ETSITS 102 809 vi1.1.1 2010-01)

Technical Specification

Digital Video Broadcasting (DVB);
Signalling and carriage of interactive applications and services
in Hybrid broadcast/broadband environments

> D3

_ Digital Video
EBU-UER Brgadcasting

D

2 ETSI TS 102 809 V1.1.1 (2010-01)

Reference
DTS/JTC-DVB-270

Keywords
broadcasting, DVB, internet, IP, multimedia

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2010.
© European Broadcasting Union 2010.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM loao are Trade Marks reaistered and owned bv the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI TS 102 809 V1.1.1 (2010-01)

Contents

INtellectual Property RIGNES.... ..ottt bbb renn e 8
0 Yo (o SRS 8
1 o010 SR 9
2 REFEIBINCES ...ttt b ettt b e s e et et e st et R e e bt e bt s b e se e ae st e se e st e benbeebeneeneenteneas 9
21 NOIMBLIVE FEFEIENCES ... ceeeeerieete ettt sttt a et e e eestesbesaeebeesees e e e esebeseeebesaeeseeneenseneeseesbesaessesneeneensens 9
22 INfOrMELIVE FEFEIENCES. ...ttt sttt sttt ae e e s e e be s eesne et e e e seeseesbeeneeneeneeneees 10
3 Definitions and aDbreVILIONS...........oieeieieeese ettt sae e neesbesreestesneeeesteeneeneenreas 11
31 D= T o T] (0] PSPPSR 11
3.2 ADDIEVIBLIONS ...ttt b et bt b et et et e e e h e bt e bt ehe e b e e e e n b e sh e eh e e Rt e e e b e e bt benheeh e e e ne s 11
4 PN o] Lo (o] a N 10T (= F= SR 12
41 01100 1 1 o o R 12
4.2 Starting and StOPPING APPITCALIONS.cveuerierieieie ettt ettt et b e et b e nb e e 13
421 Applications bound t0 BroadCast SEIVICES........c.ciiirieiriie bbb 13
4.2.2 Applications bound to acontent 0N demand ITEMooeiieirir e 13
4.2.3 Applications bound t0 @ NEWOIK OPEFELOTcieeieereerie ettt s sr et aeenaesraesraeneees 13
5 Signalling interactive applications and SEIVICES.........ccviieci ittt sre s 14
51 SEIMBNTICS ...ttt ettt et h e eh et e b e e bt s bt eh e he e b e e s e e R e x b e £E £ SR e AR e SR £ eR e oA e e a R e AR e eE e e Re R e e e e s e EeeRe b e Rt ene e enns 14
5.2 P o oo (0] gl 0 = | - VSR 14
521 11 0o 1 ' TP 14
522 APPHICALTION TYPES...eeeeeeeeet ettt h bbb bbb bbb e e bt b e e e a e b e bt bbb n s 14
5221 S 0 o1 PSSR 14
5222 IMPEG-2 ENCOUINGceeueitereetestereeieete sttt sttt ettt st et e et sa e e b e sb e e eb e se e e ebesb e e ebesae e ebesbenenen 15
5223 XML ENCOOING ...ttt ettt bbbt b et b e et b e e ae b e s e 15
523 APPHICAON TAENEITICALIONevieiecece e e et e s e s s e e s teeteesseenteenteenaeenensneesnens 15
5231 SEIMBINEICS ...tttk ettt ettt e b bbbt st e st e ee e b e s h e e bt e bt e R e eh e e e e R R e nE e R e Rt SRt e RE e e e Re Rt e bt eheene e e ennenrens 15
5.2.3.2 1 T oo T [oo S 16
5.2.33 D11 I = 5o 1o oo RS 16
524 PN o o] Loz 1o g oo 11 0] I ole o == S SS 16
5241 SEIMBINEICS. ... et ettt sttt ettt et b et e bbbt e bt et ea b e sE e b e AR e e h e eb e e he e s e e e e b e eE e eh e e Rt en s et e nR e bt eheebesaeene e e ennan 16
5242 IMPEG-2 ©NCOMING. ...+ eeueetereeieete sttt sttt sttt et b et eb e et a et et e sa e e eb e sbene e b e sbeneeb e sbe e et e nae e ebesbeeerens 17
5243 XIML @NCOMING ..ttt ekttt b et b st b bt b bbb e bt bt b e bt b s et b e e e bt e b e e bt b et b e e e 17
525 PLELFOIMN PIOFITES ...ttt bt b et b e et b e bbbt b b 17
5251 S 0 o1 PSSR 17
5252 IMIPEG-2 ©NCOMING. ...+t veueete sttt sttt sttt sttt et b e eb e et b e b e eb e sa e e bt s b e ne e b e sbeneebesbe e et e sbe e ebesbenenen 18
5253 XIML @NCOMING ..ttt ettt sttt b et b et b et b bt e b b e s e bbb et e bt e et bt s b e bt b e e b nn e e 18
5.2.6 W oo o= 0] 0 AV = 1 o1 2SS 18
526.1 SEIMBINEICS ...ttt etttk e bt e bt h e st e st e e e b e s bt e bt b e eh e e R e e e e R e nE e R e Rt SRt e R e e e e Re Rt ebeeheene e e nnennens 18
5.2.6.2 1 T oo T [oo S 18
5.2.6.3 D11 I = 5o T oo SRS 19
5.2.7 F N o o] Loz o] o o o] 1 YU 19
5271 SEIMIBINTICS ...t ettt ettt et e s e e e s et et e s et eaeeseemeeneese e eeseeeEeeeeeaeeR e et enseae e eeeeeeReeneeneeeeeeeeteeneeneeneentenrens 19
5272 IMIPEG-2 ©NCOMING. ...+ttt sttt sttt sttt ettt ettt eb e et et s e e e et e s b e e eb e sbeneeb e s b e neeb e sbe e et e sbe e ebesbennenens 19
5273 XIML @NCOMING ..ttt ettt ettt ettt b e bbbt et b b e bt b e bbbt b et b e e st bt s e bt b b e e b e 19
528 APPHICALTION TCOMS ...ttt b bbb bbbt b et bt e e bt b e e et b e b st eb e b 19
5281 SEIMIBINTICS ...t ettt ettt et e s e e e s et et e s et eaeeseemeeneese e eeseeeEeeeeeaeeR e et enseae e eeeeeeReeneeneeeeeeeeteeneeneeneentenrens 19
5282 IMIPEG-2 ©NCOMING. ...+ttt sttt sttt sttt ettt ettt eb e et et s e e e et e s b e e eb e sbeneeb e s b e neeb e sbe e et e sbe e ebesbennenens 20
5.2.8.3 D11 I = 5o T oo SRS 20
5.2.9 LCT =10 g Lo o] 1= T | 21
5291 SEIMIBINEICS ..tttk ettt et bbb h e st e st e e e e b e s Rt e bt bt e R e eR e e e e R e e R e R e Rt eR e e aE e e e Re R e bt eneene e e ennennens 21
529.11 Supported graphiCs CONFIQUIALIONSccveiiieerie e e ae e e e sreesneenaeenneens 21
5.29.1.2 Running Without @aViSIDIE Ul..........ccooiiieee et 21
5.29.1.3 Handling changed graphiCs CONfiQUIatioNS............cccuevieiieiieie e e e 21
52914 Handling externally controlled VIAEOc.ooeiiiriiiiirenereertsee s 21

ETSI

4 ETSI TS 102 809 V1.1.1 (2010-01)

5.29.2 Y T oo T [oo S 21
5.2.9.3 D11 I = 5o T oo SRS 22
5.2.10 F N oo o= 0] U= (= SR 22
52101 SEIMBINEICS ...tttk ettt ettt h ekt ae bt st et e e e se e b e sh e e b e e bt eh e e a e e e e b e eE e R e Rt Rt e RE e e e Re Rt ebeeneebe e e enrennens 22
5.2.10.2 Y T = oo T [oo SR 22
5.2.10.3 D11 I = oo T] oo S 23
5211 SLOTEA APPIICALIONS.ttt ettt ettt ettt b e e s e b se st b e s e ae b se e e eb e sb e e et e sbe e enesbennenen 23
52111 SEIMBINTICS ...ttt ettt et et e e st e s ee st e s et eteeaeeaeene e e et e ee e besaeebeeseeneen e e e e teeReEeeeeeReeneeneeaeeeeeebeeneeneeneenteneens 23
521111 Lifecycle Of Stored appliCatiONS..........co.coeririiieirieeet st 23
521112 APPHICALTON VEFSIONING ...ttt sttt et se b et b e et b e e e st ebese et ebesae e ebesreneeneas 24
521113 Launching applications from the CACNE...........cciiiiiie s 24
521114 S 0120 (= o] o] 1 2SS 25
52112 Y T = oo T [oo SR 25
5.2.11.3 D11 I = oo T oo USRS 25
5.2.12 APPlICation DESCIIPLION FilE......ccveiieiecie et te e e s reesre e nreenteenteenaesreesnaeseens 26
52121 (01 1 (o) o SR 26
5.2.12.2 Application description file name and [0CaLiON............ccoiieiie i e 26
52123 1= ST RRRR 26
5.212.4 SEIMBINTICS ...ttt ettt et et e e st e s ee s tesee et e e aeeseene e e et e ee e besaeebeeaeeneene e e enteeRebeeReeReeneenteneeeeeeReeneeneeneenteneens 27
5.3 MPEG-2 table and SECHION SYNLAXcueeverieuertireeiieiereeist sttt se e b s bbb e s b n e bbbt e eneenes 27
531 11010 172 YT USSP PP PSSR RP 27
5311 Summary of COMMON SIGNAITTNG ..o e 27
5312 Summary of additional signalling for applications carried Via OC...........coeerineerineneneeeseeseees 28
5.3.1.3 How to add a new scheme (iNfOrmMatiVe).........ccvccueieeiiesiese ettt nnees 28
5.3.2 Program SpeCific iNfOrMIBLION..........ccoiieie et te e e saaesreesaeensesneesaeesreesneenreenseans 28
5321 AppPlication SIGNAlING SEFEAIMccue e sttt e et e st et e et e e aesreesneesseenseenseenaesnensseessens 28
5322 Data bDrOa0CASE SIIEAIMIScoeiie ettt sttt ettt et se e bt s a et et e e e e seeeb e s bt eae e e e seenbesbesb e e e ennennens 28
533 [\ [0 7= 1o o H TP TS O PPURTURURPRSI 29
5331 (252 Y o U U P USSP URTURPRRSUSPIN 29
5.3.3.2 FESEIVEA FULUINE USEeieiceieeee sttt ettt a et e e st e s be s aeeaeene e e e teneensesbeseeeseeneeneeneens 29
534 Application INfOrmMation TaDIEcoeiiiii bbb 29
5341 DIBLA EITOIS. ...ttt sttt e et s bt e e st e st e e e s e e sabe e eane e e beeeabe e ek e e eabe e e abeeeneeeabeeeneeebeeeanneean 29
5342 AIT transmission @nd MONITOMTNGcouerveeererieeee ettt et b et e et et b e 29
5343 OptiMiZed AIT SIGNATTING ..ottt bbbt e e e e b e nnas 30
5344 VISTDHTEY OF ALT < b et e b b e s e e b s bt e ae et e e e neesbenbesae e s e e e enne e 30
5345 Definition of SUD-taDIE fOr the AT ... e sb e 30
5.3.4.6 Y 1= 0 1 = A RS 30
5.3.4.7 Use of private descriptorsSiNthe AlT ... sraesneas 32
5.34.8 QLIC= S oo o [o T 1 A 32
5349 Accessto an MPEG-2 format AIT viaabroadband coNNECLioNcoevereeirieiene e 32
5349.1 112 T PSSP PP PR PSPPI 32
5.349.2 SYNEBCLIC FESIMICHIONS ...ttt bbbttt s b et nbe et e 33
534921 TraNSPOIt PrOLOCOIS......eveueeterteeete sttt ettt sttt ettt b e et se et e et b et b e b e e ebesbe e ebesreneenens 33
53493 MIME TYPE ... e e e s 33
535 (€TC 0T Tole (oS o T (0T P O SP PO ST PP PSPPI 33
5351 Application SIgNaATING DESCIIPLOTceiviiiirieieie ettt 33
5.35.2 [DF ez Rolgor='o (o' W To Mo (=S or 11 o] e oSS 34
53521 LT 0T o0 == o] () PSR 34
5.35.2.2 Data broadcast id descriptor for interactive appliCationccccvecveeiieeseecece e 34
5.35.3 P2N o] o] Koz o] g 1o (= o 110 (o] CO PR 35
5354 Application reCording JESCIIPLONccuiiieeeeseeeeere e s e seeste e et eesaesraesseesteesteessesessseesneesseenseensenns 36
5355 PN o o] Te= Lo U= o =X 0 (=S o o] (] PR 37
5356 USEr INfOIMELti ON QESCIIPLOIS.eviueeterteseete sttt ettt ettt e eb e et et se et b e se e e ebesae e ebesrennenea 38
5356.1 APPlICALTON NAME UESCITPION ... ittt sttt ettt r et b b se bt se b b se b e e ebe b neeneas 38
5.3.56.2 APPIICALTON ICONS HESCIIPLON ...ttt ettt sttt b ettt e et b e e b sa e b sreneeneas 38
5357 External application authorization JESCIIPLOT...........ceiirieirerieesie et 39
5358 Graphics CONSLIAINES AESCIIPLONeiviueeterieeetertee ettt b ettt nn e 40
5.3.6 R0 oo g A o o) 0 Tore] Ie (== o]] 0] £SO 40
5.36.1 Syntax of selector byteS for OC tranSPOITc.cieeieeieere et sreesreenrees 41
5.3.6.2 Syntax of selector bytes for interaction channel tranSPOortccocceeveeiieieece e 42
537 Simple application [0CatiON AESCIIPLO.........ccuveieeierie e ee e se et ete et e e e teeteseesreesreesreenseensenns 43
5371 L 010 S 43

ETSI

5 ETSI TS 102 809 V1.1.1 (2010-01)

5.3.8 Simple application bouNdary ESCIIPLOLccviiieie e e st te e e teeeeeneeenes 44
539 SEIVICE INTOIMBLION. ...ttt ettt et b e bt e b e st et e b se e bt s bt eb e et et e besbeebesaeene e e ennas 44
5.39.1 Data broadcast descriptor for interactive application annouNCEMENLt...........ccccvevereereereereeesee e 44
5.3.10 S 0 =0 2o o o= (0] 46
5.3.10.1 P o ol FTes (o gl (0] r="o T= 0 (= ot 1) (o] C 46
54 D I 072 S <o Y] = G SRS 47
54.1 Service bound application SIGNATTINGccoeiiiieie e b e b e seene 47
54.2 Signalling of uNBOUN @PPIICALIONSc.civiieiirieieteriee ettt b e s b e seene 48
54.3 Extensions to defined SD& S EBlEMENEScuiiiiieie et st seesbe e eneeneens 48
5431 PACKBGE ...t bk bt h e h e et bRt eb e h e e b b neene s 48
5432 LS o PR 48
54.33 SEIVICEPTOVITES ...ttt ettt et h e bttt e e e st s b s bt e b e e ae e st e s e e e b e sb e b e sneebeeneennenen 48
544 New XML element defiNiTIONScoioiiiei ettt b et se et sre b e e e e 49
54.4.1 2N o o] o= o] | = PR 49
54.4.2 2N o o] o= 4 o] o TP 49
54.4.2.1 Application Specific Information (iNfOrMativVe)cciceeiieriece e 50
54.4.3 P2 o o] o= o] 0] Ko = o111 = P 50
5444 APPHTICATONDESCIIPLON ...ttt sttt ettt b ettt b e et b e et b e st et bese st sbese et ebe e et sbenne e 50
5445 ViSIDITTYDESTITPEON ...ttt ettt bbb et b e bbbt b e et eb e et et n s 51
54.4.6 Lol g1 ot 1o o SO SO P PSSOV PT SR P S 51
5447 F S o o S 51
54.4.8 MNPV EISION .ttt et b e et b e s bbbt b e R ae bbb et b e 51
5449 SLOrAECAPANITTIESeueieee ettt b bbbt a e h e b et b e nn s 52
5.4.4.10 S o]0 1IN/ o= SRR OPRRRt 52
54.4.11 F N o o] o= o] 1 1Y o= P 52
54.4.12 (DAY o7 2N o o] [o= o] 1 1Y o =TSR 52
54.4.13 P2 ool o= 0] 0 [@e a1 £0] [0 = PR 52
5.4.4.14 ApPPliCatiONSPECITICDESCIIPLON ...c.vieieeieee et se e ree et e s ete e e s s e s e e te e teetesneesreesneesseenseensenns 53
5.4.4.15 ADSIACH PSEIVICE. ...ttt sttt sttt bese et st ese et s s besae e ebesee e s be e neees 53
54.4.16 APl CATIONOTTEITNGTYPE....cve ettt ettt et et bbbt b et b et st nn e 53
54.4.17 SENVICEDISCOVEIY ...ttt ettt b et h et b et b e et b e e e st b bt e e b bt e e bt b et bt s e bt b e b e ne b nn e nns 54
54.4.18 APPliCatiONUSAGED ESCIIPLONveeeieieeseeeete sttt ettt ettt b et sb et sb e et b e 54
54.4.19 TransPOrtProtOCOI DESCITPION TYPE... .. eiuieeuertire ettt sttt ettt b e b 54
5.4.4.20 HT T PTIaNSPOMTYPE ... e e s s e e s s ne s 54
54421 (O 1O I =0 = oo g i 1N 1T PSPPI OPRRPRt 55
5.4.4.22 (o] g0 0 0= o IF=To N/ 0= PR OPRRTRNt 55
5.4.4.23 SimpleApplicationLoCatiONDESCITPLOITYPE ...cveevreeeeeeeeieesteeieeteseesieesteesteeseesseesseesseesseesesseesseesseesses 55
5.4.4.24 SimpleApplicationBoundaryDesCriptOr TYPE. .. .c.uiieeieereeieeeeeeesteesteete e seesreesreenaeseesseesseenseasseessens 55
545 APPliCaiONDISCOVENY FECOIU.eiieieetiesteeieeeseesee st e steeste e ae st e steesteesteeseessaesseesseeseensesseeenseensennsessensseessens 55
55 CONSLBNE VAIUES ...ttt ettt bbbt e e bbbt b e e it e st e e e b e bt eh e eb e e Rt eh e e e e s e nbeebeeb e e st enne e entas 56
6 REFErENCING DV B SEIVICES.....ouieie ettt ettt st e e testeeseentesaeeneesseeneeseeeneesenneas 57
6.1 DVB URL SyNtaX @nd SEMANTICS.......c.civeeeuertieeterieeeteseeeetessee e ssee st ss e st esessess s sses s ssesesessessenessesseneenes 57
6.2 DV B URL FESOIULTON.ccueiieiisiesie et ee st ettt et ese et eseesseteseesbeeseeseeseeneeneeseeseseesaeeneeeeneeseessesneeneeneenseses 57
6.2.1 S Ao Lo (=0 1L 1T 0 [=STer T oo ST 57
7 PN o] Lo (0] A A= 01 oo. S SRT 58
7.1 (O o= o o= 011 1= SRS 58
7.2 o N I I ST 58
8 Yot 0T 0] TR 1 oo S 59
8.1 01100 1 o o S 59
8.2 [1= 1= 0 o T To TSP 59
Annex A (informative): Elements defined by the platform specificationc.ccoevereieneiecieenne 60
Nt | 11 0o (1o o o PSP 60
A.2 Elements which are defined by the platform specification ..., 60
Annex B (normative): ODJECE CArOUSEL ... 61
= 700 R 111 oo (1 (o SO 61
B.1.1 =Y (o] 01 o] o [OOSR P TSV PT SRR PSR 61

ETSI

6 ETSI TS 102 809 V1.1.1 (2010-01)

B.2 ObJECt CArOUSEl PrOfilE . .c.eeiiiceeeie e st e e s re b e et e sre e e e besaeenneeneens 61
B.2.1 D SIM=CC SECLIONS. ... ettt sttt ettt st st b e bt eb et e s e se et e sbeeh e e b e e aeeaeese e beseeeb e eheeheeb e e meemee e e abenbesbesbenneeneennen 61
B.211 S o 0] Y o= RS ot S 62
B.2.2 [z = = (0 UL SRS 62
B.2.2.1 (€71 PR 62
B.2.2.2 [DT0)11V/g (e "o | 1 a1 o] FqTo (Tor= 4o o PR 62
B.2.2.3 DOWNIOBASEIVEITNITIAEEeteee ettt et s e besae et e s seeneeneeseesbesaeeseeneenseneens 62
B.2.24 1Y/ oTo (017 o P RSRS 63
B.224.1 LBDE] ESCIIILON ...ttt ettt et b e et eb e s et b e s e et bese e e ebesb e e ebesae e ebesbennenen 63
B.2.2.4.2 (0= Tox o TT a0 o g Lo g1 Y20 (=== ot] (] S 64
B.2.25 SErVICEGAEWAYINTO.....c i e e st esa e e te e e e eaeesaeeteenseennesnaesraenrees 64
B.2.2.6 DOWNIOBA CANCEceeeeeeeee ettt e b et e h e s e e et eb e bt bt e e e b e besbeeb e s e enneneen 65
B.2.2.7 DOWNI0BADEABIOCK ...ttt ettt st e e bbb e e et sbeeb e e e e e neen 65
B.2.3 QLI ST e o= ot = T 01U SRS 65
B.2.3.1 BIOP GeneriC ObJECE IMESSAJEcccueeieiee e it este e eteetee st es e e e e tessaessaesaeesreesseeseeneesneasseeesenssensseessnns 65
B.2.3.2 CORBA SIS ... teeeteeteseeieete sttt et et se e bt se e eb e e e b e se e e eb e s s e s eb e es e s ebe e b e s e st e bt s esesb e s eseeb e e ene b e nnenennis 66
B.2.3.3 BIOP FIlEBMESSA0R ...ttt ettt sttt sttt b e et b e ekt b e se bt b e se e bt s b e ne e bt e b e se e e ebesbe e ebesbenneneas 66
B.2.34 CONLENE LYPE AESCIIPLONecveteeeteete ettt sb e bt e s b e s bbbt sb s bbb e e b nn e enis 67
B.2.35 BIOP DiIrCIOIYMESSAE ...ttt sttt sttt st b e et et eb e sa et ebese et b e se et et e se et ebesae e ebesbennenen 68
B.2.3.6 BIOP ServiCeGalEWaY IMESSAJE.......cuerteeetertereettstestesesteseesesseseesesseseesessessesessessesesseseesesbessesesaensesessessesens 70
B.2.3.7 BIOP Interoperable Object REFEIENCES.........ccviiiieie et 70
B.2.3.7.1 [TT0] 0])1 == 1o | 70
B.2.3.7.2 NSO 11T 0] i . o) 11 1= =] o | 73
B.2.3.8 BIOP SIT@AIMMESSAZE ... eeiiuvieriieestee et stee st ste e st e st e s be s st s s be s sabeesabessabeesabeesabeeebeesabeeenseesnbeeenseeeae 75
B.2.39 BIOP SIreamMEVENTIMESSAgEvei ittt sttt sttt sttt st e e be e s be e sbe e sbeesneesnbaeenaneee 77
B.2.3.10 AdditioNal tADUSE VEIUEScc.eeieeeieeeie ittt e e s te e te s ae e e s e e sseeteesaesseasseesseeseeseennesnnesnes 79
B.24 Broadcast timebases @A EVENESooiieee et e et saeere e nee e 79
B.24.1 Stream and SIrEAMEVENT IMESSAGES.c.erterieierierieieste sttt st sttt sttt st sttt sb et sre e ebesbe e ebesreeebesbeneebesbennerens 80
B.24.1.1 ASSOCIAtiON WIith tIME DESES ...t 80
B.2.4.1.2 Event NameS and EVENE IDSooiiiiieeeieeeeeeee ettt ettt se et e ne e e e 80
B.24.1.3 SEream EVENT [IFE TIME...... ettt st ne e eneeneens 80
B.2.4.2 SEFEAM ESCIIPLOIS. ...ttt ettt ettt bbbttt b bbbt b et s bt bbbt eb s b bt e e b e e e enis 80
B.24.2.1 L I = 0o o o= ot () 80
B.2.4.2.2 e Y1 [=Sox] oo SRR 80
B.24.221 Association of event idST0 EVENT TIMEcoiiiiiii e 80
B.24.2.2.2 RE-USE OF BVENT IS ...ttt ettt et st ene e e 81
B.2.4.2.2.3 Signalling Of "dO it NOW EVENLS'ccuieiiceeece ettt te e snee s 8l
B.24.224 [AV Y 0= TSRO 81
B.24.2.3 UNUSEH DESCIIPLOIS ...ttt ettt ettt b bbbt b et eb e b s b et b e ens 81
B.24.3 DSM-CC sections carrying Stream deSCIHPLOScoveiveeererieietesieseete st neenens 81
B.24.3.1 SECH ON VEISION NUIMDEYoeiiiiieie ettt e e e eestestesbessees e e e enseseessesbesaeeseeneenseneens 81
B.2.4.3.2 Single firing of "dO it NOW" BVENEScouiiiiieieeer bbb 81
B.2.4.3.3 SECH ON NUMDIEY <.ttt e e ettt s e e e e e eeseeebesaeeseeneenseseeseesbesaesaesneeneeneans 81
B.24.34 DSM-CC sections for DSMCC_deSCriptor_[iSt()veeeereeremreiieieeseeseenieeeeseesreeseee e sae e s 8l
B.2.4.35 Encoding of talble id EXIENSIONocuiieeiiecece et ae e s 82
B.244 BroadCast tIMEDESES.coei et b e 82
B.24.4.1 DAV = R 101 T 0= (@ o 1o = 82
B.245 BIOGOCASE BVENLS ...ttt b e b e bt h et e e se e e b e s bt eh e e e e b e s besbesbe e e enneneen 83
B.245.1 DSM-CC "d0 it NOW" SIFEAIM EVENES.......ciueeuieieeiie sttt ettt be st r e b sr e bt ene e e s 83
B.2.45.2 DSM-CC scheduled Stream EVENES.........coeiieeiee ettt st s 83
B.2.45.3 DVB SYNCHIONISEA VENEScoviieiiiieieiistere ettt n et enas 83
B.2.4.6 Monitoring broadcast timebases and BVENLS............ccoiciiiicic e 84
B.24.6.1 Timebase referenCe MONITONGccccviiree bbb e b e 84
B.2.4.6.2 Timebase stimulated event MONITOING.c.oreirireirere e 84
B.2.4.6.3 DSM-CC "dO it NOW" SIFEEIM EVENES.......eiueeeeeeeiee ettt st eneesee st e saeseesresneese e e eneees 84
B.2.4.6.4 DSM-CC scheduled SIream EVENES.........coerieeeieie ettt e 84
B.2.4.6.5 Number of timebase COMPONENEScoiiiie et a et esraeeaesneesnes 85
B.2.4.6.6 DVB SYyNCAIONISEO EVENLSoceieieeciie ettt s sre e sae et e e eneessa e te e teenteeneesneennns 85
B.2.5 Assignment and use Of tranSaCtioNld VAIUES..........c.cocee it nnees 85
B.25.1 INfOrmative DACKGIOUNGoo e e e e et e s e e sreesaeesaeeseeneeans 85
B.2.5.2 DVB semantics of the transaction]d fieldooeeiiiiie e 85
B.2.6 Mapping of objects to data CaroUSEl MOTUIES............coeiiirieiiiree e 86

ETSI

7 ETSI TS 102 809 V1.1.1 (2010-01)

B.2.7 Compression Of MOQUIESc.eiiieiecieee et e e e e te s e e s e e s ae e aeenteenteereesse e seenseeneesneesnes 86
B.2.8 Mounting an OBJECE CArOUSELcieeieeie ettt et e s et e e be e teeaeeneesneesnes 87
B.2.8.1 (o= o 01 I o (< o 1N = g0 (=S o o (o S 87
B.29 Unavailability Of @CaIrOUSELccoeiiei ettt e st e st e e te e teeteennesneeenes 89
B.2.10 Delivery of carousels Within MUItIPIE SEIVICES......ccuiiiiie et 89
B.3 A SSOCI BLIONT A MBPPING ¢ veeueeeeeeseeesteesteeteeseesseeseeteeeessaesseesseesseasseasssaseesseesseessesssessesssenssessseenseenseessessessenssens 90
B.3.1 Decision algorithm for association tag MaPPING.c.ereerereerereee ettt sb e 90
B.3.11 TapUse isnot BIOP_PROGRAM _USE ...ttt sne st e eneeeenean 90
B.3.1.2 TapUse iSBIOP_PROGRAM _USE ...ttt st s neeeas 91
B.3.2 DSM-CC association_tags to DV B COMPONENT_TAGSeuervereeueriereeiertereeie et 91
B.3.3 deferred_assoCiation tagS ESCITPLONi.iieii ettt sttt e e seesbeseesaesae e eneeneeneas 91
B.4 Example of an object carousel (INfOrMBELIVE)..........c.eiieiieiicie e e e e sne e e eneens 91
B.5 Lo o1 o SRS 93
B.5.1 D= g TN Lo I == £= T o) o T 93
B.5.2 Transparency 1eVElS Of CACING........ciiiiieie et e st e e e e e teseesseesneesreenseensenns 93
B.5.2.1 LIS 7= = 0o o o 93
B.521.1 o Y o o o o 93
B.5.21.2 PASSIVE CBCNING. ...ttt b bbb bbbt b b s bt e s b e st bt e st b e nn 94
B.52.13 DI FEPELITION FBLE ...ttt sttt b et b et bbbt b e bt s bt n e bbb nn e enis 94
B.5.2.2 SeMi-tranSPareNt CACHINGu ittt bbbt e 94
B.5221 Implications for the terminal (INfOrMELIVE)cciieiiiiii e 94
B.5.2.3 SEALTC CBCNING ...ttt bt e s bbb bbbt bbb bbbt bt b e b nn e ens 94
B.523.1 Implications for the broadcaster (iNfOrMatiVE)ccoviieirireie e 95
B.5.2.3.2 Implications for the terminal (INfOrMELIVE)ccueieeiieiieie e 95
B.5.3 DYNaMIC CArOUSE] SETUCKUE.......eeeeeieee e eeee ettt ettt e te e tesaae st e s teesaeeeeenaeeseeese e seente e seesseenseeneesneennns 95
Annex C (nor mative): Generic Application Western European Character Set.........ccoceeveenennne 96
Annex D (informative): Bibliograpny ... 97
[11 (SO P PP PR TR 98

ETSI

8 ETSI TS 102 809 V1.1.1 (2010-01)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation EL ECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standardsin the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became atripartite body
by including in the Memorandum of Understanding also CENELEC, which isresponsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active membersin about
60 countries in the European broadcasting area; its headquartersisin Geneva.

