ENCODED

secure automated payments

Encoded Gateway API

Developer Guide

Title Encoded Gateway API - Developer Guide
Document No ENCODED/MSC/19-091

Classification PUBLIC

Revision 3.2

Date 2023-10-03

Author Adam Bromage-Hughes

Approver Frank Pocklington

INTERNAL USE ONLY

Encoded Gateway API ENCOoODheD

DeveloperGUide secure automated payments
Contents
40X [T oY o T 4
API Specification Documentation............coooiiiiiiiiiiiirri e 4
(04 T= 1 4 e 1= Lo T £ PP 4
0 SR 5
L 3= 1= o o 6
Authentication for Hosted Payment Fields.............cooiiiiiieeee e 7
ReSoUrce RefErenCes..........oooi i 9
Merchant ACCOUNTS.......ooviiiecciii s r s s s s e e e e s s m s s s s e e e e e e mmmn s na s s e e nennnnnn 10
Payment Orchestration............ooo i 10
Explicit Merchant Account Selection............coooiii e 10
L0 1Y 1"
L= T 1T T o) 0 O 12
Authorisation & Capture...........ccooiiiiiiiiiiirrrrccrrrc s nmmnnnnnnnnee 14
Voiding an AUThOIISALION. ..o 16
Partial CaplUre........uueeieiiiiiiiiiiii eaeeeaaaaaaaaaaaaaaaaaaaas 16
EXCESSIVE CAPIUIE.....oeiiiiiiieeee e e e e e e e e as 17
LT 1= o 1 = 18
AddING NEW CUSTOMES.......oiiiiiiiiiiiiee et e e e e e e 18
Updating EXiSting CUSIOMEIS..........uuiiiiiiiiiiiiiiiiiiiiiieeeeeeeee e e e e e e e e e e e e e e e e eeaeaas 19
Deleting EXiSting CUSIOMEIS........ooiiiiiiiiieee et e e e e 21
(01U E (o) o I N 1] 01U (=P 21
e (=T £ = 23
Retrieving TOKeNS fOr @ CUSIOMET...........uuiuiiiiiiiiiiiiiiiieeieeeeee e e e e e e e e e e e e e eees 24
Retrieving all TOKENS.o ettt e e e e e e e eeeeas 25
Making @ ToKeNn Payment.. ..o 25
Alternative Payment Methods (APMS).........coociiiiiniierr s 27
Y o] o L= = Y 27
SELUP APPIE PAY ... 27
Checkout Implementation.............cooeviiii 30
Using the Apple Pay APL..........o e 30
Receiving the Payment Token from Apple Pay.........cccccooiiiiiiiiiiiiiiiiiiiiiiinns 31
Submitting the Payment............ooo e 34
GOOGIE Pay ™ ettt et e e e e e e e e e e 36
Checkout Implementation.............coooii 36
Using the Google Pay APL...... ... e e e e eeeeeees 36
Receiving the Payment Token from Google Pay.........ccoociiiiiiiiiiiiiiiiiieee s 37
Submitting the Payment.............oo e 38

PUBLIC Page 2 of 74

Encoded Gateway API ENCOoOoDheD

DeveloperGUide secure automated payments

EMV 3-D SeCUIe (3DS2).......ccccrrirriiiiissnmreeeeesssssssssnsssnssssssssnssnn 40
Initiate 3D Secure TranSACON............uiiiiie e e e e e e e e anes 40
Receive Challenge..........cooooiiiiii it e e e e e e e e e eeeeeees 41
(=0 1= Yo B (o T O TP 42
ProCess ACS RESPONSE......euiiiiiiiiiiiiieeieeieee ettt ettt ettt e e et e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaens 43
Send Challenge RESPONSE.......cooooiiiiiiiiiiiiiieeee e, 43
MUItIPIE ChallENgES. e e e e e e e e e e e e e e e e eeeeeeeeeaaeees 44
Hosted Payment Pages...........cccvmmimiiiiiieeinr s 45
L0 == 10 I= T IO o =T USSP 45
TOKENISAtION. ... 45

D= 0] 0] = Y 45

Displaying the Hosted Payment Page..........ccoooiiiiiiiiiiiiiiieeeeeeee e 48
Handling The RESPONSE........cooiiiiiiiiee e 48
Token ManagemeENt.........oouuuiiiii e 49

Hosted Payment Fields.........occeeciiiiiiiiiiiiceccsss s s s s s s s s e s s s s s s s e e s e e e s mmman s nn s s e nnnnns 50
Generating @ Payment SESSION...........uuiiiiiiii e 50
Generate a Session Limited JWT ... 52
Generate the Hosted Payment FieldsS..........oooovviiiiiiiiiii 52
Interact with the Hosted Payment Fields.............cooiiiiiiiicecc e 53
Sync Hosted Payment Fields with the Payment Session.........ccccccvvvvviiiii 54
Submitting the Payment....... ... 54
)47/ L 0 To T T 56
NOLIfiCAtioNS........coiiirr e ————————————————— 60
TrANSACHIONS. ...ttt et e e e e e e et e e e e e et eeeeeeeeeeeeeeeeaeaeaeaaaaaaaaaaaaaaaaaaaaaaaees 60
Address Verification ServiCe.........cooiiiiiiiiiciiccrccrr e 62
20T oo LT3N 0o Yo 1= RO 63
JLICE3 0 T o E= 66
Appendix 1 - Hosted Payment Fields Events............ccooooviiiiiiinccnnccnsccnssss s sssnnnns 67
Version HiStOry ... 74

PUBLIC Page 3 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

Introduction

The purpose of this document is to be read in conjunction with the Encoded Gateway API
Specification Document, to provide additional guidance and implementation notes for
implementers.

Any major changes to the Encoded Gateway API will be communicated to all partners, and
implementers should always ensure that they have the most up-to-date copy by making a
request to Encoded’s Service Desk.

API Specification Documentation

The API specification documentation, in OpenAPI format, can be found at the following URL.:

https://sit.encoded.services/api/v1/docs

Changelogs

Changelogs for the Encoded Gateway API and associated services can be found at the
following URL:

https://wiki.encoded.support/changelogs

PUBLIC Page 4 of 74

https://encoded.support
https://sit.encoded.services/api/v1/docs
https://wiki.encoded.support/changelogs

Encoded Gateway API &ENCOoOoDheD

Developer Guide secure automated payments

URLSs
The API will be hosted at a base URL of

https://[env].encoded.services/api/[version]/

where [env] is the environment targeted and [version] is the version targeted. Your IP will
need to be whitelisted to access this service.

The following environments are currently available:

1. prod
Production environment for live transacting.

2. sit
System Integration Testing environment, for implementors to test their
implementation and perform test transactions.

The following versions are currently available:

e Vi

PUBLIC Page 5 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide

secure automated payments

Authentication

Authentication is via OAuth 2.0 Client Credentials Grant Type, which will return JWT access
tokens. The JWT access token should be provided in the Authorization header for all
requests to the Encoded Gateway API.

The Authentication Server will be hosted at the URL of

https://[env].encoded.services/auth/oauth/token

where [env] is the environment targeted (prod, sit, etc).

To authorise and receive a token for access to the Gateway API, a request must be made
with the Client ID and Client Secret provided as a HTTP Basic Auth Header, along with the
Grant Type provided a query parameter, as in the example request and response below.

POST /auth/oauth/token HTTP/

Host: sit.encoded.services

Authorization: Basic QWXxhZGRpbjpPcGVuU2VzYW11l
grant_type=client credentials

"access_token":
"eyJhbGciOiJSUzIINIiISINR5cCI6IkpXVCI9.eyIhdWQiOlsib2F1dGgyLXI1c291cmN1I10sInNjb3B1IjpbIn
N1c3Npb25fbGltaXR1ZFOyZWFkI10sImVAcCI6MTYyMDY5MzgwMiwidXN1cmNvZGUi0jI10DEYyOSwiYXV@aGoyaX
RpZXMi01lsiUkSMRVOBUE1fU1VCUBONSSUIFUiJdLCIqdGki0iJ4eGxHdzRWUkJybkEXYnVHM3FhcTV3aTROUGOiLC
JjbG1l1lbnRfaWQiOiJBc3RyYWXUZWNORGV2In®.hqO_OscdeP8yE7h_LMIHKzXMGpinvffAtsoQrL5eoo8hcizHFF
FmSrnwSGciwZWEsp1D98f-gpexeN2vjdEok1ItaGM1ibz7hVspMGNNlelLwBevjIJOWi3Nf-RAUZcOf10sTz7AKAb
Gph-j5mdfjtxXe5rp61ArPpoe9bRx8tubEcAvgSqIBItwl6VYgBdkBjK6ytkBUabyWbA3eKZB-gZ4QDMugOt6Sv2
afjyNTD42pPjOFFGOrm2MZZH6YDLgSugqi®enhKbba3h5BWR4S4178Rrex1xufjrbFUs-90ZjkRh1r8QGPWqYGGQ8
JMEWsSnMH35kI43n9Pdd99S sbNAw",

"token_type": "bearer",

"expires_in": 5

"scopes": "session_limited_read",

"usercode": ,

"jti": "xx1Gw4VRBrnAlbuG3gaq5wi4tSM",

"tokenType": "bearer",

"expiration": "May 11, 2021 1:43:22 AM",

"scope": [

"session_limited read"

I,

"additionalInformation"”: {

PUBLIC Page 6 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

"usercode": 5
"jti": "xx1Gw4VRBrnAlbuG3gqaq5wi4tsM"

The returned token should then be provided to all requests to the Encoded Gateway API as
an Authorization Bearer header:

GET /api/l/transactions/4b -ba f3eb
Authorization: Bearer
eyJhbGciO0iJSUzIINiIsInR5cCI6IkpXVCI9.eyIhdWQiOlsib2F1dGgyLXJ1c291cmN1TI1
sInNjb3BlIjpbInNlc3Npb25fbGltaXR1ZFOyZWFkI10sImVAcCIEMTYYMDYS5MzgwMiwidXN
1cmNvZGUi0jI10DEyOSwiYXVOaGOyaXRpZXMiOlsiUkSMRVSBUELfU1VCUONSSUIFUiIdLC]
qdGki0iJ4eGxHdzRWUkJybkExYnVHM3FhcTV3aTROUOOiLCIjbGl1bnRfaWQiOiJBc3RyYWx
UZWNORGV2In®.hqO_0scdeP8yE7h_LMIHKzXMGpinvffAtsoQrL5eoo8hcizHFFFmSrnwSGc
iwZWEsp1D98f-gpexeN2vjdEok1ItaGMlibz7hVspMGNNleLwBevjIJOWi3Nf-RAUZcOF10s
Tz7AKAbGph-j5mdfjtxXe5rp61ArPpoeSbRx8tubEcAvgSqIBItwl6VYgBdkBjKe6ytkBUaby
WbA3eKZB-gZ4QDMugOt6Sv2afjyNTDA2pPjOFFGOrm2MZZHEYDLEgSuqi®enhKbba3h5BWRAS
i78Rrex1lxufjrbFUs-90ZjkRh1r8QGPWqYGGq8JMEWSNMH35kI43n9Pdd99S_sbNAw

Authentication for Hosted Payment Fields

When utilising Hosted Payment Fields (see Hosted Payment Fields), it is required to pass a
JWT to the browser in order to initialise the HPF Javascript library. Doing so exposes the
JWT to the front-end, and no longer guarantees that the JWT used for accessing the
protected resources is private.

To protect from this, it is necessary to create a “limited use” JWT which is then used by the
Hosted Payment Fields Javascript library. Note that the library will ONLY accept a limited use
JWT.

