to our constructions above, everything remains the same between both scenarios, if S works the
same as the dummy adversary. Boxing only introduces virtual interfaces which do not create additional
delays or change the behavior of parties. As the virtual interfaces only communicate with each other
and cannot be addresses by the environment, both scenarios are indistinguishable.

This concludes the introduction of secure realization in TUC and the presentation of its properties.
The next sections exemplify the use of TUC based on a security analysis for Tor [45].
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upon input (setup):

1: Generate an asymmetric key pair
(skP , pkP )← G(1η).

2: send a cell (register, P, pk) to the FNreg function-
ality

3: wait for a cell (registered, 〈Pj , pk j〉nj=1) from

FNreg
4: output (ready,N = 〈Pj〉nj=1)

upon input (createcircuit,P = 〈P, 〈Pj〉`j=1〉):
1: set Start to the current time
2: store P and C ← 〈P 〉; call ExtendCircuit(P, C)

upon input (send, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉,m):

1: if Start(cid1) + ttlC > current time then
2: look up the keys (〈kj〉`j=1) for cid1

3: O ←WrOn(m, (kj)
`
j=1)

4: send a cell (cid1, relay, O) to P1 over Fscs

5: else
6: call DestroyCircuit(C, cid1)
7: output (destroyed, C,m)

Figure 12: Πor: User commands for a Party P

5 Time Sensitive Analysis of the Onion Routing Protocol

In this section we take the framework we presented in Sections 3 and 4 and exemplify its use in the
time-sensitive analysis of the anonymous communication protocol Tor [45].

Anonymous communication protocols as provided by the Tor network are an increasingly popular
way for users to protect their privacy by hiding the user’s location. The Tor network is currently
used by hundreds of thousands of users around the world [44]. Sudden increases in Tor’s usage have
furthermore been shown to correlate to privacy-invasive political events which demonstrates the global
political importance of the Tor network [13].

Section 5.1 defines the onion routing (OR) protocol as a protocol Πor in the TUC framework. Sec-
tion 5.2 presents our abstraction of the OR protocol by defining the ideal functionality For. Finally,
Section 5.3 presents two statements: (i) Theorem 16 states that Πor securely realizes For, i.e., we show
that the abstraction For is sound in the sense that every attack against Πor can also be mounted against
For; (ii) Theorem 17 states that For securely realizes Πor (for specific delay functions), i.e., we show
that the abstraction For is complete in the sense that every attack against For (with specific delay
functions) can be mounted against the actual onion routing protocol Πor.

Considering a time-sensitive adversary imposes new challenges on the analysis of complex, crypto-
graphic communication protocols. Previous work [2] required cryptographic properties from the onion
algorithms and the key exchange that ensure authenticity, integrity, secrecy and unlinkability. Against
an adversary that can measure the time of a computation, we have to additionally require that the
computation time of an encryption does not leak anything about the plaintext message, and we have
to require that the DDH exponentiation does not leak anything about the exponents. We rigorously
formalize these requirements in Section 5.3.1.

5.1 The Onion Routing Protocol

The core idea behind Tor is that, instead of directly communicating with the target, the user reroutes
his traffic over a sequence of three onion routers. Smart use of cryptography then ensures that each
participant in this chain only knows about his predecessor and successor, thus enabling anonymous
communication.

Tor centrally organizes and validates available OR nodes and distributes their public keys to users.
After the initial set up in which public keys of the onion routers (OR) are distributed, Tor works in
two phases: In the first phase, the user establishes temporary symmetric keys with each of the three
chosen onion routers, using the public keys of the ORs in a one-way authenticated key-exchange (1W-
AKE) [21].5 The sequence of ORs together with these symmetric keys is called a circuit. The exchanged
keys are only used for one session, which typically lasts 10 minutes; then, fresh keys are established and
the old keys are securely erased.6

5Tor is currently migrating to a more efficient and more secure 1W-AKE scheme (the ntor protocol). Recent work (the
Ace scheme [4]) further improves on ntor.

6Temporary keys enable immediate forward secrecy: after a session is dead (and its temporary key and its communication
transcripts is securely erased) even compromised parties do not leak anything about previous communications.
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ExtendCircuit(P = 〈Pj〉`j=1, C = 〈P cid1,k1⇐⇒ P1
k2⇐⇒

· · ·P`′〉):
1: determine the next node P`′+1 from P and C
2: if P`′+1 = ⊥ then

3: output (created, 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`′〉)
4: else
5: X ← Initiate(pkP`′+1

, P`′+1)

6: if P`′+1 = P1 then
7: cid1←{0, 1}κ
8: send a cell (cid1, create, X) to P1 over Fscs

9: else
10: O ←WrOn({extend, P`′+1, X}, (kj)`

′
j=1)

11: send a cell (cid1, relay, O) to P1 over Fscs

DestroyCircuit(C, cid):

1: if next(cid) = (Pnext , cidnext) then
2: send a cell (cidnext , destroy) to Pnext over Fscs

3: else if prev(cid) = (Pprev , cidprev ) then
4: send a cell (cidprev , destroy) to Pprev over Fscs

5: discard C and all streams

Figure 13: Subroutines of Πor for Party P

In the second phase, the user performs a layered encryption of each message block, and sends the
ciphertext, called onion, through the established circuit, where each OR decrypts one layer of encryption
to learn where the onion should be sent next.

Using the same TCP stream that the last onion router in the circuit opened, the recipient can respond:
in this case, each onion router adds a layer of encryption and the user removes all layers.

As presented in [2], the onion routing protocol used in Tor can be formalized by the protocol Πor

presented in Figures 12, 14 and 13. Πor closely follows the Tor specification [14] and (for simplicity
reason) assumes a fixed number N of protocol participants. We further assume that every party can be
both user as well as onion router. We denote the subprotocol of the user as onion proxy (OP).

In contrast to the presentation in [2], we do not need to approximate the time-to-live (denoted as
ttlC ) of a circuit C as the number of messages a user can send through C: since the network model we
introduce further down includes the notion of time, ttlC can directly give the time for which a circuit
can live before it is torn down (e.g. 10 minutes).

The protocol Πor uses several cryptographic algorithms in order to realize its different tasks: For
the 1W-AKE, Πor uses the three algorithms Initiate, Respond and ComputeKey , which we introduce
further below.7 For adding and removing encryption layers to the payload (plaintext or onion), i.e. as
principal onion algorithms, Πor uses the two algorithms WrOn and UnwrOn. WrOn creates a layered
encryption of the payload, given an ordered list of ` session keys for ` ≥ 1. UnwrOn removes ` layers of
encryptions from an onion to output the payload, given an input onion and an ordered list of ` session
keys for ` ≥ 1.

We consider two kinds of messages in the description of Πor: network messages and user inputs.
Network messages are used by the protocol to exchange cells between the parties. These are used for
protocol level interactions such as creating a circuit or relaying a message. Input messages are sent by a
user to his onion proxy in order to initiate a circuit construction or the sending of a message.