European Broadcasting Union

CH-1218 GRAND SACONNEX (Geneva)
Switzerland

Tel: +41227172111

Fax: +4122717 2481

The Digital Video Broadcasting Project (DVB) is an industry-led consortium of broadcasters, manufacturers, network
operators, software developers, regulatory bodies, content owners and others committed to designing global standards
for the delivery of digital television and data services. DVB fosters market driven solutions that meet the needs and
economic circumstances of broadcast industry stakeholders and consumers. DV B standards cover all aspects of digital
television from transmission through interfacing, conditional access and interactivity for digital video, audio and data.
The consortium came together in 1993 to provide global standardisation, interoperability and future proof
specifications.

ETSI

http://webapp.etsi.org/IPR/home.asp

9 ETSI TS 102 809 V1.1.1 (2010-01)

1 Scope

The present document defines a framework for the signalling and carriage of interactive applications or servicesin
broadcast and broadband networks. This framework covers:

. Signalling interactive applications or servicesin both classical broadcast networks and broadband networks

o Distributing the files of interactive applications or services through either classical broadcast networks or
broadband networks

e Synchronising interactive applications or services to video or audio content distributed through classical
broadcast networks or broadband networks

. Referencing video, audio or subtitle content distributed through classical broadcast networks or broadband
networks from interactive applications or services

The present document is independent of any particular technology for interactive applications or services. It isintended
to be referenced by organisations defining how interactive applications or services are to be deployed and not used as a
stand-alone document in its own right. It is expected that those organisations will make a selection appropriate for their
market or deployment from among the functionality defined here. The use of "shall", "should" and similar termsin the
present document isintended to apply only if the particular feature is used and not to imply that the feature itself is
mandatory.

The normative DTDs and XML schemas referenced by the present document are attached as separate files contained in
archivets 102809v010101p0.zip which accompanies the present document. The DTDs and XML schemasincluded in
the present document are informative.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

o For a specific reference, subsequent revisions do not apply.

. Non-specific reference may be made only to a complete document or a part thereof and only in the following
cases:

- if it isaccepted that it will be possible to use all future changes of the referenced document for the
purposes of the referring document;

- for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references

The following referenced documents are indispensabl e for the application of the present document. For dated
references, only the edition cited applies. For non-specific references, the latest edition of the referenced document
(including any amendments) applies.

[1] ETSI EN 300 468 (V1.9.1): "Digital Video Broadcasting (DVB); Specification for Service
Information (SI) in DVB systems".

[2] ETSI EN 301 192 (V1.3.1): "Digital Video Broadcasting (DVB); DVB specification for data
broadcasting".

ETSI

http://docbox.etsi.org/Reference

(3]
[4]

(5]
(6]

[7]
(8]

(9]

NOTE:
[10]

[11]
[12]
[13]

[14]
[15]
NOTE:
[16]

[17]
NOTE:
[18]
[19]
[20]

NOTE:
[21]

2.2

10 ETSI TS 102 809 V1.1.1 (2010-01)
ISO/IEC 13818-1: "Information technology - generic coding of moving pictures and associated
audio information: Systems'.

I SO/IEC 13818-6: "Information technology - generic coding of moving pictures and associated
audio information: Part 6: Extensions for DSM-CC".

IETF RFC 2616: "Hypertext Transfer Protocol - HTTP/1.1".

ETSI TS 102 034: "Digital Video Broadcasting (DVB); Transport of MPEG-2 TS Based DVB
Services over |P Based Networks'.

I SO 639-2:1998: " Codes for the representation of names of languages - part 2: Alpha-3 code".

ISO/IEC 8859-1: "Information technology - 8-bit single-byte coded graphic character sets:
Part 1: Latin alphabet No. 1".

Object Management Group: "The Common Object Request broker: Architecture and
Specification”.

Available at http://www.omg.org/cqgi-bin/doc?formal/97-09-01.pdf.

IETF RFC 2045: "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies'.

IETF RFC 1950: "ZLIB Compressed Data Format Specification version 3.3".
IETF RFC 1951: "DEFLATE Compressed Data Format Specification version 1.3".

ETSI TS102 823 (V1.1.1): "Digital Video Broadcasting (DVB); Specification for the carriage of
synchronized auxiliary datain DV B transport streams”.

IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".
DVB ldentifiers.

Available at http://www.dvb.org.

ATSC A/100-5: "DTV application software environment level 1 (DASE-1); Part 5: ZIP archive
resource format".

W3C: "XML Schema Part 0: Primer Second Edition".

Available at http://www.w3.org/TR/xmlschema-0/

IETF RFC 1945: "Hypertext Transfer Protocol - HTTF/1.0".
IETF RFC 2818: "HTTP over TLS".

ETSI TS 102 851: "Digital Video Broadcasting (DVB); Uniform Resource Identifiers (URI) for
DVB Systems'.

ThisisDVB document TM 3750R4.

IETF RFC 1035: "Domain names - implementation and specification”.

Informative references

The following referenced documents are not essential to the use of the present document but they assist the user with
regard to a particular subject area. For non-specific references, the latest version of the referenced document (including
any amendments) applies.

[i.1]

[i.2]

ETSI TS 102 727: "Digital Video Broadcasting (DVB); Multimedia Home Platform (MHP)
Specification 1.2.2".

ETSI TR 101 202 (V1.1.1): "Digital Video Broadcasting (DVB); Implementation guidelines for
Data Broadcasting”.

ETSI

http://www.omg.org/cgi-bin/doc?formal/97-09-01.pdf
http://www.dvb.org/
http://www.w3.org/TR/xmlschema-0/

11 ETSI TS 102 809 V1.1.1 (2010-01)

3 Definitions and abbreviations

3.1

For the purposes of the present document, the following terms and definitions apply:

Definitions

abstract service: mechanism to group a set of related unbound applications where some aggregator has taken the
responsibility to ensure that the set of related applications work together

NOTE: Thisisageneralization of abroadcast service to support applications not related to any broadcast TV or

radio service. A set of resident applications which an network operator has packaged together (e.g. chat,
email, WWW browser) could comprise one abstract service.

application: collection of assets and logic that together provide a self-contained interactive service to the user

application lifecycle: various statesin which an application may exist and the transitions between them, including
starting and stopping

application Programming Interface (API): interface between an application and a particular feature, function or
resource of the terminal

classical broadcast network: network using classical broadcast technologies based on MPEG-2 transport streams
carried over aphysical layer such asDVB-T, DVB-Sor DVB-C

platform specification: document which references the present document and defines which parts of the present
document are applicable in a particular market or deployment

selected service: TV or radio service which is currently being presented by the receiver and whose application
signalling is being monitored by the receiver

service: sequence of programmes under the control of a broadcaster which can be broadcast as part of a schedule

unbound application: application which is not associated with a broadcast service

3.2

For the purposes of the present document, the following abbreviations apply:

Abbreviations

ADF Application Description File

AIT Application Information Table

API Application Programming Interface

AV Audio Video

BNF Backus Naur Form

CRC Cyclic Redundancy Check

DAVIC Digital Audio Visual Council

DSl Download Server Initiate

DSM-CC Digital Storage Media- Command and Control
DSM-CC-OC Digital Storage Media- Command and Control Object Carousel
DSM-CC-UU Digital Storage Media- Command and Control User to User
DTD Document Type Definition

DVB Digital Video Broadcasting

ECMA European Computer Manufacturers Association
EPG Electronic Programme Guide

ETS European Telecommunications Standards I nstitute
HTML Hyper Text Mark-up Language

HTTP Hyper Text Transport Protocol

IEC International Electrotechnical Commission

IOR Interoperable Object References

IP Internet Protocol

IPR Intellectua Property Rights

IPTV IPTeleVision

ETSI

12 ETSI TS 102 809 V1.1.1 (2010-01)

ISO International Organization for Standardization
ITU International Telecommunication Union
MHP Multimedia Home Platform
MPEG Moving Picture Expert Group
NIT Network Information Table
ocC Object Carousel
PMT Program Map Table
PNG Portable Network Graphics
PSI Program Specific Information
SD&S Service Discovery and Selection
SDT Service Description Table
Sl Service Information
TCP Transmission Control Protocol
TS Transport Stream
TV TeleVision
Ul User Interface
URL Uniform Resource Locator
UTF Unicode Transformation Format
uu User to User
WWW World Wide Web
XML eXtensible Markup Language

4 Application models

4.1 Introduction

The present document can enable awide range of different application models depending on which of the optional
features are selected. Below is alist of some of these, sorted from simplest to more complex.

e Applications bound to exactly one broadcast service which are started when that service is selected and
stopped when that service is de-selected.

e Applications bound to more than one broadcast service which are started when any such service is selected,

stopped when that service is de-selected, even if the de-selection is part of changing to a new service to which
the application is aso bound.

Applications which persist across service changes are applications bound to more than one broadcast service
that are started when any service to which they are bound is selected, run without interruption while any
service to which they are bound remains selected and stopped when no longer bound to any currently selected
service.

Applications bound to a content item that is part of abroadcast service (for example an individual programme
or adverts) will be started when that content item starts (if the service is selected at that time) and terminated
when the content item finishes (if the service remains selected at that time).

Applications bound to a content on demand item will either be handled identically to applications bound to
parts of a broadcast service (including the possibility for dynamic changes during the content on demand item)
or will be valid for the entire duration of the content item.

Applications which are valid while the terminal is connected to a network operator or service platform
provider. In some deployments, this may be permanent.

ETSI

13 ETSI TS 102 809 V1.1.1 (2010-01)

4.2 Starting and stopping applications

4.2.1 Applications bound to broadcast services
When a broadcast service is selected, the following shall apply:

e Theterminal shall determine if there are any applications signalled as being related to the service as defined by
clause 5.3 or clause 5.4 of the present document.

e Applications which are part of that service and which are signalled with a control code of AUTOSTART (see
table 3) and which are not still running from a previously presented service shall be started.

. Applications which are part of that service, which are signalled with a control code of AUTOSTART and
which are already running from a previously presented broadcast service shall continue to run uninterrupted. A
second instance of the application shall not be started.

. Applications which are part of that broadcast service and which are signalled with a control code of PRESENT
shall continue to run if aready running but shall not be started if not already running.

J Running applications from any previously presented broadcast service which are not part of the new broadcast
shall be stopped as part of the change of presented service.

While a broadcast service continues to be presented as defined above, the following apply:

e Applications which are added to the service with a control code of AUTOSTART shall be automatically
started when their addition is detected by the terminal. Applications added to the service with any other control
code shall not be automatically started.

e Applications which are part of the service whose control code changesto AUTOSTART from some other
value shall be automatically started unless already running.

. Applications which are part of the service whose control code changes from AUTOSTART to PRESENT and
which are aready running shall continue to run.

. Applications whose control code changesto KILL or DESTROY shall be stopped as defined by the semantics
which the application technology specification defines for those control codes.

When a broadcast service stops being selected, the following apply:

. Applications where the serviceBound element of the application_descriptor (see clauses 5.3.5.3 and 5.4.4.4) in
their signalling has val ue true shall be stopped.

. When an application continues running after change of broadcast service, it shall run as signalled in the new
service and not the former service.

4.2.2 Applications bound to a content on demand item

Applications bound to a content on demand item will either be handled identically to applications bound to parts of a
broadcast service (including the possibility for dynamic changes during the content on demand item) or will be valid for
the entire duration of the content item. In the latter case, applications whose control codeis AUTOSTART shall be
started when the content item starts being presented and shall be stopped when the content item stops being presented.
Changes to application control codes are not possible.

4.2.3 Applications bound to a network operator

Applications bound to a network operator may run at any time when atermina is connected to that operator's network.
Applications with a control code of AUTOSTART shall be automatically started when the terminal is first connected to
that network or when the application(s) are added to the signalling. Where terminals can change from one network
operator to another, as part of this process, the former network operator's applications shall be stopped and the new
operator's applications started.

ETSI

14 ETSI TS 102 809 V1.1.1 (2010-01)

5 Signalling interactive applications and services

5.1 Semantics

This clause covers the following topics:

. How the receiver identifies the applications associated with a service and finds the locations from which to
retrieve them.

. The signalling that enables the broadcast to manage the lifecycles of applications.
. How the receiver can identify the sources of broadcast data required by the applications of a service.

Much of the signalling is generic. For example, the application_descriptor isindependent of the application
representation. Other signalling may be defined by the platform specification. URIs used in this signalling shall comply
with the format and restrictions defined in [20].

5.2 Application metadata

521 Introduction
Applications may have a number of items of metadata associated with them. These are as follows:
. Type: Identifies the platform needed to run or present the application.
. Identifier: 1dentifies the application.
e Control code: Defines the lifecycle state of the application.
. Profile: Defines the minimum profile of terminal needed for this application.

e Visbility: Identifies whether the application is visible to the user or to other applications via an application
listing API (where such an API is supported).

o Priority: Defines the priority of the application relative to other signalled applications.
. Icons: Identifies the location of icons for this application.

. Graphics constraints: Identifies any constraints on this application with respect to changes in graphics
configuration or presented video.

. Storage information: Defines whether an application should be stored, and which application files should be
stored.

In this clause, each sub-clause first defines the semantics for that item of information and then the MPEG-2 and XML
based encodings of theitem.

5.2.2 Application types

5221 Semantics

All applications have an associated type in order that aterminal can discard applications whose types it does not
support.

NOTE: The application typeis not sufficient to guarantee that aterminal can run an application. For more
information, see the metadata relating to application profilesin clause 5.2.5.

ETSI

15 ETSI TS 102 809 V1.1.1 (2010-01)

5.2.2.2 MPEG-2 Encoding

In the MPEG-2 encoding, application types are identified by a 15-bit number. This enables receivers to filter out
signalling for unsupported application types. Defined application types are registered with DVB [15]. For historical
reasons, application types are registered with the ID MHP_Application_Type_ID.

5.2.2.3 XML Encoding
In the XML encoding, application types are strings, typically aMIME type. See clause 5.4.4.11.

5.2.3 Application identification

5.23.1 Semantics

Each application has an associated application identifier. This consists of two parts, the organisation_id and the
application _id as follows:

organisation_id: Thisfield isaglobally unique value identifying the organization that is responsible for the
application. These values are registered with DVB [15]. Vaues of zero shall not be encoded. For compatibility with
clause B.2.10 the most significant 8 bits of the organisation_id shall be zero.

Where applications are authenticated using X.509 certificates, thisfield is reproduced in the organisationName field of
the subject name in the "leaf" certificate of an authenticated application.

NOTE: Theinclusion of thisfield in the leaf certificate provides authentication of the value.

application_id: Thisfield uniquely identifies the application. Thisis allocated by the organization registered with the
organisation_id who decides the policy for alocation within the organization. Values of zero shall not be encoded.

The application_id values are divided into three ranges. one for unsigned applications, one for signed applications and
one for specialy privileged applications. Thisisfor security reasons. Applications transmitted as unsigned shall use an
application_id from the unsigned applications range and applications transmitted as signed shall use an application_id
from the signed applications range. Applications transmitted as privileged shall use an application_id from the
privileged applications range.

Table 1: Value ranges for application_id

application_id values Use
0x0000 Shall not be used
0x0001 to Ox3fff Application_ids for unsigned applications
0x4000 to Ox7fff Application_ids for signed applications
0x8000 to Oxofff Application_ids for privileged applications
0xa000 to Oxfffd Reserved for future use by DVB
Oxfffe Special wildcard value for signed applications of an organization
Oxffff Special wildcard value for all applications of an organization

Application_id values Oxffff and Oxfffe are wild cards. They shall not be used to identify an application but, for
example, are allowed for use in the external_application_authorization_descriptor (see clause 5.3.5.7). The value Oxffff
matches all applications with the same organisation_id. The value Oxfffe matches all signed applications with the same
organisation_id.

The same application identifier may be used in different application types for applications performing essentially the
same function.

ETSI

16 ETSI TS 102 809 V1.1.1 (2010-01)

5.2.3.2 MPEG-2 encoding

Thisis a6 byte field with the following structure:

Table 2: Application identifier syntax

No. of bits
application_identifier {
organisation_id 32
application_id 16
}

The same application_identifier() shall appear only once within the set of applications signalled for the same application
type.
5.2.3.3 XML encoding

The application identifier is defined by the following XML fragment where the elements are defined above.
<xsd:complexType name="ApplicationIdentifier"s>
<xsd:sequence>
<xsd:element name="orgId" type="xsd:unsignedInt"/>
<xsd:element name="appId" type="xsd:unsignedShort"/>

</xsd:sequences
</xsd:complexType>

5.2.4 Application control codes

The broadcast signalling provides a mechanism for broadcasters to control the lifecycle of standard application types.

5.2.4.1 Semantics

This control code allows the broadcaster to signal to the receiver what to do with the application with regard to its
lifecycle. The set of codes have some differences between application types and precise semantics are defined on an
application type specific basis.

If the receiver receives a code that it does not recognize, the application shall continue in its current state.

Table 3: Application control code values

MPEG-2 Identifier Semantics
encoding

0x00 reserved_future_use

0x01 AUTOSTART The application shall be started when the service is selected, unless the
application is already running.

0x02 PRESENT The application is allowed to run while the service is selected, however it
shall not start automatically when the service becomes selected.

0x03 DESTROY The application shall be stopped but may be permitted the opportunity to
close down gracefully. Attempts to start the application shall fail.

0x04 KILL The application shall be stopped as soon as possible. Attempts to start the
application shall fail.

0x05 PREFETCH Application files should be cached by the receiver, if possible. The
application shall not be started and attempts to start it shall fail.

0x06 REMOTE This identifies an application that is not available on the current transport
stream and hence only available after tuning to a new transport stream or if
cached and signalled as launchable completely from cache.

0x07 DISABLED The application shall not be started and attempts to start it shall fail.

0x08 PLAYBACK_AUTOSTART |The application shall not be run, neither direct from broadcast nor when in
timeshift mode. When a recording is being played back from storage, the
application shall be presented as if it was autostart.

0x09 to OxFF reserved_future_use

ETSI

17 ETSI TS 102 809 V1.1.1 (2010-01)

Platform specifications should define which of these control codes are applicable.

5.2.4.2 MPEG-2 encoding

The application control code is signalled through the application_control_code field for the application in the AIT (see
clause 5.3.4.6). The values are shown in table 3.

5.24.3 XML encoding

The XML encoding of the application control code is defined by the following fragment where the values are as defined
intable 3:

<xsd:simpleType name="ApplicationControlCode">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="AUTOSTART"/>
<xsd:enumeration value="PRESENT"/>
<xsd:enumeration value="DESTROY"/>
<xsd:enumeration value="KILL"/>
<xsd:enumeration value="PREFETCH"/>
<xsd:enumeration value="REMOTE"/>
<xsd:enumeration value="DISABLED"/>
<xsd:enumeration value="PLAYBACK AUTOSTART"/>
</xsd:restriction>
</xsd:simpleType>

5.2.5 Platform profiles

5.25.1 Semantics

Some platform specifications may define a number of different profiles, and potentially different versions of those
profiles. These fields define the minimum platform profile and version of that profile required by the application.
Platform specifications that use this information need to define what it meansin their context.

application_profile: Thisfield is an integer value which represents the platform profile required by the application.
Thisindicates that areceiver implementing one of the profileslisted in thisloop is capable of executing the application.

version.major: Thisfield carries the numeric value of the major sub-field of the profile version number.
version.minor: Thisfield carries the numeric value of the minor sub-field of the profile version number.
version.micro: Thisfield carries the numeric value of the micro sub-field of the profile version number.

The four above fields indicate the minimum profile on which an application will run. Applications may test for features
found in higher (backwards compatible) profiles and exploit them. The terminal shall only launch applicationsif the
following expression is true for at least one of the signalled profiles:

(application_profilee terminal_profiles set)
~{(application_version.major < terminal_version.major(application_profile))
v [(application_version.major = terminal_version.major(application_profile))
A ({application_version.minor < terminal_version.minor(application_profile)}
v {[application_version.minor = terminal_version.minor(application_profile)]
A[application_version_micro < terminal - version.micro(application_profile)]})]}

Where:

€ represents” belongsto the set of"
A represents” logical AND"

v represents” logical OR"

NOTE: The encoding of these values may vary between application types and is defined by the interactive
services technology specification.

ETSI

18 ETSI TS 102 809 V1.1.1 (2010-01)

5.25.2 MPEG-2 encoding

Profiles are encoded as part of the application descriptor as follows:

Table 4: Application profile encoding

No.of Bits Identifier Value

application_profiles_length 8 uimsbf
for((i=0; i<N; i++) {

application_profile 16 uimsbf

version.major 8 uimsbf

version.minor 8 uimsbf

version.micro 8 uimsbf
}
5.25.3 XML encoding

The XML encoding of the profilesis as follows:

<xsd:complexType name="MhpVersion"s>
<xsd:sequence minOccurs="1">
<xsd:element name="profile" type="ipi:Hexadecimallébit "/>
<xsd:element name="versionMajor" type="ipi:Hexadecimal8bit "/>
<xsd:element name="versionMinor" type="ipi:Hexadecimal8bit "/>
<xsd:element name="versionMicro" type="ipi:Hexadecimal8bit "/>
</xsd:sequence>
</xsd:complexType>

NOTE: The name of thetypeishistorical.
5.2.6 Application visibility

5.26.1 Semantics

The visibility field specifies whether the application is suitable to be offered to the end-user for them to decide if the
application should be launched. Table 5 lists the allowed values of thisfield.

NOTE: Thisappliesequally to any generic launching menu application provided by the content or service
provider or the terminal manufacturer.

Table 5: Definition of visibility states for applications

MPEG-2 XML Encoding Description
encoding
00 NOT_VISIBLE_ALL This application shall not be visible either to applications via an application

listing API (if such an APl is supported by the terminal) or to users via the
navigator with the exception of any error reporting or logging facility, etc.

01 NOT_VISIBLE_USERS |This application shall not be visible to users but shall be visible to applications
via an application listing API (if such an APl is supported by the terminal).

10 reserved future use

11 VISIBLE_ALL This application can be visible to users and shall be visible to applications via an

application listing API (if such an APl is supported by the terminal).

Thisfield isoptional.

5.2.6.2 MPEG-2 encoding

Application visibility is encoded in the visibility field of the application descriptor in the AIT (see clause 5.3.5.3).
Possible values for thisfield are given in table 5.

ETSI

19 ETSI TS 102 809 V1.1.1 (2010-01)

5.2.6.3 XML encoding

The XML encoding of the visihility is as follows:

<xsd:simpleType name="VisibilityDescriptor"s
<xsd:restriction base="xsd:string">
<xsd:enumeration value="NOT VISIBLE ALL"/>
<xsd:enumeration value="NOT VISIBLE USERS "/>
<xsd:enumeration value="VISIBLE ALL"/>
</xsd:restriction>
</xsd:simpleType>

Seetable 5in clause 5.2.6.1 for the definition of these values.
5.2.7 Application priority

5.2.7.1 Semantics
The application priority identifies arelative priority between the applications signalled in a service:

e Wherethere is more than one application with the same application identification in a service, this priority
shall be used to determine which application is started.

e Wherethere are insufficient resources to continue running a set of applications, this priority shall be used to
determine which applications to stop or pause.

e Alarger integer value indicates higher priority.

. If two applications have the same application identification and the same priority, the terminal may make an
implementation-dependent choice on which to start.

NOTE: Platform specifications may define special semantics for specific priority values.

5.2.7.2 MPEG-2 encoding

Application priority is encoded in the application_priority field of the application_descriptor (see clause 5.3.5.3).

5.2.7.3 XML encoding
Application priority isencoded in the priority field of the application descriptor (see clause 5.4.4.4).

5.2.8 Application icons

5.28.1 Semantics

One or more icons may be associated with an application. The content format for these possible icons shall be PNG.
Platform specifications may impose additional restrictions on the content format of icons.

Each icon has an icon locator and a set of flags that identify the size and aspect ratio of the icon.

Theicon locator isthefirst part of the string that specifies the location of theicon files. It is relative to alocation that
depends on the application type. Theicon locator shall not end with a"/" slash character.

The file names for the icon files are encoded in a standard way:

filename = icon_locator "/dvb.icon." hex string

hex string = 4*4hex

hex_ — dlglt | npn | ngn | el | npn | nEn | nEn | ngn | npn | nan | ngn | ngn | nEn
dlglt = ngn | nqn | nomn | n3n | ngn | ngn | ngn | nwyn | ngn | ngn

Anicon file shall contain exactly one icon. The icon contained in theicon file shall have the format specified by the 4
hexadecimal digit postscript of its file name. The value of this postscript is given by the corresponding MPEG-2
encoding of the icon flags (see table 7).

ETSI

5.2.8.2

20 ETSI TS 102 809 V1.1.1 (2010-01)

MPEG-2 encoding

Information relating to the application iconsis encoded in the application_icons_descriptor.

Table 6: Application icons descriptor syntax

No.of Bits Identifier Value
application_icons_descriptor() {
descriptor_tag 8 uimsbf 0x0B
descriptor_length 8 uimsbf
icon_locator_length 8 uimsbf
for (i=0; i<N; i++) {
icon_locator_byte 8 uimsbf
}
icon_flags 16 bslbf
for (i=0; i<N; i++) {
reserved future use 8 bslbf
}
}

Possible values for theicon_flags field are given in table 7.

Table 7: Definition of different icon flags

Icon flag bits Description of icon size and pixel aspect ratio
0000 0000 0000 0001 32 x 32 for square pixel display
0000 0000 0000 0010 32 x 32 for broadcast pixels on 4:3 display (See note)
0000 0000 0000 0100 24 x 32 for broadcast pixels on 16:9 display

0000 0000 0000 1000

64 x 64 for square pixel display

0000 0000 0001 0000

64 x 64 for broadcast pixels on 4:3 display (See note)

0000 0000 0010 0000 48 x 64 for broadcast pixels on 16:9 display

0000 0000 0100 0000 128 x 128 for square pixel display

0000 0000 1000 0000 128 x 128 for broadcast pixels on 4:3 display (See note)
0000 0001 0000 0000 96 x 128 for broadcast pixels on 16:9 display

0000 0010 0000 0000 256 x 256 for square pixel display

0000 0100 0000 0000 256 x 256 for broadcast pixels on 4:3 display (See note)

0000 1000 0000 0000

192 x 256 for broadcast pixels on 16:9 display

Xxxx 0000 0000 0000

reserved future use

NOTE: approximatively 15/16 pixel aspect ratio on 50 Hz system

If theicon_flags field of the application icons descriptor were to have a value indicating the presence of multiple icons,
each of the indicated icons would have its own icon file. For example, if icon_flags has a value of 0x0005, the directory
specified by icon_locator would contain two files named dvb.icon.0004 (for 24 x 32 sgquare pixel rendering) and
dvb.icon.0001 (for 32 x 32 square pixel rendering).

5.2.8.3

XML encoding

Icon information is encoded in one or more IconDescriptor elements:

<xsd:complexType name="IconDescriptor"s

<xsd:attribute
<xsd:attribute
<xsd:attribute
</xsd:complexType>

name="filename" type="xsd:string" use="required"/>
name="size" type="xsd:unsignedShort" use="optional"/>
name="aspectRatio" type="mhp:AspectRatio" use="optional"/>

NOTE 1: The MPEG-2 and XML encodings are intentionally different. The MPEG-2 encoding only carries the
icon_locator prefix and the remainder of the filename is computed. The XML encoding carries the
complete URL.

NOTE 2: The mhp:AspectRatio typeis defined in clause 5.4.4.7 of the present document.

The size and aspectRatio attributes are defined as optional since they can be determined from the the 4 hexadecimal
digit postscript of itsfile name, as defined in table 7.

ETSI

21 ETSI TS 102 809 V1.1.1 (2010-01)

5.2.9 Graphics constraints

5291 Semantics

Applications may be constrained in the graphics resolutions they support, or in their ability to handle changesin the
graphics or video configuration.

Constraints on the graphical capabilities of an application can be specified using a number of fields, defined below.
Applications where thisinformation is not signalled shall be assumed to have the following graphics constraints:

. Supports standard definition video.

e Cannot run without avisible Ul.

e Cannot handle changed graphics configurations.

. Cannot handle externally controlled video.

Applications where the set of signalled graphics configurationsis empty shall be assumed to not care about a default
graphics configuration. Either they do not use graphics or they are written to support the full range of graphics
configurations defined in the present document and tested accordingly.

5.29.1.1 Supported graphics configurations

Supported graphics configurations for an application are given by alist of one or more of supported configurations
(listed in table 9). The full screen configurations are sorted from most preferred to least preferred.

5.2.9.1.2 Running without a visible Ul

The can_run_without_visible ui flag indicates whether the application must display a user interface. If thisflagis set
then the application can usefully run with no user interface visible. If this flag is not set then the application can only
usefully run with a user interface visible. Applications signalled with this flag set are responsible for detecting when it
would be reasonable to show their user interface again and requesting this as defined in the platform specification.

5.2.9.1.3 Handling changed graphics configurations

The handles_configuration_changed flag indicates whether the application is capable of handling changesin the
graphics configuration. If thisflag is set then the application can handle changes in the graphics configuration between
the supported graphics configurations for this applications (see clause 5.2.9.1.1). If thisflag is not set then once the
default graphics configuration has been set for an application instance, it will only correctly display under that graphics
configuration.

5.29.14 Handling externally controlled video

The handles_externally_controlled video flag indicates whether an application can usefully run when the presentation
of the video is under the control of a second application external to its service. If this flag is set then the application can
handle being displayed under these circumstances. Examples include picture in picture and picture outside picture.