To authorise and receive a token for access to the Hosted Payment Fields Javascript
Libraryl, a request must be made with the Client ID and Client Secret provided as a HTTP
Basic Auth Header, along with the Grant Type provided as a query parameter, as with the
usual method of authentication. Additional to this, a Scope of “session_limited_read” must be
provided, along with the session_id of the Session created prior to initialising the Hosted
Payment Fields Javascript Library., as in the example request below:

POST /auth/oauth/token HTTP/

Host: sit.encoded.services

PUBLIC Page 7 of 74

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

Authorization: Basic QWXxhZGRpbjpPcGVuU2VzYW11l
grant_type=client credentials
scope=session_limited_read
session_id=16b3ca2l1-do9fd -b5f5-fb45f220a6dd

"access_token":
"eyJhbGciOiJSUzIINIiISINR5cCI6IkpXVCI9.eyIhdWQiOlsib2F1dGgyLXI1c291cmN1I10sInNjb3B1IjpbIn
N1c3Npb25fbGltaXR1ZFOyZWFkI10sImVAcCI6MTYyMDY5MzgwMiwidXN1cmNvZGUi0jI10DEYyOSwiYXV@aGOyaX
RpZXMi01lsiUkOMRVOBUE1fU1VCUBONSSUJFUiJdLCIqdGki0iJ4eGxHdzRWUkJIybkExXYnVHM3FhcTV3aTROUGOiLC
JjbGl1lbnRfaWQiOiJBc3RyYWXUZWNORGV2In®.hqO_@scdeP8yE7h_LMIHKzXMGpinvffAtsoQrL5eoo8hcizHFF
FmSrnwSGciwZWEsp1D98f-gqpexeN2vjdEok1ItaGM1ibz7hVspMGNNlelLwBevjIJOWi3Nf-RAUZcOf10sTz7AKAb
Gph-j5mdfjtxXe5rp61ArPpoe9bRx8tubEcAvgSqIBItwl6VYgBdkBjK6ytkBUabyWbA3eKZB-gZ4QDMugOt6Sv2
atjyNTD42pPjOFFGOrm2MZZHeYDLgSuqi@enhKbba3h5BWR4S4178Rrex1xufjrbFUs-90ZjkRh1r8QGPWqYGGG8
JMEWSNMH35kI43n9Pdd99S_sbNAw",

"token_type": "bearer",

"expires_in": ,

"scopes": "session_limited_read",

"usercode": ,

"jti": "xx1Gw4VRBrnAlbuG3gaq5wi4tSM",

"tokenType": "bearer",

"expiration": "May 11, 2021 1:43:22 AM",

"scope": [

"session_limited read"
1,
"additionalInformation"”: {
"usercode": 5
"jti": "xx1Gw4VRBrnAlbuG3gaq5wi4tSM"

PUBLIC Page 8 of 74

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

Resource References

The API allows for the use of resource reference where passing the full object may not be
necessary or preferred. A resource reference has the following structure:

{

"object": "transaction",
"id": "4b502950-8801-4112-bal5-88f8eb280525",
"links": {
"self":

"https://sit.encoded.services/api/1l/transactions/4b502950-8801-4112-bal5
-8818eb280525"

}
}

The object and id fields together uniquely identify a specific resource and can therefore be
used to reference that resource in its entirety. The links field is not required when sending
the resource reference as part of a request, but will be available when the resource
reference makes up part of a response from the API. The links field’s value will be an object
containing links to allow the API user to access the referenced resource directly.

PUBLIC Page 9 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

Merchant Accounts

A Merchant Account is a type of bank account that is specifically used for accepting
customer payments via a credit or debit card, or an alternative or local payment method such
as Apple Pay or Bancontact respectively. You can get a Merchant Account from an entity
called an Acquirer.

The Gateway API is an Acquirer agnostic platform, which means that transactions can be
processed through any Acquirer that Encoded is connected to. If you do not already have a
relationship with an Acquirer, or are looking to move Acquirers, Encoded can make
recommendations.

Payment Orchestration

The Gateway API is also what is known as a Payment Orchestration Platform, which means
that it can make smart decisions about how and where to route transactions to be
processed. As such, you can have multiple Merchant Accounts with multiple Acquirers, and
allow Encoded’s Gateway API to route transactions to the underlying Acquirer which has the
best outcome for that transaction; whether that be lowest cost, highest acceptance rate, or
any other potential outcome.

This is an automatic process which is governed by configurable rulesets within the Gateway
API. These rules can be configured either via an API (coming soon), via the Merchant
Management Portal (coming soon), or through consultation with your Implementation
Manager.

Explicit Merchant Account Selection

We also provide the flexibility for merchants to make their own decisions on the most
appropriate Merchant Account to use to process each transaction, and provide an optional
API field - transactionRequest.merchantAccountld - to do so. If you wish to take advantage
of this, please speak to your Implementation Manager who will provide you with a list of
Merchant Account IDs.

PUBLIC Page 10 of 74

https://www.encoded.co.uk/payment-orchestration/

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

Orders

An order within the Gateway API allows you to link all related transactions that relate to a
single order between the merchant and the end customer. An order can contain multiple
individual transactions that either capture or refund funds from and to the end customer.

The majority of orders will have either one or two transactions, where either the pay action
has been used to perform a transaction that both authorises and captures the funds
immediately, or where an authorise transaction is followed by a capture transaction to
authorise and capture the funds as two individual transactions, respectively. The former is
more likely when the related good or service is available immediately, and the latter when
the good or service may be provided at a future date, at which point the authorised
transaction is captured (for example, when the product will be dispatched at a later date
once available or in stock).

An order can be created individually from a transaction, or can be created during the initial
transaction, however there is no requirement for an order to be created for a transaction, and
all transactions can be processed on an individual (not linked to an order) basis. Once a
transaction has been created on an individual basis, an order can not be retroactively
applied to it.

An order.id is generated when the order is created. Additionally, a merchant defined
reference can be provided via order.ref for reconciliation with any merchant ordering system.

An order must be created if you wish to take advantage of the Hosted Payment Pages

PUBLIC Page 11 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

Transactions

Transactions in the Gateway API represent each individual transaction; the status of the
transaction, along with both the request made and the response received. There are a
number of transaction actions that can be performed. These are:

e authorise
Performs an authorisation for the proposed transaction. A successful response from
the acquirer indicates that the payment source provided is valid and that the funds
are available, however no funds are transferred at this time. The acquirer may
reserve the funds for a period of time. An authorisation can be captured at a later
time.

e capture
Performs a capture of a previous authorisation. A successful response from the
acquirer indicates that the funds will be moved from the payer's account to the
merchant's account. When performing a capture, you must provide a previously
successful transaction as the source, as well as the same Order used for the
previous authorisation action.

e pay
Performs an authorisation and capture in a single transaction. A successful response
from the acquirer indicates that the payment source provided is valid, the funds are
available, and that the funds will be moved from the payer's account to the
merchant's account.

e refund
Performs a refund of funds from the merchant's account to the payer's account. A
successful response from the acquirer indicates that the funds will be moved from the
merchant's account to the payer's account. When performing a refund, the source
may be a Card, Token, or a previously successful Transaction, depending on the
underlying gateway provider.

e void
Performs a void of a previous transaction, which will attempt to cancel the previous
transaction. Whether a void will be successful depends on a number of factors, such
as the amount of time between the initial transaction and the void attempt, the
underlying acquirer, the transaction source, etc. It may be necessary to perform a
refund if the void was not successful.

o verify

Performs a verification of the source. The verification method used is that which is
supported by the underlying payment gateway and acquirer.

PUBLIC Page 12 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

When performing a transaction, a source of the funds needs to be provided via
transaction.source. There are currently six supported source types. These are:

e card
The source of funds is a debit or credit card where the card details (the PAN, expiry
date, security code, etc) are provided directly.

e token
The source of funds is a token that has been previously created. A token is a
reference to a previously used and stored debit or credit card. To create a token, a
transaction will be performed with a card source, which will be provided along with
the transaction.source.card.tokenisation object to indicate that the card details
provided should be stored as a token for future use.

e transaction
The source of funds is a previously performed transaction (where supported by the
underlying acquirer). This is required for performing a capture transaction against a
previously performed authorise transaction

e session
The source of funds is a session in which card details have been collected for use
directly by Encoded. This source type would be used, as an example, when
performing a Hosted Payment Fields transaction.

e google_pay
The source of funds is a Google Pay token.

e apple_pay
The source of funds is an Apple Pay token.

A transaction.id is generated when the transaction is created. Additionally, a merchant
defined reference can be provided via transaction.ref for reconciliation with any merchant
ordering system.

When a transaction is performed by POSTing a fransaction.request object to the
/transactions endpoint, the response polls until either: the transaction reaches a processed
or challenged status; or, the poll time provided as a query parameter is met. If the poll time is
met, the transaction is returned in the processing state. Additional requests can be made to
/transactions/{transactionld} which follow the same rules.

PUBLIC Page 13 of 74

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

Authorisation & Capture

There are two individual aspects to a payment transaction, known as the Authorisation and
the Capture. These processes can either be performed at once (with a pay action), or
individually with an authorise action followed by a capture action.

When an authorise action is performed, the gateway sends the card details to the issuer,
who checks the card details provided and, if valid, will hold the funds requested if they are
available. The merchant will be provided with an authorisation code and can then collect the
funds associated with that authorisation within 7 days by performing a capture action. When
a capture is performed, the transaction ID of the authorise action must be provided as part of
the request.

An example Authorisation & Capture flow is shown below. Firstly, an authorise action is
performed:

POST /transactions
{

"object": "transaction.request",
"action": "authorise",
"ref": "trans-1234",
"amount": ,
"currency": "GBP",
"source": {
"object": "source",
"card": {
"object": "card",
"pan": "4444333322221111",
"expiry": "2022-10",
"securityCode": "111"

Which receives the following response:

"object": "transaction",
"id": "4b502950-8801-4112-bal5-88f8eb280525",

"creationDate": "2019-07-01T00:00:00Z",
"status": "processed",

PUBLIC Page 14 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

"request": {

"object": "transaction.request",

"id": "4b502950-8801-4112-bal5-88f8eb280525"
¥
"response": {

"object": "transaction.response",

"id": "4b502950-8801-4112-bal5-88f8eb280525",

"result": {

"resultType": "accepted",
"resultCode": "accepted",
"message": "Authorised.",
"authCode": "123456",

"authDate": "2019-07-01T00:00:00Z"

}

}s
"links": {

"self":
"https://sit.encoded.services/api/1l/transactions/4b502950-8801-4112-bal5
-8818eb280525"

}
}

The response to the authorise action returns an id field, which will be used for the
subsequent capture action:

POST /transactions
{
"object": "transaction.request",
"action": “capture",
"ref": "trans-1234",
"amount": ,
"currency": "GBP",
"source": {

"object": "source",
"transaction": {
"object": "transaction",
"id": "4b502950-8801-4112-bal5-88f8eb280525"

PUBLIC Page 15 of 74

Encoded Gateway API &EeNCOoODheD

Developer Guide secure automated payments

The capture is performed referencing the previous transaction as the source. This receives
the following response indicating that the capture was successful:

"object": "transaction",
"id": "2156d9ef-al6a-4e43-b5d2-bfdcb6c9afae"”,
"creationDate": "2019-07-01T00:00:00Z",
"status": "processed",
"request": {
"object": "transaction.request",
"id": "2156d9ef-al6a-4e43-b5d2-bfdcb6c9afae”
s
"response": {
"object": "transaction.response",
"id": "2156d9ef-al6a-4e43-b5d2-bfdcb6c9afae”
"result": {
"resultType": "accepted",
"resultCode": "accepted",
"message": "Captured."

}
¥
"links": {

"self":
"https://sit.encoded.services/api/1l/transactions/2156d9ef-al6a-4e43-b5d2
-bfdcb6c9afae"

}
}

Voiding an Authorisation

If you have an outstanding authorisation that will not be captured, you must void the
authorisation as soon as possible. This can be performed with a void action, passing in the
transaction as the source (as with performing a capture).