Circuits in Πor. A circuit C is represented in Πor by a sequence of circuit ids (cid ∈ {0, 1}∗), each
of which is know only to two consecutive nodes in the circuit C. At a node Pi we denote an established

circuit using the terminology C = Pi−1
cidi,ki⇐⇒ Pi

cidi+1⇐⇒ Pi+1. Here, Pi−1 and Pi+1 are the predecessor and
successor of Pi in the circuit C and ki is the session key established between Pi and the OP (who initiated
this circuit). The absence of ki+1 indicates that the session key between Pi+1 and the OP is not known
to Pi. The functions prev and next on cid correspondingly give information about the predecessor or
successor of the current node with respect to cid ; e.g., next(cid i) returns (Pi+1, cid i+1) and next(cid i+1)
returns ⊥.

In the next section we go into detail about the different messages exchanged in Πor.

7Tor currently uses the TAP protocol and is going to switch to the more efficient and secure ntor protocol. [21]
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upon receiving a cell (cid , create, X) from Pi over
Fscs:

1: 〈Y, knew〉 ← Respond(pkP , skP , X)

2: store C ← 〈Pi
cid,knew⇐⇒ P 〉

3: send a cell (cid , created, Y, t) to Pi over Fscs

upon receiving a cell (cid , created, Y, t) from Pi over
Fscs:

1: if prev(cid) = (P ′, cid ′, k′) then
2: O ←WrOn(〈extended, Y, t〉, k′)
3: send a cell (cid ′, relay, O) to P ′ over Fscs

4: else if prev(cid) = ⊥ then
5: knew ← ComputeKey(pk i, Y, t)
6: update C with knew; call ExtendCircuit(P, C)

upon receiving a msg (sid,m) from the parent node:

1: get C ← 〈P ′ cid,k⇐⇒ P 〉 for sid; O ←WrOn(m, k)
2: send a cell (cid , relay, O) to P ′ over Fscs

upon receiving a cell (cid ,destroy) from Pi over Fscs:

1: call DestroyCircuit(C, cid)

upon receiving a cell (cid , relay, O) from Pi over
Fscs:

1: if prev(cid) = ⊥ then

2: if getkey(cid) = (kj)
`′
j=1 then

3: (type,m) or O ← UnwrOn(O, (kj)
`′
j=1)

4: (P ′, cid ′) or ⊥ ← next(cid)
5: else if prev(cid) = (P ′, cid ′, k′) then
6: O ←WrOn(O, k′) /* a backward onion */
7: switch (type)
8: case extend:
9: get 〈Pnext , X〉 from m; cidnext←{0, 1}κ

10: update C ← 〈Pi
cid,k⇐⇒ P

cidnext⇐⇒ Pnext〉
11: send a cell (cidnext , create, X) to Pnext over Fscs

12: case extended:
13: get 〈Y, t〉 from m; get Pex from (C,P)
14: kex ← ComputeKey(pk ex, Y, t)
15: update C with (kex); call ExtendCircuit(P, C)
16: case data:
17: if (P = OP) then output (received, C,m)
18: else
19: generate or lookup the unique sid for cid
20: output (received, (P, sid,m′))
21: case corrupted : /*corrupted onion*/
22: call DestroyCircuit(C, cid)
23: case default: /*encrypted forward/backward

onion*/
24: send a cell (cid ′, relay, O) to P ′ over Fscs

Figure 14: Πor: Network messages for Party P

5.1.1 User inputs

In this section, we present the commands that a user can send: a initialization command (setup), a
command for circuit creation (createcircuit), and a command for sending message (send).

Key registration. Upon an input (setup), an OR node computes its long-term keys (sk , pk) and
registers these keys.

In Πor the key registration and distribution is modeled as an ideal functionality FNreg, which is defined
as in [9] with the exception that FNreg rejects all parties not in N and only distributes the public keys
after all parties in N have registered with FNreg. As soon as all parties have registered, each of them
receives the message (registered, 〈Pj , pk j〉nj=1), which contains a list of all valid OR nodes, together with
their public keys.

Circuit creation. Upon an input createcircuit (see Figure 12), the OP starts the circuit creation
process, which consists of the 1W-AKE for establishing the session key, and the actual circuit creation:
The OP, as the initiator, runs the Initiate algorithm to draw new key-exchange information and sends
this to the first node of the circuit inside a create cell (see Figure 13). The first node then runs the
Respond algorithm and responds with a created cell. After receiving this response, the OP runs the
ComputeKey algorithm to compute the session key.

For extending a circuit past the first node, the OP runs the Initiate algorithm and sends an extend
relay cell, which causes the currently last node of the circuit to send a create cell to the next node and
so on.

Sending messages. Communication in the forward direction is initiated by a send message from the
user to his OP, while communication in the backward direction is initiated by a network message to the
exit node (from the recipient).
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upon input (send, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉,m):

1: if Start(cid1) + ttlC > current time then
2: let t← v[4]
3: SendMessage(P1, cid1, relay, 〈data,m〉, t)
4: else
5: DestroyCircuit(C, cid1)
6: lookup the current time t
7: let t′ ← v[5]
8: output (destroyed, C,m) at time t+ t′

upon input (createcircuit,P = 〈P, P1, . . . , P`〉):
1: set Start to the current time
2: store P and C ← 〈P 〉
3: let t← v[3]
4: ExtendCircuit(P, C, t)

upon input (setup):

1: draw a fresh handle h; set registered flag← true

2: store lookup(h)← (dir, registered,N )
3: lookup the current time t; let t′ ← v[1]
4: send (h, register, P ) to the network at time t+ t′

5: wait for a msg (dir, registered,N ) via a handle
6: lookup the current time t
7: let t′ ← v[2]
8: output (ready, (Pj)

n
j=1) = (ready,N ) at time t+t′

Figure 15: The ideal functionality FNor (short For) for Party P : Input messages

5.1.2 Network Messages

In Tor, each pair of onion routers establishes a TLS connection for ensuring the integrity of onions and
for hiding the circuit identifiers from a network observer. In Πor, we abstract such a TLS connection by
a functionality Fscs as proposed by Canetti [9].8

Communication between servers (outside of the Tor network) and exit nodes (i.e., the last OR in the
circuit) is synchronized using TCP streams. Πor abstracts from these streams by introducing a session
identifier sid.

Relay cells. relay cells are used for tunneling commands such as data, extend and extended through an
established (part of a) circuit. Communication between the OP and the exit node in the forward direction
is implemented via a WrOn call with with all session keys exchanged during the circuit creation, and a
series of UnwrOn calls at each of the ORs in the circuit with the individual session keys they know.

In the backward direction communication is implemented using a series of WrOn calls by the ORs
in the network with the individual session keys, and finally a UnwrOn call at the OP.

Tearing down a circuit. To tear down a circuit (e.g. if a session expires after ttlC time), an OR or
OP sends the destroy cell to the neighboring nodes in the circuit along with the corresponding cid (see
Figure 13). Upon receiving a destroy cell, the node frees resources associated with the corresponding
circuit. Once the destroy cell has been processed, the node ignores all future cells from the corresponding
circuit.

destroy cells are also sent through the circuit in case an integrity check fails during an UnwrOn call.
A failed integrity check means that the adversary somehow tinkered with the onion that was being pro-
cessed, and Πor counters this by dropping the affected circuit and creating a new one.

This concludes the presentation of the onion routing protocol. We will use it in Section 5.3, where
we show soundness and completeness of our time-sensitive abstraction of Tor we present in the next
section.