5.2.9.2 MPEG-2 encoding

The graphics_constraints_descriptor signals which constraints apply to the application.

ETSI

22

ETSI TS 102 809 V1.1.1 (2010-01)

Table 8: Graphics constraints descriptor syntax

No. of bits Identifier Value
graphics_constraints_descriptor() {
descriptor_tag 8 uimsbf 0x14
descriptor_length 8 uimsbf
reserved_future _use 5 bslbf
can_run_without visible ui 1 bslbf
handles_configuration_changed 1 bslbf
handles_externally _controlled_video 1 bslbf
for(i=0;i<N;i++) {
graphics_configuration_byte 8 uimsbf

}

}

Supported graphics configurations for an application are given by alist of one or more of the valueslisted in table 9.

Table 9: Graphics configuration byte values

Value Meaning
0 Reserved
1 Full screen standard definition
2 Full screen 960x540
3 Full screen 1 280x720
4 Full screen 1 920x1080
5to 31 Reserved for future use by DVB project
32 to 255 Reserved for future use
5.2.9.3 XML encoding

The XML encoding is not defined in the present document.

5.2.10 Application usage

5.2.10.1 Semantics

Thisidentifies that the application provides a specific, well-known, service; for example teletext, EPG or chat.
Terminals may include a shortcut to start these services, for example aremote control key. Terminals may also include

anative Ul offering access to these services.

5.2.10.2 MPEG-2 encoding

Table 10: Application usage descriptor

No. of bits Identifier Value
application_usage_descriptor() {
descriptor_tag 8 uimsbf 0x16
descriptor_length 8 uimsbf
usage_type 8 uimsbf

}

descriptor_tag: This 8 hit field with value 0x16 identifies the descriptor.

usage_type: This 8 hit field indicates which service is provided by the application.

table 11.

ETSI

It shall be coded according to

23 ETSI TS 102 809 V1.1.1 (2010-01)

Table 11: MPEG-2 encoding of application usage types

Type Value Description
0x00 reserved
0x01 Digital Text application

0x02 to OX7F reserved for future use

0x80 to OxFF usable by platform specifications (see note)

NOTE: Platform specification should define the domain in which these values are applicable, e.g. using a specific data
broadcast ID.

Platform specifications should define which of these usage types are applicable.

If no application_usage descriptor is present then an application does not provide a specific well-known service.

5.2.10.3 XML encoding
The XML encoding of the application usage type is given by the ApplicationUsageDescriptor element:

<xsd:complexType name="ApplicationUsageDescriptor">
<xsd:sequence>
<xsd:element name="ApplicationUsage" type="xsd:anyURI" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequences>
</xsd:complexType>

The ApplicationUsage element indicates which service is provided by the application. It shall be coded according to
table 12.

Table 12: XML encoding of application usage types

ApplicationUsage Value Description

urn:dvb:mhp:2009:digital Text Digital Text application

Platform specifications extending the usage types should prefix the value with the relevant namespace identifier for the
platform specification.

5.2.11 Stored applications

52111 Semantics

Storable applications follow the standard application signalling model defined in the present document. A terminal that
does not provide storage or does not recognize these extensions will perceive storable applications as viable
applications that potentially can be run from the broadcast connection. The signalling described in this clause augments
the signalling described elsewhere in the present document.

The primary focus of stored applicationsisto improve the startup behaviour of applications delivered over broadcast
connections. Thisfeature isless relevant for applications delivered over a broadband connection.

5.2.11.1.1 Lifecycle of stored applications
Stored applications may be broadcast related or stand alone.

If an application is broadcast related then the application's life cycle is controlled by the broadcast service. Such
applications are suitable for caching but not for running as a stand alone application. For stored broadcast related
applications the broadcast signalling shall be used when launching the stored application. So, little information from the
signalling needs to be stored with the application.

. If the application is stand al one then the application can usefully be launched by the user independently of a
broadcast service. Applications with this property may also be launched asif broadcast related if the currently
selected service liststhem inits signalling. For stored stand-alone applications, the signalling used when
launching the application shall come from a stored representation of the AIT.

ETSI

24 ETSI TS 102 809 V1.1.1 (2010-01)

5.2.11.1.2 Application versioning

The version field provides the version number of the application. This number starts at zero and increments by one each
time any of the fileslisted in the Application Description File (see clause 5.2.12) change or the contents of the
Application Description File itself change. Used values shall never be reused. In the event that the number rangeis
exhausted a new application_id shall be used.

Theis_launchable with_older_version flag indicates whether an older cached version of an application may be run
even though a higher version is signalled in the broadcast. When set, the terminal shall start the cached application
where the version number of the cached application is lower than or equal to the version number of the broadcast
application. If the version number of the cached application is higher than the version number of the broadcast
application, the cached application shall not be started. If the flag is not set, the cached application shall not be started.

NOTE: If thisflag isset, the cached application is responsible to handle version conflicts between cached
application code and broadcast application data.
5.2.11.1.3 Launching applications from the cache

The launchable_completely from_cache flag indicates whether a connection to a transport protocol is required. When
set, thisindicates that this application can be run entirely from cache, without connecting to the transport protocol
signalled in the application's signalling, assuming that all the critical files have been cached. If the flag is not set, a
connection to the transport protocol must be made in order to run this application as a broadcast-related application.
Thisflag only appliesif the application is being run as a broadcast related application; it isignored when storing an
application into a stored service, as all applications signalled as stand-alone can run without a connection to the
transport protocol when run as part of a stored service.

Thisflag shall only be set when the not_launchable from_broadcast flag is also set.

NOTE: Thisflag should be set only for applications where the object carousel is hot present at al.

The not_launchable from_broadcast flag indicates whether an application can be usefully launched beforeit is
completely cached. When set, this indicates that the delivery characteristics of this application are such that it is not
useful to launch the application unless it has been completely cached/stored. If the flag is not set, then caching provides
some benefit but is not essential.

Applicationsin stored services and applications where the not_launchable from broadcast flag is set shall only be
launched where the terminal has stored the complete set of files which are listed in the Application Description File as
being critical.

Table 13: Storage descriptor flag combinations

not_launchable_fro
m_broadcast

launchable_complet
ely from_cache

is_launchable
with_older_version

Description

0 0 0 Normal case.

0 0 1 Shall not be signalled.

0 1 0 Shall not be signalled.

0 1 1 Shall not be signalled.

1 0 0 Runs if signalled version is stored.

1 0 1 Runs if signalled or older version is stored.

1 1 0 Runs completely from cache if signalled version
is stored. The application cannot be stored due
to unavailability of the object carousel for the
current service.

1 1 1 Runs if signalled or older version is stored. The

application cannot be stored due to unavailability
of the object carousel for the current service.

When set, flag
indicates that files are
present but bitrate is
too low.

When set, flag
indicates that files are
not present in current
broadcast at all.

ETSI

25 ETSI TS 102 809 V1.1.1 (2010-01)

5.211.1.4 Storage priority

The storage priority of an application indicates the priority of this application for storage relative to the other
applications signalled in this service. It is only meaningful for applications which have been proactively cached by the
terminal implementation and shall be ignored otherwise.

Higher values indicate more important applications to store. The behaviour when applications have the same priority is
implementation dependent.

5.2.11.2 MPEG-2 encoding
Information about the storage capabilities for an application is carried in the application storage descriptor:

Table 14: Syntax of application storage descriptor

No.of Bits Identifier
application_storage descriptor() {
descriptor_tag 8 uimsbf 0x10
descriptor_length 8 uimsbf
storage_property 8 uimsbf
not_launchable_from_broadcast 1 bslbf
launchable_completely from_cache 1 bslbf
is_launchable with_older_version 1 bslbf
Reserved 5 bslbf
Reserved 1 bslbf
Version 31 uimsbf
Priority 8 uimsbf
}

The storage_property field is encoded as follows:

Table 15: Semantics of storage property values

storage_property Property
0 broadcast related
1 stand alone
2 to 255 reserved

5.2.11.3 XML encoding

The XML encoding of the storage capabilities for an application is given by the StorageCapabilities element:

<xsd:complexType name="StorageCapabilities">
<xsd:sequence minOccurs="0">
<xsd:element name="storageProperty" type="mhp:StorageType"/>
<xsd:element name="isStorable" type="xsd:boolean"/>
<xsd:element name="canCache" type="xsd:boolean"/>
</xsd:sequences>
<xsd:attribute name="launchableFromBroadcast" type="xsd:boolean" use="required"/>
<xsd:attribute name="launchableCompletelyFromCache" type="xsd:boolean" use="required"/>
<xsd:attribute name="launchableWithOlderVersion" type="xsd:boolean" use="required"/>
</xsd:complexType>

NOTE 1: The mhp:StorageType typeis defined in clause 5.4.4.10 of the present document.
NOTE 2: The storage priority is not defined in the XML encoding.

ETSI

26 ETSI TS 102 809 V1.1.1 (2010-01)

5.2.12 Application Description File

5.2.12.1 Description

The Application Description File (ADF) provides the list of files that need to be stored for an application as well as
other related necessary information. The notation uses an XM L-based syntax.

For those applications that can be stored, an Application Description File shall be placed in the same carousel asthe
application.

NOTE: The Application Description File does not duplicate all the information needed to run the application. The
terminal also needs to use the information in the application signalling when installing the application.

Where afileislisted in the Application Description File of more than one application and is stored, the terminal shall
ensure that each application sees the correct version of the file for that application. The version of the file visible to one
application shall not be changed by any changes in the version of the file visible to any other application which may
share that samefile.

5.2.12.2 Application description file name and location

Thelocation of an ADF should be defined in a platform specification. By convention, the name of an ADF is:

'dvb.storage.oooooco00.aaaa'
where;

00000000 is the organisation_id of the application as a 8 character hexadecimal string
aaaaisthe application id as a4 character hexadecimal string
The organisation_id and application_id shall be padded with leading zeros to the specified length.

Lowercase hex digits shall be used to encode the organisation_id and application_id.

5.2.12.3 Syntax
The syntax of the Application Description Fileis defined by the following XML DTD.

The PublicLitera to be used for specifying thisDTD in document type declarations of the XML filesis:

"-//DVB//DTD Application Description File 1.0//EN"

and the URL for the SystemL.iteral is:

"http://www.dvb.org/mhp/dtd/applicationdescriptionfile-1-0.dtd"
<!ENTITY % object "(dir|file)">

<!-- the main element for the application description --»>
<!ELEMENT applicationdescription (%object;)+>

<!ATTLIST applicationdescription version NMTOKEN #REQUIRED>

<!ELEMENT dir (%object;)*>
<!ATTLIST dir
name CDATA #REQUIRED
priority NMTOKEN #IMPLIED
>

<!ELEMENT file EMPTY>
<!ATTLIST file
name CDATA #REQUIRED
priority NMTOKEN #IMPLIED
size NMTOKEN #REQUIRED

ETSI

27 ETSI TS 102 809 V1.1.1 (2010-01)

5.2.124 Semantics
version: A decimal integer denoting the version number of this application.

The value of this attribute must not contain leading zeros (unlessit is"0"). The value of this attribute must also match
the version number signalled in the version field of the application storage descriptor in the AIT entry of this
application; if it does not, the application description fileisinvalid. (Thisfield allows application authors to ensure that
the version number signalled in the AIT is correct. If it iswrong then this prevents any files being stored.)

Name: This attribute provides the name of afile system object (directory or file) that is storable. Thisis the name of the
object within its enclosing directory and hence does not include any directory path information. For the name attribute
of afile element only, the last character of the name can be the wild-card character "*". This character will match any
string including an empty string.

If nameis"." or"..", contains the path separator character "/*, or contains the character NUL (U+0000), then receivers
shall reject the ADF asinvalid.

NOTE 1: No elements are provided for naming object types such as Stream or StreamEvent which are carried in an
object carousel, therefore there is no mechanism to specify that Stream and StreamEvent objects are
required to be stored.

NOTE 2: Listing adirectory object in the file does not imply anything about those contents of the directory which
are not themselves listed in thefile.

NOTE 3: Specifications which reference the present document may impose restrictions on file names which may be
used.

Paths are relative to the directory containing the application description file, i.e. <file> and <dir> elementsimmediately
inside the <applicationdescription> element refer to files and directories in the same directory as the application
description file.

Priority: This attribute describes how important it is to store this object. The value must be between 0 and 255,
inclusive. If it is outside this range then the application description file isinvalid. The value zero indicates that it is
critical to store the object (i.e. there is no benefit in storing any objects unless this part is stored). Higher values indicate
lower storage priority.

The default value for the priority attribute is zero (i.e. critical).
The priority for an object inherits from the immediately enclosing directory.

Size: This attribute defines the size in bytes of the file, or files where the name attribute includes a wild-card.

5.3 MPEG-2 table and section syntax

5.3.1 Summary

5.3.1.1 Summary of common signalling
The minimum signalling requirements for any applications are summarized as follows:

. PMT with application signalling descriptor to identify the service component carrying the Application
Information Table.

e Application Information Table with the following information in its common descriptor loop:

- transport_protocol _descriptor (all applications descriptions shall be within the scope of at least one
transport_protocol _descriptor. These can be placed in either or both of the descriptor loops).

e Application Information Table with the following information in its application information descriptor |oop:
- application_descriptor;

- application_name_descriptor.

ETSI

28 ETSI TS 102 809 V1.1.1 (2010-01)

5.3.1.2 Summary of additional signalling for applications carried via OC
In either the "common" (first) descriptor loop or the "application” (inner) descriptor loop:

e transport_protocol _descriptor, with the selector bytes containing the OC specific information as defined in
table 31.

5.3.1.3 How to add a new scheme (informative)

The signalling scheme is intended to be extensible with regard to the application representations and transport protocols
that are supported. The areas that need to be addressed when doing this are summarized below.

To add further transport protocols:

o Extend table 30 " Semantics of selector bytes'.

. Possibly define further specialist descriptors such asthe IP_signalling_descriptor.
To add further application representations:

. Define further specialist descriptorsif needed (see clause 10.9 "DV B-J specific descriptors' in the MHP
specification [i.1] for examples).

. Define the application type specific life cycle control codesin clause 5.2.4 " Application control codes".

Where constant val ues are registered by the present document extend the table 38 "Registry of constant values'.

5.3.2 Program specific information

The elementary stream (inner) loop of the PMT for a DV B service supporting one or more applications must reference
streams for the following:

. Location of the stream transporting the Application Information Table.

. Location of the stream(s) transporting the application code and data.

5.3.2.1 Application signalling stream

The elementary stream information for the PMT entry describing the elementary stream carrying the Application
Information Table has the following characteristics:

e Thestream typeisset to 0x05 (ISO/IEC 13818-1 [3], private sections).
e Anapplication signalling_descriptor (see clause 5.3.5.1).

There may be more than one elementary stream carrying application signalling information for a service.

5.3.2.2 Data broadcast streams

The minimum signalling in the PMT associated with data broadcast componentsis the value of the PMT stream_type
field required by the DV B data broadcasting specification (EN 301 192 [2]) for the transport protocol. The full details
of the data broadcast protocol, the location of its"principal” component etc. are provided in the AIT (see clause 5.3.4
"Application Information Table").

Optionally, the PMT may include data_broadcast_id_descriptors.

NOTE: Inclusion of data broadcast_id descriptors enables receivers to start mounting the file system that
delivers applications concurrently with acquiring the AIT that identifies which applications are of interest.
Enabling this concurrent operation may allow receivers to accelerate their activation of an interactive
application. See clause B.2.8 "Mounting an object carousel”.

ETSI

29 ETSI TS 102 809 V1.1.1 (2010-01)

The data_broadcast_id_descriptor identifies the "principal” component of the data broadcast. The detailed semantics of
this optional signalling reflects the transport protocol. For example, in the case of a DVB object carousel it identifies the
component carrying the DSI.

There may also be certain protocol specific descriptorsin the PMT. For example, the object carousel requires the
inclusion of the carousel_identifier_descriptor (see clause B.2.8 "Mounting an Object Carousel").

In its minimum form (with no selector information) a data broadcast id descriptor just identifies the "principal”
component. This optionally may be extended with selector information that identifies the application types of the
autostart applications delivered by that data broadcast. See clause 5.3.5.2 "Data broadcast id descriptor".

5.3.3 Notation

5.33.1 reserved

The term "reserved" when used in the clause defining the coded bit stream, indicates that the value may be used in the
future for SO defined extensions. Unless otherwise specified within the present clause all "reserved" bits shall be set to
Illll.

5.3.3.2 reserved_future_ use

Theterm "reserved future use", when used in the clause defining the coded bit stream, indicates that the value may be
used in the future for ETSI defined extensions. Unless otherwise specified within the present clause all
"reserved_future_use" bits shall be set to "1".

5.3.4 Application Information Table

The Application Information Table (AIT) provides full information on the data broadcast, the required activation state
of applications carried by it etc. The AIT comprises the set of AIT sub-tables (see clause 5.3.4.5) within the selected
service which have an application_type that the receiver can decode.

Datainthe AIT alows the broadcaster to request that the receiver change the activation state of an application.

5.34.1 Data errors
AlTswhich contain errors shall be processed as follows:

e Anerrorinadescriptor shall result in that descriptor being silently discarded. Processing of that descriptor
loop shall continue with the next descriptor (if any). The scope of error detection of a descriptor should be
limited to the application information section in which it is carried.

e Anerrorinan application loop outside a descriptor shall result in that entry in the application loop being
silently discarded. Processing of that application loop shall continue with the next entry (if any).

NOTE: The consequence of the above is that an error in a mandatory descriptor which resultsin that descriptor
being silently ignored may then result in an application loop which is missing such a mandatory
descriptor. Hence that application loop is silently ignored.

e Anerrorinan application information section outside of an application loop shall result in that entire
application information section being silently discarded. Processing of the AIT shall continue with the next
application information section (if any).

5.3.4.2 AIT transmission and monitoring

Terminals shall monitor the PMT for changes in the number of AIT elementary streams present. The time within which
changes shall be detected is application type dependent. Terminals shall monitor all AIT elementary streams within the
selected service, as described in more detail below.

The minimum repetition rate for each AIT sub table should be defined by the platform specification.

ETSI

30 ETSI TS 102 809 V1.1.1 (2010-01)

Provided that Al Tsfor the selected service are delivered on 3 or fewer elementary streams then the maximum time
interval between the moment the AIT is updated and the moment the new version is detected by the terminal should be
defined by the platform specification.

NOTE: If broadcasts use more than 3 elementary streamsto deliver AlTs then receiver response time may
degrade in an unpredictable way.

Theterminal is only required to monitor AIT sections for application types that it can decode. In this case, the
application signalling may only be passed on for a subset of the application types being broadcast, in the case where the
broadcast carries a superset of the terminal's capabilities.

Applications removed from the AIT sub-table which was signalling them but where that AIT sub-table remains present
in the network, shall be stopped as if they had been signalled with a DESTROY control code.

If the AIT sub-table signalling an application vanishes from the network completely, that application shall continue to
run. The terminal shall monitor for the re-appearance of the AIT sub-table as defined for the appearance of new AIT
sub-tables above while that service remains selected.

5.34.3 Optimized AIT signalling

The optional AIT_version_number carried by the application_signalling_descriptor allows a possible optimization of
receiver burden as it allows receiversto acquire the AIT only after they see changes in the AIT version advertised in the
PMT.

See clause 5.3.5.1 "Application signalling descriptor".

5.34.4 Visibility of AIT

If an application tunes away from atransport stream where its signalling is carried without selecting a new service, it
will continue running although the AIT isnot visible.

In terminals with multiple network interfaces, if the AIT of the selected serviceis visible viaany of them, then the AIT
signalling is used as normal.

5345 Definition of sub-table for the AIT

All sections on the same PID with the AIT table_id and the same value of application_type are members of the same
sub-table.

5.3.4.6 Syntax of the AIT

The Application Information Section describes applications and their associated information. Each Application
Information Section includes one "common" descriptor loop at the top level for descriptors that are shared between
applications of that sub table and aloop of applications. Each application in the application loop has an "application”
descriptor loop containing the descriptors associated with that application.

Like DVB Sl tables, the scope of common loop descriptors is the sub-table. So, any descriptors present in the common
descriptor loop apply to all sections of the sub-table. Typically, common descriptors would normally only be present in
section 0 of a sub-table, unless there was not enough space.

Like other DVB Sl tables, any strings contained in these tables shall not have null terminations.

ETSI

31 ETSI TS 102 809 V1.1.1 (2010-01)

Table 16: Application Information Section syntax

No. of bits Identifier
application_information_section() {

table id 8 uimsbf
section_syntax_indicator 1 bslbf
reserved future use 1 bslbf
reserved 2 bslbf
section_length 12 uimsbf
test_application_flag 1 bslbf
application_type 15 uimsbf
reserved 2 bslbf
version_number 5 uimsbf
current_next_indicator 1 bslbf
section_number 8 uimsbf
last_section_number 8 uimsbf
reserved future use 4 bslbf
common_descriptors_length 12 uimsbf
for(i=0;i<N;i++){

descriptor()
}
reserved future use 4 bslbf
application_loop_length 12 uimsbf
for(i=0;i<N;i++){

application_identifier()

application_control_code 8 uimsbf

reserved future use 4 bslbf

application_descriptors_loop_length 12 uimsbf

for(j=0;j<N;j++){

descriptor()

}
}
CRC 32 32 rpchof

}

table_id: This 8 bit integer with value 0x74 identifies this table.
section_syntax_indicator: The section_syntax_indicator is a 1-bit field which shall be set to "1".

section_length: Thisisa12-bit field, the first two bits of which shall be "00". The remaining 10 bits specify the
number of bytes of the section starting immediately following the section_length field, and including the CRC_32. The
valuein thisfield shall not exceed 1 021 (Ox3FD).

test_application_flag: This 1-bit field when set indicates an application which is transmitted for the purposes of
receiver testing and which shall not be started or listed in any APl or displayed in any user interface by receivers under
normal operational conditions. The means (if any) by which areceiver is put into a mode where applications signalled
with thisbit set are treated as if thisfield is set to zero isimplementation dependent but should not be one which typical
end-users might discover on their own.

application_type: Thisisa 15-hit field which identifies the type of the applications described in this AIT sub_table.
See clause 5.2.2.2.

version_number: This 5-bit field is the version number of the sub_table. The version_number shall be incremented by
1 when achange in the information carried within the sub_table occurs. When it reaches value "31", it wraps around to
"0".

current_next_indicator: This 1-bit indicator shall be set to "1".

section_number: This 8-bit field gives the number of the section. The section_number of the first sectionin the
sub_table shall be "0x00". The section_number shall be incremented by 1 with each additional section with the same
table_id, and application_type.

last_section_number: This 8-bit field specifies the number of the last section (that is, the section with the highest
section_number) of the sub_table of which this section is part.

ETSI

32 ETSI TS 102 809 V1.1.1 (2010-01)
common_descriptors length: This 12-bit field gives the total length in bytes of the following descriptors. The
descriptorsin this descriptor |oop apply for all of the applications contained in this AIT sub_table.

application_control_code: This 8-bit field controls the state of the application. The semantics of thisfield is
application type dependant. See clause 5.2.4 " Application control codes'.

application_loop_length: This 12-bit field gives the total length in bytes of the following loop containing application
information.

application_identifier (): This 48 bit field identifies the application. The structure of thisfield is defined in clause 5.2.3
"Application identification™.

application_descriptors loop_length: This 12-bit field givesthe total length in bytes of the following descriptors. The
descriptorsin thisloop apply to the specific application.

CRC_32: Thisisa32-hit field that contains the CRC value that gives a zero output of the registers in the decoder
defined in annex B of EN 300 468 [1] after processing the entire section.

5.3.4.7 Use of private descriptors in the AIT

Private descriptors may beincluded in the AIT provided that they are in the scope of aDVB-SI EN 300 468 [1] private
data specifier descriptor. The scope rules for the private data specifier descriptor are as follows:

o If this descriptor islocated within any descriptor loop of the AIT, then any specifier identified within this
descriptor loop appliesto all following descriptors and user-defined values in the particular descriptor loop
until the end of the descriptor loop, or until another occurrence of a private_data_specifier_descriptor.

e Theuse of the descriptor in the common (first) descriptor loop does not apply to descriptors or user-defined
valuesin the application (second) descriptor loop.

5.3.4.8 Text encoding in AIT

Unless otherwise specified, all fieldsinterpreted astext stringsin the Al T shall be encoded as UTF8, but shall not
include the null character.

5.349 Access to an MPEG-2 format AIT via a broadband connection

The AIT file contains the MPEG-2 encoding of an AIT in aform that may be loaded viaHTTP and is used to group
applications that are not associated with a broadcast service.

NOTE: Platform specifications which include support for the AIT file should define how thisis used; for
example, passing an HTTP URL which refersto thisfile to a platform-defined API call.

Platform specifications should define any requirements for monitoring or polling an AIT file for changes.

5.3.4.9.1 Syntax
Theinteraction channel encoding of the AIT into the AIT fileisasfollows:
e Asinglefile shal contain all of the data.

e Thefileshall contain a concatenation of Application Information Sections (specified in clause 5.3 of the
present document).

e The possibly multiple sections shall be ordered as follows:

- Ascending order of application_type.

- Within a single value of application_type in ascending order of section_number.
e All sections shall have current_next_indicator set to "1".

. Only the AUTOSTART and PRESENT application control codes (see table 3) are appropriate.

ETSI

33 ETSI TS 102 809 V1.1.1 (2010-01)

5.3.4.9.2 Syntactic restrictions

5.3.4.9.21 Transport protocols
The only allowed protocol_id has the value 0x0003. See table 29 "Protocol _id".

5.3.4.9.3 MIME type

The MIME type for an AIT file shall be "application/vnd.dvb.ait". The file extension shall be ".ait". Implementations
may also encounter the MIME type "application/dvb.ai" for the AIT used for backwards compatibility. Use of this
MIME typeis not recommended for new applications, deployments of services.

5.35 Generic descriptors

5.35.1 Application signalling descriptor

The application_signalling_descriptor is defined for use in the elementary stream loop of the PMT where the
stream_type of the elementary stream is 0x05. It identifies that the elementary stream carries an Application
Information Table.

The application_signalling_descriptor optionally carries aloop of application_type and AlIT_version_number pairs.
These allow the descriptor to optionally reproduce the current version number state of the associated Application
Information Table. This allows the receiver to be informed of the version of the AIT as aside effect of monitoring the
PMT (which is expected to be monitored closely, under normal conditions). See clause 5.3.4.3 "Optimized AIT
signalling"”.

When the receiver detects a change of the content of the application_signalling_descriptor, it shall acquire the new
version of the AIT and respond accordingly.

The presence of the application_type and AIT_version_number subfieldsisoptional. If not present then the AIT
transmission and monitoring applies, see clause 5.3.4.2 "AIT transmission and monitoring”.

Table 17: application signalling descriptor syntax

No. of bits Identifier
application_signalling_descriptor() {
descriptor_tag 8 uimsbf
descriptor_length 8 uimsbf
for((i=0; i<N; i++ ¥
reserved_future_use 1
application_type 15 uimsbf
reserved future use 3 bslbf
AIT version_number 5 uimsbf
}
}

descriptor_tag: This 8 hit integer with value Ox6F identifies this descriptor.
descriptor_length: This 8 bit field indicates the number of bytes following the descriptor length field.

application_type: This 15 bit field identifies the application type of an Application Information Table sub-table that is
on this elementary stream.

AlIT _version_number: This 5 hit field provides the "current” version number of the Application Information Table
sub-table identified by the application_type field.

ETSI

34 ETSI TS 102 809 V1.1.1 (2010-01)

5.3.5.2 Data broadcast id descriptor

The data_broadcast_id descriptor is defined for use in the elementary stream information of the PMT. The descriptor
identifies:

e Thetransport format of the data broadcast whose "principal component” is on this elementary stream.
The semantics of "principal component” is transport protocol specific.
e The set of application types for any autostart applications delivered by the data broadcast.

A single elementary stream may have more than one data_broadcast_id_descriptor to indicate conformance with more
than one data broadcast specification. In addition, more than one data_broadcast_id_descriptor may be used to list
additional application types within the scope of a particular data broadcast id.

More than one elementary stream may have a data_broadcast_id_descriptor indicating that auto start applications are
carried by more than one delivery mechanism (for example a single service may have more than one object carousel
delivering auto start applications).

5.35.2.11 Generic descriptor

The data_broadcast_id_descriptor is defined in ageneric form by EN 300 468 [1] (illustrated in table 18). Where no "id
specific data" is provided the descriptor just identifies the "principal" component of a data broadcast.

Table 18: Generic data broadcast id descriptor syntax

No.of Bits Identifier Value
data_broadcast_id_descriptor() {
descriptor_tag 8 uimsbf 0x66
descriptor_length 8 uimsbf
data_broadcast _id 16 uimsbf
for (i=0; i<N; i++) {
id specific data 8 bslbf
}
}
5.3.5.2.2 Data broadcast id descriptor for interactive application

When the data_broadcast_id is 0x00F0 or 0xO0F1, (see table 38) the syntax of the data_broadcast_id descriptor isas
shown in table 19. This extends the generic descriptor with an optional list of application types for which autostart
applications may exist within the data broadcast. Thislist provides a hint to allow the terminal to prioritize connection
to adata broadcast when several are provided by the service. If no list is provided then the data_broadcast_id_descriptor
is silent on the types of autostart applications that may be carried by the data broadcast. If the application list is not
empty, then the data broadcast shall not include autostart applications of application types other than those in thelist. It
is not required that the data broadcast always include autostart applications of all typesin thelist.

Table 19: data_broadcast_id_descriptor syntax for interactive applications

No.of Bits Identifier Value
data_broadcast_id_descriptor() {
descriptor_tag 8 uimsbf 0x66
descriptor_length 8 uimsbf
data_broadcast_id 16 uimsbf
for (i=0; i<N; i++) {
reserved future use 1
application_type 15 uimsbf
}
}

descriptor_tag: This 8 bit integer with value 0x66 identifies this descriptor.

ETSI

35 ETSI TS 102 809 V1.1.1 (2010-01)

data_broadcast_id: This 16 bit field indicates the format of the data broadcast transport protocol. These values are
registered at http://www.dvb.org.

application_type: This 15 bit field indicates the type of the application. See clause 5.2.2 of the present document.