Partial Capture

If you perform a partial capture on an authorisation - capturing a lower amount then was
authorised - there is no need to additionally void the remaining amount.

PUBLIC Page 16 of 74

Encoded Gateway API &EeNCOoODheD
Developer Guide

secure automated payments

Excessive Capture

The gateway does not currently support excessive capture. If the capture amount will be
higher than the authorised amount, there are two possible scenarios:

1. Void the existing authorisation, and perform a new authorisation for the entire higher

amount.

2. Perform a second authorisation of the remaining amount (the difference between the
previous authorised amount and the intended capture amount), and then capture
both authorisation when required.

PUBLIC

Page 17 of 74

Encoded Gateway API &EeNCOoODheD

Developer Guide secure automated payments

Customers

The Gateway API allows for Customer objects to be created that represent the end
customer. These Customer objects can be attached to Orders, Transactions and Tokens.
This is useful functionality to allow these resources to be tied together, and searched and
loaded on a per-customer basis.

Customer objects can either be created explicitly or implicitly during the creation of an Order,
Transaction or Token.

Adding New Customers

Customers can be added explicitly via the Encoded Gateway API. To do this, a POST
request can be made to /customers with an Array of Customer objects:

"object": "customer",
"ref": "12345-19850701",
"title": "Mr",
"forename": "John",
"surname": "Doe",
"dateOfBirth": "1985-07-01",
"contact": {
"object": "contact",
"address": {
"object": "address",
"title": "Mr",
"forename": "John",
"surname": "Doe",
"postcode": "AB1 2CD",

}

¥
"attributes": {

"account": [

{

"accountNumber": "100001234",

"paymentAmount" :

"arrearsAmount" : ,

"tokenisationEnabled": true,

"creditCardsEnabled": true,

"defaultToken": "2156d9ef-al6a-4e43-b5d2-bfdcb6c9afae”

PUBLIC Page 18 of 74

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

"accountNumber”: "100009999",
"paymentAmount" :
"arrearsAmount”: ,
"tokenisationEnabled": true,

"creditCardsEnabled”: true,
"defaultToken": "2156d9ef-al6a-4e43-b5d2-bfdcb6c9afae™

Shown above is a Customer object example with non-required fields removed.
The ref field shown should be a unique identifier from the merchant for the customer, such
as a unique customer or account ID.

The attributes field allows for custom attributes to be saved against the Customer object.
This is shown in more detail in the Custom Afttributes section below.

Updating Existing Customers

In order to update an existing Customer resource, the existing Customer resource must first
be identified directly via the id, or searched for via the ref, or any attribute contained within
the attributes Object. There are two main methods for doing this:

1. When a customer resource is created, it is generated a unique id which is included in
the response object. This can be used to identify the resource directly..

2. Customer records can be searched by including the targeted reference in the query
string, which returns an Array of matching Customer resources. The correct
Customer resource should be identified and the id used to directly access the
resource.

Once the id of the Customer resource is known, a PUT request can be made to
/customers/{customerld} along with the Customer object to replace the existing object.

GET /customers?page=0&results=1&attributes.account.accountNumber=
[{

"object": "customer",

"id": "7ff16945-db98-4216-af7d-cf6094ae5f61",

"ref": "12345-19850701",

"title": "Mr",

"forename": "John",
"surname": "Doe",
"dateOfBirth": "1985-07-01",

PUBLIC Page 19 of 74

Encoded Gateway API ENCOoODheD

Developer Guide

secure automated payments

"contact": {

"object": "contact",

"address": {
"object": "address",
"title": "Mr",
"forename": "John",
"surname": "Doe",
"postcode": "AB1 2CD",

}
¥
"attributes": {

"account:" {
"accountNumber": "12345",
"paymentAmount" :
"arrearsAmount”: 5
"tokenisationEnabled": true,
"creditCardsEnabled": true

PUT /customers/7ff -db
{
"object": "customer",
"ref": "12345-19850701",
"title": "Mr",
"forename": "John",
"surname": "Doe",
"dateOfBirth": "1985-07-01",
"contact": {
"object": "contact",
"address": {
"object": "address",
"title": "Mr",
"forename": "John",
"surname": "Doe",
"postcode": "AB1 2CD",

}
}s

"attributes":
"account:" {
"accountNumber": "12345",
"paymentAmount" :

PUBLIC Page 20 of 74

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

"arrearsAmount”: 5

"tokenisationEnabled": true,

"creditCardsEnabled”: true,

"defaultToken": "2156d9ef-al6a-4e43-b5d2-bfdcb6c9afae”

The above example searches for an existing customer who has a custom attribute of
account.accountNumber with the value 12345, and updates their payment amount (another
custom attribute) from 100.00 to 150.00.

Deleting Existing Customers

The same method is applicable for deleting existing customers. A customer resource can be
deleted by making a DELETE request to /customers/{customerld}.

Be aware that tokens associated with that customer resource will also subsequently be
deleted.

Custom Attributes

The Customer object allows attributes to be provided to extend what information can be
provided about a customer. This has many applicable use cases, such as setting specific
feature flags for certain customers (whether this customer is allowed to be with credit cards,
as an example), default payment amounts, preferred tokens for scheduled payments, etc.
Below shows an example of setting some additional account information, some default
payment values, and setting some feature flags.

"attributes": {
"account": {
"accountNumber": "100001234",
"paymentAmount" : s
"arrearsAmount”: ,

"tokenisationEnabled": true,
"creditCardsEnabled": true,
"defaultToken": "2156d9ef-al6a-4e43-b5d2-bfdcb6c9afae”

This object can also be provided as an Array if required.

PUBLIC Page 21 of 74

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

"attributes": {
"account": [

{

"accountNumber": "100001234",

"paymentAmount" :

"arrearsAmount”: 5

"tokenisationEnabled": true,

"creditCardsEnabled”: true,

"defaultToken": "2156d9ef-al6a-4e43-b5d2-bfdcb6c9afae”

"accountNumber”: "100009999",

"paymentAmount" :

"arrearsAmount”: 5

"tokenisationEnabled": true,

"creditCardsEnabled”: true,

"defaultToken": "2156d9ef-al6a-4e43-b5d2-bfdcb6c9afae"

Custom attributes support Strings, Numbers, Booleans, Objects and Arrays as values.

PUBLIC Page 22 of 74

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

Tokens

Tokenisation allows merchants to store payment details in exchange for a token. The token
can be identified via a token ID and subsequently used to perform new transactions without
having to recollect all (or any) of the sensitive card details from the cardholder. This is a
useful feature to help implementers and merchants to reduce their PCl compliance burden
by reducing the scope of their cardholder data environment. It should be noted that this is
distinct from performing a follow-up transaction - for example, a capture following an
authorisation - using the transaction ID of the original transaction, and is targeted at
implementers who wish to make new transactions at a future date without having to recollect
card details.

Tokens can be created from any transaction that provides a card as the transaction source.
This can be achieved by including a tokenisation object alongside the card object, as in the
below example:

"card": {
"object": "card",
"pan": "4444333322221111",
"expiry": "2022-10",
"securityCode": "111",

"tokenisation": {
"object": "tokenisation",
"agreement": "card on file",
"ref": "token-1234"

The above example indicates that we wish to tokenise the card details provided with an
agreement type of card_on_file, and a ref of token-1234. The agreement type indicates
how we intend to use the token, and will be one of:

e card_on_file
A transaction using a stored card for a fixed/variable amount which is not part of a
scheduled/regular agreement but where the Cardholder themselves initiates the
payment. For example, a stored card transaction initiated by the cardholder directly
via an E-com or IVR channel, or indirectly (by verbally authorising) via a virtual
terminal.

e recurring

A transaction in a series of transactions processed for the purchase of
goods/services provided at regular/fixed intervals. For example, a stored card

PUBLIC Page 23 of 74

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

transaction performed for an ongoing service such as payment towards utility bills,
subscriptions, etc.

e instalment
A transaction in a series of transactions processed over a set period and number of
payments for a single purchase of goods/services. For example, a stored card
transaction performed for a one-off service/good, such as making monthly payments
towards a large purchase.

e unscheduled
A transaction using a stored credential for a fixed/variable amount which is not part of
a scheduled/regular agreement but where the Cardholder has provided consent for
the Merchant to initiate one or more future transactions. For example, a stored card
transaction performed as a secondary means of payment when a primary means
(such as Direct Debit) has failed.

The authorise, capture, pay, and verify actions can be used to create a token. Using the
verify action means that only basic verification of the card will be performed, and does
heighten the risk that a subsequent transaction performed on that token may fail.

Once the transaction has finished processing, the transaction.response will contain the token
object for any token created as a result of that transaction being processed.

Once a token has been created, it can subsequently be provided as the source for any future
transaction request to attempt to collect the funds from the original card.

Retrieving Tokens for a Customer

The best method of retrieving a token is via an associated Customer. To do this, make a
GET request to /customers/{customerld}/tokens to retrieve an array of all tokens associated
with the Customer.

GET /customers/7ff -af7d-cf ae5f61/tokens
[{
"object": "token",
"id": "@9f50370-8d25-43b7-8250-2b2e56b360bd",
"creationDate": "2019-07-01T00:00:00Z",

"ref": "token-1234",
"pan": "465858******6Q34"
"expiry": "2020-05",
"securityCode": "***"/
"issuer": {

PUBLIC Page 24 of 74

Encoded Gateway API &EeNCOoODheD

Developer Guide

secure automated payments

"object": "issuer",
"id": "465858",
"scheme": "Visa",
"type": "Credit",
"brand": "Barclays Bank Plc",
"level": "Classic",
"country": "GBR"
¥
"agreement": "card_on_file",
"billingCustomer": {
"object": "customer",
"id": "7ff16945-db98-4216-af7d-cf6094ae5f61",
"links": {

"self":
"https://sit.encoded.services/api/1l/customer/7ff16945-db98-4216-af7d-cf6
094ae5f61"

}
}
}]

Retrieving all Tokens

An array of all existing token resources can be retrieved by making a GET request to /tokens
along with suitable paging query parameters.

Making a Token Payment

Below is an example of a transaction request being made with a Token as the source of
funds.

POST /transactions

{
"object": "transaction.request",
"action": "pay",
"ref": "12345-19850701/20190801-1",
"currency": "GBP",

"amount" : ,
"source": {
"object": "source",
"token": {
"object": "token",

PUBLIC Page 25 of 74

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

"id": "@9f50370-8d25-43b7-8250-2b2e56b360bd"

}

¥
"billingCustomer": {

"object": "customer",
"id": "7ff16945-db98-4216-af7d-cf6094ae5f61",

PUBLIC Page 26 of 74

Encoded Gateway API &EeNCOoODheD

Developer Guide

secure automated payments

Alternative Payment Methods (APMs)

APMs are alternative ways of making payment through the Gateway other than directly via a
debit or credit card or a stored card token. The Encoded Gateway offers the following APMs.

Apple Pay

Apple Pay is the one way to pay. It replaces your physical cards and cash with an easier,
safer, more secure and private payment method — whether you’re in a shop, on a website or
in an app. It's money, made modern.

Set up Apple Pay

Apple Developer Account

Firstly, you will need to set up an Apple Developer account. If you do not already have one,
follow the link and click on Account in the top right corner. An Apple Developer account is a
paid account which has a cost of approximately £80 per year as at July 2023. If you already
have an Apple Developer account, skip to the next step.

Create a merchant identifier

A merchant identifier uniquely identifies you to Apple Pay as a merchant who is able to
accept payments. A merchant identifier never expires, and you can use the same one for
multiple apps.

1. Within your Apple Developer account, in “Certificates, IDs & Profiles”, click Identifiers
in the sidebar, then click the add button (+) on the top left. Select Merchant IDs, then
click Continue.