5.2 Time-sensitive Abstraction of OR

Tor is a low latency communication protocol and hence is prone to all kinds of traffic pattern analyses,
such as traffic confirmation attacks or website fingerprinting attacks. As in previous work, we want
to accurately model all weaknesses of the OR protocol. As a consequence, our anonymous channel
functionality has to leak all these communication patterns, while still abstracting from all cryptographic
operations, thereby allowing to accurately capture the leakage of the OR protocol and the capabilities
of a time-sensitive adversary.

Our abstraction goes along the lines of previous work [2]. However we additionally have to compensate
for computation time differences that appear in the ideal functionality: the ideal functionality does not

8The leakage function l for Fscs we use here is l(m) := |m|.
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upon receiving a handle 〈P, Pnext , h〉 from the net-
work:

1: lookup the current time t; let t′ ← v[6]; send
msg ← lookup(h) to submachine Pnext at time
t+ t′

upon receiving a msg (Pi, cid , create) through a han-
dle:

1: store C ← 〈Pi
cid⇐⇒ P 〉

2: let t← v[7]
3: SendMessage(Pi, cid , created, t)

upon receiving a msg (Pi, cid , created) through a
handle:

1: if prev(cid) = (P ′, cid ′) then
2: let t← v[8]
3: SendMessage(P ′, cid ′, relay, extended, t)
4: else if prev(cid) = ⊥ then
5: let t← v[9]
6: ExtendCircuit(P, C, t)
upon receiving a msg (sid,m) from the parent node:

1: obtain C = 〈P ′ cid⇐⇒ P 〉 for sid
2: let t← v[16]
3: SendMessage(P ′, cid , relay, 〈data,m〉, t)
upon receiving a msg (Pi, P, h, [corrupt, T (·)]) from
A:

1: (message)← lookup(h)
2: if corrupt = true then
3: message ← T (msg)
4: set corrupted(message)← true
5: process message as if received normally

upon receiving a msg (compromise) from A:

1: set compromised ← true; delete local informa-
tion

upon receiving a msg (output, (P, sid,m)) through a
handle:

1: let t← v[15]; output (received, (sid,m), t)

upon receiving a msg (Pi, cid , relay, O) through a
handle:

1: if prev(cid) = ⊥ then
2: if next(cid) = ⊥ then get (type,m) from O
3: else {P ′, cid ′} ← next(cid)
4: else (P ′, cid ′)← prev(cid)
5: switch (type)
6: case extend:
7: get Pnext from m; cidnext←{0, 1}κ

8: update C ← 〈Pi
cid⇐⇒ P

cidnext⇐⇒ Pnext〉
9: let t← v[10]

10: SendMessage(Pnext , cidnext , create, t)
11: case extended:
12: update C with Pex

13: ExtendCircuit(P, C)
14: case data:
15: if (P = OP) then output (received, C,m)
16: else
17: generate or lookup the unique sid for cid
18: let t← v[11]
19: SendMessage(P ′, cid ′, output, (P, sid,m′), t)
20: case corrupt: /*corrupted onion*/
21: let t← v[12]
22: DestroyCircuit(C, cid , t)
23: case default: /*encrypted forward/backward

onion*/
24: let t← v[13]
25: SendMessage(P ′, cid ′, relay, O, t)

upon receiving a msg (Pi, cid , destroy) through a
handle:

1: let t← v[14]; DestroyCircuit(C, cid , t)

Figure 16: The ideal functionality FNor (short For) for Party P : Network messages

perform any cryptographic operations and therefore often has less computation steps to perform than
the real protocol. In the functionality we use the delayed sending commands presented in Figure 4 to
compensate for these differences.

5.2.1 Review of For

The ideal functionality For, as presented in Figure 15, 16, and 17, is close to the OR protocol Πor

presented in Section 5.1. Due to the similarities of Πor and For, we concentrate on highlighting the
differences between them.

The major difference between Πor and For is that For does not use any cryptography: the ses-
sion keys, the onion methods WrOn and UnwrOn, and 1W-AKE methods Initiate, Respond , and
ComputeKey are absent in For.

In fact, For does not need any cryptography: Instead of relying on the security of onion algorithms,
messages are exchanged via shared memory: shared memory is an additional abstraction added to For,
which allows all parties running For to exchange messages “off-band”.

Now if party P wants to send a message m to party Pnext , P creates a fresh handle h, saves m in the
shared memory under this handle and sends 〈P, Pnext , h〉 over the network.
For also does not require FNreg for the initial distribution of public keys (it does not really need any

public keys at all): instead, on input (setup), the party P notes its registration in the shared memory, and,
as soon as all other parties in the network also noted their registration, outputs a successful registration
to the caller.
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ExtendCircuit(P = (Pj)
`
j=1, C = 〈P cid1⇐⇒ P1 ⇐⇒

· · ·P`′〉[, time]):

1: determine the next node P`′+1 from P and C
2: if P`′+1 = ⊥ then
3: output (created, C)
4: else
5: if P`′+1 = P1 then
6: cid1←{0, 1}κ
7: SendMessage(P1, cid1, create[, time])
8: else
9: SendMessage(P1, cid1, relay, {extend, P`′+1}[, time])

DestroyCircuit(C, cid [, time]):

1: if next(cid) = (Pnext , cidnext) then
2: SendMessage(Pnext , cidnext , destroy[, time])
3: else if prev(cid) = (Pprev , cidprev ) then
4: SendMessage(Pprev , cidprev , destroy[, time])
5: discard C and all streams

SendMessage(Pnext , cidnext , cmd[, relay-type][, data]
[, time]):

1: create msg for Pnext from input
2: draw a fresh handle h
3: set lookup(h)← msg
4: if compromised = true then
5: let Plast be the last node in the complete con-

tiguous visible subpath path starting Pnext

6: if (Plast = OP ) or Plast is the exit node and
data 6= ⊥ then

7: msg ′ ← lookup(h′)
8: lookup the current time t; send the entire

message 〈P, Pnext , . . . , Plast , cidnext , cmd, data〉
to A at time t+ time

9: else send 〈P, Pnext , . . . , Plast , cidnext , cmd, h〉
to A

10: else send 〈P, Pnext , h〉 to the network

Figure 17: Subroutines of For for Party P

Compromising parties. A party running For cannot be compromised: instead, upon receiving a
compromise message from the adversary, the respective party sets its compromised variable to true.
Then, all input or network messages that are visible to the compromised entity are forwarded to the
adversary. In principle, the adversary runs that entity and can send messages from that entity.

Explicit leakage: visible subpaths. For proving soundness of For, we require a special behavior by
compromised parties. In case the adversary manages to compromise an entire subpath S of a circuit, the
first node in S needs to leak all information that would have been leaked by each node in S individually
in the real world: the simulator constructed for the soundness proof in [2] does not learn about circuits
constructed in the network and neither about the messages transmitted through the network. But the
simulator would need this information for correctly simulating the behavior of the real parties (running
Πor), if it only had the individual leakage of the parties in the compromised subpath.

We therefore have the visible subpath computation in the SendMessage function in Figure 17.
Parties running For share their compromised -status over the shared memory and based on this leak the
required information to the adversary. Unfortunately, the soundness proof we present in Section 5.3 does
not solve this problem, and hence we keep this construction.

Messages through a handle. Figure 16 considers messages m that are retrieved through a handle.
As described above, For uses shared memory in order to transmit messages through the network. A
party P receives a message through a handle h if P found this message after looking up h in the shared
memory.