5.3.5.3 Application descriptor

Exactly one instance of the application_descriptor shall be contained in every "application” (inner) descriptor loop of
the AIT.

Table 20: Application descriptor syntax

No.of Bits Identifier Value
application_descriptor() {
descriptor_tag 8 uimsbf 0x00
descriptor_length 8 uimsbf
application_profiles_length 8 uimsbf
for(ii=0; i<N; i++){
application_profile 16 uimsbf
version.major 8 uimsbf
version.minor 8 uimsbf
version.micro 8 uimsbf
}
service_bound_flag 1 bslbf
visibility 2 bslbf
reserved_future_use 5 bslbf
application_priority 8 uimsbf
for(i=0; i<N; i++){
transport_protocol_label 8 uimsbf
}
}

descriptor_tag: This 8 bit integer with value 0x00 identifies this descriptor.
application_profiles length: This 8-bit field indicates the length of the application_profile loop in bytes.

application_profile: This 16-bit field identifies which application type specific profile is required by this application.
See clause 5.2.5 "Platform profiles’.

version.major: This 8-bit field indicates the major version number of the profile. See clause 5.2.5 "Platform profiles”.
version.minor: This 8-bit field indicates the minor version number of the profile. See clause 5.2.5 "Platform profiles".
version.micro: This 8-bit field indicates the micro version number of the profile. See clause 5.2.5 "Platform profiles’.

service_bound flag: If thisflagissetto "1", the application is only associated with the current service and so the
process of killing the application shall start at the beginning of the service change regardless of the contents of the
destination AIT.

visibility: This 2-hit field indicates whether the application is visible to other applications via an application listing API
(if supported by the platform) or to users. See clause 5.2.6 "Application visibility".

application_priority: This 8-bit field identifies the priority of the application relative to other signalled applications.
See clause 5.2.7 "Application priority".

transport_protocol_label: This 8-bit field identifies a transport protocol that delivers the application. See
transport_protocol_label in clause 5.3.6 " Transport protocol descriptors'.

If more than one protocol is signalled then each protocol is an alternative delivery mechanism. The ordering indicates
the broadcaster's view of which transport connection will provide the best user experience (first is best). This may be
used as a hint by terminal implementations. It shall be evaluated only once during the life time of the application.

The protocol selection by the terminal may depend on avariety of factorsincluding user preferences and the
performance of the transport connections to the terminal.

ETSI

36 ETSI TS 102 809 V1.1.1 (2010-01)

5354 Application recording descriptor

The application_recording_descriptor can be signalled in the application descriptor loop of the AIT. This descriptor
contains extra information on application life cycle indicating in particular if an application is appropriate to usein
conditions of trick-mode playback. It indicates whether this application shall or shall not be recorded, when a program,
along with which this applicationis signalled, is recorded. It provides a means to specify the locations of data resources
that shall be recorded along with the application, as well as the labels of the object carousel modules of the application
that shall, should or should not be recorded.

Table 21: Application recording descriptor syntax

Syntax No. of bits Identifier Comments /
Value
application_recording_descriptor (){

descriptor_tag 8 uimsbf 0x06
descriptor_length 8 uimsbf
scheduled_recording_flag 1 bslbf
trick_mode_aware_flag 1 bslbf
time_shift_flag 1 bslbf
dynamic_flag 1 bslbf
av_synced flag 1 bslbf
initiating_replay_flag 1 bslbf
reserved 2 bslbf
label_count 8 uimsbf NO
for(i=0;i<NO;i++){

label_length 8 uimsbf N1

for(j=0; j<N1; j++) {

label_char 8 uimsbf

}

storage _properties 2 uimsbf

reserved 6
}
component_tag_list_length 8 uimsbf N2
for(i=0;i<N2;i++){

component_tag 8 uimsbf
}
private_length 8 uimsbf N3
for(i=0;i<N3;i++){

private 8 uimsbf
}
for(i=0;i<N4;i++){

reserved_future_use 8 uimsbf
}

}

descriptor_tag: This 8 bit integer with value 0x06 identifies this descriptor.

scheduled_recording_flag: This single bit flag, when set to ‘1, indicates that the application is appropriate to record
when the servicein which it is signalled is recorded by a scheduled recording. When set to '0', it indicates that the
application isinappropriate to record by a scheduled recording. Examples of why an application would be inappropriate
to record include the application not having been tested in a PV R environment or that the application is closely related
to the time of transmission and would be meaningless to the end-user if played back from arecording (e.g. an
application tied to alive event).

trick_mode _aware flag: Thissingle bit flag, if set to 1, indicates that the application is trick-mode aware. If set to '0’,
the application is not aware of trick-modes.

time_shift_flag: This single bit flag, when set to '1', indicates that the application is appropriate to record when the
servicein whichit issignalled is recorded in time-shift recording mode. When set to '0', it indicates that the application
isinappropriate to record in time-shift recording mode.

ETSI

37 ETSI TS 102 809 V1.1.1 (2010-01)

dynamic_flag: Thisflag indicates whether the application relies on the use of dynamic data from the broadcast during
its execution. When set to '1', it indicates that the application relies on the presence of files (either code or data) or
application signalling (e.g. application control code) which change during the lifetime of the piece of content. When set
to'0’, it indicates that the application does not rely on dynamic data from the broadcast.

NOTE 1: The present document does not define behaviour for terminals that is conditional upon the value of this
flag. Platform specifications may use thisflag in their determination of whether or not an applicationis
recordable.

av_synced_flag: Thisflag indicates whether the application requires use of stream events. If set to '1', thisis required.

NOTE 2: The present document does not define behaviour for terminals that is conditional upon the value of this
flag. Platform specifications may use thisflag in their determination of whether or not an application is
recordable.

initiating_replay_flag: Thissingle bit flag, if set to '1', indicates that the terminal shall not initiate the playback of the
streams located in the same recording as the application. The application is responsible for starting this playback. If set
to '0', the implementation shall initiate this playback in parallel with starting the application as would conventionally be
the case. Thisflag shall only be considered when playback of arecording isfirst started. After thistime, the value of
this flag shall be ignored.

label_count: This 8-bit field identifies the number of labels that have been used.
label_length: This 8-bit field identifies the number of bytesin the label.
label_char: These 8-hit fields carry an array of bytes that label a part of the application within its transport protocol.

NOTE 3: The present document does not define which parts of applications can be labelled or the form of the label
(if any). Platform specifications that wish to use this mechanism need to define the format of 1abels.

storage properties: A field indicating the importance of storing the labelled part of the application. Values for this
field are defined in table 22.

Table 22: Values for the storage_properties field

storage_properties value Definition
0 should not be stored
1 critical to store
2 optional to store
3 reserved

component_tag_list_length: Thisinteger specifies the length in number of bytes of the list of component tags.

component_tag: Thisfield identifies a service component that delivers datathat is required by the application at
playback time and that shall be recorded along with the application and the audio, video and subtitle streamsto be
recorded.

private: These bytes may be used for private extensions.

reserved_future use: These reserved bytes may be used for future DVB extensions.

5.3.5.5 Application usage descriptor

The application_usage descriptor identifies that the application provides a specific, well-known, service; for example
teletext, EPG or chat. Terminals may include a shortcut to start these services, for example aremote control key.
Terminals may also include a native Ul offering access to these services. If no application_usage descriptor is present
then an application does not provide a specific well-known service.

ETSI

38 ETSI TS 102 809 V1.1.1 (2010-01)

Table 23: Application usage descriptor

No. of bits Identifier Value
application_usage_descriptor() {
descriptor_tag 8 uimsbf 0x16
descriptor_length 8 uimsbf
usage_type 8 uimsbf
}

descriptor_tag: This 8 bit field with value 0x16 identifies the descriptor

usage type: This 8 hit field indicates which service is provided by the application. It shall be coded according to
table 11.

5.3.5.6 User information descriptors

The user information descriptors complement the application_descriptor by providing information suitable for
presentation to the user (where the application_descriptor provides technical information for automatic use by the
receiver).

These descriptors are defined for use in the "application” (inner) descriptor loop of the AIT.

5.3.5.6.1 Application name descriptor

Exactly one instance of this descriptor shall be included in the "application” (inner) descriptor loop. The application
name shall distinguish the application and shall be informative to the user.

Table 24: Application name descriptor syntax

No.of Bits Identifier Value
application_name_descriptor() {
descriptor_tag 8 uimsbf 0x01
descriptor_length 8 uimsbf
for (i=0; i<N; i++) {
ISO_639 language code 24 bslbf
application_name_length 8 uimsbf
for (i=0; i<N; i++) {
application_name_char 8 uimsbf
}
}
}

descriptor_tag: This 8 bit integer with value 0x01 identifies this descriptor.

ISO_639 language code: This 24-hit field contains the SO 639 2 [7] three character language code of the language of
the following application name. Both 1SO 639.2/B and | SO 639.2/T may be used.

Each character is coded into 8 bits according to 1SO 8859 1 [8] and inserted in order into the 24-bit field.
application_name_length: This 8 bit unsigned integer specifies the number of bytesin the application name.

application_name_char: Thisfield carries one character of a string (not null terminated) of characters encoded in
accordance with annex A of EN 300 468 [1]. The string names the application in a manner intended to be informative to
the user. Specific application types may impose additional restrictions on the encoding of this value.

5.3.5.6.2 Application icons descriptor

Zero or oneinstance of this descriptor shall beincluded in the "application” (inner) descriptor loop. It alowsiconsto be
associated with the application.

ETSI

39 ETSI TS 102 809 V1.1.1 (2010-01)

Table 25: Application icons descriptor syntax

No.of Bits Identifier Value

application_icons_descriptor() {

descriptor_tag uimsbf 0x0B

8
descriptor_length 8 uimsbf
icon_locator_length 8 uimsbf

for (i=0; i<N; i++) {

icon_locator_byte 8 uimsbf
}
icon_flags 16 bslbf
for (i=0; i<N; i++) {

reserved_future_use 8 bslbf
}

}

descriptor_tag: This 8 hit integer with value Ox0B identifies this descriptor.

icon_locator _length: This 8 bit integer specifies the number of bytesin the string that prefixes standard icon file name.
icon_locator _byte: This 8 bit valueis one byte of the icon locator string. See clause 5.2.8 "Application icons”.
icon_flags: This 16-hit field identifies the size and aspect ratio of icons available for this application. See clause 5.2.8
"Application icons".

5.3.5.7 External application authorization descriptor

The "common" (first) descriptor loop of the Application Information Table may contain zero or more
external_application_authorization descriptors. Each descriptor contains information about external applications that
are alowed to continue to run with the applications listed in this Application Information Table sub-table but cannot be
launched from this service. The external authorization applies to applications with the identified application_identifier()
that are of the application_type identified by the AIT subtable where this descriptor is contained.

Table 26: External application authorisation descriptor syntax

No.of Bits Identifier Value
external_application_authorisation_descriptor() {
descriptor_tag 8 uimsbf 0x05
descriptor_length 8 uimsbf
for(i=0; i<N; i++) {
application_identifier()
application_priority 8 uimsbf
}
}

descriptor_tag: This 8-bit integer with value 0x05 identifies this descriptor.

application_identifier(): This48-hit field identifies an application. The structure of thisfield is defined in clause 5.2.3
"Application identification".

application_priority: This 8-bit integer specifies the priority that this application assumes in the context of the current
service.

If the Oxffff or Oxfffe wildcard is used for the application_id within the application_identifier() and there are
applications from the same organisation_id explicitly signalled in the application loop of the AIT, the priority for those
applications shall be the one signalled in the application_descriptor (see clause 5.3.5.3).

See application_priority under clause 5.3.5.3 "Application descriptor”.

ETSI

40 ETSI TS 102 809 V1.1.1 (2010-01)

5.3.5.8 Graphics constraints descriptor

The graphics_constraints_descriptor defines the circumstances under which an application can work (or has been tested
to work). These circumstances are:

e which full screen graphics resolutions an application supports.

e whether an application can work when its video is controlled (e.g. scaled to less than full screen size) by
another application not signalled as part of the current service (e.g. an EPG, a navigator, or an unbound
application running as part of an abstract service).

This descriptor may be present either in the "application” (inner) loop of an AIT in which caseit appliesto only that
application or the "common" (outer) loop of an AIT in which case it appliesto all applicationssignalled inthat AIT
sub-table.

Table 27: Graphics constraints descriptor syntax

No. of bits Identifier Value
graphics_constraints_descriptor() {
descriptor_tag 8 uimsbf 0x14
descriptor_length 8 uimsbf
reserved_future_use 5 bslbf
can_run_without visible ui 1 bslbf
handles_configuration_changed 1 bslbf
handles_externally_controlled_video 1 bslbf
for(i=0;i<N;i++) {
graphics_configuration_byte 8 uimsbf
}
}

Where the fields have the following meanings;
descriptor_tag: This 8 bit integer with value 0x14 identifies this descriptor.
descriptor_length: This 8 hit field indicates the number of bytes following the descriptor length field.

can_run_without_visible ui: This single bit flag indicates whether the application can run without avisible Ul. See
clause 5.2.9.1.2 "Running without avisible UI".

handles configuration_changed: This single bit flag indicates whether the application can support changesin the
terminal's graphics configuration. See clause 5.2.9.1.3 "Handling changed graphics configurations'.

handles externally controlled_video: This single bit flag indicates whether the application requires control over the
presentation of video in the same service. See clause 5.2.9.1.4 "Handling externally controlled video".

graphics_configuration_byte: These 8 bit fields contains a value specified in clause 5.2.9.1.1 " Supported graphics
configurations".

5.3.6 Transport protocol descriptors

The transport_protocol_descriptor identifies the transport protocol associated with a service component and possibly
provides protocol dependent information.

The descriptor may be used in either the "common” (outer) descriptor loop or the "application” (inner) descriptor loop.
When in the "common" loop it appliesto all of the applicationsin that sub-table. Any such descriptorsin the
"application” loop describe additional transport protocols available to a specific application.

Each application shall be in the scope of at |east one transport_protocol_descriptor.

ETSI

41 ETSI TS 102 809 V1.1.1 (2010-01)

Table 28: Transport protocol descriptor syntax

No.of Bits Identifier Value

transport_protocol_descriptor() {

descriptor_tag 8 uimsbf 0x02

descriptor_length 8 uimsbf

protocol_id 16 uimsbf

transport_protocol_label 8 uimsbf

for(i=0; i<N; i++) {

selector_byte 8 uimsbf N1

}

}

descriptor_tag: This 8 hit integer with value 0x02 identifies this descriptor.

protocol_id: Anidentifier of the protocol used for carrying the applications. The values of the protocol_id are
registered in the present document and at http://www.dvb.org.

Table 29: Protocol_id

protocol_id Description
0x0000 reserved_future_use
0x0001 Object Carousel as defined in annex B of the present document.
0x0002 reserved
0x0003 Transport via HTTP over the interaction channel as defined in clause 7.2.
0x0004 to 0XO00FF Reserved for use by DVB
0x0100 to OXFFFF Subject to registration at http://www.dvb.org.

transport_protocol_label: This 8 bit field uniquely identifies a transport protocol within this AIT section. The
application_descriptor refersto this value to identify atransport connection that carries the application.

selector_byte: Additional protocol specific information.

Table 30: Semantics of selector bytes

protocol_id Selector byte data
0x0000 reserved future use
0x0001 See clause 5.3.6.1, "Syntax of selector bytes for OC transport".
0x0002 reserved
0x0003 See clause 5.3.6.2, "Syntax of selector bytes for interaction channel transport”
0x0004 to OXFFFF Not defined in this version of the present document

5.3.6.1 Syntax of selector bytes for OC transport

When the protocol ID is 0x0001 the selector bytesin the transport_protocol descriptor shall be as shown in table 31.

Table 31: Syntax of selector bytes for OC transport

Syntax Bits Identifier
remote_connection 1 bslbf
reserved_future_use 7 bslbf
if(remote_connection =="1") {

original_network_id 16 uimsbf
transport_stream_id 16 uimsbf
service id 16 uimsbf
}
component_tag 8 uimsbf

ETSI

http://www.dvb.org/

42 ETSI TS 102 809 V1.1.1 (2010-01)

remote_connection: Thissingle bit flag if set to "1" indicates that the transport connection is provided by a broadcast
service that is different to the one carrying the AIT. Such applications shall not be autostarted by receivers but are
visible (subject to the visibility field of the application descriptor and the availability of an API for discovering
signalled applications) for possible launching by service selection (but not via an application launching API). When this
bit is set, the following 3 fields (original_network_id, transport_stream_id and service id) are included in the selector
bytes. Thisflag shall be set to "0" when the transport connection is provided by the current service.

Applications with this flag set shall either have their application control code set to REMOTE (see table 3), or they shall
have an application_storage descriptor with "launchable_completely from_cache" setto "1" (see clause 5.2.11.1.3).

Applications where remote_connection is"1" that also have an application_storage descriptor with
"launchable_completely from_cache" set to 1" (see clause 5.2.11.1.3) are aspecial case. If such an applicationis
cached on the terminal, it can be launched in the usual way. There are no special restrictions on the control code for an
application signalled in thisway - e.g. it could be PRESENT or even AUTOSTART. If the application is not cached on
the terminal, it cannot be launched and the signalled control code will be ignored - it will always be treated asiif it was
REMOTE.

Remote applications can be cached and stored in the usual way if an application first tunes the network interface to the
appropriate transport stream.

original_network_id: This 16 bit field identifiesthe DVB Sl original network id of the transport stream that provides
the transport connection.

transport_stream_id: This 16 bit field identifies the MPEG transport stream id of the transport stream that provides
the transport connection.

service_id: This 16 bit field identifies the DVB-SI serviceid of the service that provides the transport connection.
component_tag: ldentifiesthe "principal” service component that delivers the application. The identified component is
the elementary stream that carries the DSI of the object carousel.

5.3.6.2 Syntax of selector bytes for interaction channel transport

When the protocol ID is 0x0003 the selector bytesin the transport_protocol descriptor shall be as shown in table 32
"Syntax of selector bytes for interaction transport”. This allows encoding of a number of URLSs. The descriptor can also
be used in asimplified form where only one URL is encoded.

For efficiency when encoding possibly many similar URLs the encoding divides the URL into a shared base part and a
set of URL extensions. The set of URLSs can identify ZIP [16] files, or base URLsending inthe "/" character, that
encapsulate portions of the file system.

Multiple transport protocol descriptors with the protocol 1D value 0x0003 and the same transport protocol label may be
provided to define alarger set of URLSs to describe the file system.

Table 32: Syntax of selector bytes for interaction transport

Syntax Bits Identifier
for((i=0; i<N; i++){
URL_base_length 8 uimsbf
for(j=0; j<N; j++){
URL_base_byte 8 uimsbf
}
URL_extension_count 8 uimsbf
for(j=0; j<URL_extension_count; j++){
URL_extension_length 8 uimsbf
for(k=0; k<URL_length; k++){
URL_extension_byte 8 uimsbf
}
}
}

URL_base length
This 8-bit field provides the number of bytesin the base part of the URL.

ETSI

43 ETSI TS 102 809 V1.1.1 (2010-01)

URL _base hyte

These bytes form the first part of aHTTP URL conforming to HTTP 1.0 (see RFC 1945 [18]), or thefirst part of an
HTTPS URL conforming to RFC 2818 [19] or the first part of another URL conforming to RFC 3986 [14].

URL _extension_count

This 8-bit field indicates the number of URL extensions conveyed by this descriptor.
URL _extension_length

This 8-bit field indicates the number of bytesin the extension part of the URL.

URL _extension_byte

These bytes form the later part of an HTTP URL conforming to HTTP 1.0 (see RFC 1945 [18]), or the later part of an
HTTPS URL conforming to RFC 2818 [19] or else a URL whose scheme is supported by a registered interaction
channel transport service provider implementation.

URLs are formed by concantenating the URL extension with the preceding URL base. The URL so formed either
identifies a file system directory or a specific ZIP file.

In the simplified form, the following apply:
. Exactly one base URL shall be encoded.

e TheURL formed by URL_base byte shall be a URL ending with aslash ("/") character. Referencesto ZIP
files are not permitted.

o URL_extension_count shall be zero.
. Only one transport_protocol _descriptor with protocol_id 0x0003 shall be present in the scope of the
application.
5.3.7 Simple application location descriptor

One instance of this descriptor shall be contained in the "application” (inner) descriptor loop of the AIT for each
application.

Table 33: Simple application location descriptor syntax

No.of Bits Identifier Value
simple_application_location_descriptor () {
descriptor_tag 8 uimsbf 0x15
descriptor_length 8 uimsbf
for(i=0; i<N; i++) {
initial_path_bytes 8 uimsbf
}
}

descriptor_tag: This 8 bit integer with value 0x15 identifies this descriptor.

initial_path_bytes: These bytes contain a string specifying the URL path component to the entry point document.

5.3.7.1 Example
The following example describes the usage of the simple_application location_descriptor.
An application author designs an application in the following manner:

e Theapplication datais distributed among several directories, for instance an "image" directory and a"main”
directory.

e Theapplication entry point is a document called "index.foo" and stored in the "main" directory.

ETSI

44 ETSI TS 102 809 V1.1.1 (2010-01)

From the application author's point of view, the application entry point is specified by the path "main/index.foo". This
path is stored in theinitial_path bytes string of the location descriptor.

Table 34: Examples showing application entry point signalling for different protocol_id values

protocol_id value Selector Resulting application entry point
0x0001 Component tag, e.g. 0xb4 dvb://1.2.3.b4/main/index.foo
0x0003 Base URL, e.g. http://www.example.com/apps/main/index.foo
"http://www.example.com/apps"

If the broadcaster chooses to insert this application in afile system sub-directory called "application”, the
initial_path_bytes shall be prefixed with the string "application/", i.e. initial_path_bytes shall have the value
"application/main/index.foo".

5.3.8 Simple application boundary descriptor

This descriptor is defined for use in the application loop of the AIT. It provides a set of prefixesthat describe the data
elements that form the application.

This descriptor is optional. When absent, the application boundary defaults to the complete set of all content coming
from the transport signalled in the transport_protocol_descriptor associated with the application. This can be overridden
by the platform specification.

Multiple boundary descriptors can be used for the same application. In this case, the applicable set of extensionsisthe
union of the set of extensions defined by the descriptors.

Table 35: Simple application boundary descriptor syntax

No.of Bits Identifier Value

simple_application_boundary_descriptor {

descriptor_tag uimsbf 0x17

8
descriptor_length 8 uimsbf
boundary_extension_count 8 uimsbf

for(j=0; j<boundary extension_count; j++){

boundary_extension_length 8 uimsbf
for(k=0; k<boundary_extension_length; k++){

boundary_extension_byte 8 uimsbf
}

}

descriptor_tag: This 8 hit integer with value 0x17 identifies this descriptor.
boundary_extension_count: This 8-hit field indicates the number of boundary extensions conveyed by this descriptor.
boundary_extension_length: This 8-bit field indicates the number of bytesin the boundary extension.

boundary_extension_byte: These bytesform a URL prefix. Any URLs which match this prefix are considered to be
within the application boundary. Note that the URL prefix isastrict prefix (e.g. 'http://www.example.com' instead of
‘www.example.com’) and may include components of a path (e.g. 'http://www.example.com/epg/"). Platform
specifications may define a minimum level of granularity given by the prefix.

5.3.9 Service information

5.3.9.1 Data broadcast descriptor for interactive application announcement

The generic data_broadcast_descriptor isdefined in EN 300 468 [1]. This clause defines the syntax and semantics of the
selector bytes when the data broadcast id has the value Ox00F2 (see table 36). In this case the selector bytes provide a
list of interactive applications and information about each application. Zero or more instances of this descriptor may be
listed inthe SDT or the EIT to identify interactive applications associated with the service or the event where the
descriptor is present. This descriptor only indicates the association between the service or event and the applications.

ETSI

45

ETSI TS 102 809 V1.1.1 (2010-01)

The location of each listed application shall be resolved through the AIT. This descriptor shall not list applications
where thetest_application flagis (or will be) set in the corresponding entry inthe AIT.

Table 36: Syntax of extended data broadcast descriptor - broadcast id 0xF2

No.of Bits Identifier Value
data_broadcast_descriptor(){
descriptor_tag 8 uimsbf
descriptor_length 8 uimsbf
data_broadcast _id 16 uimsbf
component_tag 8 uimsbf
selector_length 8 uimsbf
for(i=0; i<selector_length; i++){
organization_id 32 uimsbf
application_id 16 uimsbf
reserved_future_use 1 bslbf
application_type 15 uimsbf
application_profile_length 8 uimsbf
for (j=0; j<N; j++){
application_profile 16 uimsbf
version.major 8 uimsbf
version.minor 8 uimsbf
version.micro 8 uimsbf
}
application_names_length 8 uimsbf
for(j=0; j<N2;j++){
ISO_639 language code 24 bslbf
application_name_length 8 uimsbf
for(I=0; I<N3; I++){
application_name_char 8 bslbf
}
}
reserved_length 8 uimsbf
for(j=0; i<N4; i++){
reserved_future_use 8 bslbf
}
private_data_length 8 uimsbf
for(j=0; j<N5; j++){
private_data_byte 8 bslbf
}
ISO_639 language code 24 bslbf
text_length 8 uimsbf
for (i=0; i<text_length; i++){
text_char 8 uimsbf

}

}

Semantics of the data broadcast descriptor:

The semantics for the following elements of the syntax are defined in EN 300 468 [1]:

descriptor_tag: For this 8-bit field see EN 300 468 [1].

descriptor_length: For this 8-bit field see EN 300 468 [1].

data_broadcast_id: For this 16-bit field see EN 300 468 [1]. Thisfield has the value 0x00F2 (see table 38) when
announcing interactive applications (regardless of the transport method(s) used for the interactive application and data).

component_tag: For this 8-bit field see EN 300 468 [1].
selector _length: For this 8-hit field see EN 300 468 [1].

ETSI

46 ETSI TS 102 809 V1.1.1 (2010-01)

The semantics for the following elements of the syntax are defined in the present document:

organization_id: Thisis 32-bit field encodes the organisation_id of the application. See clause 5.2.3 " Application
identification".

application_id: Thisis 16-hit field encodes the ID of the application. See clause 5.2.3 "Application identification".
application_type: Thisis 15-bit field encodes the type of the application. See clause 5.2.2 "Application types".
application_profile length: This 8-bit field indicates the length of the application profile loop in bytes.

application_profile: This 16-bit field identifies which application type specific profile is required by this application.
See clause 5.2.5 "Platform profiles’.

version.major: This 8-bit field indicates the major version number of the profile. See clause 5.2.5" Platform profiles'.
version.minor: This 8-bit field indicates the minor version number of the profile. See clause 5.2.5" Platform profiles’.
version.micro: This 8-bit field indicates the micro version number of the profile. See clause 5.2.5" Platform profiles’.

application_names_length: This 8-bit unsigned integer specifies the number of bytesin the following multilingual
application names.

ISO_639 language code: Thisis24-bit field encodesthe ISO_639 language code of the application name. See
clause 5.3.5.6.1 "Application name descriptor”.

application_name_length: Thisis 8-bit field encodes the length of the application name. clause See clause 5.3.5.6.1
"Application name descriptor".

application_name_char: See application_name_char in clause 5.3.5.6.1 " Application name descriptor".
reserved_length: This 8-hit unsigned integer specifies the number of reserved bytes that follow.
reserved future use: Thisisan 8-hit field.

private data length: This 8-hit unsigned integer specifies the number of private data bytes that follow.
private data_byte: Thisisan 8-bit field.

The semantics for the following elements of the syntax are defined in EN 300 468 [1]:

ISO_639 language code: For this 24-hit field see EN 300 468 [1].

text_length: For this 8-bit field see EN 300 468 [1].

text_char: For this 8-hit field see EN 300 468 [1].

5.3.10 Stored applications

5.3.10.1 Application storage descriptor

This application_storage descriptor advertises that an application can be stored and provides some indications of its
properties. The presence of this descriptor indicates that an Application Description File is provided for the application
(see clause 5.2.11). For a storable application asingle application_storage descriptor shall be placed in either the
"common" (outer) descriptor loop or "application” (inner) descriptor loop of the AIT.

This descriptor, and the implied Application Description File, also supports receivers that implement speculative
caching.

ETSI

a7 ETSI TS 102 809 V1.1.1 (2010-01)

Table 37: Syntax of application storage descriptor

No.of Bits Identifier Value
application_storage _descriptor() {
descriptor_tag 8 uimsbf 0x10
descriptor_length 8 uimsbf
Storage_property 8 uimsbf
not_launchable from broadcast 1 bslbf
launchable_completely from_cache 1 bslbf
is_launchable_with_older_version 1 bslbf
reserved 5 bslbf
reserved 1 bslbf
version 31 uimsbf
priority 8 uimsbf
}

descriptor_tag: This 8 bit integer with value 0x10 identifies this descriptor.

descriptor_length: This 8 hit field indicates the number of bytes following the descriptor length field.
storage _property: This 8 bit field indicates whether the application is broadcast related or stand alone.
launchable completely from_cache: See clause 5.2.11.1.3 "Launching applications from the cache".
is launchable with_older_version: Seeclause 5.2.11.1.2 "Application versioning".

not_launchable from_broadcast: See clause 5.2.11.1.3 "Launching applications from the cache ".
version: Seeclause 5.2.11.1.2 "Application versioning”.

priority: See clause 5.2.11.1.4 " Storage priority".

54 XML-based syntax

This clause defines an XML encoding for the AIT in addition to the MPEG-2 table and section based encoding defined
in clause 5.3 of the present document. Since the intended use for this XML encoding isin conjunction with the SD& S
defined in TS 102 034 [6], this encoding follows the same format and re-uses aready defined elements and types.

Of the features in the MPEG-2 encoding, the signalling of graphics constraintsis not supported in the XML encoding.

The semantics of the fields defined in this clause shall be identical to those of the corresponding fields in the existing
MPEG-2 table and section based encoding as defined by the present document.

Monitoring for changesin the XML-based AIT shall be performed as defined in clause 5.4.3 of TS 102 034 [6].

The MIME type used for the XML encoding of the AIT shall be application/vnd.dvb.ait+xml. The file extension shall
be".aitx".