2. Enter a useful description that will help you to identify what the merchant identifier is
being used for.

3. Enter your merchant identifier name in the Identifier section. It is strongly
recommended that you use a descriptive identifier including the environment and

domain that you will use it within. For example: [El i A= 3=1q[efo)e [<Te o] glo]e|

4. Review the settings, then click Register.

Alternatively, you can create a merchant identifier in Xcode.

Create a payment processing certificate

A payment processing certificate is associated with your merchant identifier and used to
encrypt payment information. The payment processing certificate expires every 25 months. If
the certificate is revoked, you can recreate it.

PUBLIC Page 27 of 74

https://developer.apple.com/

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

Creating a payment processing certificate is a three step process; generating a Certificate
Signing Request (CSR) from Encoded - either via an API request or via the Merchant
Management Portal (coming soon), generating the Apple Pay Payment Processing
Certificate within the Apple Developer account, and then uploading the Apple Pay Payment
Processing Certificate to Encoded - again either via an API request or via the Merchant
Management Portal (coming soon).

Generate a certificate signing request

To generate a certificate signing request, use the API endpoint along with the merchant
identifier created in the above steps. An example request:

POST /applepay/signing-requests
{

"merchantIdentifier": "merchant.services.encoded.prod”

We will then generate a certificate signing request on your behalf, along with an ID that can
be used to later provide us with the Apple Pay Payment Processing Certificate.

You will receive the following example response:

"id": "4fefad24-a6ce-41ba-a222-c823a31e7961",

"csr":
MIHZMIGBAgEAMB8XEDAOBgNVBAOMBOVUY29kZWQxCzAIBgNVBAYTAKkdCMFkwEwYHK0ZIZjOC
AQYIKoZIzjODAQcDQgAE/XoGBUX8cuCCRovY1bxARjp5s19hsk6yaBG/JI3rBQoI9GmDpc6oka
HbQfWaUo/3mNMxbAU6vOITMUGx1c43brTaAAMAOGCCqGSM49BAMCAOCAMEQCIEI6Rs sKkutV

bmIdfwAXQj8c+087uV+cNf2AHIcgcLS1AiB682f8sWjhDc5G11kKGh/FHTEXKAYKULW6Ob6B

D1iOmg== END CERTIFICATE REQUEST "
"links": {
"self":
"https://sit.encoded.services/api/1l/applepay/certificates/4fefad24-a6ce-
41ba-a222-c823a31e7961"

}

The content provided to you in the csr field should be saved as a file to later be
provided to Apple Pay. Additionally, the link provided in the links.self field will be the endpoint
that you will later use to provide Apple Pay Payment Processing Certificate back to
Encoded.

PUBLIC Page 28 of 74

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

Create a payment processing certificate

To create an Apple Pay Payment Processing Certificate, you need to provide the generated
CSR to Apple.

1. Within your Apple Developer account, in “Certificates, IDs & Profiles”, click Identifiers
in the sidebar, then select “Merchant IDs” on the drop-down on the right hand side of
the screen.

2. Select the merchant identifier that was created in the above steps.

3. Inthe Apple Pay Payment Processing Certificate section - make sure you’re not in
the Apple Pay Merchant Identity Certificate section - select Create Certificate.

4. Respond No to the question about processing in China and select Continue.
5. Upload the .csr file from the above step and select Continue.

6. Select Download to receive your Apple Pay Payment Processing Certificate in
format.

Upload the payment processing certificate

The Apple Pay Payment Processing Certificate must then be provided to Encoded in PEM
format to the endpoint previously provided in the signing-requests response. An example
request:

POST /applepay/certificates/4fefad24-a6ce
{

"certificate":
MITIEezCCBCGEAWIBAZIIDM6aT+Ea5xYwCgYIKoZIzjOEAwWIwgYAXNDAYBgNVBAMMKOFwWcGX1
IFdvemxkd21kZSBEZXZ1bGOwZXIgUmVsYXRpb25zIENBICOgRzIxJjAkBgNVBASMHUFwcGx1
IEN1cnRpZmljYXRpb24gQXVOaGOyaXR5MRMWEQYDVQQKDApBCcHBsZSBIbmMuMQswCQYDVQQG
EwJVUzAeFwOyMzAIMjQxMjEwMz1aFwOyNTA2MjIXxMjEwWMzhaMIGsMSOwWKwWYKCZImiZPyLGQB
AQwdbWVyY2hhbnQuc2VydmljZXMuZW5jb2R1ZC5kZXYxQzBBBgNVBAMMOk FwcGx1IFBheSBQ
YX1tZW50IFByb2N1c3Npbmc6bWVyY2hhbnQuc2VydmljZXMuZW5jb2R1ZC5kZXYXEzARBgNV
BASMCkpQN1MzWUZRNDYXFDASBgNVBAoMCOVuUY29kZWQg THRkMQswCQYDVQQGEwWIHQjBZMBMG
ByqGSMA49AgEGCCqGSMA9AWEHAOTIABH8KdeLnidNx5aW3u4b2Axhyt2Nb5Rdn/10I+HWY+X/6
hCHO9Png4EIVe2HgYguGL6dN+zpi2YojYLespk5UocWjggIVMIICUTAMBEGNVHRMBAFSEA AA
MB8GA1UdIwQYMBaAFIS2hMwehmJyF1mU6BqjvUjfOt8LMEcGCCsGAQUFBWEBBDsSwOTA3Bggr
BgEFBQcwAYYraHROcDovL29jc3AuYXBwbGUUY29tL29jc3AWNC1hcHBSZXd3ZHIjYTIWMTCC
AROGA1UdIASCARQWggEQMIIBDAYIK0ZIhvdjZAUBMIH+MIHDBggrBgEFBQcCAjCBtgyBs1]1
bG1hbmN1IG9uIHRoaXMgY2VydGlmaWNhdGUgYnkgYW55IHBhcnR5IGFzc3VtZXMgYWNjZXB0O
YW5jZSBvZiB0@aGUgdGhlbiBhcHBsaWNhYmx1IHNOYW5kYXIkIHR1cm1zIGFuZCBjb25kaXRp

PUBLIC Page 29 of 74

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

b25z2I1GO9MIHVZzZSwgY2VydGlmaWNhdGUgcG9saWN5IGFuZCBjZXJ0aWZpY2F@aWOuIHBYYWNO
aWN1IHNOYXR1bWVudHMUMDYGCCsGAQUFBWIBFipodHRwOi8vd3d3LmFwcGx1LmNvbS9jZXJe
aWZpY2FOZWF1dGhvcm10eS8wNgYDVROTBCB8WLTAroCmgJl4Y1laHROcDovL2NybC5hcHBSZS5]
b20vYXBwbGV3d2RyY2EyLmNybDAdBgNVHQ4EFgQU4gztoVmaREZ+pQTBLn5xebNpmOMwDgYD
VROPAQH/BAQDAgMOMEBGCSqGSIb3Y2QGIARCDEAZOEQzMjhCMzk5NzQOMTU4QjgxNDgONOE X

QkM5QkIZzRjNFRUNGQTIEQURGMTNERTI1Mzg50UIXRUE2RDQ3QzM3MAOGCCqGSMA9BAMCAGEA
MEUCIQDrrNeql2H1X2Xjx9a7Z5XJ+VVzPV4/cMLX1VjU8/YUKAIgOWvXwFVCF7KhZ2T4U7kU
BOy7B7cVKK1ZW7MchMygsX8=

}

Configure Apple Pay on the web

If you are using Apple Pay on the web, you will need to additionally register and verify your
domain, and create a Merchant Identity Certificate. You will need to perform these tasks
within your Apple Developer account, and will subsequently need to ensure that your
frontend implementation makes use of the Merchant Identity Certificate created in this step.

Checkout Implementation

Please see the Apple Pay API documentation for information on how to integrate Apple Pay
into your checkout.

e Apple Pay on the web
e PassKit (Apple Pay and Wallet) in a

Using the Apple Pay API

When creating the ApplePayPaymentRequest, you must set the values of
supportedNetworks and merchantCapabilities to values supported by Encoded.

You can define which payment schemes are supported. Encoded currently supports

American Express, Discovery, Mastercard and Visa.

const supportedNetworks = ["amex", "discover", "masterCard", "visa"];

You will also need to define the merchant capabilities.

const merchantCapabilities = ["supports3DS"];

PUBLIC Page 30 of 74

https://developer.apple.com/help/account/configure-app-capabilities/configure-apple-pay-on-the-web#create-a-merchant-identity-certificate
https://developer.apple.com/help/account/configure-app-capabilities/configure-apple-pay-on-the-web#create-a-merchant-identity-certificate
https://developer.apple.com/apple-pay/
https://developer.apple.com/documentation/apple_pay_on_the_web
https://developer.apple.com/documentation/passkit
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentrequest
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentrequest/1916122-supportednetworks
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypaymentrequest/1916123-merchantcapabilities

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

Receiving the Payment Token from Apple Pay
Once your checkout has completed the Apple Pay process, an ApplePayPayment object will

be returned to your application in the [\YeJo R ENATEF el s ENUE Pl dale] g #4=Ys| event

handler. The following fields will need to be sent to the Encoded Gateway:

ApplePayPayment.token

An example of the value contained in this field is below:

{"paymentData":{"data":"/U4zEWwhShc9GCiJorjtlWOvIC/Hx6dwdUGLLQUjtbIsG4Uj
tN61lovF1YeQm43zeXnlxogIcTVoG8qdohoWzdqo8/8HgkWPgYwo+CK1Pgh3ipCGy+GdPEEWS
ORXdESZ8WwelZhGtojKsA8SNg4plPVNPGbOkGbOUFPQQ3Sbg7794rn1RmOFcUE7+3VnYJeB7
1vNoV7h2gq2i900WTXn1iYy/IpVBV1uA3DBKHqzeAsZ25vuIWi6HCZBP1G8cMrLOBbHANw7Mu
/ghIsYLWyOSrOQpmIGLDZ8CAVXVWSOLeQ/IR1ZuvxjThaeA+wrTchfZiV+incoe2pJJhbx2d
CZ+dmsps3Ne9LxYGxxI1ORnZpDDoNBUWG7cOX5j040GoneGIIc+2IjTV7GHOosfZ", "signa
ture": "MIAGCSqGSIb3DQEHAGCAMIACAQEXDTALBglghkgBZQMEAGEWEAYIKoZIhvcNAQCBA
ACggDCCA+MwggOIoAMCAQICCEWWQU1RNVQ2MA0GCCqGSM49BAMCMHoXL jJAsBgNVBAMMIUFwC
GX1IEFwcGxpY2F@aWOuIEludGVncmFO@aWOUIENBICOgRzMxJjAkBgNVBAsMHUFwcGX1IENIc
NRpZm1jYXRpb24gQXVOaG9yaXR5MRMwEQYDVQQKDApBcHBsZSBIbmMuMQswCQYDVQQGEwIVU
zZAeFWOXOTAIMTgWMTMyNTdaFwOyNDAIMTYWMTMyNTdaMF8xJTAjBgNVBAMMHGVjYy1zbXAtY
nJva2VyLXNpZ25fVUMOLVBSTOQxFDASBgNVBAsMC21PUyBTeXNOZW1zMRMwEQYDVQQKDApBC
HBsZSBJbmMuMQswCQYDVQQGEwIVUzBZMBMGBY qGSM49AgEGCCqGSMA9AWEHAGTIABMIVd+3rl
seyIY903XCQoSGNx7CObywoPYRg1d1K9KVBGANCDtgR80B+gzMfHFTD9+syINa61dTv9IKIi
T58Dx0jggIRMIICDTAMBgNVHRMBAf8EAjAAMB8GA1UdIWQYMBaAFCPYScRPk+TvI+bE9ihsP
6K7/S5LMEUGCCsGAQUFBWEBBDkwNzA1BggrBgEFBQcwAYYpaHROcDovL29jc3AuYXBwbGUuY
29tL297jc3AWNC1hcHBSZWFpY2EzMDIwggEdBgNVHSAEEEEUMIIBEDCCAQWGCSGGSIb3Y2QFA
TCB/jCBwwYIKwYBBQUHAgIwgbYMgbNSZWxpYW5]jZSBvbiBOaGlzIGN1cnRpZmljYXR1IIGIS5I
GFueSBwYXJ0eSBhc3N1bWVzIGFjY2VwdGFuY2Ugb2YgdGhlIHRoZW4gYXBwbG1ljYWIsZSBzd
GFuZGFyZCBOZXJtcyBhbmQgY29uZGleaWOucyBvZiB1c2UsIGN1cnRpZmljYXR1IHBvbGlje
SBhbmQgY2VydGlmaWNhdGlvbiBwcmFjdGljZSBzdGFOZW11bnRzLjA2BggrBgEFBQcCARYga
HROcDovL3d3dy5hcHBsZS5jb20vY2VydGlmaWNhdGVhdXRob3JpdHkvMDQGA1UdHWQtMCswK
aAnoCWGI2h@dHA6LY9jcmwuYXBwbGUuUY29tL2FwcGx1YW1jYTMuY3JsMBOGA1UdDgQWBBSUV
9tv1XSBhomJdi9+VA4UH55tYIDAOBgNVHQ8BAT8EBAMCB4AWDWYJKoZIhvdjZAYdBAIFADAKB
g2qhk jOPQQDAgNIADBGAiEAvg1XH+ceHnNbVeWvrLTHL+tEXzAYUiLHIRACth69b1UCIQDR1
zUKXdbdbrFOYDWxHrLOh8+j5q9svYOAiQ3ILN2qYzCCAudwggI10AMCAQICCELItL786mNgXM
AoGCCqGSM49BAMCMGcxGzAZBgNVBAMMEKFwcGx1IFJvb3QgQOEgL SBHMZEMMCQGALIUECWWdQ
XBwbGUgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkxEzARBgNVBAOMCkFwcGx1IEluYy4xCzAJB
gNVBAYTA1VTMBAXDTEOMDUWNJIzNDYzMFoXDTI5SMDUWN]jIzNDYZzMFowe jEUMCWGALUEAWW1Q
XBwbGUgQXBwbG1jYXRpb24gSW50ZWdyYXRpb24gQOEgL SBHMZ EMMCQGA1UE CwwdQXBwbGUgQ
2VydG1lmaWNhdGlvbiBBdXRob3JpdHkxEzARBgNVBAOMCKFwcGx1IE1uYy4xCzAJBgNVBAYTA
1VTMFkwEwWYHK0ZIzjOCAQYIK0oZIzjODAQcDQEAE8BCRhBNXZIXVG141gQd26ICi7957rk3g]

PUBLIC Page 31 of 74

https://developer.apple.com/documentation/apple_pay_on_the_web/applepaypayment

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

fXLK+EzVtVmWzWuItCXdg@iTnu6CP12F86Iy3a7ZnC+y0gphPO9URa0OB9zCBODBGBggrBgEFB
QcBAQQEMDgWNgY IKwYBBQUHMAGGKMhOdHAGLYOVY3NWLMFwcGx1LmNvbSOvY3NwMDQtYXBwb
GVyb290Y2FnMzAdBgNVHQ4EFgQUI/JIXE+T508Nn5sT2KGw/0orv9LkswDwYDVROTAQH/BAUWA
WEB/zAfBgNVHSMEGDAWgBS7sN6hWDOImgSKmd6+veuv2sskqzA3BgNVHREEMDAUMCygKgAoh
iZodHRwO18vY3JsLmFwcGx1LmNvbS9OhcHBsZXJvb3RjYWczLmNybDAOBgNVHQ8BATSEBAMCA
QYWEAYKK0ZIhvdjZAYCDgQCBQAWCEYIK0ZIzjOEAWIDZWAWZAIWOS9yglEWMbGG+zXDVspiv
/QX7dkPdU2ijr7xnIFeQreJl+Jj3mimfmNVBDY+d6cL+AjAyLdVEIbCjBXdsXfM405Bn/Rd8L
CFtlk/GcmmCEmMOU+Hp9G5nLmwmI IWEGMQ8I kh@AADGCAYkwggGFAgEBMIGGMHoXL jASBgNVB
AMMIUFwWcGX1IEFwcGxpY2F@aWOuIEludGVncmFOaWOUuIENBICOgRzMxJjAkBgNVBASMHUFwc
Gx1IEN1cnRpZmljYXRpb24gQXV0aG9yaXR5MRMWEQYDVQQKDApPBCHBSZSBIbmMuMQswCQYDV
QQGEwJVUWIITDBBSVGdVDYwCwYJYIZIAWUDBAIBOIGTMBEGCSqGSIb3DQEJAZELBgkghkiG9
wOBBWEWHAYJK0oZIhvcNAQkFMQ8XDTIzMDcwMzEOMzAXMVowKAYIKoZIhvcNAQkOMRsSWGTALB
glghkgBZQMEAgGhCgYIKoZIzjOEAWIWLWYIK0ZIhvcNAQKEMSIEINRUT6QZ1wurSiEyAKI6f
JORRUjEuseHS7s+IvKZNsDWMAoGCCqGSM49BAMCBEgwRgIhAMOWACculWbaClwYOw8saXsU90
$94a+w70456xIJ60C6CALIEA0]Lr3LxgAr3v2HGNR6RUVTr67XLNHGMATQ7 j1uP1zUjKkAAAAAA
AA=", "header" :{"publicKeyHash" : "kNfaKFR90ad5u80z0YLcK9ZWw4T5ZY8Xdrou418S
Yék=","ephemeralPublicKey" : "MFkwEwYHK0ZIzjOCAQYIKoZIzjODAQcDQgAEU9S5jmBYL
B7aGq1Z7IyMMTbE4PPXKj6Q8xZ9IvnuysurrIGVuUBWU3I1T+05xqRCVhISBWXRXxg6PKQace
ealSOA==","transactionId":"a5a@0ce5542237beddd513108b5d14232276ebb238de0
1dof816cced42630ffd"}, "version":"EC_v1"}, "paymentMethod" : {"displayName" :
"MasterCard

0049", "network":"MasterCard", "type":"credit"}, "transactionIdentifier":"A
5A0OCE5542237BEDDD513108B5D14232276EBB238DEQ1DOF816CCE442630FFD" }

You must base64 this value prior to sending to Encoded. Example below:

eyIJwYX1tZW50RGFOYSI6eyIkYXRhIjoilL1U@ekVXd2hTaGM5RONpSmOyanQxVe92SUMvSHg2
ZHdkVUdMTFFVanRi1SXNHNFVqdE42MWO2RjFZMFFtNDN6ZVhuMXhvZ@1jVFZvRzhxZDBob1d6
ZHFvOC84SHFrV1BnWXdvK@NLbFBnaDNpcENHeStHZFBFRXc5MFJYZEVTWjhXd2UxWmhHAG9q
S3NBOFNOZzRwbFBWT1BHYj1rR2IwdUZQUVEZzU2InNzc5NHIuMVItTOZjdUU3KzNWb11KZUI3
bHZOb1Y3aDJIxMmk5MESXVFhubG1ZeS9IcFZCVjF1QTNEQktIcXplQXNaMjV2dU1XaTZIQ1pC
UGXHOGNNckwwQmJIIZE53N011L2doSXNZTFd5TINYT1FwbUIHTERaOENBVNhWVINPTGVRLOpS
MVp1dnhqVGhhZUErd3JUY2hmWmlWK21uY291MnBKSmhieDIkQlorZG1lzcHMzTmU5THhZR3h4
STEwUm5acEREbO5CVXdHN2NPWDVGMDRPR29uZUdKSWMrMk1qVFY3ROgwb3NmWiIsInNpZ25h
dHVyZSI6Ik1JQUADU3FHU@1iMORRRUhBCUNBTU1BQOFRRXhEVEFMQmMdsZ2hrZ@JaUU1FQWdF
d2dBWUpLb1pJaHZjTkFRY@IBQUNNZORDQOErTXdnZ09IbOFNQOFRSUNDRXd3UVVsUmSWUTIN
QWOHQONXRINNND1CQU1DTUhveExqQXNCZO5WQkFNTUpVRNdjR3hsSUVGd2NHeHBZMkYwYVc5
dU1FbHVKR1ZuY21GMGFXOXVIRU5CSUMwWZ136TXhKakFrQmdOVkIBc@1IVUZ3YOd4bE1FTmxj
blIwhWmlsallYUnBiMjRnUVhWMGFHOX1hWFI1TVINdOVRWURWUVFLREFwWQMNIQnNaU®IKYm1N
dU1Rc3dDUV1EV1FRROV3S1ZVekF1RncweESUQTFNVGA3TVRNeU5SUZGFGdzB5TKRBMU1UWXdN
VE15T1RkYU1GOHhKVEFqQmdOVkIBTU1IR1ZgWXkxemJYQXRZbkp2YTIWeUxYTnBaMjVmV1VN
MEXWQINUMFF4RKRBUOINT1ZCQXNNQzIsUFV5Q1RIWE4AwW1cxek1STXdFUVIEVIFRSORBCETD]