Corrupted messages. While the adversary might corrupt or replay messages in Πor, these active
attacks will be detected by the recipient due to the presence of a secure and authenticated channel between
any two communicating parties. The interesting case is when the adversary manages to compromise an
onion router in the circuit: the adversary can then propagate corrupted messages, which in Πor are only
detected during UnwrOn calls at the OP or the exit node.

This fact is captured in For by using corrupted flags for each message sent through the network. If
the adversary wants to modify a message, this flag is set to true and propagated until it reaches the last
node Plast in the circuit.

The adversary also provides a message transformation function T (·), which is applied to the message
in the shared memory in order to change it.

5.2.2 Our Modifications to For

In order to correctly capture the notion of time in our abstraction, we modify some aspects of For which
did not allow for a direct translation into a time-sensitive abstraction.
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Similar to the adjusted OR protocol Πor, we change the time-to-live (ttlC ) of a circuit to an actual
time-interval (e.g., 10 minutes) instead of a bounding the number of messages that can be transmitted
through the same circuit.

A major problem we face after introducing time is that Πor and For take a different number of steps
for executing specific commands (due to the differences in their code). This results in parties in different
worlds (real and ideal) advancing in time with different paces. In order to still be able to show soundness
and completeness of our abstraction, we therefore need to adjust the pace in which parties running For

advance in time.
We achieve this by introducing a delay vector v = (d1, . . . , d15) with which we parameterize For.

Each entry of v is a delay-distribution, which is inserted at specific points in the code of For (see
Figure 15). For then draws the number of steps it should delay at these specific points whenever this
piece of code is executed.

With this, we make sure that in the abstraction For as well as in the protocol Πor the parties progress
in time at roughly the same rate.

Special care has to be taken whenever we add delay for a function with a run-time which is not
constant, e.g. if we add delay for the various encryption and decryptions methods from Πor. The delay
can then depend on input provided by For. We explain this in more detail in Section 5.3.

In Section 3.1.1 we described how the speed coefficients for newly created machines in the network
are determined (i.e. by drawing the speed coefficient from a distribution specific to the protocol role of
the new machine). We have to account for these variable speeds by suitably varying the delay vector:
the initial delay vectors are defined for fixed speed coefficient for ideal (ci) and real (cr) machines. After
drawing the coefficient c for the newly crated machine, all delay vector entries are stretched by the factor
cr
c , then multiplied by a factor b which makes all entries integer, and increased by the factor ( crbc − 1)si,

where si is the number of steps the ideal machine does on the activation until this specific delay vector
entry kicks in. The new base speed coefficient for the ideal machine will be ci · b and uses the previously
computed delay vector.

We also need to adjust the visible subpath computation in the SendMessage function: in the original
For functionality the visible subpath was leaked before the message arrived the observed part of the
network. We adjusted SendMessage() such that messages are only leaked after the compromised of the
network is actually reached.

The ideal functionality For for OR is tight. We show that it is sound and complete, i.e., we show
that the protocol realizes the ideal functionality and the ideal functionality realizes the protocol. We
stress that For basically resembles the protocol except for the cryptographic operations. Instead of
ciphertexts and group elements, the For merely sends freshly drawn handles over the network. The
predecessor of this For has been used for analyzing the anonymity guarantees of the OR protocol, since
all cryptographic operations are abstract away in a provably secure way [3].

5.3 Abstracting Tor in TUC

We show that For is indeed an accurate abstraction of the onion routing protocol Πor. This includes
showing that Πor securely realizes For in TUC, which was already shown by Backes et al. [2] for the
standard UC-framework. This gives us the soundness of the abstraction. Furthermore we show the other
direction: For securely realizes Πor, thus giving us completeness of our abstraction.

The soundness allows excluding attacks on the Tor protocol without having to deal with cryptographic
operations in the analysis. The completeness on the other hand allows us to analyze the ideal functionality
for finding attacks and then translating them to the Tor protocol.

5.3.1 Assumptions

In order to prove the following theorems, we need to make certain assumptions about the cryptographic
primitives used in Πor. These assumptions were already presented in [2], but we require them to also
hold against an adversary with timing information. We present these assumptions here and use them
later in the proofs.

1W-AKE. We assume that the key exchange that happens whenever a new circuit is created uses
a 1W-AKE-protocol as introduced in [21]. From these we need the property of key secrecy: for an
adversary, which observes the public parts of the key exchange, the generated key is indistinguishable
from a randomly chosen one.
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(setup, `′)

if initiated = false then
for i = 1 to `′ do
ki←{0, 1}η; cid i←{0, 1}η

initiated ← true; store `′

send cid

(compromise, i)

initiated ← false; erase the circuit
compromised(i)← true; run setup;
for j with compromised(j) = true do

send (cid j , kj) for all

(send,m)

O ←WrOn(m, 〈ki〉`
′
i=1)

send O

(unwrap, O, cid)

look up the key k for cid
O′ ← UnwrOn(O, k)
send O′

(respond,m)

O ←WrOn(m, k`′)
send O

(wrap, O, cid)

look up the key k for cid
O′ ←WrOn(O, k)
send O′

(destruct, O)

m← UnwrOn(O, 〈ki〉`
′
i=1)

send m

Figure 18: The Honest Onion Secrecy Challenger OS-Ch0: OS-Ch0 only answers for honest parties

We assume that the encryption and decryption algorithms used in the onion routing protocol Πor to be
secure, i.e. they satisfy following four properties, as presented in [2]. As we consider a time sensitive
network model, we assume that these assumptions also hold against time sensitive adversaries:

Onion Correctness. The first property of secure onion algorithms is onion correctness. It states
that honest wrapping and unwrapping results in the same message. Moreover, the correctness states
that whenever the unwrapping algorithm has a fake flag, it does not care about integrity, because for
m ∈ M(η) the integrity measure is always added, as required by the end-to-end integrity. But for
m 6∈ M(η) but of the right length, the wrapping is performed without an integrity measure. The fake
flag then causes the unwrapping to ignore the missing integrity measure. Then, we also require that the
state transition is independent from the message or the key.

Definition 12 (Onion correctness). Let M(η) be the message space for the security parameter η. Let
〈ki〉`i=1 be a sequence of randomly chosen bitstrings of length η.

Forward: Ωf (m)

O1 ←WrOn(m, 〈ki〉`i=1)
for i = 1 to ` do
Oi+1 ← UnwrOn(Oi, ki)

x← O`+1

Backward: Ωb(m)

O` ←WrOn(m, k`)
for i = `− 1 to 1 do
Oi ←WrOn(Oi+1, ki)

x← UnwrOn(O1, 〈ki〉`i=1)

Let Ω′f be the defined as Ωf except that UnwrOn additionally uses the fake flag. Analogously, Ω′b is
defined. We say that a pair of onion algorithms (WrOn,UnwrOn) is correct if the following three
conditions hold:

(i) Pr[x← Ωd(m) : x = m] = 1 for d ∈ {f, b} and m ∈M(η).
(ii) Pr[x← Ω′d(m) : x = m] = 1 for d ∈ {f, b} and all m ∈M ′(η) := {m′|∃m′′ ∈M(η).|m′| = |m′′|}.