54.1 Service bound application signalling

Service bound applications shall be signalled by including an ApplicationList element in either the IPService or the
Package elements of SD& S (see TS 102 034 [6]). Thisisfully specified in clauses 5.4.3.2 and 5.4.3.1 respectively of
the present document.

Applications are either defined inline within the ApplicationList element or in an ApplicationDiscovery record as
defined in clause 5.4.5. In the latter case the Applicationldentifier is used in the ApplicationList to reference the
application in the ApplicationDiscovery record.

Alternatively, a service may include an MPEG-2 format AIT in-band in the stream. Announcement that the transport
stream includes this AIT is signalled in the | PService element. However, inclusion of an MPEG-2 format AIT in-band
in the stream prohibits the use of the XML encoding of the AIT.

ETSI

48 ETSI TS 102 809 V1.1.1 (2010-01)

54.2 Signalling of unbound applications

Unbound applications (i.e. applications which are not associated with a specific service) shall be signalled by including
one or more Abstractl PService elementsin the SD& S service provider discovery record (see TS 102 034 [6]). Thisis
fully specified in clause 5.4.3.3.

Applications are either defined inline within the Abstract|PService's ApplicationList element or in an
ApplicationDiscovery record as defined in clause 5.4.5. In the latter case the Applicationldentifier isused in the
Abstractl PService's ApplicationList element to reference the application in the ApplicationDiscovery Record.

543 Extensions to defined SD&S elements

5431 Package

The application list signalled in the package contains a set of applications which are available for all the IPServices
signalled in the package. The ApplicationList is added as an extension to the Package type defined in TS 102 034 [6].

<xsd:complexType name="PackageType">
<xsd:complexContent>
<xsd:extension base="ipi:Package">
<xsd:sequence>
<xsd:element name="ApplicationList" type="mhp:ApplicationList" minOccurs="0"/>
</xsd:sequences>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

NOTE: Adding an application to a package is semantically the same as adding the application to all services of
that package.

543.2 IP Service

Service bound applications for single services are signalled by an extension of the | PService type defined in
TS 102 034 [6].

<xsd:complexType name="IPServiceType">
<xsd:complexContent>
<xsd:extension base="ipi:IPService">
<xsd:choices>
<xsd:element name="ApplicationList" type="mhp:ApplicationList" minOccurs="0"/>
<xsd:element name="AITDescriptor" type="mhp:AITDescriptorType" minOccurs="0"/>
</xsd:choice>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="AITDescriptorType" />

This extension adds an ApplicationList element to the end of the IPService element. The ApplicationList element isan
instantiation of the ApplicationList type defined in clause 5.4.4.1 of the present document.

The AIT of the service may be included inline within the transport stream using the MPEG2 syntax. This may be
signalled by an AITDescriptor element. If aninline AIT is signalled the ApplicationList element shall not be present.

543.3 ServiceProvider

Unbound applications are signalled by an extension of the ServiceProviderType type asdefined in TS 102 034 [6].

<xsd:complexType name="ServiceProviderType">
<xsd:complexContent>
<xsd:extension base="ipi:ServiceProviderType">
<xsd:sequence>
<xsd:element name="AbstractService" type="mhp:AbstractIPService"
maxOccurs="unbounded" minOccurs="0"/>
</xsd:sequences>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

ETSI

49 ETSI TS 102 809 V1.1.1 (2010-01)

The extension adds an AbstractService element at the end of the service provider definition. The AbstractService
element is an instantiation of the Abstractl PService type defined in clause 5.4.4.15 of the present document.

544 New XML element definitions

544.1 ApplicationList

<xsd:complexType name="ApplicationList">
<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="application" type="mhp:Application" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="ApplicationReference" type="mhp:ApplicationIdentifier" minOccurs="0"
maxOccurs="unbounded" >
</xsd:sequences
</xsd:complexType>

An ApplicationList isalist of Application and/or ApplicationReference elements. An ApplicationReferenceis an
instantiation of an Applicationldentifier type defined in clause 5.4.4.3 of the present document. A reference can be
resolved by looking for the Applicationldentifier in the ApplicationDiscovery records of the same service provider.

5.44.2 Application

<xsd:complexType name="Application"s>
<xsd:sequence>

<xsd:element name="appName" type="ipi:MultilingualType" maxOccurs="unbounded"/>

<xsd:element name="applicationIdentifier" type="mhp:ApplicationIdentifier"/>

<xsd:element name="applicationDescriptor" type="mhp:ApplicationDescriptor"/>

<xsd:element name="applicationSpecificDescriptor"
type=" mhp:ApplicationSpecificDescriptor" minOccurs="0"/>

<xsd:element name="applicationUsageDescriptor"
type="mhp:ApplicationUsageDescriptor" minOccurs="0"/>

<xsd:element name="applicationBoundary"
type="mhp:SimpleApplicationBoundaryDescriptorType"
minOccurs="0"
maxOccurs="1" />

<xsd:element name="applicationTransport"
type="mhp:TransportProtocolDescriptorType"
minOccurs="1"
maxOccurs="unbounded" />

<xsd:element name="applicationLocation"
type="mhp:SimpleApplicationLocationDescriptorType"
minOccurs="1"
maxOccurs="1" />

</xsd:sequences>
</xsd:complexType>

An application can be completely described by:
e An application name which can be multilingual (appName).
e A uniqueidentification (applicationldentifier).
e A generic descriptor which is common and mandatory for all types of application (applicationDescriptor).
e An application specific descriptor which will depend upon the type of the signalled application.
e Anapplication usage descriptor which is optional.
e Anapplication boundary descriptor which is optional.
e Oneor more application transport descriptors.

e A simple application location descriptor.

ETSI

50 ETSI TS 102 809 V1.1.1 (2010-01)

54421 Application Specific Information (informative)

Some platform specifications may choose to describe, or require, extrainformation to be communicated to the terminal
that is outside the scope of information currently carried in the Application element, for example additional transport
protocol information or security related information. To enable this, the Application type defined in clause 5.4.4.2 can
be extended, following the XML extensibility recommendations defined in [17].

5.4.4.3 Applicationldentifier

<xsd:complexType name="ApplicationIdentifier"s
<xsd:sequence>
<xsd:element name="orgId" type="xsd:unsignedInt"/>
<xsd:element name="appId" type="xsd:unsignedShort"/>
</xsd:sequence>
</xsd:complexType>

Asdefined in clause 5.2.3 "Application identification", an application is uniquely identified by:

. Orgld, aglobally unique organisation identifier that identifies the organisation that is responsible for the
application.

e Appld, an application identifier allocated by the organisation registered with the organisation identifier who
decides the policy for allocation within the organisation.

5444 ApplicationDescriptor

<xsd:complexType name="ApplicationDescriptor"s>
<xsd:sequence>
<xsd:element name="type" type="mhp:ApplicationType"/>
<xsd:element name="controlCode" type="mhp:ApplicationControlCode"/>
<xsd:element name="visibility" type="mhp:VisibilityDescriptor" minOccurs="0"/>
<xsd:element name="serviceBound" type="xsd:boolean" default="true" minOccurs="0"/>
<xsd:element name="priority" type="ipi:Hexadecimal8bit"/>
<xsd:element name="version" type="ipi:Version"/>
<xsd:element name="mhpVersion" type="mhp:MhpVersion" minOccurs="0"/>
<xsd:element name="icon" type="mhp:IconDescriptor" minOccurs="0"/>
<xsd:element name="storageCapabilities" type="mhp:StorageCapabilities" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

The contents of this complex type are mostly those defined in clause 5.3.5.3 " Application descriptor".
The simple type elements are defined as follows:

visibility: Thisoptional element specifies whether the application is suitable to be offered to the end-user for them to
decide if the application should be launched. See clause 5.2.6 "Application visibility".

serviceBound: Whether the application is bound to a service or not as defined by the service_bound_flag. See
clause 5.3.5.3 "Application descriptor".

priority: Thisfield identifies arelative priority between the applications signalled in this service. See clause 5.2.7
"Application priority".

version: Seeclause5.2.11.1.2 "Application Versioning".
mhpVersion: See clause 5.4.4.8.
icon: Signalsthe presence of an icon representing the application.

storageCapabilities: This optional element shall be added for giving the receiver the required information to store /
cache the application.

ETSI

51 ETSI TS 102 809 V1.1.1 (2010-01)

5445 VisibilityDescriptor

<xsd:simpleType name="VisibilityDescriptor"s>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="NOT_ VISIBLE_ALL"/>
<xsd:enumeration value="NOT_VISIBLE_USERS "/>
<xsd:enumeration value="VISIBLE ALL"/>
</xsd:restriction>
</xsd:simpleType>

These values are defined in table 5 in clause 5.2.6.1 " Semantics'.

5.4.4.6 IconDescriptor

<xsd:complexType name="IconDescriptor"s>
<xsd:attribute name="filename" type="xsd:string" use="required"/>
<xsd:attribute name="size" type="xsd:unsignedShort" use="optional"/>
<xsd:attribute name="aspectRatio" type="mhp:AspectRatio" use="optional"/>
</xsd:complexType>

Asdefined in clause 5.2.8 "Application icons' the IconDescriptor element servesto signal the presence of anicon
representing the application. The size and aspectRatio attributes are defined as optional since they can be determined as
defined intable 7.

E.g.
<icon filename="dvb.icon.l1"/> , size = 32x32 pixel square
5.4.4.7 AspectRatio

<xsd:simpleType name="AspectRatio">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="4_3"/>
<xsd:enumeration value="16_9"/>
<xsd:enumeration value="1_1"/>
</xsd:restriction>
</xsd:simpleType>

These aspect ratios are the set of aspect ratios used in table 7 in clause 5.2.8 "Application icons’.

5.44.8 MhpVersion

<xsd:complexType name="MhpVersion"s>
<xsd:sequence minOccurs="1">
<xsd:element name="profile" type="ipi:Hexadecimallébit "/>
<xsd:element name="versionMajor" type="ipi:Hexadecimal8bit "/>
<xsd:element name="versionMinor" type="ipi:Hexadecimal8bit "/>
<xsd:element name="versionMicro" type="ipi:Hexadecimal8bit "/>
</xsd:sequence>
</xsd:complexType>
These elements are defined as follows:
profile: See application_profilein clause 5.2.5" Platform profiles'.
versonMajor: Seeversion.mgjor in clause 5.2.5" Platform profiles".
versionMinor: See version.minor in clause 5.2.5" Platform profiles".
versonMicro: Seeversion.microin clause 5.2.5" Platform profiles’.

NOTE: Thistypeisnamed for historical reasons.

ETSI

52 ETSI TS 102 809 V1.1.1 (2010-01)

5.4.4.9 StorageCapabilities

<xsd:complexType name="StorageCapabilities">
<xsd:sequence minOccurs="0">
<xsd:element name="storageProperty" type="mhp:StorageType"/>
</xsd:sequences>
<xsd:attribute name="launchableFromBroadcast" type="xsd:boolean" use="required"/>
<xsd:attribute name="launchableCompletelyFromCache" type="xsd:boolean" use="required"/>
<xsd:attribute name="launchableWithOlderVersion" type="xsd:boolean" use="required"/>
</xsd:complexType>

This descriptor, if present, serves to state whether the application can be stored or cached in the receiver as defined in
clause 5.2.11 " Stored applications’.

The attributes launchableFromBroadcast, |aunchableCompletel yFromCache, launchableWithOlderVersion have exactly
the same meaning as the flags as defined in clauses 5.2.11.1.2 and 5.2.11.1.3.

5.4.4.10 StorageType

<xsd:simpleType name="StorageType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="BROADCAST-RELATED"/>
<xsd:enumeration value="STANDALONE"/>
</xsd:restriction>
</xsd:simpleType>

See clause 5.2.11.1 "Lifecycle of stored applications'.

5.4.4.11 ApplicationType

<xsd:complexType name="ApplicationType">
<xsd:choice>
<xsd:element name="DvbApp" type="mhp:DvbApplicationType"/>
<xsd:element name="OtherApp" type="mpeg7:mimeType"/>
</xsd:choice>
</xsd:complexType>

See clause 5.2.2 " Application types".

5.4.4.12 DvbApplicationType

<xsd:simpleType name="DvbApplicationType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="DVB-J"/>
<xsd:enumeration value="DVB-HTML"/>
</xsd:restriction>
</xsd:simpleType>

5.4.4.13 ApplicationControlCode

<xsd:simpleType name="ApplicationControlCode">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="AUTOSTART"/>
<xsd:enumeration value="PRESENT"/>
<xsd:enumeration value="DESTROY"/>
<xsd:enumeration value="KILL"/>
<xsd:enumeration value="PREFETCH"/>
<xsd:enumeration value="REMOTE"/>
<xsd:enumeration value="DISABLED"/>
<xsd:enumeration Valuez"PLAYBACK_AUTOSTART"/>
</xsd:restriction>
</xsd:simpleType>

This descriptor serves to dynamically control application life cycle. The meaning of each one of the enumeration
elements, as well as the expected behaviour in the receiver, isfully defined in clause 5.2.4 " Application control codes".

ETSI

53 ETSI TS 102 809 V1.1.1 (2010-01)

5.4.4.14 ApplicationSpecificDescriptor

<xsd:complexType name="ApplicationSpecificDescriptor"s
<xsd:choice>
<xsd:element name="dvbjDescriptor" type="mhp:DVBJDescriptor"/>
<xsd:element name="htmlDescriptor" type="mhp:DVBHtmlDescriptor"/>
<xsd:element name="otherDescriptor" type="mhp:OtherDescriptor"/>
</xsd:choice>
</xsd:complexType>

<xsd:complexType name="OtherDescriptor" abstract="true"/>

This descriptor contains the specific descriptor depending upon the type of application. Aswell as descriptors defined in
the present document, it may also include externally defined descriptors.

NOTE: DVBJDescriptor and DVBHTMLDescriptor are outside the scope of the present document.

5.4.4.15 AbstractIPService

<xsd:complexType name="AbstractIPService">
<xsd:sequence>
<xsd:element name="svcName" type="ipi:MultilingualType" maxOccurs="unbounded"/>
<xsd:element name="svcId" type="mhp:Hexadecimal24bit"/>
<xsd:element name="isAutoSelect" type="xsd:boolean"/>
<xsd:element name="ApplicationList" type="mhp:ApplicationList" minOccurs="0"/>
</xsd:sequences>
</xsd:complexType>

<xsd:simpleType name="Hexadecimal24bit">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[0-9a-fA-F]{1}[1-9a-fA-F]{1}[0-9a-fA-F]{4}"/>
</xsd:restriction>
</xsd:simpleType>

These elements have rhe following definitions:
svcName: The name of the abstract service.

svcld: Anidentifier for the abstract service. This must be unique within the abstract services signalled for a service
provider.

isAutoSelect: Flag indicating if the service should be automatically started. If the value of this element is true then the
service shall be automatically started when the service provider is selected. If false, it shall not.

5.4.4.16 ApplicationOfferingType

<xsd:complexType name="ApplicationOfferingType">
<xsd:complexContent>
<xsd:extension base="ipi:OfferingBase">
<xsd:sequence>
<xsd:element name="ApplicationList" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Application" type="mhp:Application"
maxOccurs="unbounded" />
</xsd:sequences>
</xsd:complexType>
</xsd:element>
</xsd:sequences
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

This element may be used by a service provider to list Application offerings

ETSI

54 ETSI TS 102 809 V1.1.1 (2010-01)

5.4.4.17 ServiceDiscovery

<xsd:element name="ServiceDiscovery">
<xsd:complexType>
<xsd:choices>
<xsd:element name="ApplicationDiscovery" type="mhp:ApplicationOfferingType"
maxOccurs="unbounded" />
</xsd:choices>
</xsd:complexType>
</xsd:element>

NOTE: Thiselement formsthe root element of an SD& S XML instance document defining one or more
Application Discovery records. Other SD& S Offering records, as defined in TS 102 034 [6], are
contained under the ServiceDiscovery root element defined in TS 102 034 [6]. The appropriate
ServiceDiscovery element isidentified in an XML instance document through its namespace prefix.

5.4.4.18 ApplicationUsageDescriptor

<xsd:complexType name="ApplicationUsageDescriptor"s>
<xsd:sequence>
<xsd:element name="ApplicationUsage" type="xsd:anyURI" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

See clause 5.2.10.3 for the definition of the semantics of this element.

5.4.4.19 TransportProtocolDescriptorType

<xsd:complexType name="TransportProtocolDescriptorType" abstract="true" />

Thistype defines the base class for a transport protocol descriptor. Thisis an abstract type - subclasses of thistype are
defined to support specific transport protocols. See clause 5.3.6 for awider discussion of transport protocol descriptors.

5.4.4.20 HTTPTransportType

<xsd:complexType name="HTTPTransportType">
<xsd:complexContent>
<xsd:extension base="mhp:TransportProtocolDescriptorType">
<xsd:sequence>
<xsd:element name="URLBase" type="xsd:anyURI"
minOccurs="1"
maxOccurs="1" />
<xsd:element name="URLExtension" type="xsd:anyURI"
minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequences>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

The HTTP transport protocol descriptor shall be used when an entry point to an application is accessed viaHTTP. The
actual URL of the entry point is composed from the base URL concatenated with the path provided by the simple
application location descriptor.

For URLBase and URL Extension the same semantics shall apply as for URL_base byte and URL_extension_byte
respectively in clause 5.3.6.2 of the present document.

ETSI

55 ETSI TS 102 809 V1.1.1 (2010-01)

5.44.21 OCTransportType

<xsd:complexType name="OCTransportType">
<xsd:complexContent>
<xsd:extension base="mhp:TransportProtocolDescriptorType">
<xsd:sequence>
<xsd:choice maxOccurs="1" minOccurs="0">
<xsd:element name="DvbTriplet" type="ipi:DVBTriplet">
</xsd:element>
<xsd:element name="TextualId" type="ipi:TextualIdentifier"s
</xsd:element>
</xsd:choice>
<xsd:element name="ComponentTag" minOccurs="1" maxOccurs="1"
type="mhp:ComponentTagType" >
</xsd:element>
</xsd:sequences>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

An ApplicationType element of type OCTransportType shall be present if the application is delivered viaDSMCC
Object Carousdl. If this application is linked to a service and the carousel is part of that service then the service
identifier may be omitted.

For applications not linked to a service, e.g. service provider applications, either the DvbTriplet or the Textualld of a
service shall be present.

5.4.4.22 ComponentTagType

<xsd:complexType name="ComponentTagType">
<xsd:attribute name="ComponentTag" type="ipi:Hexadecimal8bit">
</xsd:attributes>

</xsd:complexType>

This type defines the representation of an DVB component tag.

5.4.4.23 SimpleApplicationLocationDescriptorType

<xsd:simpleType name="SimpleApplicationLocationDescriptorType">
<xsd:restriction base="xsd:anyURI" /> </xsd:simpleType>

This descriptor isdefined in clause 5.3.7.

5.4.4.24 SimpleApplicationBoundaryDescriptorType

<xsd:complexType name="SimpleApplicationBoundaryDescriptorType">
<xsd:sequence>
<xsd:element name="BoundaryExtension" type="xsd:anyURI"
minOccurs="1"
maxOccurs="unbounded" />
</xsd:sequences>
</xsd:complexType>

This descriptor provides a set of prefixes that describe the data elements that form the application. See clause 5.3.8 for
the semantics of this descriptor.

5.4.5 ApplicationDiscovery record

An ApplicationDiscovery record is an instantiation of the ApplicationOfferingType carried in ServiceDiscovery
element as specified by clauses 5.4.4.16 and 5.4.4.17.

The presence and retrieval location of an ApplicationDiscovery record is signalled from the ServiceProviderDiscovery
record using the OfferingListType (see clause 5.2.5 of TS 102 034 [6]). The Payloadld of the ApplicationDiscovery
record shall be OxC1.

ETSI

5.5

Constant values

56

ETSI TS 102 809 V1.1.1 (2010-01)

Table 38: Registry of constant values

Where used Type Value Where Defined Scope
private data specifier descriptor tag O0x5F PSI and Sl tables Sl
descriptor
Data broadcast id descriptor 0x66 PMT
Application Signalling Ox6F PMT
Descriptor
Service identifier descriptor 0x71 SDT
Caching priority descriptor |descriptor tag 0x71 DIl modulelnfo SI-DAT

userinfo
Content type descriptor 0x72 BIOP objectinfo
(note 1)
reserved to DVB for future 0x73 to Ox7F ocC
OC descriptors
reserved to DVB for future |table ID on AIT PID |Ox00 to 0x73 The present
use document
Application Information 0x74
Table
reserved to DVB for future 0x75 to Ox7F
use
reserved for private use 0x80 to OxFF
Application descriptor descriptor tag 0x00 AIT The present
Application name descriptor 0x01 document
Transport protocol 0x02
descriptor
reserved to DVB for future 0x03, 0x04
use
External application 0x05
authorization descriptor
Application recording 0x06
descriptor
reserved to DVB for future 0x07 — Ox0A
use
Application icons descriptor 0x0B
reserved to DVB for future 0x0C — OxOF
use
Application storage 0x10

descriptor

reserved to DVB for future
use

graphics constraints
descriptor (see clause
5.3.5.6 "Graphics
constraints descriptor)

Simple application location
descriptor

Application usage descriptor

Simple application boundary
descriptor

reserved to DVB for future
use

private data specifier
descriptor (note 2)

Subject to registration at
http://www.dvb.org

User defined (note 3)

Ox11 to 0x13

0x14

0x15

0x16

0ox17

0x18 to OX5E

Ox5F

0x60 to Ox7F

0x80 to OXFE

ETSI

57 ETSI TS 102 809 V1.1.1 (2010-01)

Where used Type Value Where Defined Scope
DVB Object Carousel data broadcast id 0x00FO0 PMT, AIT Sl
reserved 0x00F1
DVB application presence 0x00F2 EIT, SDT Sl
reserved to DVB for future 0x00F3 - OXxO0FE PMT, AIT Sl
use

NOTE 1: Strictly MessageSubHeader::ObjectInfo in the file message and the bound object info in a file binding of a
directory or service gateway message.

NOTE 2: The DVB Sl private data specifier descriptor is defined for use in the Application Information Table to introduce
private descriptors.

NOTE 3: All user defined descriptors shall be within the scope of a private data specifier descriptor (see clauses 5.3.4.7
"Use of private descriptors in the AIT").

6 Referencing DVB services

6.1 DVB URL syntax and semantics

The syntax and semantics of the "dvb:" URL scheme are defined in [20].

6.2 DVB URL resolution

6.2.1 Service identifier descriptor

Zero or more service_identifier_descriptors may be included in the SDT description of a service. Each such descriptor
defines a single textual identifier for the service. The syntax of the textual service identifier is:

<service name> "." <service provider domain name>
where:

<service_name>

is aunique name for the service within the service provider's domain.

<service_provider_ domain_name>

isan Internet DNS domain name that the service provider has rights to control. The organization's administrating the
Internet DNS domain names are used as a globally unique registration mechanism that allows these textual service
identifiers to be globally unigue names.

The <service_name> field shall follow the rules defined for Internet DN'S names so that the whole textual service
identifier isavalid host name to be used in the Internet DNS as defined in RFC 1035 [21].

An example of atextual serviceidentifier is:

movie-channel-1.broadcaster-b.com

where "broadcaster-b.com"” is an Internet DNS domain owned by the broadcaster and "movie-channel-1" is a unique
name for the service assigned by the service provider

NOTE 1: Thetextual serviceidentifier has the same syntax as an Internet host name and it and it has to be assigned
in adomain that the service provider has the rights to control. However, the textual service name for a
serviceis not required to resolve to any | P address using the Internet DNS service and if it does, this
version of the present document does not specify any specific services that this host should provide if
contacted using the IP protocols.

A single service identifier can be assigned to servicesin different physical networks even if they have different
origina_network _id and service id. A given service identifier shall only be associated with services that are considered
to be the same service.

ETSI

58 ETSI TS 102 809 V1.1.1 (2010-01)

NOTE 2: Itisup to the service provider to decide which services are "same" and which are not. For example, two
services in two different networks where the service have the same programme content but different
regional adverts could be generally considered to be the "same" service. However, thisdecision is entirely
up to the service provider.

More than one service identifier may be allocated to a service instance.

Table 39: Service identifier descriptor

No.of Bits Identifier Value
service_identifier_descriptor () {
descriptor_tag 8 uimsbf 0x71
descriptor_length 8 uimsbf
for (i = 0; i < descriptor_length; i++) {
textual_service_identifier_bytes 8 uimsbf
}
}

descriptor_tag: This 8 hit integer with value 0x71 identifies this descriptor.

textual_service identifier_bytes: These bytes contain the unique identifier for a service encoded using the normal
encoding for text stringsin DVB Sl.

7 Application transport

7.1 Object carousel

This clause describes the protocol used when broadcast applications are transmitted using the DSM-CC User-to-User
Object Carousels.

The present document is based on the following specifications:
e ISO/IEC 13818-1[3] - MPEG 2 systems.
. ISO/IEC 13818-6 [4] - DSM-CC.
o EN 301 192 [2] - DVB specification for data broadcasting.
e TR101202]i.2] - Implementation Guidelines for Data broadcasting.

With the constraints and extensions described in Annex B.

7.2 HTTP

When applications are downloaded using the HT TP protocol, the HTTP 1.1 protocol shall be supported as defined in
RFC 2616 [5].

ETSI

59 ETSI TS 102 809 V1.1.1 (2010-01)

8 Synchronisation

8.1 Introduction

The present document supports synchronisation to video or audio streamsin a service using DSMCC stream events as
defined in clause B.2.4.

These can be either:

. "Do-it-now" events as defined in clause B.2.4.2.2. These events are posted to the application as soon as they
arereceived by the terminal.

. Events synchronised to a DVB timeline as defined in clause B.2.4.2.2. The events are posted to the application
when the timeline reaches the time signalled for the event.

Platform specifications where synchronisation is needed should define which of these are supported in their
deployment.

8.2 Referencing

Two mechanisms are defined for referencing sources of stream events from applications:

. By referencing a DSM CC stream event object in an object carousel. This requires the service to contain an
object carousel as well as the elementary stream carrying the stream event messages.

o By referencing an XML file containing equivalent information to the DSM CC stream event object as defined
by the following schema. This enables synchronisation to services carrying the stream event messages but not
containing an object carousel.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!--W3C Schema generated by XMLSpy v2006 sp2 U (http://www.altova.com)-->
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:dsmcc="urn:dvb:mis:dsmcc:2009"
targetNamespace="urn:dvb:mis:dsmcc:2009" elementFormDefault="qualified"
attributeFormDefault="qualified">
<xs:complexType name="DsmccType">
<XS:sequences
<xs:element name="dsmcc_object" type="dsmcc:DsmccObjectType" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:element name="dsmcc" type="dsmcc:DsmccType"/>
<xs:complexType name="DsmccObjectType">
<XS:sequence>
<xs:element name="stream event" type="dsmcc:StreamEventType" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="component tag" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="StreamEventType">
<xs:attribute name="stream event id" type="xs:string" use="required"/>
<xs:attribute name="stream event name" type="xs:string" use="required"/>
</xs:complexType>
</xs:schema>

ETSI

60 ETSI TS 102 809 V1.1.1 (2010-01)

Annex A (informative):
Elements defined by the platform specification

A.l Introduction

This annex describes the elements defined in the present document whose semantics are defined by the platform
specification.

A.2 Elements which are defined by the platform

specification
Table A.1: Elements which are defined by the platform specifciation

Clause Element

525 Application profiling and profile versioning

5.2.8 Location of application icon (where the app icon locator is relative to)

5.2.8 Encoding of application icons locator

5.2.12 Location of application description file

5.3.4.2 Time in which AIT changes will be detected

5.34.2 Minimum repetition rate for each AIT subtable

5.3.4.2 Time in in which AIT update will be detected
5.3.5.6.1 Encoding of application name in MPEG-2 application name descriptor
B.2.4.6.1 Time in which updates to the set of timebases will be detected
B.2.4.6.2 Time in which changes to event fire times are detected.

ETSI

61 ETSI TS 102 809 V1.1.1 (2010-01)

Annex B (normative):
Object carousel

B.1 Introduction

This annex describes the constraints and extensions to the specifications listed in clause 7.1 when using DSM-CC
User-to-User Object Carousels for the carriage of broadcast applications.

B.1.1 Key to notation

Certain notations are used in the "value" columns of the syntax tables:

Table B.1: Key to notation

Symbol
+ A value that is "allocated" e.g. configuration parameter of the object carousel server.
* A value that is "calculated" e.g. a field whose value is calculated by the carousel server as a
consequence of the number of bytes in other fields.

B.2 Object carousel profile

In the following clause, the message structures of the object carousels are introduced with associated additional
restrictions. Each section contains a table specifying the restrictions on the usage of the fields. The table also indicates
the source for these restrictions: the DSM-CC standard, DV B guidelines or a specific restriction for the present
document.

For the object carousel messages, also the message syntax isincluded. I n the syntax tables grey shading indicates
partsthat the broadcaster may put in, but aterminal compliant with the present document may ignore.

B.2.1 DSM-CC sections

All object carousels messages are transmitted using DSM-CC section format. The DSM-CC section format is defined in
chapter 9.2 of the DSM-CC specification [4].

The DSM-CC standard provides an option to use either a CRC32 or a checksum for detecting bit errors. For the present
document, we make the following restriction:

Table B.2: Restrictions on DSM-CC Section format

Field Restrictions Source
section_syntax_indicator 1 (indicating the use of the CRC32) The present document
last_section_number For sections transporting DownloadDataBlock

fragments:

- all modules intended to be retrieved shall have the
last section number OXFE:

- if last section number = OxFF receiver behaviour is
undefined.

The maximum section length is 4 096 bytes for all types of sections used in object carousels. The section overhead is
12 bytes, leaving a maximum of 4 084 bytes of payload per section.

ETSI

62 ETSI TS 102 809 V1.1.1 (2010-01)

B.2.1.1 Sections per TS packet

Parts of no more than four sections shall be delivered in asingle TS packet.

B.2.2 Data carousel

This clause defines the content of the data carousel messages when used in the object carousdl.

Usage of data carousel descriptors not listed below in aDVB object carousel is not defined by the present document.