PUBLIC Page 32 of 74

Encoded Gateway API &EeNCOoODheD

Developer Guide secure automated payments

SEJzWINCSmItTXVNUXN3Q1FZRFZRUUdFdOpWVXpCWk1CTUdCeXFHU®OOOUFNRUADQ3FHU®OO
OUF3RUhBME1BQk1JIVmQrM3Ixc2V5SVk5bzNYQ1FvU@d0eDdDOWI5d29QWVInbGRsSz1LVkIH
NES5DRHRnUjgwQitnek1mSEZURDkrc31JTmE2MWRUdj1KS@ppVDU4RHhPamdnSVINSULIDRFRB
TUINT1ZIUk1CQWY4RUFqQUFNQjhHQTFVZE13UVINQmFBRKNQeVNjU1BrkK1R2SitiRT1paHNQ
Nks3L1IM1TE1FVUdDQ3NHQVFVRkI3RUJICRGt3TnpBMUINZ3ICZOVGQLFjdOFZWXBhSFIwYORvV
dkwyOWpjMOF 1WVhCd2 JHVXVZM18TDI5amMzQXd0QzFoYOhCc1pXR TURJd2d
WSF FRAodDU3FHU®11iM1kyUUZBVE [9]0]0] WU1Ld11CQ1FV
SEFNSXdnY11NZ2J0U1pXeHBZVzVqgWl x6SUdObG
yAVAY, 1YSjBlU®JoYz ZgWTIWd2RHR RHaGxJSFJvilc
Z11YQ xgqWVdKc1pTQ Z1WkdGeVpDQjBaWEpY31CaGItUWdZMj11Wkd SMGFXOXV]
eUJ2Wm1CMWMy VX sY25ScFptbGpZWFJsSUhCdmIHbGplUBJoYm1RZ1kyV xtYvdo
aGRHbHZiaUJ3Y21GamRHbGpaU®J6ZEdGMFpXMWxiblJ6TGpBMkJ JCZOVGQLFjQOFSWXFh
SFIwYORvdkwzZD hCclpT WTJIWeWRHbG1hV650ZEdWaGRYUm9iMOpwZEhr
dk1EUUdBMVVKSHARAE1Dc3dLYUFub kyaDBkKSEE2THkS5am VZWEJ3YkdVdVkyOXRM
MkZ3Y0d4bF1XbGpZVE11WT CMEdBMVVKRGARVEICU1VWOXR2MVhTQmhvbUpkaTkrVjRV
SDU1dF1KREFPQmdOVKhROEJIBZjhFQkFNQOIOQXdEd11KS29aSWh2ZGpaQV1kQkFIRKFEQUtC
Z2dxaGtqT1BRUURBZO5KQURCROFpRUF2Z2xYSCtjZUhuTmIWZVd2ckxUSEwrdEVYekFZVIW1M
SEpSQUN2aDY5YjFVQO1RRFIpelVLWGRiZGIyRjBZRFA4SHIMT 2g4K201cT1zd11PQW1RMO1M
T§IXWXpDQOF oxb@FNQOFRSU TDc OcVh HQ DTUd]
eEd6QVpCZO5SWQKF hsSUZKdmIzUWdRMEV RW FHQTFVRUN3d2RR
WEJ3YkdVZ1EyV xtYVdOaGRHbHZiaUJCZFhSb21zS RXpBUk3J tG
d WXk©eEN6QUPpCZO5WQKFZVEFsVIR EVXdOakl6TkRZek1Gb1lhE
VEk1TURVdO5qSXpORF16TUZvd2VgRXV dHQTFVRUF3d2xRWEJ3YkdVZ1FYQ xXgWVhS
cGIly xTQkh ExVUVDd3dkUVhCd2JHVWdR
M1Z5ZEdsbWFXTmhkR2x2Ym1CQmRYUm9iMOpwZEhreEVEQVICZO5WQKFVTU hsSUVs
dv1s V3WUhLb1pJemowQOFRWU1Lb1pJemowREFRYORR
ZOFFOEJjUmhCblhaSVhWR2wobGdRZDI2SU JrM2dqz Vm1Xeld1SXRD
WGR Q1AXMKY. M2E 3Wm5DK 31PZ3BoUD1VUMFPQj16Q2I5REIHQMd
EZ3d0Z113S3dZQkJRVUh OMGRIQTZMeT12WT xtR hsTG10
dmJTOXZZM@53TURRAF1YQ Z5YjISMFkyRm5 FVSSOKS 0]
Tzhu venY5TGtzd9R3WURWUjBUQVFILOIBVXdBdOVCL3pBZk] FRORB
V2dCUzdzTjZoVORPSW1xUottZDYrdmV1idjJlzc2txekEzQmdOVkhSOEV TUN5ZotxQWoo
aVpvZEhSd@SpOHZZMOpzTG1Gd Y1M5aG Yj pMbU55YkKRB
TO3J RUJBTU RUFZS@tviklodmRgWkFZQeR Q2dzsutvinkl
aJjBFQXdJIRFp3QXdaQU1l3T3M5eWcxRVdtYkdHK3pYRFZzcG12L1FYN2RrUGRVMmlqcjd4bklG
ZVFyZUorSmozbTFtZm10OVkJIEWStk FQQX1MZFZFSWJIDakJYZH TzVCbi9SZDhM
Q9ZobGsvR hwOUc1bkxtd21KSVdFR21ROEpraDBBQURHQOFZa3d dGQWdF
Qk13JIRed TGpBcOJ Yod4cFkyRjBhVz11SUVsdWRHVMSj
bUYwYVc5dU1FTkJJQzB WQkFzTUhVR hsSUVObG
eWFYUjV RVFZRFZRUUtEQXBCYBhCc1pTQkpibU11TVFzd
SUIUREJCU1ZHZFZEWXdDd11KWUlaSUFXVURCQU1CbO@1HVE1CZOdDU3FHUO1 1
MORRRUpBekVMQmdrcWhralc5dzBCQ hBWUpLb1pJaHZjTkFRa®Z EY3d
Wb3dLQV1KS25aSWh2YO5BUWswTVIzdodUQUxCZ2x doQ2dz

PUBLIC Page 33 of 74

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

SUtvik16ajBFQXdJdox3WUpLblpJaHZjTkFRabV 1FSU5SdVQ2UVpsd3VyU21FeUFLS]Zm
SjBSU MrSXZLWk5zRHd HQ DQkVnd13 QU
kwdzhzYVhzVT1PczkoYSt SU02TOM2QOFpRUFVbHIZTHhxQXIzdjJI
R25S IRO1BVFE3ajF1UGX6VWprQUFBQUFBQUESIiwiaGVhZGVyIjp7I
YmxpY@tleUhhc2gi0iJrTmzZhS6ZSOUShZDV10DB6T11MYOs5W1d W1k4WGRyb1UGbDhT
WTZrPSIsImVwaGVtZXIhbFB1YmxpYotleSI6Ik1Ga3dFd11IS29aSXpqME asSXpq
MERBUW ExWjdJeU eFo5SXZudX1zdX3Jy

SUdWAVVCV1UzSWXUK©81eHF SQ3Zo0VNCV3hSeGc 2UESwYW BPTOiLCIOCmMFuUc2Fj
dG1vbk1kIjoiYTVhMDB3ZTU ZDEOMjMyMjc2ZWIiMjMAZGUw
MWQWZ jgx MjYZMGZmZCI2LCI2ZXIzaWouIjoiRU bWVudE11dGhv
ZCI6eyJkaX TmFtZSI6Ik1hc3R1ck 0SIsIm51dHdvcmsiOiINYXN@ZXID
YXIkIiwidH1lwZSI6Im LCIocmFuc2FjdGlvbk1kZW50aWzpZXIi0ilB
MjIzNOIFRERE QjVEMTQyMzIy Q

The ApplePayPayment object also can potentially contain billing and shipping data. If you
wish to use this data alongside the payment, you will need to convert the data returned into
the equivalent Encoded Gateway API fields and send them down as a part of the transaction
in the billingCustomer and shippingCustomer fields.

Submitting the Payment

You will then need to send this token, along the rest of your standard transaction fields, to
the Encoded Gateway as an apple_pay source.

An example pay action with the apple_pay source:

POST /transactions
{
"object": "transaction.request",
"action": "pay",
"ref": "trans-1234",
"amount": ,
"currency": "GBP",
"source": {

"object": "source",
"apple_pay": {

"object":"apple pay",

"token":
"dkwyOWpjMOF1WVhCd2JHVXVZM]j1lOTDI5amMzQXd0QzFoYOhCc1lpXRnBZMkV6TURId2dnRWR
CZO5WSFNBRWdnRVVNSU1CRURDQOFRAOdDU3FHUG1iM1kyUUZBVENCL2pDQnd3WU1Ld11CQLF
VSEFnSXdnY11NZ23J0U1pXeHBZVzVgW1NCdmIpQjBhR2x6SUdObGNUuUNBabWxgWVhSbE1HSjV
JROZ1ZVNCd11YSjB1U@JIoYzNOMWIXVNpIROZGWTIWd2RHRNVZM1VNnYjIZZ2RHaGxISFIviN1lc

PUBLIC Page 34 of 74

Encoded Gateway API &EeNCOoODheD

Developer Guide secure automated payments

0Z11YQndiR2xqWVdKc1pTQnpkROZ1WkdGeVpDQjBaWEp@Y31CaGItUWdZMj11Wkd SMGFXOXV
jeUJ2Wm1CMWMyVXNIRO5sY25ScFptbGpZWF IsSUhCdmIHbGplU@IoYm1RZ1kyVnlkR2xtYVd
0aGRHbHZiaUJ3Y21GamRHbGpaU®J6ZEdGMFpXMWxib1I6TGpBMkInZ3ICZOVGQLF jQOF SWXF
hSFIwYORvdkwzZDNkeTVoYOhCclpTNWpiMjB2WT IWeWRHbG1hVO50ZEdWaGRYUM9iMepwZEh
rdk1EUUdBMVVKSHARAE 1Dc3dLYUFub@NXROkyaDBkSEE2THk5amNtd3VZWE I3YkdVdVkyOXR
MMkZ3Y@d4bF1XbGpZVE11WTNKc@1CMEdBMVVKRGARVOICULVWOXR2MVhTQmhvbUpkaTkrViR
VSDU1dF 1KREFPQMdOVKhROE IBZjhFQkFNQOIOQXdEd11KS29aSWh2ZGpaQV1kQkFIRKFEQUL
CZ2dxaGtqT1BRUURBZO5KQURCROF pRUF2Z2xYSCtjZUhuTmIWZVd2ckxUSEwrdEVYekFZVil
MSEpSQUN@aDY5YjFVQO1RRFIpelVLWGRiZGIyRjBZRFA4SHIMT2g4K201cT1zd11PQW1RMO1
MT§ IxWXpDQOF INHdnZ@oxb@FNQOF RSUNDRWX@TDc4Nm10cVhNQWOHQBNXRINNND1CQU1DTUd
jeEd6QVpCZO5WQKFNTUVrRndjR3hsSUZKdmMI zUWARMEVNTFNCSE16RWINQ1FHQTFVRUN3d2R
RWEJ3YkdVZ1EyVn1kR2xtYVdOaGRHbHZiaUICZFhSb2IzSnBkSGt4RXpBUKINT1ZCQWINQ2t
Gd2NHeGx IRWx1WXkOeEN6QUpCZO5WQkFZVEF sVIRNQjRYRFRFME1EVXdOak16TkRZek1Gb1h
EVEK1TURVd@5qSXpORF 16 TUZvd2VGRXVNQ3dHQTFVRUF 3d2xRWEJ3YkdVZ1FYQndiR2xgWVh
ScGIYNGdTVzUwWldkeV1YUnBiMjRnUTBFZOxTQkhNekVt TUNRROEXVUVDA3dkUVhCd2IHVW
RM1Z5ZEdsbWFXTmhkR2x2Ym1CQMRYUm9iM@pwZEhreEV6QVICZO5WQKFVTUNrRndjR3hsSUV
sdV15NHhDek FKQmdOVk IBWVRBbF ZUTUZrd@V3WUhLb1pJemowQ@FRWULLb1pJemowREFRYOR
RZOFFOEJjUmhCb1lhaSVhWR2w@bGdRZDI2SUNpNzkIN3IrM2dgzZnhMaytFelzoVmiXeld1SXR
DWGRNMG1UbnU2Q1AxMkY4Nk15M2E3Wm5DK31PZ3BoUD1VUMFPQj16Q0I5REIHQmdnckInRUZ
CUWNCQVFRNk1EZ3d0Z1135S3dZQkIRVUhNQUAHS210MGRIQTZMe T12WTNOdOxtRndjR3hsTG1
0dmITOXZZMO53TURRAF1YQndiR1Z5YjI5MFkyRm5NekFkQmdOVKhRNEVGZ1FVSSOKSnhFK1Q
1TzhuNXNUMKtHdy9vcnY5TGtzdOR3WURWUFBUQVFILOIBVXdBAOVCL3pBZkInT1ZIUG1FROR
BV2dCUzdzTjZoVORPSW1xUOttZDYrdmvidjlzc2txekEzQmdOVkhSOEVNREF1TUNSZ@tXQW9
0aVpvZEhSd@9pOHZZMOpzTG1Gd2NHeGXxMbUS2Y1M5aGNIQnNaWEp2YjNSallXY3pMbUS5YKR
BT@INT1ZIUThCQWY4RUIBTUNBUV13RUFZS@tviklodmRqWkFZQ@RNUUNCUUF3Q2dZSUtvinkl
6ajBFQXdIRFp3QXdaQUl3T3M5elWcxRVdtYkdHK3pYRFZzcG12L1FYN2RrUGRVMmM1gcjdabkl
GZVFyZUorSmozbTFtZm10VkIEWStkNmNMKOF qQX1IMZFZFSWIDakJYZHNYZkeoTzVCbioSzbh
MQ®ZObGsVR2NtbUNFbT1VK@hwOUc1bkxtd21KSVdFR21ROEpraDBBQURHQOF Za3dnZedGQhd
FQk1JROANSGI4TGpBc@INT1ZCQUINSIVGA2NHeGxIRUZ3YOd4cFkyRjBhVZz11SUVSdWRHVMS
jbUYwYVc5dULFTk3IQzBnUnpNeEpqQWtCZo5WQkFzTUhVRNdjR3hsSUVObGNuUnBabWxgwVh
ScGIYNGARWFYwYUc5eWFYUjVNUk13RVFZRFZRUUtEQXBCYBhCc1pTQkpibU11TVFzZdONRWUR
WUVFHRXdKV1V3SULUREJICU1ZHZFZEWXdDd11KWU1aSUFXVURCQU1Cb@1HVE1CZOdDU3FHUGL
iM@RRRUpBekVMQmdrcWhraUc5dzBCQndFdehBWUpLblpJaHZjTkFRa®ZNUThYRFRIek1EY3d
NekUwTXpBeE1Wb3dLQV1KS29aSWh2Y@5BUWswTVIZzdedUQUxCZ2xnaGtnQlpRTUVBZOdoQ2d
ZSUtvik16ajBFQXdIdex3WUpLblpIaHzZjTkFRa®VNUOLFSU5SAVQ2UVpsd3VyU21FeUFLSZ
mSjBSUNVGRXVZZUhTN3MrSXZLWk5zRHANQWOHQONXRINNND1CQU1DQkVnd1InSWhBTU93QUN
jdVdiYUMxd1kwdzhzYVhzVT1Pczk@YSt3NO8ONTZ4SUo2TOM2QOF pRUFVbHIZTHhXQXIzdjJ
IR25SN1JIVdmzZyNjdYTE5IRO1BVFE3ajF1UGX6VWprQUFBQUFBQUE9IiwiaGVhZGVyIjp7InB
1YmxpY@tleUhhc2gi0ilrTmzhS@ZSOU9hZDV10DB6T11MYOs5W1d3NFQIW1kAWGRYb1UBbDh
TWTZrPSIsImVwaGVtZXIhbFB1YmxpYOtleSI6Ik1Ga3dFd11IS29aSXpgMENBUV1IS29aSXp
gMERBUWNEUWABRVUSNWptQ11MQjdhR3EXWjdJeUINVGIFNFBQWEtgN1E4eFo5SXZudX1zdX3
ySUdWdVVCV1UzSWXUK@81eHF SQ3Zo0VNCV3hSeGc2UE swYWN1ZWFMUG9BPTOiLCIOCmFuc2F
jdGlvbk1kIjoiYTVhMDBjZTUINDIyMzdiZWRkZDUxMzEwOGI1ZDEOMjMyMjc2ZWIiMjMAZGU