(iii) For all m ∈ M ′(η), k, k′ ∈ {0, 1}η and c, s ∈ {0, 1}∗ such that c is a valid onion and s is a valid
state

Pr[(c′, s′)←WrOn(m, k, s),

(m′, s′′)← UnwrOn(c, k′, s) : s′ = s′′] = 1

(iv) WrOn and UnwrOn are polynomial-time computable and randomized algorithms.

Synchronicity. The second property is synchronicity. In order to achieve replay resistance, we have
to require that once the wrapping and unwrapping do not have synchronized states anymore, the output
of the wrapping and unwrapping algorithms is indistinguishable from randomness. For the following

definition we use the modified challenger OS-Ch0
′
, which results from modifying OS-Ch0 such that along
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(setup, `′)

do the same as OS-Ch0

additionally kS ← {0, 1}η

(compromise, i)

do the same as OS-Ch0

(send,m)

q(st1f )← m

look up the first visible subpath (cid1, 〈ki〉ji=1)
if j = `′ then m′ ← q(st1f )

else kj+1 ← kS ; j ← j + 1; m′ ← 0|q(st
1
f )|

((Oi)
j
i=0, s

′)←WrOnj(m, 〈ki〉ji=1, st
1
f )

update st1f ← s′

store onions(cidj)← O1; send Oj

(unwrap, O, cid i)

look up the forward v.s. 〈ki〉ji=u for cid i
O′ ← onions(cid i)
T ← M(O,O′); q(stif )← T (q(stif ))
if j = `′ then m← q(stif )

else kj+1 ← kS ; j ← j + 1; m← 0|q(st
i
f )|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
i
f )

update stif ← s′

store onions(cidj)← Ou; send Oj

(respond,m)

q(st`
′
b )← m

look up the last visible subpath 〈ki〉`
′
i=u

if u = 1 then m← q(st`
′
b )

else ku−1 ← kS ; u← u− 1; m← 0|q(st
`′
b )|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
`′
b )

update st`
′
b ← s′

store onions(cidu)← Ou; send Oj

(wrap, O, cid i)

look up the backward v.s. 〈ki〉ji=u for cid i
O′ ← onions(cid i); T ← M(O,O′)
q(stib)← T (q(stib))
get 〈ki〉ji=u for cid
if u = 1 then m← q(stib)

else ku−1 ← kS ; u← u− 1; m← 0|q(st
i
b)|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
i
b)

update stib ← s′

store onions(cidu)← Ou; send Oj

(destruct, O, cid)

m← UnwrOn(, k1, st
1
b)

O′ ← onions(cid1); T ← M(O,O′)
q(st1b)← T (q(st1b))
if m 6= ⊥ then

send q(st1b)

Figure 19: The Faking Onion Secrecy Challenger OS-Ch1: OS-Ch1 only answers for honest par-
ties. stif , st

i
b is the current forward, respectively backward, state of party i. ((Oi)

j
i=u−1, s

′) ←
WrOnj−u+1(m, 〈ki〉ji=u, st) is defined as Ou−1 ← m; for i = u to j do (Oi, s

′)←WrOn(Oi−1, kj+u−i, st)

with the output of the attacker also the state of the challenger is output. The resulting challenger

OS-Ch0
′

can, moreover, optionally get a state s as input.

Definition 13 (End-to-end integrity). Let S(O, cid) be the machine that sends a (destruct, O) query to
the challenger and outputs the response. Let Q′(s) be the set of answers to construct queries from the
challenger to the attacker. Let the last onion O`′ of an onion O1 be defined as follows:

Last(O1):

for i = 1 to `′ − 1 do
Oi+1 ← UnwrOn(Oi)

Let Q(s) := {Last(O1) | O1 ∈ Q′(s)} be the set of last onions answers to the challenger. We say a set of
onion algorithms has end-to-end integrity if for all PPT attackers A the following is negligible in the
security parameter η

Pr[(O, s)← A(1η)OS-Ch0′
, (m, s′)← S(O, cid)OS-Ch0′

(s)

: m ∈M(η) ∧ P`′ is honest ∧O 6∈ Q(s′)].

End-to-End Integrity. The third property that we require is end-to-end integrity; i.e. the attacker
is not able to produce an onion that successfully unwraps unless it compromises the exit node. For the
following definition, we modify OS-Ch0 such that, along with the output of the attacker, also the state of

the challenger is output. In turn, the resulting challenger OS-Ch0
′

can optionally get a state s as input.
In particular, (a, s)← AB denotes in the following definition the pair of the outputs of A and B.

Definition 14 (Synchronicity). For a machine A, let Ωl,A and Ωr,A be defined as follows:
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Left: Ωl,A(η)

(m1,m2, st)← A(1η)
k, s, s′←{0, 1}η
O ←WrOn(m1, k, s)
O′ ← UnwrOn(O, k, s′)
b← A(O′, st)

Right: Ωr,A(η)

(m1,m2, st)← A(1η)
k, s, s′←{0, 1}η
O ←WrOn(m2, k, s)
O′ ← UnwrOn(O, k, s′)
b← A(O′, st)

For all PPT machines A the following is negligible in η:

|Pr[b← Ωl,A(η) : b = 1]− Pr[b← Ωr,A(η) : b = 1]|

Predictably Malleable Onion Secrecy. The fourth property that we require is predictably mal-
leable onion secrecy, i.e. for every modification to a ciphertext the challenger is able to compute the
resulting changes for the plaintext. This even has to hold for faked plaintexts. Note that this property
is a stateful and weaker variant of what was introduced as Homomorphic-CCA-Security in [42].

In detail, we define a challenger OS-Ch0 that provides, a wrapping, a unwrapping and a send and a
destruct oracle. In other words, the challenger provides the same oracles as in the onion routing protocol
except that the challenger only provides one single session. We additionally define a faking challenger
OS-Ch1 that provides the same oracles but fakes all onions for which the attacker does not control the
final node.

For OS-Ch1, we define the maximal paths that the attacker knows from the circuit. A visible subpath
of a circuit (Pi, ki, cid i)

`
i=1 from an honest onion proxy is a minimal subsequence of corrupted parties

(Pi)
s
i=u of (Pi)

`
i=1 such that Pi−1 is honest and either s = ` or Ps+1 is honest as well. The parties Pi−1

and, if existent, Ps+1 are called the guards of the visible subpath (Pi)
s
i=u. We store visible subpaths by

the first cid = cidu.
Figure 18 and 19 presents OS-Ch0, and OS-Ch1, respectively. 9

Definition 15 (Predictably malleable onion secrecy). Let onionAlg be a pair of algorithms WrOn and
UnwrOn. We say that the algorithms onionAlg satisfy predictably malleable onion secrecy if there
is a negligible function µ such that there is a efficiently computable function M such that for all PPT
machines A and sufficiently large η

Pr[b←{0, 1}, b′ ← A(1η)OS-Chb : b = b′] ≤ 1/2 + µ(η)

Timed Standard Assumptions The assumptions above also require standard cryptographic as-
sumptions such as CCA, CPA or the Decisional–Diffie–Hellman (DDH) assumption to hold when the
adversary has access to timing information about e.g. how long it took to choose the exponents for the
Diffie–Hellman key–exchange. We assume that these assumptions also hold in the timed setting.

Encryption Time. There is another important aspect we need to consider when handling timing
information: the running time of encryption and decryption functions depend on the message to be
encrypted and the key used to encrypt the message. While the different running times alone are reason
enough to include this aspect into the delay-vectors, previous work [30] has shown that this information
can leak information about the key and/or the message. Thus we need to accurately capture these small
delays in our delay vectors.