B.2.2.1 General
The definitions in table B.3 apply to both the dsmccDownloadDataHeader and the similar dsmccM essageHeader.

Table B.3: Restrictions on DSM-CC DownloadData and Message headers

Field Restrictions Source
Transactionld See clause B.2.5, "Assignment and use of The present document
transactionld values"
AdaptationLength The terminal may ignore the possible contents of the
dsmccAdaptationHeader field.

B.2.2.2 DownloadInfolndication

The DownloadInfol ndication is a message that describes a set of modules and gives the necessary parameters to locate
the module and retrieveit.

Table B.4: Restrictions on the DIl

Field Restrictions Source
blockSize maximum size 4 066 DSM-CC (for the definition of
(max. section payload - DDB-header size (18)) blockSize), the present
The recommended blockSize is 4 066. document (for the value)
windowSize 0 (not used for Object Carousels) DSM-CC
ackPeriod 0 (not used for Object Carousels) DSM-CC
tCDownloadWindow 0 (not used for Object Carousels) DSM-CC
tCDownloadScenario 0 (not used for Object Carousels) DSM-CC
compatibilityDescriptor(): 0 (no compatibility descriptor for Object Carousels) DSM-CC
compatibilityDescriptorLength
PrivateDatalength The terminal may ignore the possible contents of the |DVB
privateData field

B.2.2.3 DownloadServerlnitiate

The DownloadServerlnitiate is used in the case of object carousels to provide the object reference to the
ServiceGateway (i.e. root directory) of the object carousel.

Table B.5: Restrictions on DSI

Field Restrictions Source
compatibilityDescriptor(): 0 (no compatibility descriptor for Object Carousels) DSM-CC
compatibilityDescriptorLength
privateData Contains the ServiceGatewaylInfo structure DSM-CC
serverld Shall be set to 20 bytes each with the value of OXFF DVB/The present document

ETSI

B.2.2.4 Modulelnfo

63 ETSI TS 102 809 V1.1.1 (2010-01)

The modulelnfo structure is placed in the modulelnfo field of the DownloadInfol ndication of the data carousdl. It
contains the information needed to locate the module.

Table B.6: Restrictions on the DIl modulelnfo field

Field

Restrictions

Source

BIOP::Modulelnfo::Taps

The first tap shall have the "use" value 0x0017
(BIOP_OBJECT_USE). The id and selector fields are
not used and the terminal may ignore them. The
terminal may ignore possible other taps in the list.

DvB

BIOP::Modulelnfo::Userlnfo

The userinfo field contains a loop of descriptors.
These are specified in the DVB Data Broadcasting
standard and/or the present document. The terminal
shall support the compressed_module_descriptor (tag
0x09) used to signal that the module is transmitted in
compressed form. The userlnfo field may also contain
a caching_priority_descriptor and one or more
label_descriptors.

DVB/The present document

moduleTimeOut
blockTimeOut
minBlockTime

These fields are defined in units of us. An appropriate
value must be explicitly encoded by carousel
generation equipment. There is no default value that
may be encoded, i.e. OXFFFFFFFF has no special
meaning. Receivers shall not employ an inbuilt default
instead of the signalled value, as there is no way to
define these without knowledge of the construction of
a particular carousel.

The present document

Table B.7: BIOP::Modulelnfo syntax

Syntax No. of bits Identifier Value Comment
BIOP::Modulelnfo() {
moduleTimeOut 32 uimsbf
blockTimeOut 32 uimsbf
minBlockTime 32 uimsbf
taps_count 8 uimsbf N1 21
{
id 16 uimsbf 0x0000 user private
use 16 uimsbf 0x0017 BIOP_OBJECT _USE
assocTag 16 uimsbf
selector_length 8 uimsbf 0x00
}
for (j=1; j<N1; j++) { Possible additional
id 16 uimsbf taps that may be
use 16 uimsbf + ignored by terminals.
assocTag 16 uimsbf
selector length 8 uimsbf N2
for (j=0; j<N2; j++) {
selector_data 8 uimsbf
}
}
userinfoLength 8 uimsbf N3
for (k=0; k<N3; j++) {
userinfo_data 8 uimsbf
}
}
B.2.24.1 Label descriptor

This clause is empty in the present document.

ETSI

64 ETSI TS 102 809 V1.1.1 (2010-01)

B.2.24.2 Caching priority descriptor

Toindicate priorities for the objects, acaching_priority _descriptor may be included in the userinfo field of the
modulel nfo in the Downloadl nfol ndication message.

This descriptor provides a priority value for the caching. The same priority applies for each object in the module. The
priority indicated in the descriptor is only a hint to the terminal and implementations may use that in combination with
other caching strategies.

The descriptor includes also the transparency level (see clause B.5.2 "Transparency levels of caching") that shall be
used by the terminal implementation if it caches objectsin this module.

Table B.8: Caching priority descriptor syntax

Syntax No. of bits Identifier Value Comment

caching_priority descriptor() {

descriptor_tag 8 uimsbf 0x71
descriptor_length 8 uimsbf
priority_value 8 uimsbf
transparency_level 8 uimsbf

}

descriptor_tag: This 8 hit integer value with 0x71 identifies this descriptor.

priority_value: Indicates the caching priority for the objects within this module. A higher value indicates more
importance for caching.

transparency_level: Transparency level that shall be used by the terminal if it caches objects contained in this module.
The possible values are listed in table B.9. The semantics of the policies are defined in clause B.5.2 "Transparency
levels of caching”.

Table B.9: Transparency level values

Value Description
0 reserved
1 Transparent caching
2 Semi-transparent caching
3 Static caching.
4 to 255 reserved for future use

When this descriptor is not included in the userinfo field of the modulelnfo for a module, the default values that shall be
assumed are:

e priority value: 128.

e transparency_level: 1 (transparent caching).

B.2.2.5 ServiceGatewaylInfo

The ServiceGateway! nfo structure is carried in the DownloadServer|nitiate message and provides the object reference
to the ServiceGateway object.

Table B.10: Restrictions on the ServiceGatewaylnfo

Field Restrictions Source
BIOP::ServiceGatewaylnfo::do |The terminal may ignore the downloadTap list. The present
wnloadTaps document

BIOP::ServiceGatewaylInfo::ser [The terminal may ignore the service context list.
viceContextList
BIOP::ServiceGatewaylInfo::Us [The terminal may ignore the user info.
erinfo

ETSI

65 ETSI TS 102 809 V1.1.1 (2010-01)

Table B.11: ServiceGatewaylInfo() syntax

Syntax No. of bits Identifier Value Comment
ServiceGatewaylnfo(){
I0P::IOR() + See table B.21
"IOP::IOR syntax”
downloadTaps_count 8 uimsbf N1 software download
Taps
for (i=0; i<N1; i++) {
DSM::Tap()
serviceContextList_count 8 uimsbf N2 serviceContextList
for (i=0; i<N2; i++) {
context_id 32 uimsbf
context_data_length 16 uimsbf N3
for (j=0; j<N3; j++) {
context_data_byte 8 uimsbf +
}
}
userinfoLength 16 uimsbf N5 user info
for (i=0; i<N5; i++) {
userinfo_data 8 uimsbf +
}
}
B.2.2.6 Download cancel

There is no semantic for this message in this profile. Receivers may ignore them.

B.2.2.7 DownloadDataBlock

Table B.12: Restrictions on the DDB

Field Restrictions Source

moduleld Module ids are unique within the scope |[DSM-CC
of the object carousel. See ISO/IEC
13818-6 [4], clause 11.2.3.

B.2.3 The object carousel

B.2.3.1 BIOP Generic Object Message

The BIOP Generic Object Message is a common structure used by all the BIOP (Broadcast Inter-ORB Protocol)
messages.

Table B.13: Restrictions on the BIOP Generic Object Message

Field Restrictions Source
MessageHeader::byte _order 0 (indicating big-endian byte order) DVB
MessageSubHeader::objectKey Maximum length of the key shall be DVB
four bytes.

MessageSubHeader::objectKind The short three-letter aliases shallbe |DVB
used, plus the null-terminator.

Access attributes Access attributes are not transmitted in [DSM-CC
object carousels

ETSI

66 ETSI TS 102 809 V1.1.1 (2010-01)

B.2.3.2 CORBA strings

In anumber of places object carousel messages include text strings. These are formatted in accordance with

clause 12.3.2 of CORBA/IIOP [9] and using the so-called "CDR-Lite" encoding as described by | SO/IEC 13818-6 [4],
clause 5.6.3.4. | .e. the text is preceded by an integer specifying the length of the string and followed by a null
terminator. The size of thisinteger depends on the string concerned and can be seen clearly in the syntax tables that
follow. However, for clarity CORBA format strings and the size of their length fields are summarized in table B.14.

Table B.14: Location of CORBA format strings

string length field size location
(bits)

objectKind_data 32 Table B.16 "BIOP::FileMessage syntax"
objectKind_data 32 Table B.19 "BIOP::DirectoryMessage syntax”
id_data 8
kind_data 8
objectKind_data 32 Table B.28 "BIOP::StreamMessage syntax”
objectKind_data 32 Table B. 30 "BIOP::StreamEventMessage syntax”
eventName_data 8
type_id_byte 32 Table B.21 "IOP::IOR syntax"
id_data 32 Table B.25 "Syntax of Lite Options Profile Body with
kind_data 32 ServicelLocation component”
B.2.3.3 BIOP FileMessage

The BIOP FileMessage is used for carrying file objects.

Table B.15: Restrictions on the BIOP File Message

Field Restrictions Source
MessageSubHeader::Objectinfo |The Objectinfo may be empty (have a length of zero). If not empty The present
the first 8 bytes of the Objectinfo shall contain the document

DSM::File::ContentSize attribute. This is optionally followed by a loop
of descriptors.

The descriptors defined for possible use in this location are:

Content type descriptor

MessageSubHeader::ServiceCo |The terminal may skip the possible serviceContextList structures.
ntextList

ETSI

67

ETSI TS 102 809 V1.1.1 (2010-01)

Table B.16: BIOP::FileMessage syntax

Syntax No. of bits | Identifier Value Comment
BIOP::FileMessage() {
magic 4x8 uimsbf 0x42494F50 |"BIOP"
biop_version.major 8 uimsbf 0x01 BIOP major version 1
biop_version.minor 8 uimsbf 0x00 BIOP minor version 0
byte order 8 uimsbf 0x00 Big endian byte ordering
message_type 8 uimsbf 0x00
message_size 32 uimsbf *
objectKey length 8 uimsbf N1 lto4
for (i=0; i<N1; i++) {
objectKey data 8 uimsbf +
}
objectKind_length 32 uimsbf 0x00000004
objectKind_data 4x8 uimsbf 0x66696C00 |"fil" type _id alias
objectinfo_length 16 uimsbf N2
DSM::File::ContentSize 64 uimsbf + objectinfo (note)
for (i=0; i<N2 - 8; i++) {
descriptor() 8 uimsbf +
serviceContextList count 8 uimsbf N3 serviceContextList
for (i=0; i<N3; i++) {
context_id 32 uimsbf
context_data_length 16 uimsbf N4
for (j=0; j<N4; j++) {
context_data_byte 8 uimsbf +
}
}
messageBody_length 32 uimsbf *
content_length 32 uimsbf N5
for (i=0; i<N5; i++) {
content_byte 8 uimsbf + actual file content
}
}
NOTE: If present and non-zero, this shall be the same as the content_length of the referenced FileMessage.
B.2.3.4 Content type descriptor

Zero or one content_type descriptors can be carried in the file M essageSubHeader:: Obj ectInfo or the

BIOP::Binding::ObjectInfo. Where more than one content_type_descriptor is used they shall express the same content
format. Also, the content type (if any) signalled in the directory binding shall be identical to that signalled in the bound
file's header. This optional descriptor identifies the mediatype of thefile.

This content type signalling only applies to objects of type file and is not appropriate for other object types.

The format of the content_type_descriptor is shown in table B.17.

Table B.17: Content type descriptor syntax

Syntax No. of bits | Identifier Value Comment

content_type_descriptor() {

descriptor_tag 8 uimsbf 0x72

descriptor_length 8 uimsbf

for (i=0; i<descriptor_length; i++) {

content_type_data_byte 8 uimsbf A MIME type

}

}

descriptor_tag: This 8-hit integer with value 0x72 identifies this descriptor.

descriptor_length: This 8-bit integer identifies the number of bytes following it.

ETSI

68 ETSI TS 102 809 V1.1.1 (2010-01)

content_type data byte: These bytes form a string that indicates the MIME content type of the object. The string is

specified as follows:

content_type data = type"/" subtype *(";" parameter)

Where type, subtype and parameter are as defined in section 5 of RFC 2045 [10] and hence content_type_data carries
the payload of the Content-Type header defined in RFC 2045 [10].

B.2.3.5 BIOP DirectoryMessage

The BIOP DirectoryMessage is used for carrying the directory objects.

Table B.18: Restrictions on the BIOP Directory Message

Field Restrictions Source
MessageSubHeader::Objectinfo |The terminal may skip the N2 possible bytes in the objectinfo The present
field. document
MessageSubHeader::ServiceCo |The terminal may skip the N3 possible serviceContextList The present
ntextList structures. document
BIOP::Name The name shall contain exactly one NameComponent. The The present
id_length shall be 2 or greater. The id_data shall not be document

replicated for other name components within this directory.

BIOP::Binding::BindingType

Either "ncontext” (in the case of a Directory object) or "nobject”
(in the case of a File or a Stream object). Binding type
"composite" shall not be used.

DvB

BIOP::Binding::Objectinfo

The Objectinfo for bound objects may be empty (have a length
of zero).

If the bound object is a file and the Objectinfo is not empty the
first 8 bytes of the Objectinfo shall contain the ContentSize
attribute. This is optionally followed by a loop of descriptors.
The descriptors defined for possible use in this location are:
Content type descriptor.

The present
document

ETSI

69

ETSI TS 102 809 V1.1.1 (2010-01)

Table B.19: BIOP::DirectoryMessage syntax

Syntax No. of bits Identifier Value Comment
BIOP::DirectoryMessage() {
magic 4x8 uimsbf 0x42494F50 |"BIOP"
biop_version.major 8 uimsbf 0x01 BIOP major version 1
biop_version.minor 8 uimsbf 0x00 BIOP minor version O
byte order 8 uimsbf 0x00 big endian byte ordering
message_type 8 uimsbf 0x00
message_size 32 uimsbf *
objectKey length 8 uimsbf N1 1to4
for (i=0; i<N1; i++) {
objectKey data 8 uimsbf +
}
objectKind_length 32 uimsbf 0x00000004
objectKind_data 4x8 uimsbf 0x64697200 |"dir" type_id alias
objectinfo_length 16 uimsbf N2 =0 (note) |objectinfo
for (i=0; i<N2; i++) {
objectinfo_data 8 uimsbf +
}
serviceContextList count 8 uimsbf N3 serviceContextList
for (i=0; i<N3; i+4+) {
context id 32 uimsbf
context_data_length 16 uimsbf N4
for (j=0; j<N4; j++) {
context_data_byte 8 uimsbf +
}
}
messageBody length 32 uimsbf *
bindings_count 16 uimsbf N5
for (i=0; i<N5; i++) { Binding
BIOP::Name() {
nameComponents_count 8 uimsbf N6 =1 See Table B.16.
for (i=0; i<N6; i++) {
id_length 8 uimsbf N7 NameComponent id
for (j=0; j<N7; j++) {
id_data 8 uimsbf + The "/" character shall not be
used.
}
kind_length 8 uimsbf N8 NameComponent kind
for (j=0; j<N8; j++) {
kind_data 8 uimsbf + as type_id (see Table 4-4 in
TR 101 202 [i.2])
}
}
}
BindingType 8 uimsbf + 0x01 for nobject
0x02 for ncontext
IOP::IOR() + objectRef see table B.21
objectinfo_length 16 uimsbf N9
if(kind_data == "fil"){
DSM::File::ContentSize 64 uimsbf + 0 means that file size is not
signalled
for (j=0; j<N9 - 8; j++) {
descriptor_byte 8 uimsbf +
}
}
else {
for (j=0; j<N9; j++) {
descriptor_byte 8 uimsbf +
}
}
}
}
NOTE: See item 2 under 11.3.2.2 "Directory Message Format" in the DSM-CC specification [4]: "the objectinfo field shall be

empty".

ETSI

70 ETSI TS 102 809 V1.1.1 (2010-01)

B.2.3.6 BIOP ServiceGateway message

The syntax of the BIOP ServiceGateway message isidentical to that of the BIOP DirectoryMessage (described above)
with the following exceptions:

e Theobject kindis"srg" rather than "dir".

e Useis made of the service context list.

B.2.3.7 BIOP Interoperable Object References

The Interoperable Object References (IOR) are references to objects and contain the necessary information to locate the
object. The IOR structure may contain different options to be able to point to objects that can be reached via different
types of connections. For the present document, the use of IORs is limited to references to objects carried in broadcast
object carousels. For object carousels, there are two types of object references. one to be used to reference objects
carried in the same object carousel and one to be used to reference objects in other object carousels.

Table B.20: Restrictions on the BIOP IOR

Field Restrictions Source
IOP::IOR::type_id Contains the objectKind of the referenced object. A short three- |The present
letter aliases shall be used, plus a null-terminator. document
IOP::10R::taggedProfileList There shall be at least 1 taggedProfile included in an IOR. For |The present
objects carried in a broadcast object carousel, the first document

taggedProfile shall be either a TAG_BIOP profile or a
TAG_LITE_OPTIONS.

If the first tagged profile is some other profile, the object is not
carried in a broadcast object carousel and the terminal may
ignore the object subject to its own capabilities.

Table B.21: IOP::IOR syntax

Syntax No. of bits | Identifier Value Comment
IOP::IOR {

type_id_length 32 uimsbf N1
for (i=0; i<N1; i++) {

type_id_byte 8 uimsbf + Short alias type_id (e.g.

"dir")

taggedProfiles_count 32 uimsbf N2 Profile bodies
I0OP::taggedProfile() For objects in broadcast

carousels: either
BIOPProfileBody or
LiteOptionsProfileBody

for (n=0; Nn<N2 - 1;n++) {

I0P::taggedProfile() Terminal may ignore
other profiles (2...N1) if
present

}
}
B.2.3.7.1 BiopProfileBody

The BiopProfileBody is used for references to objects within the same object carousel.

ETSI

71 ETSI TS 102 809 V1.1.1 (2010-01)

Table B.22: Restrictions on the BIOP Profile Body

Field Restrictions Source
BiopProfileBody::byte order 0 (indicating big-endian byte order) DVB
BiopProfileBody::LiteComponent |The list shall contain exactly 1 BiopObjectLocation and exactly |The present

1 DSM::ConnBinder as the first two components in that order. [document

The terminal may ignore possible other components in the list.

DSM::ConnBinder

For objects carried in the broadcast object carousel, the first
Tap shall be of type BIOP_DELIVERY_PARA_USE. If there is
another type of tap in the first position, the terminal may ignore
this object reference, as it is a reference for object accessed
using another type of protocol (e.g. for return channel use).
The terminal may ignore possible other taps in the list.

The present
document

DSM::Tap In the BIOP_DELIVERY_PARA_USE tap, the id field is not The present
used and may be ignored by the terminal. document

DSM::Tap::timeout This field is defined in units of us. An appropriate value must The present
be explicitly encoded by carousel generation equipment. There |document

is no default value that may be encoded, i.e. OXFFFFFFFF has
no special meaning. Receivers shall not employ an in-built
default instead of the signalled value, as there is no way to
define these without knowledge of the construction of a
particular carousel.

ETSI

72

ETSI TS 102 809 V1.1.1 (2010-01)

Table B.23: BIOP Profile Body syntax

Syntax No. of bits Identifier Value Comment
BIOPProfileBody {
profileld_tag 32 uimsbf 0x49534F06 |TAG_BIOP (BIOP Profile
Body)
profile_data_length 32 uimsbf *
profile_data_byte_order 8 uimsbf 0x00 big endian byte
order
lite_component_count 8 uimsbf N1
BIOP::ObjectLocation {
componentld_tag 32 uimsbf 0x49534F50 |TAG_ObijectLocation
component_data_length 8 uimsbf *
carouselld 32 uimsbf +
moduleld 16 uimsbf +
version.major 8 uimsbf 0x01 BIOP protocol major
version 1
version.minor 8 uimsbf 0x00 BIOP protocol minor
version 0
objectKey length 8 uimsbf N2 lto4
for (k=0; k<N2; k++) {
objectKey data 8 uimsbf +
}
}
DSM::ConnBinder {
componentld_tag 32 uimsbf 0x49534F40 |TAG_ConnBinder
component_data_length 8 uimsbf N4
taps_count 8 uimsbf N3
DSM::Tap {
id 16 uimsbf 0x0000 user private
use 16 uimsbf 0x0016 If
BIOP_DELIVERY_PARA
_USE is provided it shall
be the first tap.
If there is another type of
tap in the first position,
the terminal may ignore
this object reference, as it
is a reference for an
object accessed using
another type of protocol
(e.g. for return channel
use).
assocTag 16 uimsbf +
selector_length 8 uimsbf Ox0A
selector_type 16 uimsbf 0x0001
transactionld 32 uimsbf *
timeout 32 uimsbf *
}
for (n=0; N<N4 - 18; n++) { The terminal may skip
over the possible
additional taps
additional_tap_byte 8 uimsbf
}
}
for (n=0;n<N6;n++) { N6=N1 -2
BIOP::LiteComponent{
componentld_tag 32 uimsbf +
component_data_length 8 uimsbf N7
for (i=0; i<N7; i++) {
component_data_byte 8 uimsbf
}
}
}
}

ETSI

73 ETSI TS 102 809 V1.1.1 (2010-01)

B.2.3.7.2 LiteOptionsProfileBody

The LiteOptionsProfileBody is used for making links to objects carried in other object carousels.The
LiteOptionsProfileBody can be used to make references to objects carried in other carousel s within the same Transport
Streams or in other Transport Streams. The following constraints are put on the use of the LiteOptionsProfileBody;

. LiteOptionsProfileBody references shall never be used in an IOR which isin the DSI referencing the service
gateway.

e Thetarget carousel is never mounted automatically by the implementation.

e The platform specification may define rules for when a LiteOptionsProfileBody is encountered.

Table B.24: Restrictions on the Lite Options Profile Body

Field Restrictions Source
LiteOptionsProfileBody::profile_d |0 (indicating big-endian byte order) DVB
ata_byte order
LiteOptionsProfileBody::LiteOptio |The list shall contain a ServiceLocation component as the first |The present
nComponents component. The terminal may ignore possible other document

components in the list.

DSM::ServicelLocation For objects carried in the broadcast object carousel, the service |The present
domain NSAP address shall follow the Carousel NSAP address |document
format.

DSM::ServiceLocation::InitialCon |The terminal may ignore the initial context The present

text document

ETSI

74

ETSI TS 102 809 V1.1.1 (2010-01)

Table B.25: Syntax of Lite Options Profile Body with ServiceLocation component.

Syntax No. of bits Identifier Value Comment
LiteOptionsProfileBody {
profileld_tag 32 uimsbf 0x49534F05 |TAG_LITE_OPTIONS
(Lite Options Profile Body)
profile_data_length 32 uimsbf *
profile_data_byte order 8 uimsbf 0x00 big endian byte order
lite_component_count 8 uimsbf N1
DSM::ServiceLocation {
componentld_tag 32 uimsbf 0x49534F46 |TAG_ServiceLocation
component_data_length 8 uimsbf *
serviceDomain_length 8 uimsbf 0x14 Length of carousel NSAP
address
serviceDomain_data() 160 uimsbf + See table B.26
CosNaming::Name() { pathName
nameComponents_count 32 uimsbf N2
for (i=0; i<N2; i++) {
id_length 32 uimsbf N3 NameComponent id
for (j=0; j<N3 j++) {
id_data 8 uimsbf +
}
kind_length 32 uimsbf N4 NameComponent kind
for (j=0; j<N4 j++) {
kind_data 8 uimsbf + as type_id (see table 4.4
in TR 101 202 [i.2])
}
}
}
initialContext_length 32 uimsbf N5
for (n=0; N<N5 n++) {
InitialContext_data_byte 8 uimsbf
}
}
for (n=0;n<N6;n++) { N6=N1-1
BIOP::LiteComponent{
componentld_tag 32 uimsbf +
component_data_length 8 uimsbf N7
for (i=0; i<N7; i++) {
component_data_byte 8 uimsbf
}
}
}
}

ETSI

75 ETSI TS 102 809 V1.1.1 (2010-01)

Table B.26: DVB Carousel NSAP Address

Syntax No. of bits Identifier Value Comment
DVBcarouseINSAPaddress {
AFI 8 uimsbf 0x00 NSAP for private use
type 8 uimsbf 0x00 Object carousel NSAP
Address.
carouselld 32 uimsbf + To resolve this reference
a carousel_identifier_
descriptor with the same
carousel_id as indicated
in this field must be
present in the PMT
signalling for the service
identified below.
specifierType 8 uimsbf 0x01 IEEE OUI
specifierData { IEEE OUI } 24 uimsbf 0x00015A Constant for DVB OUI
dvb_service_location () {
transport_stream_id 16 uimsbf + This may be set to
0x0000 which indicates
that the terminal shall not
use the
transport_stream_id when
locating the service. For
any other value then this
field shall be used.
original_network_id 16 uimsbf +
service_id 16 uimsbf + (= MPEG-2
program_number)
reserved 32 bslbf OXFFFFFFFF
}
}
B.2.3.8 BIOP StreamMessage
Table B.27: Restrictions on the BIOP Stream Message
Field Restrictions Source
MessageSubHeader::Objectinfo |The Objectinfo field contains the DSM::Stream::Info_T structure |The present
and optionally other data after the Stream Info structure. document

Terminals may ignore the aDescription_bytes in the
DSM::Stream::Info_T structure and the possible other object
info data following the structure. Broadcasts may set the
duration field to zero to indicate undefined duration.

MessageSubHeader::ServiceCo

The terminal may skip the possible serviceContextList

The present

ntextList structures. document
MessageSubHeader::MessageB |The MessageBody carries a sequence of taps. The present
ody There shall be at most one tap of use BIOP_PROGRAM_USE. |document

This tap identifies the service that provides the media stream
associated with the Stream object (via a
deferred_association_tags_descriptor in the PMT). The tap may
only reference programs that are broadcast on the same
multiplex (i.e. terminals shall not need to tune to a different
multiplex in order to receive the referenced media stream).
There shall also be at most one tap with use STR_NPT_USE or
STR_DVBTIMEL_USE indicating a timebase to be associated
with the Stream object. Taps with use STR_DVBTIMEL_USE
shall be interpreted according to clause B.2.3.10.

Terminals may ignore possible other Taps (such as
BIOP_ES_USE).

NOTE: Use of NPT is obsolete and not defined in the present document.

ETSI

76

ETSI TS 102 809 V1.1.1 (2010-01)

Table B.28: BIOP::StreamMessage syntax

Syntax No. of bits Identifier Value Comment
BIOP::StreamMessage() {
magic 4x8 uimsbf 0x42494F50 |"BIOP"
biop_version.major 8 uimsbf 0x01 BIOP major version 1
biop_version.minor 8 uimsbf 0x00 BIOP minor version 0
byte order 8 uimsbf 0x00 big endian byte ordering
message_type 8 uimsbf 0x00
message_size 32 uimsbf *
objectKey length 8 uimsbf N1 lto4
for (i=0; i<N1; i++) {
objectKey data 8 uimsbf +
}
objectKind_length 32 uimsbf 0x00000004
objectKind_data 8 uimsbf 0x73747200 |"str" type_id alias
objectinfo_length 16 uimsbf N2
DSM::Stream::Info_T { uimsbf objectinfo
aDescription_length 8 uimsbf N3 aDescription
for (i=0; i<N3; i++) {
aDescription_bytes 8 uimsbf +
}
duration.aSeconds 32 simsbf + may be set to 0 to
indicate undefined
duration.aMicroSeconds 32 uimsbf + may be set to 0 to
indicate undefined
audio 8 uimsbf + Flag: 0x00 = false,
non-zero = true.
video 8 uimsbf + Flag: 0x00 = false,
non-zero = true.
data 8 uimsbf + Flag: 0x00 = false,
non-zero = true.
}
for (i=0; i<N2-(N3+10); i++) {
objectinfo_byte 8 uimsbf +
}
serviceContextList_count 8 uimsbf N4 serviceContextList
for (i=0; i<N4; i++) {
context_id 32 uimsbf
context_data_length 16 uimsbf N5
for (j=0; j<N5; j++) {
context_data_byte 8 uimsbf +
}
}
messageBody length 32 uimsbf *
taps_count 8 uimsbf N6
for (i=0; i<N6; i++) {
id 16 uimsbf (note) see clause B.2.4.4
use 16 uimsbf + see clause B.2.3.10 and
table 4.12 in DVB
Guidelines for Data
Broadcasting [i.2]
assocTag 16 uimsbf +
selector_length 8 uimsbf 0x00 no selector
}
}
NOTE: If the tap use is STR_DVBTIMEL_USE then the value of this 16 bit integer corresponds to the value of the

broadcast_timeline_id field of the DVB Timeline that defines the timebase for this stream. For other values of
tap use the value of this field is undefined.

ETSI

77 ETSI TS 102 809 V1.1.1 (2010-01)

B.2.3.9 BIOP StreamEventMessage

Table B.29: Restrictions on the BIOP StreamEvent Message

Field Restrictions Source
MessageSubHeader::Objectinfo |The Objectinfo field contains the DSM::Stream::Info_T and The present
DSM::Stream::EventList_T structures followed optionally by document

other object info data (which may be ignored by terminals).
See table B.27 regarding the DSM::Stream::Info_T. Terminals
may ignore the possible other data following the
DSM::Stream::EventList_T.

The EventList_T defines a sequence of event names that
correlates to the sequence of event ids in the MessageBody.
eventNames_count shall equal eventlds_count.