PUBLIC Page 35 of 74

Encoded Gateway API &EeNCOoODheD

Developer Guide secure automated payments

WMWQWZjgXxNmNJZTQOM]jYzMGZmZCIOLCI2ZXIzaWOuIjoiRUNFdJEifSwicGF5bWVudE11dGh
vZCI6eyJkaXNwbGF5TmFtZSI6Ik1hc3R1ckNhecmQgMDAOOSIsIm51dHdvemsiOiINYXNOZXJ
DYXJkIiwidHIwZSI6ImNyZWRpdCIOLCIOcmFuc2FjdGlvbklkZW50aWZpZXIi01iJBNUEWMEN
FNTUOMjIzNOJFRERENTEzMTA4Q]jVEMTQyMzIyNzZFQkIyMzhERTAXRDBGODE2QONFNDQyNjM

WRKZEIno="

Google Pay™

Google Pay is the fast, simple way to pay on sites, in apps, and in stores using the cards
saved to your Google Account.

Google Pay makes it easy for your customers to complete their purchase on your checkout.
A customer with a compatible mobile device or web browser can be offered Google Pay as a
payment option, quickly and easily selecting the cards already saved within their Google Pay
account.

Checkout Implementation

Please see the Google Pay APl documentation for information on how to integrate Google
Pay into your checkout.

Android

e Android Developer Documentation

e Android Integration Checklist
e Android Brand Guidelines

e \Web Devel rD mentation
Web Integration Checklist
e \Web Bran idelin

Using the Google Pay API

When requesting a payment token for your payment provider, you must set the type to
‘PAYMENT_GATEWAY’, the gateway to ‘encoded’, and the gatewayMerchantld to your

Client ID for the Encoded Gateway.

const tokenizationSpecification

type: 'PAYMENT GATEWAY',

PUBLIC Page 36 of 74

https://developers.google.com/pay/api/android/overview
https://developers.google.com/pay/api/android/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/android/guides/brand-guidelines
https://developers.google.com/pay/api/web/overview
https://developers.google.com/pay/api/web/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/web/guides/brand-guidelines
https://developers.google.com/pay/api/web/guides/tutorial#tokenization

Encoded Gateway API &EeNCOoODheD

Developer Guide

secure automated payments

parameters: {
'gateway': 'encoded',
'gatewayMerchantId': 'ENCODED_GATEWAY_CLIENT_ID'

}
}

You will also need to_define the card networks accepted by your site. Encoded currently
supports VISA, MASTERCARD and AMEX.

const allowedCardNetworks = ["AMEX", "MASTERCARD", "VISA"];

You will also need to define which authentication methods are accepted by your site.
Encoded currently supports both PAN_ONLY and CRYPTOGRAM_3DS:

const allowedCardAuthMethods = ["PAN_ONLY", "CRYPTOGRAM_3DS"];

Receiving the Payment Token from Google Pay

Once your checkout has completed the Google Pay process, an encrypted payload will be
returned to your application in the PaymentData response. The following fields will need to
be sent to the Encoded Gateway:

paymentData.paymentMethodData.tokenizationData.token

An example of the value contained in this field is below:

{

"protocolVersion":"ECv2",
"signature":"MEUCIG39tbaQPwJe28U+UMsImxUBUWSkwlOv9Ibohacer+CoAiEA8Wuqg31L
UCwLQO6D2kErxaMg3b/oLDFbd2gcFzelzDqU\ueo3d",

"intermediateSigningKey" :{

"signedKey":
"{\"keyExpiration\":\"1542394027316\",\"keyValue\":\"MFkwEwYHK0ZIzjOCAQY
IKoZIzjODAQcDQgAE/1+3HBVSbdv+j7NaArdgMyoSAM43yRydzqdglTxodSzA96Dj4Mc1EiK
roxxunavVIvdxGnJeFViTzFvzFRxyCw\\u@e3d\\uee3d\"}",

"signatures":
["MEYCIQDcXCoB4fYJF3EolxrE2zB+7THZCfKA7cWxSztKceXTCgIhAN/d5eBgx/1A6qKBdH
01S7/aQ7d04MUEt260rLCUXZn1"]

}s

"signedMessage" :"{\"tag\":\"TjkIKzIOvCrFvjf7/aeelL8/FZJ3tigaNnerag68hIaw\

PUBLIC Page 37 of 74

https://developers.google.com/pay/api/web/guides/tutorial#supported-card-networks

Encoded Gateway API ENCOoODheD

Developer Guide secure automated payments

\u0e3d\",\"ephemeralPublicKey\" :\"BLIJoTmxP2z7M2N6ImaN786aJcT/L/0JfulKQdI
XcceuBBZ0Osf5nm2+snxAJxeJ4HYFTANHAMOIrH58GNDJI91Jw\\uoe3d\",\ "encryptedMe

ssage\":\"mleAf23XkKjj\"}"
}

You must base64 this value prior to sending to Encoded. Example below:

ewogICIwcm90b2NvbFZ1cnNpb24i0iJFQ3YyIiwKInNNpZ25hdHVYyZSI6Tk1FVUNIRZM5dGIh
UVB3SmUyOFUrVU1zSm14VUIVVINrd2xPdjl1IlYmSoYWN1citDbOFpRUE4AV3VXM2XMVUN3TFEwW
NkQya®VyeGFNZzNiL29MREZiZDInYOZ6ZTF6RHFVXHUWMDNKIiwKICAi1aW56ZXJItZWRpYXR1
U21nbmluz6tleSI6ewogICAgINNpZ251ZEt1eSI6ICI7XCIrZX1FeHBpcmFOaWSuXCI6EXCIX
NTQyMzkOMDI3MzE2XCISXCIrZX1IWYWx1ZVwiOlwiTUZrdoV3WUhLblpJemowQOFRWU1Lb1pJ
emowREFRYORRZOFFLzErMohCVINiZHYrajdOYUFyZGdNeWSTQUOOM31SeWR6CWRNMVRAb2RT
ekESNKRGNE1jMUVpS3IveHh1bmF2Vk12ZHhHbkp1R1ZpVHpGdnpGUNnh5Q3dcXHUWMDNKXF x
MDAZZFwifSIsCiAgICAic21nbmFodXJ1cyI6IFsiTUVZQO1RRGNYQ29CNGZZSkYzRWIseHIF
MnpCKzdUSFpDZktBN2NXeFN6dEtjZVhUQ2dJaEFOL2Q1ZUJneC8xQTZxS0®JIkSDBIUzcvYVE
ZESOTXVFdDI2T3IMQ1VAWMS5SsI10KICBOLAogICIzaWduZWRNZXNzYWd1IjoielwidGFnXCI
XCJUamtJIS3pIT3ZDckZ2amY3L2F1ZUw4ALBZaSjNoaWdhTm51cmFnNjhoSWF3XFx1MDAzZFwi
LFwiZXBoZW11cmFsUHVibG1ljS2V5XCI6XCICTEpvVG14UDIENGOYTjZKbWFONZzg2YUpjVCOM
LO9KZNnVKS1FkSVhjY2V1QkJaMDBzZjVubTIrc QUp4ZUoBSF1GVGROSDRNTOpySDU4ROSE
Sj1sSndcXHUWMDNkXCIsXCI1bmNyeXBOZWRNZXNzYWd1XCI6XCItbGVBZjIzWGtLampcInOi
Cno=

Submitting the Payment

You will then need to send this token, along the rest of your standard transaction fields, to
the Encoded Gateway as a google_pay source.

An example pay action with the google pay source:

POST /transactions

{
"object": "transaction.request",
"action": "pay",
"ref": "trans-1234",

"amount": ,
"currency": "GBP",
"source": {

"object": "source",

"google pay": {

PUBLIC Page 38 of 74

Encoded Gateway API &EeNCOoODheD

Developer Guide secure automated payments

"object":"google pay",

"token":
"ewogICIwcm90b2NVvbFZ1cnNpb24i0iJFQ3YyIiwKICAic21nbmFOdXJ1IjoiTUVRQO1INIE
0T3dRMGpBY2VGRWtHRjBKSUQ2cOpOWHhPRWkOcittQTdiaVI4cUIJRQW1Bb25kcWOVcFUvYmR
zckFPcFpJc3JIUVM5bndpal53T3JyMjRSeVB1SEEWUVX1IMDAZZFxIMDAzZCIsCiAgImludGV
ybWVkaWFOZVNpZ25pbmdLZXkiOnsKICAgICIzaWduZWRLZXkiOiAielwia2V5RXhwaXJhdGl
vblwiOlwiMTUOMjMyMzM5MzEONIwiL Fwia2V5VmFsdWVcIjpcIk1Ga3dFd11IS29aSXpgMEN
BUV13S29aSXpgMERBUWNEUWdBRS8xKzNIQ1ZTYmR2K203TmFBcmRNTX1vUOFNNDN5UnlkenF
kZzFUeGOkU3pBOTZEajRNYzFFaUtyb3h4dW5hd1ZJdmR4R25KZUZWaVR6RNZ6R1I4eUN3XF x
1IMDAzZFxcdTAWM2RcIN®iLAogICAgInNpZ25hdHVyZXMi0iBbIk1FWUNJUUNPMkVIaTQ4czh

WVEgraWxNRXBVWEXGZmt4QXdIamZQUONWRUQVUURTSGIRSWhBTEXKbXIVDESBWThORFFSVi9
SMW1LWkdzV3B1Tm1JUCt6K3RDUUhReFAWdiJdCiAgFSWKICALc21nbmVkTWVZCc2FnZSI6Int
cInRhZ1wiOlwianBHejFGMUIjb2kvzZkNOeEk5bjdRcnN3N2k3S@hyR3RUZFNOC1IFbHQrVVx
cdTAWM2RcIixcImVwaGVtZXIhbFB1YmxpYotleVwiolwiQkphdH1GdkZQUEQyMWwAL3VMUDQ
2VGExaHNLSG5kZjhak3RBZ2srREVQUWAZVGtoSHkxXOWNGM2gvY1hzMHRXVG1adG50bSt2bFZ
yS2ISVT1LOCS3Y1pzXFx1MDAZZFwil FwiZW5jcnlwdGVKTWVZc2FnZVwiOlwibUtPblh3aTh
PYXZaXCJ9Igp9"

If you have chosen PAN_ONLY as an allowed authentication method, then you may receive
a challenge response following the transaction request. Please see the EMV 3-D Secure
(3DS2) section for details on how to deal with a 3DS2 challenge response.