We require the following: Let f(x,m) denote the encryption (decryption) time needed to encrypt
(decrypt) message m with the key x. Then the encryption (and decryption) times are indistinguishable
with regards to the message, i.e. given following two events

M1 : b = b∗; (m0,m1)← A, x← KeyGen(1η),

t← f(x,mb), b
∗ ← A(t)

M2 : b 6= b∗; (m0,m1)← A, x← KeyGen(1η),

t← f(x,mb), b
∗ ← A(t)

we have that
|Pr[M1]− Pr[M2]| < negl(η)

9We stress that in Figure 19 the onion Ou denotes the onion from party Pj to party Pj+1.
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Note that this requirement is automatically fulfilled as soon as we assume the timed variant of the CPA
assumption, as we could otherwise directly construct an adversary which breaks timed CPA from an
adversary which distinguishes plain-texts from encryption times.

We give the above defined function f to the functionality in its delay-vector. The party P running
For gives f a key and a message, and f returns the number of steps P should idle in order to mimic
the correct encryption/decryption time (this in particular also takes into account the number of steps
required to compute f).10

Unfortunately, during the proofs presented below, we get the situation where the simulator uses a
different key to do encryptions than were used in computing the delay. We therefore also have to make
the assumption that the encryption (decryption) times are also indistinguishable with regards to the key,
i.e. given the two events

K1 : b = b∗; (x0, x1,m)← A, t← f(xb,m), b∗ ← A(t)

K2 : b 6= b∗; (x0, x1,m)← A, t← f(xb,m), b∗ ← A(t)

we again have that
|Pr[K1]− Pr[K2]| < negl(η).

5.3.2 Soundness

The proof of soundness we present here is very close to the proof presented by Backes et al. [2] for
the realization of For by Πor in the standard UC-framework. But we have to make some alteration to
take timing properties into account. The main challenge was to avoid time drifting too far apart in the
scenario with For compared to the scenario in which Πor is used.

Theorem 16. Πor securely realizes For in the Fscs,FNreg− hybrid model for some delay vector v.

Proof. We adopt the proof of secure UC-realization from [2]. That is, we define a sequence of games, for
which we show that these are indistinguishable.

Game 1: This is the initial game in which Πor interacts with the adversary Ad and the environment
Env. Here, being in the Fscs,FNreg - hybrid model means that each party consists of a root node
running the Πor code and two children nodes, each running the code for Fscs and FNreg respectively.

Game 2: In this game we replace the dummy adversary with a simulator S1. S1 consists of a root
node, which is the main simulator simulating the dummy adversary, and two children nodes, each
of which simulate the functionalities Fscs and FNreg. That is, we move all the children nodes
from compromised parties in the network to the simulator and simulate them inside S1 (this also
includes rewiring of all relevant ports, e.g. from the root node of a party to the Fscs- children
node). Remember that S1 is timeless, while the simulated nodes are all time-ful. Thus we need to
be careful with our simulation, making sure that messages going out of the functionalities, back to
the parties in the network or the environment, are forwarded at the right time. In order to achieve
this, S1 uses internal queues for all out-ports, marking each outgoing message with a time-stamp.
These messages will then be sent out as soon as the timer of S1 has the correct value. Note that it
is enough to internally simulate the Fscs and FNreg nodes of compromised nodes, as Env does not
learn about uncompromised nodes and their behavior.

It is not obvious, that Game 2 is indeed indistinguishable from Game 1. Env might try to push
the network into the future while staying in the past itself (by just activating different machines
whenever a scheduling request is received by Env). this in turn also forces S1 to stay in the past,
disabling its ability to correctly simulate the impact of Fscs and FNreg nodes on the network. But
staying in the past, Env would not be able to receive the messages sent by the functionalities, and
answer them. As the environment would not be able to create a distinguishable situation in the
network with staying in the past, he is forced to go forward. As he also has to put S1 forward
at the same time, S1 will then use this opportunity to catch up. With this insight, its clear that
Game 2 and Game 1 are indistinguishable.

Game 3: In this game, session keys are no longer generated by a key exchange protocol, but are just
chosen randomly and saved in a common shared memory. In order to make sure that the timing

10We feel that this assumption is only necessary due to proof we present below. It would be interesting to improve the
proof such that this assumption is no longer necessary.
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remains correct, we first double the throughput of each party in order to accommodate the addi-
tional computation (randomly choosing the key and saving it in the shared memory) and introduce
idle commands in the code of Πor, making sure that all messages are still sent out at the same
times as in Game 2. Due to the security of the 1W-AKE, no ppt machine can distinguish the
randomly chosen key from the key generated by 1W-AKE, hence this game is indistinguishable
from Game 2.

Game 4: We adopt the visible subpath computations from [2]. While this only changes the messages,
but not the amount of messages sent through the network, our main concern is the additional
computation done by each party. In order to accommodate this, we again accelerate the party
machines, introducing the new code for the visible-subpath computations and additional idle com-
mands, making sure that messages are sent out at the same time as in Game 3. We make use of
shared memory in order to enable parties to compute the visible sub paths: compromised parties
indicate in the shared memory that they are compromised, and parties doing the visible subpath
computation get all necessary information from the shared memory. This work around is necessary
as in the original model [2], there is only a single protocol machine P which internally simulates
all participating parties, and does the visible subpath computations. This approach is not feasible
in our model, as this would require P to live in several points in time simultaneously.

Due to onion secrecy and synchronicity of the used onion encryption algorithms, and as we make
sure that the time stamps remain the same, no ppt adversary can distinguish between Game 3
and Game 4.

Game 5: In this games, each party internally simulates For for doing the visible-subpath computations.
That is, every input from the environment is directly forwarded to For, which in turn returns the
computed visible subpaths and messages to be sent through the network.

A major difference to Πor here is in the key registration. Upon input (Register, P ), S1 internally
simulates the interaction with the key registration functionality and makes sure that all required
network messages are sent to Env.

Other small differences are discussed in [2] and will be skipped here. Our main concern will be
making sure that the time stamps of each message remain correct, and also that time variables of
each party progress at the same rate as in Game 4. While compared to Game 4, we save code for
the parties (from outsourcing the visible subpath computation), we still have to accommodate the
simulation of For in our time budget. Again we accelerate our parties and introduce idle commands
as required in order to make sure that messages are sent into the network at the right time.

As we make sure that the timestamps of all messages remain the same, the indistinguishability of
Game 4 and Game 5 follows from the anonymity of the 1W −AKE protocol as discussed in [2].

Game 6: Here, we replace the protocol code by the functionality For. In Game 5, Πor directly
forwarded all inputs from Env to For, hence the messages sent by For remain the same. As these
are sent to the adversary, S1 will receive them and can then compute the correct network messages
by internally simulating Πor. This will now be our final simulator S.

At this points, For will require much less time than Πor in Game 5. In order to close this gap,
we correctly set all the delay values in For’s delay vector, by adding up all the idle commands
added in the previous games, taking account of the accelerations and including the encoding-time-
distribution functions whenever encryption would happen in the real world scenario.

As the timestamps therefore remain the same as in Game 6, and as S correctly computes all
network messages as in Game 5, Game 5 and Game 6 are indistinguishable.