MessageSubHeader::ServiceCo |The terminal may skip the possible serviceContextList The present
ntextList structures. document
MessageSubHeader::MessageB |The MessageBody carries a sequence of taps followed by a The present
ody sequence of event ids. document

The sequence of taps follows the following rules:

e There shall be at most one tap of use
BIOP_PROGRAM_USE. This tap identifies the service
that provides the media stream associated with the
Stream object (via a
deferred_association_tags_descriptor in the PMT).
The tap may only reference programs that are
broadcast on the same multiplex (i.e. terminals shall
not need to tune to a different multiplex in order to
receive the referenced media stream).

e There shall be at most one tap with use
STR_NPT_USE or STR_DVBTIMEL_USE indicating a
timebase to be associated with the StreamEvent
object. Taps with use STR_NPT_USE shall be
interpreted as described in ISO/IEC 13818-6 [4]. Taps
with use STR_DVBTIMEL_USE shall be interpreted
according to clause B.2.3.10.

e There shall be at most one tap with use
STR_EVENT_USE
STR_STATUS_AND_EVENT_USE or
STR_DVBEVENT_USE. This tap indicates the PID
where event data relating to the StreamEvent object is
broadcast. Terminals may ignore possible other taps
(such as BIOP_ES USE).

NOTE:The use of NPT is obsolete and is not defined in the present document.

ETSI

78

ETSI TS 102 809 V1.1.1 (2010-01)

Table B. 30: BIOP::StreamEventMessage syntax

Syntax No. of bits Identifier Value Comment
BIOP::StreamEventMessage() {
magic 4x8 uimsbf 0x42494F50 |"BIOP"
biop_version.major 8 uimsbf 0x01 BIOP major version 1
biop_version.minor 8 uimsbf 0x00 BIOP minor version 0
byte_order 8 uimsbf 0x00 big endian byte ordering
message_type 8 uimsbf 0x00
message_size 32 uimsbf *
objectKey length 8 uimsbf N1
for (i=0; i<N1; i++) {
objectKey data 8 uimsbf +
}
objectKind_length 32 uimsbf 0x00000004
objectKind_data 4x8 uimsbf 0x73746500 |"ste" type_id alias
objectinfo_length 16 uimsbf N2
DSM::Stream::Info_T { uimsbf
aDescription_length 8 uimsbf N3 aDescription
for (i=0; i<N3; i++) {
aDescription_bytes 8 uimsbf + see BIOP StreamMessage
}
duration.aSeconds 32 simsbf + see BIOP StreamMessage
duration.aMicroSeconds 32 uimsbf + see BIOP StreamMessage
audio 8 uimsbf + see BIOP StreamMessage
video 8 uimsbf + see BIOP StreamMessage
data 8 uimsbf + see BIOP StreamMessage
}
DSM::Event::EventList_T {
eventNames_count 16 uimsbf N4
for (i=0; i<N4; i++) {
eventName_length 8 uimsbf N5
for (j=0; j<N5; j++) {
eventName_data 8 uimsbf + (including zero terminator)
}
}
}
for (i=0; i<N2 - (N3 + 14 + N4 + sum(N5));
i++) {
objectinfo_byte 8 uimsbf +
}
serviceContextList_count 8 uimsbf N6
for (i=0; i<N6; i++) {
context_id 32 uimsbf
context_data_length 16 uimsbf N7
for (j=0; j<N7; j++) {
context_data_byte 8 uimsbf +
}
}
messageBody length 32 uimsbf *
taps_count 8 uimsbf N8
for (i=0; i<N8; i++) {
id 16 uimsbf (note) see B.2.4.4
use 16 uimsbf + see clause B.2.3.10 and
table 4.12 in DVB
Guidelines for Data
Broadcasting [i.2]
assocTag 16 uimsbf +
selector_length 8 uimsbf 0x00 no selector
}
eventlds_count 8 uimsbf N4 (= eventNames_count)
for (i=0; i<N4; i++) {
eventld 16 uimsbf +
}
}

ETSI

79 ETSI TS 102 809 V1.1.1 (2010-01)

Syntax | No. of bits [Identifier | Value | Comment

NOTE: If the tap use is STR_DVBTIMEL_USE, the value of this 16-bit integer corresponds to the value of the
broadcast_timeline_id field of the DVB Timeline that defines the timebase for this stream. If the tap use is
STR_DVBEVENT_USE, the value of this 16-bit integer field corresponds to the value of the
synchronised_event_context of all events relevant to this stream. For other values of tap use the value of this
field is undefined.

B.2.3.10 Additional tapUse values

Two additional tapUse values are defined for use in referencing DVB synchronised auxiliary data TS 102 823 [13] from
an Object Carousel as shown in table B.31.

Table B.31: tapUse values for referencing DVB synchronised auxiliary data

tapUse Value
STR_DVBTIMEL_USE 0x8000
STR_DVBEVENT_USE 0x8001

The semantics of the fields of a Tap pointing to aDVB broadcast_timeline_descriptor are described below:
e Theusefield indicates the use of the Tap. The value of thisfield shall be STR_DVBTIMEL_USE.
e Thevaueof theid field shall specify the broadcast_timeline id of the timeline to be referenced.
e TheassocTag identifies the connection on which the broadcast_timeline_descriptor is broadcast.
e Theselector field shall be empty.
The semantics of the fields of a Tap pointing to aDVB synchronised_event_descriptor are described below:
e Theusefield indicates the use of the Tap. The value of thisfield shall be STR_DVBEVENT_USE.
e Thevaueof theid field shall specify the synchronised event_context of the eventsto be referenced.
e TheassocTag identifies the connection on which the synchronised_event_descriptors are broadcast.

e Theselector field shall be empty.

B.2.4 Broadcast timebases and events

Terminals may support DVB Timeline for broadcast timebase delivery.
Terminals are also required to support broadcast events as follows:

. DSM-CC scheduled stream events. These are defined with reference to a broadcast timebase defined using
either DSM-CC NPT or the DVB Timeline mechanism.

. DSM-CC "do it now" stream events. These are stand-al one events that are independent of a broadcast
timebase.

. DVB synchronised events. These are stand-alone events that are independent of a broadcast timebase but
which can provide much greater temporal accuracy than DSM-CC "do it now" events.

The BIOP StreamM essage and StreamEventM essage are used within aDSM-CC object carousdl to reference timebases
and to define events. A BIOP StreamM essage can only be used to reference a broadcast timebase. A BIOP
StreamEventM essage can be used to define broadcast events with or without reference to a broadcast timebase.

ETSI

80 ETSI TS 102 809 V1.1.1 (2010-01)

NOTE 1: The NPT mechanism and scheduled stream events that depend on it are known to be vulnerable to
disruption in many digital TV distribution networks. Existing deployed network equipment that re-
generates the STC is unlikely to be aware of NPT and hence will not make the necessary corresponding
modification to STC valuesinside NPT reference descriptors. This may cause stream events scheduled
against NPT to fire at the wrong time or to never fire at all. Applications should only use scheduled
stream events with NPT when they are confident that the network where they are to be used does not have
this problem. DVB Timeline, DSM-CC "do it now" events and events carried within DV B synchronised
auxiliary data offer more reliable alternatives to NPT.

NOTE 2: The use of NPT is obsolete and is not defined in the present document.

B.2.4.1 Stream and StreamEvent messages

B.2.4.1.1 Association with time bases

Theid field of the STR_DVBTIMEL_USE tap of a StreamMessage or StreamEventM essage identifies the timebase
associated with that Stream/StreamEvent object. Multiple StreamMessage or StreamEventMessage may be used at the
same time to allow subscriptions to multiple timebases of the same service. See clause B.2.4.4 "Broadcast timebases'.

B.2.4.1.2 Event names and event IDs

In StreamEventM essages the EventList_T defines a sequence of event names that correlates 1:1 to the sequence of
event IDs in the MessageBody. Within each BIOP:: StreamEventM essage the event names uniquely associate to event
ID values.

e TheeventNames count shall equal eventlds count.
e Thenamesinthe EventList_T are zero-terminated strings.

e TheeventID valuesin the StreamEventMessage correspond to the eventID values carried in
StreamEventDescriptors or the synchronised_event_id valuesin DVB synchronised _event descriptors.

B.2.4.1.3 Stream event life time

In StreamEventM essages the set of events described in the BIOP:: StreamEvent message is possibly a subset of the
events that may be used by the application during the course of a programme. Therefore, applications may need to
accommodate the dynamic change of such messages. Cache transparency (see clause B.5.2.1 "Transparent caching")
and version listener mechanisms provide applications with the means to do this.

Similarly the set of stream event descriptors being transmitted at any time may not correspond to the set of events
described in the BIOP:: StreamEventM essage.

The event ID for an event name shall not change while the name exists. If anameisremoved it shall not be
reintroduced within 60 seconds.

B.2.4.2 Stream descriptors

B.2.4.2.1 NPT reference descriptor

NOTE: Theuseof NPT isobsolete and is not defined in the present document.
B.2.4.2.2 Stream event descriptor

B.2.4.2.2.1 Association of event ids to event time

Where the timebase for a scheduled stream event is provided by NPT, the eventNPT field conveysthe NPT value at
which the event will occur (or has occurred). Where the timebase for an event is provided by DVB Timeline, the
eventNPT field conveys the tick value at which the event will occur (or has occurred) and shall be interpreted in units of
thetick rate used to define the DVB Timeline.

ETSI

81 ETSI TS 102 809 V1.1.1 (2010-01)

Each StreamEventDescriptor provides a single association between an eventID and an eventNPT. If the terminal detects
achange in the eventNPT associated with a value of eventl D this redefines the time at which the event should fire.

Terminals shall ignore scheduled events where the eventNPT has passed.
See also clause B.2.4.2.2.3 "Signalling of "do it now events".

NOTE: Theuse of NPT isobsolete and is not defined in the present document.

B.2.4.2.2.2 Re-use of event ids

Event ID values may be re-used any number of times. For example, after an event has fired then stream event
descriptors with the same eventI D but different eventNPT may be broadcast.

B.2.4.2.2.3 Signalling of "do it now events"
ISO/IEC 13818-6 [4] is silent on the broadcast signalling of "do it now" events.

These events shall be identified by the value of eventI D and hence table id extension (see clause B.2.4.3.5 "Encoding of
tableid extension").

Where the value of eventID identifiesa"do it now" event then the value of eventNPT shall be ignored by the terminal.

B.2.4.2.2.4 Private data

The contents of the privateDataByte field do not need to be interpreted by the terminal. However, the application can
access the privateDataByte field using the org.dvb.dsmcc. StreamEvent.getEventData method.

B.2.4.2.3 Unused descriptors
Terminals may ignore the following descriptors if present:
. NPT Endpoint descriptor.

. Stream Mode descriptor.
B.2.4.3 DSM-CC sections carrying stream descriptors

B.2.4.3.1 Section version number

The section version number field increments to reflect changesin stream descriptor(s) carried by sections with the same
value of table_id (0x3D) and table_id_extension.

The version number shall increment for reasons including the change in value of eventNPT for a given eventld.

B.2.4.3.2 Single firing of "do it now" events

Terminals shall respond to the first instance of a"do it now" event detected under a particular combination of tableid,
table id extension and version number. Reception of subsequent copies of the particular event shall be ignored until a
different version number is detected.

B.2.4.3.3 Section number

For the present document terminals shall only consider section number zero.

B.2.4.3.4 DSM-CC sections for DSMCC_descriptor_list()
If thetable id field equals 0x3D the current_next_indicator bit shall be set to "1".

ETSI

82 ETSI TS 102 809 V1.1.1 (2010-01)

B.2.4.3.5 Encoding of table id extension

The section's table id extension field provides information on the stream descriptor(s) carried by the section:

Table B.32: Encoding of table id extension for DSMCC_descriptor_lists

table_id_extension bits Payload of DSM-CC section with table ID 0x3D
[15] [14] [13 to O]

0 0 eventlD[13 to 0] Section carries a single "do it now" event.

0 1 XX XXXX XXXX XXXX Section carries NPT reference descriptors

1 0 XX XXXX XXXX XXXX Section carries one or more other stream descriptors. l.e
- Stream event descriptor(s) with a future eventNPTs
- Stream mode descriptor (can be ignored in the present document)
- NPT endpoint descriptor (can be ignored in the present document)

1 1 reserved for future use

NOTE: The use of NPT is obsolete and is not defined in the present document.

The value of eventID for "do it now" events shall be in the range 0x0001 to Ox3FFF. The value of eventID for
scheduled events shall be in the range 0x8000 to OXBFFF. The value 0 is not allowed (see clause 5.5.2.2.1in
ISO/IEC 13818-6 [4]).

B.2.4.4 Broadcast timebases

Multiple concurrent timebases may be defined for a single MPEG program but only a single time base is alowed to
progress at any instant (the other timebases shall be paused). Timebases can be provided by two means: DSM-CC NPT
and DVB Timeline.

NOTE: Useof DSM-CC NPT is obsolete and not defined in the present document.

B.2.4.4.1 DVB Timeline (Optional)

The relationship between each DVB Timeline and the MPEG timebase (STC) is defined using the
broadcast_timeline_descriptor carried in DVB Synchronised Auxiliary Data TS 102 823 [13]. The
broadcast_timeline_id field of the broadcast_timeline_descriptor (an 8-bit unsigned integer) identifies the timebase.

The value of theid field of the STR_DVBTIMEL_USE tap (a 16-bit unsigned integer) of a StreamM essage or
StreamEventM essage identifies the timebase associated with that Stream/StreamEvent object. Multiple StreamM essages
or StreamEventM essages may be used at the same time to allow subscriptions to multiple timebases of the same service.

In this profile, broadcast_timeline_descriptors can indicate two states:
. Non-paused. The running_status field set to "Running"”.
. Paused. The running_status field set to "Paused".

The DVB Timeline referenced may be defined using either the direct or offset encoding method specified in
TS 102 823[13].

Descriptors other than the broadcast_timeline_descriptor may be present within the Synchronised Auxiliary Data
stream. Terminal s shall skip descriptors which they do not support and continue processing the next descriptor. Not
supported descriptors include those defined but not supported (e.g. the TVA_id descriptor in devices not required to
support that descriptor by another specification) and descriptors whose tag value is either reserved or user private. See
also clause B.2.4.5.3.

The Synchronised Auxiliary Data specification TS 102 823 [13] describes the management of DVB Timeline
discontinuities.

Terminals shall comply with the recommendations for receiversin clause D.5 of TS 102 823 [13] including those
defined by "should" in that clause. Terminals shall not fire events synchronised to a DV B Timeline in circumstances
where the state of the timeline is unknown or where the timeline has been removed from the PMT of the servicein
whichitis carried.

ETSI

83 ETSI TS 102 809 V1.1.1 (2010-01)

B.2.4.5 Broadcast events

B.2.4.5.1 DSM-CC "do it now" stream events

Terminals shall support DSM-CC "do it now" stream events as defined in clause B.2.4.2.2. This provides a means for
delivering stand-alone events without the need for a broadcast timebase.

Asthese events are delivered in the payload of an MPEG Section, they cannot be accurately synchronised with linear
media streams.

B.2.4.5.2 DSM-CC scheduled stream events

Terminals shall support DSM-CC scheduled stream events as defined in clause B.2.4.2.2. These are defined with
reference to a broadcast timebase defined using either the DVB Timeline mechanism.

For DSM-CC scheduled stream events, the following usage scenarios are envisaged:

e A single continuous timebase (i.e. asingle progressing value of time) can be used. In this case, the broadcast is
logically a single continuing interactive production, and the broadcaster is responsible for pre-processing the
applications, etc. before broadcast to ensure that they are suitable.

e Thesignal received by the terminal can include a unique timebase for each programme needing one. This
timebase could be suspended during any insertion into a programme and discontinued at the end of the
programme.

B.2.4.5.3 DVB synchronised events

Terminals shall support DVB synchronised events as defined by TS 102 823 [13]. This mechanism allows for the
accurate generation of events without the need for a timebase.

DVB synchronised events are defined using the synchronised _event_descriptor.

The synchronised_event_context field of this descriptor identifies the application-specific context for a set of events and
isreferenced using the id field of the STR_DVBEVENT_USE tap of a DSM-CC StreamEventM essage.

The contents of the synchronised_event_data_byte field does not need to be interpreted by the terminal. However, the
application can access the synchronised_event_data byte field using the org.dvb.dsmcc. StreamEvent.getEventData
method.

Terminals shall support the cancellation of DVB synchronised events that have not yet fired using the
synchronised_event_cancel _descriptor.

Cancellation shall be supported for individual events and for sets of events with acommon
synchronised_event_context.

Descriptors other than the synchronised_event_descriptor and synchronised_event_cancel _descriptor may be present
within the Synchronised Auxiliary Data stream. Terminals shall skip descriptors which they do not support and continue
processing the next descriptor. Not supported descriptors include those defined but not supported (e.g. the TVA _id
descriptor in devices not required to support that descriptor by another specification) and descriptors whose tag value is
either reserved or user private. See also clause B.2.4.4.2.

DVB synchronised events have a specified presentation time, determined by the presentation timestamps of the
auxiliary data structures carrying synchronised_event_descriptors and the reference_offset_ticks field of the
synchronised_event_descriptors. As such, the events are synchronised to a point in time within linear media streams
such as video or audio. Receivers shall deliver events to applications timed so asto retain this synchronisation with the
linear media.

ETSI

84 ETSI TS 102 809 V1.1.1 (2010-01)

B.2.4.6 Monitoring broadcast timebases and events

B.2.4.6.1 Timebase reference monitoring

When applications have registered for timebase stimulated events, the terminal shall allocate resources sufficient to
ensure that updates to the set of timebasesis detected. The time within which updates will be detected is application
type dependent.

B.2.4.6.2 Timebase stimulated event monitoring

When applications have registered for timebase stimulated events the terminal shall all ocate resources sufficient to
ensure that updates to the set of timebase stimulated events is detected. The time within which updates will be detected
is application type dependent. So, if an event isintroduced or the time at which it is specified to fire is changed then the
terminal will respect this change within the period specified. If the fire time for an event changes less than this period
before it was previoudy scheduled to fire then there is no guarantee that all receivers will detect the change in time.

Thereceiver shall deactivate any event listeners dependant on atimebase (and may free resources associated with those
listeners) if:

e thetimebaseisan NPT timebase and it is deleted (reference to it is removed from the set of
NPT ReferenceDescriptors);

e thetimebaseisan NPT timebase and a discontinuity is detected in that timebase;
. a service selection operation changes the current service.

NOTE: Theuse of NPT is obsolete and is not defined in the present document.

B.2.4.6.3 DSM-CC "do it now" stream events

"do it now" events are single shot events, accordingly terminals need to make special efforts to ensure a high probability
that they can be reliably received.

For each application, the terminal is not required to monitor more than a single component delivering "do it now"
stream events. So, if events from more than one DSM-CC StreamEventM essage are subscribed to no more than one
stream component shall be specified as the source of StreamEventDescriptors carrying "do it now" events (i.e. the taps
with use STR_EVENTUSE or STR_STATUS AND_EVENT_USE shall have the same value when referring to "do it
now" events).

Terminals shall dedicate a section filter to monitoring the possible transmission of "do it now" events while there are
any applications subscribed to these events.

B.2.4.6.4 DSM-CC scheduled stream events

The stream descriptors for scheduled events are transmitted several timesin the period before the time that they should
fire. This allows a high probability that they will be effective even if they are not monitored continuously by the
terminal.

Any scheduled stream event descriptors shall be transmitted at least once each second.

Terminals shall raise an event in response to a scheduled stream event provided that the stream event descriptors are
broadcast for at least 5 seconds before the scheduled time.

For each application, the terminal is not required to monitor more than a single component delivering scheduled stream
events. So, if events from more than one DSM-CC StreamEventM essage are subscribed to no more than one stream
component shall be specified as the source of StreamEventDescriptors carrying scheduled events (i.e. the taps with use
STR_EVENT_USE or STR_STATUS AND_EVENT_USE shall have the same value when referring to scheduled
events).

NOTE: Scheduled and "do-it-now" stream events can be carried on different stream components. The terminal is
required to be able to monitor one stream of each.

ETSI

85 ETSI TS 102 809 V1.1.1 (2010-01)

B.2.4.6.5 Number of timebase components

The terminal is only required to monitor a single timebase component. So, if events from more than one DSM-CC
StreamEventM essages are subscribed, each StreamEventM essage that references a timebase shall reference the same
type (NPT or DVB Timeline) and shall containa STR_NPT_USE or STR_DVBTIMEL_USE tap specifying the same
association tag.

NOTE: Theuse of NPT isobsolete and is not defined in the present document.

B.2.4.6.6 DVB synchronised events

DVB synchronised events are transient events (i.e. only broadcast for a short period of time). Accordingly, terminals
need to make special effortsto ensure a high probability that they can be reliably received.

For each application, the terminal is not required to monitor more than a single component delivering DVB
synchronised events. So, if events from more than one DSM-CC StreamEventM essage are subscribed to, no more than
one stream component shall be specified as the source of DV B synchronised events (i.e. the taps with use
STR_DVBEVENT_USE shall have the same value of assocTag).

Terminals shall dedicate afilter to monitoring the possible transmission of such events while there are any applications
subscribed to them.

Terminals are not required to monitor DSM-CC "do it now" stream events at the same time as monitoring DVB
synchronised events.

B.2.5 Assignment and use of transactionld values

B.25.1 Informative background

The use of the transactionld in the object carousel isinherited from its use as defined by the DSM-CC specification, and
as such it can appear somewhat complex. The transactionld has adual role, providing both identification and versioning
mechanisms for control messages, i.e. Downloadl nfol ndication and DownloadServerInitiate messages. The
transactionld should uniquely identify a download control message within a data carousel, however it should be
"incremented" whenever any field of the message is modified.

NOTE: Theterm"incremented” isused in the DSM-CC specification. Within the scope of the present document
this should be interpreted as "changed".

The object carousel is carried on top of one or more data carousels. By a data carousel used below the object carousel,
we mean in the present document a set of Downl oadl nfol ndication message transmitted on asingle PID and the
DownloadDataBlock messages carrying the modules described in the Downloadl nfol ndication messages. The
DownloadDataBlock messages may be spread on other elementary streams than the Downl oadl nfol ndi cation messages.
The DownloadServerlnitiate message in the context of object carouselsis considered to be part of the top level of the
object carousel and not associated with any data carousel.

When a module is changed, the version number of the module needs to be changed. Thisimplies that the

Downloadl nfol ndication message that references the module needs to be also updated. Since the
Downloadinfolndication is updated, the transactionld needs to be also changed. However, the transactionld of the
Downloadlnfol ndication message is used in other messages also, but the need to change the other messages should
specifically be avoided and the implications of updating a module should be limited to the module itself and the
Downloadlinfolndication that references the module. Therefore, additional rules on the usage of the transactionld have
been specified as follows.

B.2.5.2 DVB semantics of the transactionld field

The transactionld has been split up into a number of sub-fields defined in Table B.33. This reflects the dual role of the
transactionld (outlined above) and constraints imposed to reduce the effects of updating a module. However, to increase
interoperability the assignment of the transactionld has been designed to be independent of the expected filtering in
target terminals.

ETSI

86 ETSI TS 102 809 V1.1.1 (2010-01)

Table B.33: Sub-fields of the transactionld

Bits Value Sub-field Description
0 User-defined Updated flag This must be toggled every time the control message is updated
1to 15 User-defined Identification This must and can only be all zeros for the DownloadServerlnitiate

message. All other control messages must have one or more
non-zero bhit(s).

16 to 29 User-defined Version This shall be incremented every time the control message is
updated. The value by which it is incremented should be one.
30to 31 Bit 30 — zero Originator This is defined in the DSM-CC specification ISO/IEC 13818-6 [4]
Bit 31 - non-zero as 0x02 if the transactionld has been assigned by the network - in

a broadcast scenario this is implicit.

Dueto therole of the transactionld as a versioning mechanism, any change to a control message will cause the
transactionld of that control message to be incremented. Any change to a module will necessitate incrementing its
moduleVersion field. This change must be reflected in the corresponding field in the description of the modulein the
Downloadl nfol ndication message(s) that describesit. Since afield in the Downloadl nfol ndication message is changed
its transactionld must be incremented to indicate a new version of the message. Also, any change in the
DownloadServerlnitiate message implies that its transactionld must also be incremented. However, when the
transactionld is divided into subfields as specified above, updating a message will change only the Version part of the
transactionld while the Identification part remains the same.

Since the transactionld is used aso for identifying the messages when referencing the messages in other structures, it is
very desirable that these referenced would not need to be updated every time the control message is update. Therefore
the following rule shall be applied when locating the messages based on the references:

When locating a message based on the transactionld value used for referencing the message, only the
I dentification part (bits 1 to 15) shall be matched.

Using thisrule, the implications of updating a module can be limited to the module itself and the

Downloadl nfol ndication message describing the module. Also, thisimpliesthat if aterminal wantsto find out if a
particular module that it has retrieved earlier has changed, it needs to filter the Downloadl nfol ndication message that
described that module and check if it has been changed.

B.2.6 Mapping of objects to data carousel modules

DSM-CC object carousels allow one or more objects to be carried in one module of the data carousel. In order to
optimize the performance and memory requirements three additional requirements are specified:

e When mapping objects to modules of a data carousel, only closely related objects should be put into one
module. Objects that are not closely related should not be put into the same module. If in the process of
retrieving an object from the carousel aterminal acquires a module containing multiple objects, it should
attempt to cache these since the expectation should be that the other objects are related to the object requested
and probably will be needed soon.

e Thesize of amodule that contains multiple objects should not exceed 65 536 bytes when decompressed
(i.e. when the file has been decompressed from the file transport but before the content decoding has started).
Terminals complying to the present document are only required to handle modules containing multiple objects
where the module size when decompressed is 65 536 bytes or less. Modules containing a single file message
can exceed 65 536 bytes with upper size only limited by the memory resourcesin the terminal.

. In addition to the limitations imposed by the 65 536 byte limit, directory and service gateway messages are
limited to 512 object bindings per message.
B.2.7 Compression of modules
The modules may be transmitted either in uncompressed or compressed form. If the module is transmitted in

compressed form, thisis signalled by including the compressed_module_descriptor in the userinfo field of the
modulel nfo in the Downloadl nfol ndication message.

ETSI

87 ETSI TS 102 809 V1.1.1 (2010-01)

Table B.34 shows the syntax of the compressed module_descriptor:

Table B.34: compressed_module_descriptor

No. of bits Identifier Value
compressed_module_descriptor(){
descriptor_tag 8 uimsbf 0x09
descriptor_length 8 uimsbf
compression_method 8 uimsbf
original_size 32 uimsbf
}

Presence of the compressed_module_descriptor indicates that the data in the module has the "zlib" structure as defined
in RFC 1950 [11].

The terminal shall support the Deflate compression algorithm as specified in RFC 1951 [12]. Thisis signalled by setting
the least significant nibble of the compression_method to 0x8 (i.e. compression_method is xxxx1000). The termina is
not required to support other compression algorithms.

B.2.8 Mounting an object carousel

The ServiceGateway object is the root directory of the file system delivered by an object carousel and must be acquired
before any other object can be downloaded. This may be achieved by two compatible mechanisms. The signalling of
which mechanisms are being supported by a broadcast is provided by the carousel _identifier_descriptor.

In the present document the use of the carousel _identifier_descriptor for signalling is mandatory in the second
descriptor loop of aPMT (corresponding to a PID on which the DSI message for an object carousel is broadcast, i.e. the
boot-PID). The consequenceisthat if aPMT second descriptor loop contains a data_broadcast_id_descriptor that
provides signalling for the present document, it shall also contain a carousel_identifier_descriptor.

NOTE: A single PID only contains messages from a single Object Carousel and so only one
carousel_identifier_descriptor is present in any second descriptor loop. However, a single service may
contain more than one object carousel. Consequently, the carousel_identifier_descriptor may appear more
than once in any single PMT.

The acquisition of the ServiceGateway object may be viathe standard DSI-DII mechanism. This shall be supported by
all broadcasts regardless of signalling in the carousel _identifier_descriptor and shall be sufficient for all terminals.

See also clause 5.2.2 "Program Specific Information”.

A broadcast may also contain additional information in the carousel_identifier_descriptor to support the "enhanced"
boot mechanism. Thisis signalled by setting the formatld field for this descriptor to 0x01. This additional information is
an aggregation of all the fields necessary to locate the ServiceGateway, also found in the DSI and DIl messages.
However, in such a case the modul e containing the ServiceGateway object shall be broadcast on the PID identified by
the data_broadcast_id_descriptor. It is optional for both broadcasts and terminals to support this mechanism.

B.2.8.1 carousel_identifier_descriptor

This descriptor is defined by MPEG and in the present document may be included in the second descriptor |oop of a
PMT.

ETSI

88 ETSI TS 102 809 V1.1.1 (2010-01)

Table B.35: Carousel identifier descriptor syntax

Syntax No. of bits Identifier Value
carousel_identifier_descriptor {
descriptor_tag 8 uimsbf 0x13
descriptor_length 8 uimsbf N1
carousel id 32 uimsbf
FormatID 8 uimsbf
if(FormatID == 0x00) {
for(i=0; i<N1 - 5; i++){
private _data_byte 8
}
}
if(FormatID == 0x01) {
ModuleVersion 8 uimsbf
Moduleld 16 uimsbf
BlockSize 16 uimsbf
ModuleSize 32 uimsbf
CompressionMethod 8 uimsbf
OriginalSize 32 uimsbf
TimeOut 8 uimsbf
ObjectKeyLength 8 uimsbf N2<4
for((i=0; i<N2; i++){
ObjectKeyData 8 bslbf
}
for(i=0; i<N1 - N2 - 21; i++ ¥
private data_byte 8
}
}
}

carousel_id: This 32 hit field identifies the object carousel with the corresponding carousel_id. If the carousel is
intended to be shareable across multiple transport streams, the 24 most significant bits of the carousel_id shall carry the
24 |east significant bits of the broadcaster's organisation_id. If the carousel is not intended to be shareable, these 24 bits
shall be zero. The remaining 8 least significant bits can take any value.

The carousdal_id shall be unique within the program.

FormatlD: This 8 bit integer identifies whether the carousel supports the "enhanced boot" mechanism or not. The value
0x00 indicates "standard boot", 0x01 indicates that "enhanced boot" is possible.

ModuleVersion: This 8 bit integer is the version number of the module containing the service gateway. Thisis
equivalent to moduleVersion in the DII.

Moduleld: This 16 bit integer isthe identifier of the module in the carousel. Thisis equivalent to moduleld in the DII.

BlockSize: This 16 bit integer is the size in bytes of every block in the module (except for the last block which may be
the same or smaller). Thisis equivalent to blockSize in the DII.

ModuleSize: This 32 hit integer is the size of the modulein bytes. Thisis equivalent to moduleSize in the DII.

CompressionM ethod: This 8 hit field identifies the compression algorithm defined in RFC 1950 [11] used to compress
the module. It is equivalent to compression_method carried in the compressed_module_descriptor in the DII.

OriginalSize: This 32 bit integer isthe size of the data (in bytes) carried by the module before it was compressed. It is
equivalent to original_size carried in the compressed_module_descriptor in the DII.

If the module has not been compressed the val ues of Original Size and ModuleSize shall be equal and the value of
CompressionMethod is not defined.

TimeOut: This 8 bit integer specifies the timeout in seconds for acquisition of al blocks of the module.

ObjectKeyL ength: This 8 bit integer specifies the number of bytes of ObjectKeyData.

ETSI

89 ETSI TS 102 809 V1.1.1 (2010-01)

ObjectK eyData: These 8 hit values form an octet string that identifies the BIOP message that is the ServiceGateway
message.

B.2.9 Unavailability of a carousel

Broadcast carousels become permanently unavailable due to changes in the signalling including the following:

e The component signalled as carrying the DSl is removed from the PMT.

e Thevaueof carousel ID associated with the carousel changes.

. The program disappears from the PAT.

e After animplementation dependent time general failure of the signalling (e.g. non-transmission of the PMT).

Additionally, carousels also become permanently unavailable when loss of connection to atemporarily disconnected
carousel becomes permanent.
B.2.10 Delivery of carousels within multiple services
Carousels shall be considered identical if, in the PMTs of the services, all the following hold:
Either:

a) Both services are delivered within the same transport stream; and

- Both serviceslist the boot component of the carousel on the same PID.

- The carousel _identifier_descriptor for the carousel areidentical in both services (so the carousels have
the same carousel_Id and boot parameters).

- All association tags used in the carousel map to the same PIDs in both services.

In this case, the carousel is transmitted over a single path, but the services are allowed to reference the carousel viaa
number of routes, including deferral to a second PMT via deferred association tags.

Or:
b) Both services are delivered over multiple transport streams; and

- The carousel_id in the carousel_identifier_descriptor isin the range of 0x100 - Oxffffffff (containing the
broadcaster's organisation_id in the most significant 24 msbs of carousel_id).

- The carousel_identifier_descriptor for the carousel are identical in both services (so the carousels have
the same carousel 1d and boot parameters).

ETSI

90 ETSI TS 102 809 V1.1.1 (2010-01)

B.3 AssociationTag mapping

B.3.1 Decision algorithm for association tag mapping

B.3.1.1 TapUse is not BIOP_PROGRAM_USE

Figure B.1 illustrates the decision tree for identifying the elementary stream(s) by which the object carousel is
distributed:

association_tag

association_tag in
any deferred_association_

descriptors
?

Yes Go to other PMT

association_tag in
(any of the) association_tag_
descriptors in the elementary

stream loop
2

Match

LSB of association_tag
in (any of the) stream_identifier_
descriptors in the elementary

stream loop
2

Match

Invalid Object
Carousel

Figure B.1: Object Carousel ES identification decision tree

In the present document, the stream identifier_descriptor shall always be used for assigning a component_tag for the
elementary streams. Use of association_tag_descriptors as defined in DSM-CC [4] is not required. If the
association_tag_descriptor is optionally used, a stream _identifier_descriptor (as defined in EN 300 468 [1]) shall still be
present and the tag values shall be set consistently in each descriptor. This restriction simplifies the decision tree above
so that the second decision can be skipped.

ETSI

91 ETSI TS 102 809 V1.1.1 (2010-01)

B.3.1.2 TapUse is BIOP_PROGRAM_USE

The decision tree in clause B.1 is not followed when resolving a BIOP_PROGRAM_USE tap asthe only valid
broadcast encoding is for atap of use BIOP_PROGRAM _USE to resolve to deferred association_tags descriptor in the
PMT even if the deferred_association tags descriptor identify the current service (i.e stream or streamEvent reference
itself). If thisresolution fails then the service from which the object carousel is mounted shall be returned as the
referenced service.

B.3.2 DSM-CC association_tags to DVB component_tags

The component_tag inaPMT's stream_identifier_descriptor (as defined in EN 300 468 [1]) is used to relate Sl service
component information with an elementary stream without directly referring to a PID value. Likewise, assocation_tags
are used by DSM-CC in order to refer to an elementary stream without directly referencing a PID value. An
assocation_tag value is mapped to an elementary stream by matching the LSB of the assocation_tag with a
component_tag. The stream _identifier_descriptor is mandatory for all components referenced by an application and/or
object carousel.

Broadcasters may choose to use assocation_tag_descriptors (as defined by | SO/IEC 13818-6 [4]) which should
(theoretically) be tested for a match before trying component_tags. However, the LSB of the assocation_tag valuein an
assocation_tag_descriptor has to be equal to the component_tag for that PID. Since the component_tag is unique within
aPMT this removes the need to match against assocation_tag_descriptors.

The deferrered_assocation_tags descriptor required by the present document is the adaptation of the | SO/IEC
13818-6 [4] descriptor defined in TR 101 202 [i.2]. Thislatter definition standardizes a mechanism to signal the original
network id.

When attempting to map an assocation_tag to an elementary stream the assocation_tag must first be checked against
any deferred_association_tags descriptorsin the current PMT (current in this context means the PMT of the service
within which the assocation _tag is being mapped). If the association_tag matches any of the association_tags present in
adeferred_assocation tags descriptor then the matching process proceeds to the service indicated in that descriptor.
The terminal is not required to continue its search beyond this second service.

If the transport_stream id field in the deferred_association tags descriptor is set to 0x0000 then it shall be ignored and
the terminal is free to choose which transport stream ID it selects when obtaining a service.

B.3.3 deferred_association_tags_descriptor

The transport_stream id field of the deferred association tags descriptor (as defined in DSMCC [4]) may take value
0x0000 in which case it shall beignored in resolving the reference.

B.4 Example of an object carousel (informative)

Figure B.2 illustrates an object carousel that is distributed over three elementary streams belonging to the same service.

ETSI

92 ETSI TS 102 809 V1.1.1 (2010-01)

DSI: IOR of Service Gateway

object_key = k

module_id =1

tap: use = BIOP_DELIVERY_PARA_USE
association_tag = 1

PID n
component_tag =1

DSl Dil | mod 2 | mod 3

Service Gateway

dirl: object_key =kl

association_tag = 1

module_id = 2
tap: use = BIOP_DELIVERY_PARA_USE

dir2: ?nbé?jﬁtlgk?g;gz mod 1 | mod 4 | mod 5 mod 6

tap: use = BIOP_DELIVERY_PARA_USE PID n+1
association_tag = 1 component_tag = 2

dir3: object_key = k3
module_id = 82

tap: use = BIOP_DELIVERY_PARA_USE
association_tag = 3

PID n+2 DIl | mod 81 | mod 82 mod 83 mod 84
component_tag = 3

Figure B.2: Example carousel

The DownloadServerinitiate (DSI) message is carried on the first elementary stream. It contains the object reference
that pointsto the ServiceGateway. The tap with the BIOP_DELIVERY_PARA_USE pointsto a
Downloadinfolndication (DI1) message that provides the information about the module and the location where the
module is being broadcasted. In the example, the ServiceGateway object isin the module number 1 that is carried on
the second elementary stream (indicated by a BIOP_OBJECT _USE tap structure in the DIl message).

The ServiceGateway object isaroot directory that, in this example, references three subdirectories. Taps with
BIOP_DELIVERY_PARA_USE are used in the object references of the subdirectories to provide links to the modules
viathe Downloadlnfolndication (DIl) message. The two first subdirectories "dirl" and "dir2" are referenced in the DI
message that is carried in the first elementary stream. The third subdirectory is referenced in the DIl message carried in
the third elementary stream.

In this example, the two first elementary streams carry the messages of one logical data carousel while the third
elementary stream carries the messages of another logical data carousel. All these belong to the same object carousel. In
the exampl e, the third elementary stream contains the objectsin the "dir3" subdirectory and the objectsin the "dir1" and
"dir2" subdirectories are distributed over the first and second elementary stream.

NOTE: Itisimportant to note that the third elementary stream may originate from a completely separate source
than the first two elementary streams. The directory hierarchy and objects contained in the third
elementary stream are "mounted” in the root directory by providing the "dir3" directory entry with the
appropriate location information.

Thistype of structure could be used, for example, in anational information service that contains some regional parts.
The common national parts could be carried in this example case on the two first elementary streams that are distributed
unmodified in the whole country. The regional parts are carried in the third elementary stream that is locally inserted at
each region. From the application's point of view, the common national parts arein the "dirl" and "dir2" subdirectories
while the regional parts arein the "dir3" subdirectory.

Another example where this type of structure could be used isif the service contains multiple independent applications.
In this case, each application could be placed in its own subdirectory and these subdirectories might be carried as
separate data carousels on different elementary streams.

ETSI

93 ETSI TS 102 809 V1.1.1 (2010-01)

B.5 Caching

This clause describes the constraints that aterminal compliant with the present document shall implement when caching
any content from the object carousel in the memory of the terminal. Caching is optional for the terminal, but if
implemented shall conform to the constraints set in this clause.

B.5.1 Determining file version

Thereis no version number directly related to files (or other BIOP messages), the closest association isthe
moduleVersion in the DI that references the module that contains the BIOP message. Therefore, to ensure that afileis
up to date the terminal must determine that the moduleV ersion for the appropriate module is current and reacquire if
necessary. The circumstances under which this checking is required are defined by the transparency level as specified in
the following clause.

B.5.2 Transparency levels of caching

The definition of transparency |levels describes the behaviour that the terminal shall implement when the content in the
object carousel is changing. The transparency level determines how certain the terminal is required to be about the
validity of the content when returning the content to the application. The object carousel provides a mechanism for
determining version changes of the content by monitoring the DIl messages.

Validity of content is specified here in terms of the version number of the module that is broadcast in the DIl message.
The contents of an object as cached in the memory of the terminal are defined to be valid at a certain point in time when
the version number of the module in the cache matches the version number of the module as signalled in the DI
message describing that module as it was last broadcast.

NOTE: Thedefinition isbased on the DIl message that was last broadcast and it may be that the terminal was not
filtering for this message at that time and did not receiveit.

From the terminal point of view, the transparency level indicates the constraints that the terminal needs to implement
for monitoring the DIl messages.

The broadcaster can indicate the appropriate transparency level that shall be applied for a given piece of content by
using a descriptor associated with a module in the DIl message (see clause B.2.2.4.2 " Caching priority descriptor"). In
the absence of this descriptor from a module, the transparent caching is the default level.

B.5.2.1 Transparent caching

The transparent caching is a caching level that ensures that the application can not practically notice adifferencein the
validity of the returned content between an implementation that caches content and an implementation that does not
cache any content. Naturally, an implementation that caches the content will return it to the application faster.

When returning content from the cache to the application, the terminal shall ensure that the version number of the
cached content matches the version number indicated in the current DIl message describing that module. Once a DIl has
been received it can be assumed that it is current at least for 500 ms and after that period until receiving the next
instance of the relevant DII. If filtering for that DIl has not resumed by the end of this period, the state of that DIl isto
be considered unknown until it is received again.

Therefore, terminals must not return transparently cached data if it has waited more than half a second between
receiving the relevant DIl and starting to filter for that DIl again. If the terminal does not resume filtering within the
500ms grace period, it must download the relevant DIl again when it wishes to use that DIl to check cache validity.

The choice of 500 msis based on the normal timing uncertainty in data delivery through the broadcast chain and is
independent of the repetition rate of the DIl messages.

B.5.2.1.1 Active caching

There are several ways the terminal can organize its caching strategy. One possible strategy is so-called active caching.
This means that the terminal has a dedicated section filter for each DIl message it needs to monitor. Keeping that filter
continuoudly filtering for the DIl guarantees that the terminal will notice the update of a module as soon as it happens
and can thus be aware of the validity of all the content it has cached.

ETSI

94 ETSI TS 102 809 V1.1.1 (2010-01)

However, in some cases the DIl messages might be sent with avery high repetition rate that may cause a high
processing load because the terminal needs to do some processing every DIl message that it receives. The 500 ms grace
period is designed to help this, asit allows the terminal to stop the section filter for 500 ms after receiving the DI
message. This lessens the processing burden on the terminal asit only needs to process each DIl message twice a
second, even if it may be repeated on the transmission much more frequently.

B.5.2.1.2 Passive caching

With active caching, the terminal may need to have a dedicated section filter reserved for each DIl message that it needs
to monitor. This would effectively limit the amount of content that can be cached, possibly to avery small number.
Therefore, the terminal may choose a so-called passive caching strategy. This means that the terminal does not even try
to monitor for the DIl messages continuously, but each time an application wants to retrieve an object, it at that time
retrieves the current DIl and checks if the cached content is still valid. Although, this strategy imposes a delay before
returning the content to the application, this delay is usually significantly smaller than having to retrieve the content
from the broadcast stream.

B.5.2.1.3 DIl repetition rate

It should be noted that the description of active and passive caching are only informative here and terminal
implementations can use any strategy fulfilling the normative constraints set above. However, broadcasters should set
the repetition rate of the DIIs so that aterminal implementing the passive caching strategy will provide the expected
benefits of caching over aterminal implementing no caching.

B.5.2.2 Semi-transparent caching

The semi-transparent caching level allows the terminal to cache the data and a so return slightly out-dated data to the
application. The benefit of this caching level isthat it allows terminals to cache larger quantities of content with a
reasonabl e resource usage while allowing the data to be returned usually immediately to the application. The semi-
transparent caching level provides less guarantees about validity of the content, but does not cause the delay implied by
the passive caching strategy with the transparent caching level.

When returning content from the cache to the application, the terminal shall ensure that the version number of the
cached content matches the version number indicated in avalid DIl message describing that module. Once a DIl has
been received it can be assumed to be valid at least for 30 s and after that period until receiving the next instance of the
relevant DII. If filtering for that DIl has not resumed by the end of this period, the state of that DIl isto be considered
unknown until it is received again.

Therefore, terminals must not return semi-transparently cached dataif it has waited more than 30 s between receiving
the relevant DIl and starting to filter for that DIl again. If the terminal does not resume filtering within the 30 s grace
period, it must download the relevant DIl again when it wishes to use that DIl to check cache validity.

B.5.2.2.1 Implications for the terminal (informative)

Reasons for selecting the 30 s value for the grace period in the semi-transparent caching level are different from the
reasons for the 500 ms grace period in the transparent level. The 30 s grace period in thislevel isintended e.g. to allow
terminalsto keep typically avalid copy of each DIl by retrieving each DIl in around robin fashion using asingle
section filter. Naturally, whether this goal can be achieved, depends on the repetition rate of the DIls and the amount of
content that is cached. If thisis not possible, the terminal might use the passive caching strategy with this transparency
level aswell. These strategies are only examples and the terminal may implement any strategy as long the normative
constraints defined above are fulfilled (thisincludes implementing no caching asit is optional, as well as treating the
semi-transparent level the same as the transparent level).

B.5.2.3 Static caching

When using the static caching transparency level, the terminal shall check the validity of the cached content from the
version number in the DIl message when it is used for the first time during the lifetime of an application instance. After
the first usage time, the terminal does not need to check the validity of the content during the lifetime of that application
instance.

ETSI

95 ETSI TS 102 809 V1.1.1 (2010-01)

B.5.2.3.1 Implications for the broadcaster (informative)

This has the implication, that content with this transparency level is appropriate for very static content that is updated
only rarely and where the possible update of the content does not need to be noticed by the application during the
lifetime of one application instance.

B.5.2.3.2 Implications for the terminal (informative)

The terminal, however, is allowed to update the contents of the statically cached filesif it notices that they have been
updated in the carousel as well as use any caching strategy as long as the normative constraint defined above are
fulfilled (thisincludes implementing no caching asit is optional, as well as treating the static level the same as the
semi-transparent and/or the transparent level).

B.5.3 Dynamic carousel structure

The Object Carousel may change structure over time, i.e. both files and directories may be added or deleted. Also,
modules are not guaranteed to carry the same objects over the lifetime of the carousel. Therefore receivers shall not
assume that directory structures are static or that a given path will resolve aways to the same object. All cached
directory information shall be cached according to the signalled cache priority. This means that before using an object
that has been cached, receivers shall validate the path to it.

NOTE: Validating apath does not necessarily mean downloading all elementsin the path every time. For
example, simply determining that none of the objects on the path have changed since it was last fully
traversed is sufficient to confirm that the path itself has not changed.

ETSI

96 ETSI TS 102 809 V1.1.1 (2010-01)

Annex C (normative):

Generic Application Western European Character Set

Table C.1 defines a character set suitable for use by platform specifications addressing the Western European market.

Table C.1: Generic Western European character set

Unicode character code Character Unicode script name

0020 to 007E Basic Latin

00AO to OOFF Latin-1 supplement

0100 to O17E Latin Extended A (excluding 017F)
01CD A Latin Capital Letter A With Caron
01CE A Latin Small Letter A With Caron
02C6 B Modifier Letter Circumflex Accent
02C7 ” Caron (Mandarin Chinese third tone)
02C9 - Modifier Letter Macron (Mandarin Chinese first tone)
02D8 ” Breve
02D9 Dot Above (Mandarin Chinese light tone)
02DA ° Ring Above
02DB . Ogonek
02DC ” Small Tilde
066B . Arabic Decimal Separator
1E80 W Latin Capital Letter W With Grave
1E81 W Latin Small Letter W With Grave
1E82 W Latin Capital Letter W With Acute
1E83 1 Latin Small Letter W With Acute
1E84 W Latin Capital Letter W With Diaeresis
1E85 W Latin Small Letter W With Diaeresis
1EF2 Y Latin Capital Letter Y With Grave
1EF3 y Latin Small Letter Y With Grave
2007 Figure Space
2013 - En Dash
2014 — Em Dash
2018 Left Single Quotation Mark
2019 ' Right Single Quotation Mark
201A Single Low-9 Quotation Mark
201C Left Double Quotation Mark
201D Right Double Quotation Mark
201E N Double Low-9 Quotation Mark
2022 . Bullet
2026 Horizontal Ellipsis
2030 %o Per Mille Sign
2039 < Single Left-Pointing Angle Quotation Mark
203A > Single Right-Pointing Angle Quotation Mark
2044 / Fraction Slash
20AC € Euro Sign
2122 ™ Trademark Sign
2190 — Leftwards Arrow
2191 1 Upwards Arrow
2192 — Rightwards Arrow
2193 l Downwards Arrow
2212 - Minus Sign
2214 i Dot Plus
2215 / Division Slash
221E © Infinity
266B 5 Beamed Eighth Notes
2713 v Check Mark
2717 X Ballot X

ETSI

97 ETSI TS 102 809 V1.1.1 (2010-01)

Annex D (informative):
Bibliography

"OpenCable Application platform 1.0 Profile"; OC-SP-OCAP1.0-116-050803.

ETSI

98

ETSI TS 102 809 V1.1.1 (2010-01)

History

Document history

V111

January 2010

Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Application models
	4.1 Introduction
	4.2 Starting and stopping applications
	4.2.1 Applications bound to broadcast services
	4.2.2 Applications bound to a content on demand item
	4.2.3 Applications bound to a network operator

	5 Signalling interactive applications and services
	5.1 Semantics
	5.2 Application metadata
	5.2.1 Introduction
	5.2.2 Application types
	5.2.2.1 Semantics
	5.2.2.2 MPEG-2 Encoding
	5.2.2.3 XML Encoding

	5.2.3 Application identification
	5.2.3.1 Semantics
	5.2.3.2 MPEG-2 encoding
	5.2.3.3 XML encoding

	5.2.4 Application control codes
	5.2.4.1 Semantics
	5.2.4.2 MPEG-2 encoding
	5.2.4.3 XML encoding

	5.2.5 Platform profiles
	5.2.5.1 Semantics
	5.2.5.2 MPEG-2 encoding
	5.2.5.3 XML encoding

	5.2.6 Application visibility
	5.2.6.1 Semantics
	5.2.6.2 MPEG-2 encoding
	5.2.6.3 XML encoding

	5.2.7 Application priority
	5.2.7.1 Semantics
	5.2.7.2 MPEG-2 encoding
	5.2.7.3 XML encoding

	5.2.8 Application icons
	5.2.8.1 Semantics
	5.2.8.2 MPEG-2 encoding
	5.2.8.3 XML encoding

	5.2.9 Graphics constraints
	5.2.9.1 Semantics
	5.2.9.1.1 Supported graphics configurations
	5.2.9.1.2 Running without a visible UI
	5.2.9.1.3 Handling changed graphics configurations
	5.2.9.1.4 Handling externally controlled video

	5.2.9.2 MPEG-2 encoding
	5.2.9.3 XML encoding

	5.2.10 Application usage
	5.2.10.1 Semantics
	5.2.10.2 MPEG-2 encoding
	5.2.10.3 XML encoding

	5.2.11 Stored applications
	5.2.11.1 Semantics
	5.2.11.1.1 Lifecycle of stored applications
	5.2.11.1.2 Application versioning
	5.2.11.1.3 Launching applications from the cache
	5.2.11.1.4 Storage priority

	5.2.11.2 MPEG-2 encoding
	5.2.11.3 XML encoding

	5.2.12 Application Description File
	5.2.12.1 Description
	5.2.12.2 Application description file name and location
	5.2.12.3 Syntax
	5.2.12.4 Semantics

	5.3 MPEG-2 table and section syntax
	5.3.1 Summary
	5.3.1.1 Summary of common signalling
	5.3.1.2 Summary of additional signalling for applications carried via OC
	5.3.1.3 How to add a new scheme (informative)

	5.3.2 Program specific information
	5.3.2.1 Application signalling stream
	5.3.2.2 Data broadcast streams
	5.3.3 Notation
	5.3.3.1 reserved
	5.3.3.2 reserved_future_use

	5.3.4 Application Information Table
	5.3.4.1 Data errors
	5.3.4.2 AIT transmission and monitoring
	5.3.4.3 Optimized AIT signalling
	5.3.4.4 Visibility of AIT
	5.3.4.5 Definition of sub-table for the AIT
	5.3.4.6 Syntax of the AIT
	5.3.4.7 Use of private descriptors in the AIT
	5.3.4.8 Text encoding in AIT
	5.3.4.9 Access to an MPEG-2 format AIT via a broadband connection
	5.3.4.9.1 Syntax
	5.3.4.9.2 Syntactic restrictions
	5.3.4.9.2.1 Transport protocols

	5.3.4.9.3 MIME type

	5.3.5 Generic descriptors
	5.3.5.1 Application signalling descriptor
	5.3.5.2 Data broadcast id descriptor
	5.3.5.2.1 Generic descriptor
	5.3.5.2.2 Data broadcast id descriptor for interactive application

	5.3.5.3 Application descriptor
	5.3.5.4 Application recording descriptor
	5.3.5.5 Application usage descriptor
	5.3.5.6 User information descriptors
	5.3.5.6.1 Application name descriptor
	5.3.5.6.2 Application icons descriptor

	5.3.5.7 External application authorization descriptor
	5.3.5.8 Graphics constraints descriptor

	5.3.6 Transport protocol descriptors
	5.3.6.1 Syntax of selector bytes for OC transport
	5.3.6.2 Syntax of selector bytes for interaction channel transport

	5.3.7 Simple application location descriptor
	5.3.7.1 Example

	5.3.8 Simple application boundary descriptor
	5.3.9 Service information
	5.3.9.1 Data broadcast descriptor for interactive application announcement

	5.3.10 Stored applications
	5.3.10.1 Application storage descriptor

	5.4 XML-based syntax
	5.4.1 Service bound application signalling
	5.4.2 Signalling of unbound applications
	5.4.3 Extensions to defined SD&S elements
	5.4.3.1 Package
	5.4.3.2 IP Service
	5.4.3.3 ServiceProvider

	5.4.4 New XML element definitions
	5.4.4.1 ApplicationList
	5.4.4.2 Application
	5.4.4.2.1 Application Specific Information (informative)

	5.4.4.3 ApplicationIdentifier
	5.4.4.4 ApplicationDescriptor
	5.4.4.5 VisibilityDescriptor
	5.4.4.6 IconDescriptor
	5.4.4.7 AspectRatio
	5.4.4.8 MhpVersion
	5.4.4.9 StorageCapabilities
	5.4.4.10 StorageType
	5.4.4.11 ApplicationType
	5.4.4.12 DvbApplicationType
	5.4.4.13 ApplicationControlCode
	5.4.4.14 ApplicationSpecificDescriptor
	5.4.4.15 AbstractIPService
	5.4.4.16 ApplicationOfferingType
	5.4.4.17 ServiceDiscovery
	5.4.4.18 ApplicationUsageDescriptor
	5.4.4.19 TransportProtocolDescriptorType
	5.4.4.20 HTTPTransportType
	5.4.4.21 OCTransportType
	5.4.4.22 ComponentTagType
	5.4.4.23 SimpleApplicationLocationDescriptorType
	5.4.4.24 SimpleApplicationBoundaryDescriptorType

	5.4.5 ApplicationDiscovery record

	5.5 Constant values

	6 Referencing DVB services
	6.1 DVB URL syntax and semantics
	6.2 DVB URL resolution
	6.2.1 Service identifier descriptor

	7 Application transport
	7.1 Object carousel
	7.2 HTTP

	8 Synchronisation
	8.1 Introduction
	8.2 Referencing

	Annex A (informative): Elements defined by the platform specification
	A.1 Introduction
	A.2 Elements which are defined by the platform specification

	Annex B (normative): Object carousel
	B.1 Introduction
	B.1.1 Key to notation

	B.2 Object carousel profile
	B.2.1 DSM-CC sections
	B.2.1.1 Sections per TS packet

	B.2.2 Data carousel
	B.2.2.1 General
	B.2.2.2 DownloadInfoIndication
	B.2.2.3 DownloadServerInitiate
	B.2.2.4 ModuleInfo
	B.2.2.4.1 Label descriptor
	B.2.2.4.2 Caching priority descriptor
	B.2.2.5 ServiceGatewayInfo
	B.2.2.6 Download cancel
	B.2.2.7 DownloadDataBlock

	B.2.3 The object carousel
	B.2.3.1 BIOP Generic Object Message
	B.2.3.2 CORBA strings
	B.2.3.3 BIOP FileMessage
	B.2.3.4 Content type descriptor
	B.2.3.5 BIOP DirectoryMessage
	B.2.3.6 BIOP ServiceGateway message
	B.2.3.7 BIOP Interoperable Object References
	B.2.3.7.1 BiopProfileBody
	B.2.3.7.2 LiteOptionsProfileBody

	B.2.3.8 BIOP StreamMessage
	B.2.3.9 BIOP StreamEventMessage
	B.2.3.10 Additional tapUse values

	B.2.4 Broadcast timebases and events
	B.2.4.1 Stream and StreamEvent messages
	B.2.4.1.1 Association with time bases
	B.2.4.1.2 Event names and event IDs
	B.2.4.1.3 Stream event life time

	B.2.4.2 Stream descriptors
	B.2.4.2.1 NPT reference descriptor
	B.2.4.2.2 Stream event descriptor
	B.2.4.2.2.1 Association of event ids to event time
	B.2.4.2.2.2 Re-use of event ids
	B.2.4.2.2.3 Signalling of "do it now events"
	B.2.4.2.2.4 Private data

	B.2.4.2.3 Unused descriptors

	B.2.4.3 DSM-CC sections carrying stream descriptors
	B.2.4.3.1 Section version number
	B.2.4.3.2 Single firing of "do it now" events
	B.2.4.3.3 Section number
	B.2.4.3.4 DSM-CC sections for DSMCC_descriptor_list()
	B.2.4.3.5 Encoding of table id extension

	B.2.4.4 Broadcast timebases
	B.2.4.4.1 DVB Timeline (Optional)

	B.2.4.5 Broadcast events
	B.2.4.5.1 DSM-CC "do it now" stream events
	B.2.4.5.2 DSM-CC scheduled stream events
	B.2.4.5.3 DVB synchronised events

	B.2.4.6 Monitoring broadcast timebases and events
	B.2.4.6.1 Timebase reference monitoring
	B.2.4.6.2 Timebase stimulated event monitoring
	B.2.4.6.3 DSM-CC "do it now" stream events
	B.2.4.6.4 DSM-CC scheduled stream events
	B.2.4.6.5 Number of timebase components
	B.2.4.6.6 DVB synchronised events

	B.2.5 Assignment and use of transactionId values
	B.2.5.1 Informative background
	B.2.5.2 DVB semantics of the transactionId field

	B.2.6 Mapping of objects to data carousel modules
	B.2.7 Compression of modules
	B.2.8 Mounting an object carousel
	B.2.8.1 carousel_identifier_descriptor

	B.2.9 Unavailability of a carousel
	B.2.10 Delivery of carousels within multiple services

	B.3 AssociationTag mapping
	B.3.1 Decision algorithm for association tag mapping
	B.3.1.1 TapUse is not BIOP_PROGRAM_USE
	B.3.1.2 TapUse is BIOP_PROGRAM_USE

	B.3.2 DSM-CC association_tags to DVB component_tags
	B.3.3 deferred_association_tags_descriptor

	B.4 Example of an object carousel (informative)
	B.5 Caching
	B.5.1 Determining file version
	B.5.2 Transparency levels of caching
	B.5.2.1 Transparent caching
	B.5.2.1.1 Active caching
	B.5.2.1.2 Passive caching
	B.5.2.1.3 DII repetition rate

	B.5.2.2 Semi-transparent caching
	B.5.2.2.1 Implications for the terminal (informative)

	B.5.2.3 Static caching
	B.5.2.3.1 Implications for the broadcaster (informative)
	B.5.2.3.2 Implications for the terminal (informative)

	B.5.3 Dynamic carousel structure

	Annex C (normative): Generic Application Western European Character Set
	Annex D (informative): Bibliography
	History