5.3.3 Completeness

We show that For is a complete abstraction of Πor, i.e. For securely realizes Πor in TUC. The proof
is in the same spirit as for the soundness, just in the other direction: we add one cryptographic detail
after the other until we finally get the Πor protocol. Special care is required in the construction of the
simulator, which now also has to filter scheduling requests coming from the network.

Theorem 17. For with some delay vector v securely realizes Πor in the Fscs,FNreg− hybrid model.
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Proof. We again construct a sequence of games which are pairwise indistinguishable.

Game 1: Parties running the ideal functionality interacting with Ad and Env. We assume a delay
vector containing just the encoding time distribution functions mentioned earlier.

Game 2: We modify the ideal functionality For to For2, in which the SendMessage method is mod-
ified to no longer compute visible sub paths. Instead, a compromised party sends the message
〈P, Pnext , cidnext , h〉 to the adversary. We replace the dummy adversary Ad by the simulator S2,
which computes the visible subpaths and communicates these informations to Env. For this, S2
remembers established cid ’s and circuit information between compromised parties and keeps track
of visible subpaths. Now, whenever S2 receives above message, it evaluates known cid information,
and leaks the required information to Env.

To make sure that the parties leaking information to S2 still proceed in time as fast as in Game
1, we add idle commands right before the information leak happens. This makes sure that the leak
to S2 happens at the same time as it would have happened in Game 1, and S2 does not need to
concern itself with correctly timing the messages to Env, as it is timeless.

As now all messages received by Env in Game 2 are the same as in Game 1, they are both
indistinguishable.

Game 3: We modify For3 to no longer use handles to propagate messages, but use the onion encryption
algorithms to encrypt the messages. Encryption keys are drawn randomly and stored in the shared
memory. Onions are created using secure, stateful onion algorithms.

We drop the encryption time delays from the delay vector. They are no longer required, as encryp-
tions and decryptions are directly executed in For3.

Whenever S3 receives onions from compromised parties in the network, it randomly draws a handle,
which it then uses to simulate the information leak done by the original For functionality.

In case S3 receives an onion from the first node P in the final visible subpath 〈P, . . . , Plast〉 of a
circuit (i.e. the subpath containing the exit node), and the exit node is compromised, S3 decrypts
the onion using the session keys (that it learned from the compromised parties) used in the circuit.
AT the same time S3 make sure to correctly update the states of the onion algorithms it learns
internally. The resulting message is then forwarded to the adversary. Note that we do not have to
care about the states of the onion encryption and decryption algorithms of the nodes following P :
if the adversary chooses to not forward an intercepted message and therefore the states of the onion
algorithms of the parties in the network get asynchronous, this is just a result of the synchronicity
property of secure onion algorithms.

In order to accommodate for the onion algorithm computation in each party, we again accelerate
the parties and add idle commands in their code, making sure that the correctly computed onion
are leaked to S3 at the same time as the handle information would have been leaked to S2 in
Game 2.

Thus the time stamps of the messages sent through the network remain the same. As S3 makes
sure that Env only receives messages which it would have received in Game 2, both games are
indistinguishable.

Game 4: In For4, symmetric encryption keys are no longer drawn at random, but generated using
a 1W − AKE. Due to the security properties of 1W − AKE-schemes, the generated keys are
indistinguishable from randomly chosen ones.

In order to accommodate for the additional delay caused by the key agreement protocol, we accel-
erate each machine and add idle commands, so that at the end of the circuit establishment, both
in Game 3 and Game 4, every party is in the same point of time.

As the key exchange is handled inside the circuit establishment messages, S4 does not need to drop
or create any messages, but just modify them to look like the circuit establishment messages from
Game 4. This is done by simply dropping the key-establishment part of each message.

Thus, as the messages received by Env in Game 4 are the same as in Game 5, and these messages
all have the same timestamps, Game 4 and Game 5 are both indistinguishable.

Game 5: In For5 we replace the key registration phase in For with the one from Πor and the code for
sending messages over the secure channel functionality Fscs. This includes introducing two children
scheduler nodes in S5 which internally simulate FNreg and Fscs nodes.
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upon setup from parent

send setup to ρ; wait for (ready, 〈Pj〉nj=1)
store 〈Pj〉nj=1; output ready to parent

upon input (send,m) from parent

P ← RandomParties(Pu)
if if there is no open circuit cid then

send message (createcircuit,P) to Pu
wait for response (created, C)

m1, . . . ,mq := Split(m) (for q = d|m|/blocklne)
for all i ∈ {1, . . . , q} do

send message (send, C,mi) to ρ

upon a message (destroyed, cid ,m) from ρ

mark cid as closed
proceed as in (send,m)

upon a message (m, sid) from ρ

lookup the state s of Reassemble for sid′

call (m′, s′)← Reassemble(m, s); store s′ for sid′

if ready 6= m = (m′′, sid′′, a) and a is a server then
lookup and store current time in reqStart(sid′)
send ((m′′, sid′′), 〈a, sid〉) to parent

RandomParties(Pu):

l
R←{1, . . . , n}
N := {1, . . . , n}
for j = 1 to l do

ij
R←N

N := N \ {ij}
return (Pu, Pi1 , . . . , Pil)

Figure 20: Wrapper Πworρ for client Pu

Game 6: We pull the FNreg and Fscs parties out of S5 (resulting in S6) and put them into the network,
into the protocol trees of the parties in For5. We thus obtain Πor the protocol executed in a
Fscs,FNreg-hybrid environment.

As we already simulated all messages correctly in above game, the number of messages and messages
themselves remain the same. We do have to care about the timestamps of the messages, as these
parties are now timeful and we get additional delay as more parties are involved in transmitting
a message. We compensate for this by suitably accelerating the machines. This is possible, as
both ideal functionalities behave deterministically and create a predictable amount of overhead,
depending on by which message they are activated.

Strictly speaking, Game 6 does not exactly contain the code provided by Πor, but is augmented by
additional idle commands. To get rid of these, we can count back all idle commands added in the
intermediate games and add these (sufficiently stretched to account for the accelerations) to the delay-
vector of the initial ideal functionality For. This is indeed possible, as we only have rational time in our
model, and can therefore get integer number of steps for the delay vector by suitably accelerating (or
decelerating) the initial game.

5.4 A User Interface: the Wrapper Πwor.

We allow for the sake of modularity to let the environment, i.e., the parent node, to command the circuit
and to choose the path. In many cases, however, this additional complexity becomes inconvenient. In
this section, we present a wrapper Πwor (see Figure 20) that performs the circuit construction, and
splits messages and re-assembles the messages blocks. We present a wrapper that uses a uniform path
selection; however, by adjusting the distribution RandomParties, any path selection can be used.

We stress that such a For together with such a wrapper Πwor (i.e., ΠworFor
) give rise to an anony-

mous channel functionality, as to the suggested by Canetti [9]. However, such an anonymous channel
functioanlity would have as much leakage as and give the attacker as much influence capabilities as For;
thus, we refrained from presenting it in this work.

Re-assembling and splitting in Πwor. We assume a stateful routine Reassemble(m, s) which expects
as input a message block m (and a state s) and outputs together with a new state s′ either a dummy
message ready, if a complete message could not be reassembled yet, or a re-assembled message m′ 6= ready,
if m and the state s allowed re-assembling a complete message. In the description of the protocol, we
lookup the state of Reassemble and store it in the variable s. If this lookup fails, we assign to the variable
s the empty state, i.e., the empty string. Dual to the re-assembling routing, we assume a splitting routine
(m1, . . . ,md|m|/blocklne) ← Split(m) which splits the message into message blocks mi of length blockln
and pads the last block if necessary.
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Both: upon (setup) from the parent

send setup to ρ; wait for ready; send ready to parent

Client: upon (req, address) from the parent

send (send, address) to ρ

Client: upon (m, cid) from ρ

output (m, cid) to the parent

Exit node: upon (received, (m, sid′)) from ρ

if m = (m′′, sid′′, a) ∧ bunsid′′ = ⊥ ∧ a is a server
then

lookup and store current time in reqStart(sid′)
store (m, sid′) in bunsid′′

while ∃ request(loc, a) in bunsid′′ do
remove request(loc, a) from bunsid′′

send (loc, 〈a, sid〉) over the network
store the response res in bunsid′′

lookup the smallest n′ ≥ |bunsid′′ | in psBuckets
pad bunsid′′ to a size of n′ and store it in m′

send (send,m′) to ρ at time tbuf + reqStart(sid′)

Figure 21: The protocol wfcρ for party pid, where sid is its session ID

upon (visit, (ai)
k
i=1) from the parent

send setup to ρ; wait for ready
if all ai ∈ pageBuck(k) then

draw one aj from (ai)
k
i=1 at random

store g := (aj , k); send (req, aj) to ρ

upon (guess, a) from the parent

if g = (a, k) then output (guess, k, 1)
else (guess, k, 0)

Figure 22: k-anonymity challenger: KChρ

6 Countermeasure against Website Fingerprinting

We leverage our time-sensitive framework and our Tor abstraction, to prove a countermeasure against
website fingerprinting secure. The countermeasure achieves k-anonymity for web pages without dynamic
requests, such as Ajax. The countermeasure protocol, called wfc, is plugged on top of the Tor protocol
such that the exit nodes perform all the web page requests and respond the entire web page at once and
additionally wait until a time buffer tbuf has passed. In order to improve performance, the countermeasure
uses buckets for common web page sizes and pads the web pages up to the next larger bucket. We assume
a list psBuckets of buckets for web page sizes, i.e., a list of bucket sizes. Solely for the analysis, we further
assume the dual data structure pageBuck that upon a bucket size k outputs the list of names of webpages
that would fall into that bucket. Our countermeasure protocol wfc is depicted in Figure 21.

Webpages. For our purposes it suffices to represent webpages as lists of elements and requests. Ele-
ments are arbitrary bitstrings m that are marked as elements; we denote them as element(m). Requests
are consist of a pair of party ID a and a location loc on that party’s webserver (an arbitrary bitstring); we
denote them as request(loc, a). We stress that we prove our results for web pages that do not dynamically
load content, upon user inputs, e.g., by using JavaScript techniques such as Ajax.

Web servers. Our result is parametric in the list L of webpages that are served by the web servers.
We require that for every webpage (w in L) there is one server. A server might offer several webpages.
We characterize a web server by the list L′ ⊆ L of webpages that it offers. The web server protocol SL′

works as follows: upon a request r, the web server looks up whether r is the name of a webpage w ∈ L′,
and if so SL′ responds with w.

For the definition of k-anonymity, we use a data structure pageBuckL, which is dual to the list
psBuckets of bucket sizes for webpages. Upon input k (the bucket size), pageBuckL outputs the list of
names that would fall into that bucket. pageBuckL depends on L, but for the sake of convenience we
omit the L and merely write pageBuck.

k-anonymity challenger. We use our framework to formulate the k-anonymity game. We let the
adversary consist of the environment and the network attacker and define around the wfc protocol the
k-anonymity challenger (see Figure 22), which defines the requests that the adversary can query.
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Clients, entry nodes, exit nodes, and entry links. For the formulation of our result, we assume a
partitioning the Tor network into clients nodes, called onion proxies, entry nodes, i.e. nodes that are
connected to a client node, and exit nodes, i.e. nodes that communicate with web servers outside of the
Tor network. With such a partitioning an entry link is an edge between a client node and an entry node.
For the sake of convenience, we use the wrapper protocol Πwor (see Figure 20), which construct circuits
and splits message to message blocks before it sends these message blocks to Πor (or For, respectively).

The k-anonymity follows from the composition theorem (Theorem 10), the realization theorem (The-
orem 16), the definition of For, and from the bucketing property and the waiting procedure.

Lemma 18 (wfc provides k-anonymity for the recipient). Let EXEC′ be defined as EXEC except that
EXEC′ outputs the bit b from the first output of the form (guess, k, b) by KCh for Env.

For any ppt environment Env that and any ppt attacker A that at most compromises one client’s
entry node or the link to that entry node and for sufficiently large tbuf and η and a negligible function µ

Pr[EXEC′η(〈KChwfcΠworΠor
,S〉,A,Env) = 1] ≤ 1/k + µ(η)

Proof. By the realization theorem (Theorem 16) and the composability theorem (Theorem 10), KChwfcΠworΠor

securely realizes KChwfcΠworFor
; hence a network attacker against KChwfcΠworFor

(and hence also against

KChwfcΠworΠor
) that only compromises the entry node of one client or the link to the entry node of

one client only learns the cids and freshly drawn handles, which are both independent of the recipient.
Hence, the pattern of the response is the same for all names that the environment input.

Since we assumed that the web servers wait until a fixed time t before they response, the response
time of the web servers is always the same. We conclude that the adversary cannot learn more than the
length of the requested web page. Since KCh has output (guess, k, 1), the length of all possibly requested
web pages is padded to pageBuck(k). Hence, the length and the time pattern of all web pages is the
same.

7 Conclusion and Future Work

In this work, we presented TUC, a universal composability framework that includes a comprehensive
notion of time, which is suitable for and tailored to the demands of analyzing AC protocols. Our
framework provides all properties that are expected of a universally composability framework: a universal
composability result, a joint state theorem, and the completeness of the dummy adversary. As a case
study, we showed that a abstraction of the onion routing protocol provided by Backes et al. [2] can be
suitably extended to account for timing and that it is realized in TUC by a similarly extended onion
routing protocol. We then leveraged this abstraction and our framework to formulate a countermeasure
against website fingerprinting attacks and proved this countermeasure secure.

An interesting direction for future work is the evaluation of more elaborate countermeasures against
known time-sensitive attacks. Since our framework comprehensively models timing attacks, every verifi-
cation of our abstraction, or a possible extension thereof after implementing countermeasures, also yields
security guarantees for the actual OR protocol.

We would also like to see an extension of the basic framework, e.g. by means of suitable ideal
functionalities, which incorporates latency and bandwidth limits on communication links between parties.
Such an extension could for example be used for the analysis of denial-of-service resistance mechanisms.

There is a line of work on automated verification techniques for timed automata. It would be interest-
ing to show that in certain cases timed automata are a sound abstraction for protocols that are formulated
in TUC. Such a result would allow to obtain strong guarantees, i.e., against computational attackers that
can perform time-measurements, from established automated verification tools [12, 28, 6, 34, 31, 32].

Acknowledgements. We would like to thank Dominique Unruh for initial discussions and on a
simulation-based composability framework with time-sensitive attackers and valuable feedback on the
preliminary version of the work.
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