PUBLIC Page 39 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

EMV 3-D Secure (3DS2)

3DS2 provides many improvements over 3DS1 and provides additional assurances around
the identity of the cardholder, protecting both merchants and cardholders from credit and
debit card fraud. 3DS2 works by taking the cardholder through a number of different types of
authentication flows based on the perceived risk of the transactions.

The Gateway APl will determine the correct 3DS version to perform based on the
configuration of the merchant account.

3DS2 is performed in a similar manner to 3DS1, through a number of steps:

Initiate 3D Secure Transaction

A transaction is initiated with the platformType field set to “ecom” and the
threeDSecure field set to true.

Receive Challenge

The Gateway API responds to a transaction request with a 3DS2 challenge.

Redirect to ACS

The implementer redirects the cardholder’s browser to the Gateway API Access
Control Server (ACS) for the URL provided. The ACS will then potentially take the
cardholder through a number of challenges.

Process ACS Response

The ACS will redirect the cardholder’s browser back to the implementer who must
process the authentication response.

Send Challenge Response

The implementer sends the information received from the ACS in the authentication
response to the Gateway API. The transaction will then continue to be processed.

Initiate 3D Secure Transaction

A transaction is performed with the platformType set to “ecom” and the threeDSecure field
set to true.

POST /transactions
{

"object": "transaction.request",
"action": "authorise",

"ref": "trans-1234",

"amount" : ,

"currency": "GBP",
"platformType": "ecom",
"threeDSecure": true,

PUBLIC Page 40 of 74

Encoded Gateway API ENCOoOoDheEeD

Developer Guide secure automated payments

"source": {
"object": "source",
"card": {
"object": "card",
"pan": "4444333322221111",

"expiry": "2022-10",
"securityCode": "111"

Receive Challenge

When a supported transaction is initiated and the merchant account is configured for
e-commerce transactions and 3DS2, the Gateway API may respond to the transaction
request with a challenge via the transaction.challenge object. The challenge object (if a 3DS
challenge) will contain all of the information required to send to the Gateway APl ACS.
Below is an example response that includes a 3DS2 challenge:

"object": "transaction",
"id": "4b502950-8801-4112-bal5-88f8eb280525",
"creationDate": "2020-07-01T00:00:00Z",
"status": "challenged",
"challenge": {
"object": "transaction.challenge",
"id": "1",
"threeDSecure": {
"object": "transaction.challenge.threeDSecure",
"v2": {

"object": "transaction.challenge.threeDSecure.v2",

"acsUrl":
"https://sit.encoded.services/emv3ds/acs/init/4b502950-8801-4112-bal5-88
£8eb280525"

s
"links": {
"self":
"https://sit.encoded.services/api/vl/transactions/4b502950-8801-4112-bal
5-88f8eb280525/challenge/1"

}

PUBLIC Page 41 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

¥
"attributes": {},

"links": {
"self":

"https://sit.encoded.services/api/vl/transactions/d9d97dd1-d12b-4071-97c
7-ab8c7022dad6"

}

In the example above, the transaction has returned with a status of challenged. The
challenge itself is contained within the challenge object. The challenge object contains a
threeDSecure.v2 object which contains the fields necessary to perform the 3DSecure
authentication. These are:

e acsUrl
The URL of the Gateway API Access Control Server (ACS). The implementer will
perform a POST to this URL within the cardholder’s browser.

Redirect to ACS

The implementer must redirect the cardholder's browser to the Gateway API Access Control
Server at the URL provided. The implementer must provide the callback URL for the ACS to
send the authentication response to once the process is complete. This is provided as part
of the POST request, with the name returnUrl. Additionally, the implementer may provider
the size of the challenge window. This is provided as part of the POST request with the
name challengeWindowsSize.

Below is an example form that can be constructed by the implementer to perform the
redirection to the Gateway API ACS:

<form name="3dsRedirect"
action="https://sit.encoded.services/emv3ds/acs/init/4b502950-8801-4112-
bal5-88f8eb280525"
method="POST"
accept-charset="UTF-8">
<input type="hidden"

name="returnUrl”
value="https://implementer.com/3ds/callback"/>
<input type="hidden"
name="challengeWindowSize"
value="05"/>
<input type="submit" value="Click here to continue" class="button">

PUBLIC Page 42 of 74

Encoded Gateway API ENCOoOoDheEeD

Developer Guide secure automated payments

Process ACS Response

Once the authentication process at the Gateway APl ACS is complete, the ACS will return
an authentication response to the URL provided in the returnUrl field, as a HTTP Post. The
fields returned will include:

e dsTransid
A unique ID to reference the authorisation attempt.
e authenticationValue
The authentication value provided by the ACS.
e eci
The electronic commerce indicator.
e transStatus
The status of the authorisation attempt.
e messageVersion
The 3DS2 message version.

Send Challenge Response

When the challenge was made, the fransaction.challenge object contained a link to the
challenge response endpoint. The implementer will send a challenge response object to this
endpoint, containing the information received from the ACS, as in the example below:

POST /transactions/4b -ba f8eb /challenge/
{
"object": "transaction.challenge.response”,
"threeDSecure": {
"object": "transaction.challenge.response.threeDSecure",
"v2": {
"object": "transaction.challenge.response.threeDSecure.v2",
"dsTransId": "8b167401-2c2e-4f5c-80e0-6dcbf68737cd",

"authenticationValue": "MTIzNDU2Nzg5MDEyMzQ1O0TcyODM=",
"eci": "@5",

"transStatus": "Y",

"messageVersion": "2.2.0"

PUBLIC Page 43 of 74

Encoded Gateway API ENCOoOoDheEeD

Developer Guide secure automated payments

The challenge endpoint will then respond with a transaction object, as if we had just sent a
transaction request to the Gateway API. The ftransaction returned will likely have a
transaction.status of processed and will contain a fransaction.response object.

Multiple Challenges

In some circumstances, the transaction returned will again have a transaction.status of
challenged. This indicates that an additional challenge has been requested. This can occur
in situations where the issuer has initially performed a 3DS2 frictionless flow, but following
the transaction request being sent has subsequently decided to escalate the transaction and
request a 3DS2 challenge flow. You should code your implementation accordingly to account
for potentially multiple challenge requests.

In the above instance, the transaction.challenge field will contain the most recent challenge

object. The transaction.challenges field contains an array of all challenges that have been
issued during the life of the transaction.

PUBLIC Page 44 of 74

Encoded Gateway API ENCOoOoDheEeD

Developer Guide secure automated payments

Hosted Payment Pages

Hosted Payment Pages provide a simple solution for accepting card payments, by providing
a drop-in payment form that can handle all aspects of the transaction process on the
frontend with little development resource required by the implementer. The solution is also
eligible for the lowest level of PCl Compliance - SAQ-A.

Hosted Payment Pages work by using the Gateway API to create an Order, which provides
a URL to a hosted payment page capable of presenting the ecom user with all available
payment methods, and handling all aspects of the transaction.

Create an Order

The Gateway API will be used to create an Order. This allows the order details to be
provided ahead of any transaction being performed, and sets the payment amount, currency,
billing customer information, and any required Hosted Payment Pages configuration.

The Hosted Payment Pages configuration can be provided as part of the Order creation,
setting the action and returnUrl, as well as any configuration required to handle tokens.

If no action is supplied, pay is used as the default action.

Tokenisation

In order to support Tokens, you must provide a valid Customer Object in the billingCustomer
field that has associated Tokens, along with a hpp.tokens Object as part of the Hosted
Payment Pages configuration.

The tokens.enabled field sets whether any current tokens should be displayed to the user as
a valid payment method.

The tokens.tokenisation field should be provided with a Tokenisation Object, and setting this

will provide the user with the option to save their card details for future use when making a
new card transaction.

Example

Below is an example request and response. Only the pertinent information required in the
Order object has been shown.

Request:

PUBLIC Page 45 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

POST /orders
{

"object":"order",
"ref":"ORD-0372837",
"description":"Payment Order",
"currency":"GBP",
"totalAmount": ,
"billingCustomer":{

"object":"customer",
"id":"3fa85f64-5717-4562-b3fc-2c963f66afa6"

}s
“hpp":{
"action": "authorise",
"returnUrl":"https://myurl.com/ecom-response",
"tokens":{
"enabled":true,
"tokenisation":{

"object":"tokenisation",

"agreement":"card on_file",
"ref":"token-1234"

Response:

"object":"order",
"id":"3fa85f64-5717-4562-b3fc-2c963f66afa6",
"creationDate":"2019-07-01T00:00:00Z",
"ref":"ORD-0372837",
"description”:"Payment Order",
"currency":"GBP",
"totalAmount": ,
"billingCustomer":{

"object":"customer",
"id":"3fa85f64-5717-4562-b3fc-2c963f66afa6",
"creationDate":"2019-07-01T00:00:00Z",

"ref":"CUST-0094637",

PUBLIC Page 46 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

"title":"Mr",
"forename" :"John",
"surname":"Doe",
"dateOfBirth":"1985-07-01",
"contact":{
"object":"contact",
"address":{
"object":"address",
"title":"Mr",
"forename" :"John",
"surname":"Doe",
"postcode":"AB1 2CD",

"country":"GBR"
}s

"email":"email@example.com"

}s
"links":{

"self":"https://sit.encoded.services/api/vl/customers/96d7d98a-46fd-4d3b
-al5b-b03c116ae949",

"tokens":"https://sit.encoded.services/api/vl/customers/96d7d98a-46fd-4d
3b-al5b-b03cl116ae949/tokens"

}
}s
“hpp":{
"action": "authorise",
"returnUrl”:"https://myurl.com/ecom-response",
"tokens":{
"enabled" :true,
"tokenisation":{

"object":"tokenisation",

"agreement":"card on_file",
"ref":"token-1234"

}s
"links":{

"self":"https://sit.encoded.services/api/vl/orders/96d7d98a-46fd-4d3b-al
5b-b@3c116ae949",

llhppll :{

PUBLIC Page 47 of 74

Encoded Gateway API ENCOoOoDheEeD

Developer Guide

secure automated payments

"v1":"https://sit.encoded.services/hpp/v1/96d7d98a-46fd-4d3b-al5b-bo3cll
62e949"

Displaying the Hosted Payment Page

The order will respond with a URL in the links.hpp.v1 field. This URL is the access URL for
the Hosted Payment Page specifically created and configured for this Order.

This URL will likely be opened within an iframe embedded on the parent page, and will be
responsible for displaying the available payment methods to the user, collecting payment
information, and processing the transaction.

Below is an example HTML page containing the Hosted Payment Page.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Payment Form</title>
</head>
<body>
<iframe

src="https://sit.encoded.services/hpp/v1/96d7d98a-46fd-4d3b-al5b-b03c116ae949"
frameborder="0"
width="700"
height="500"
style="overflow:hidden"
sandbox="allow-top-navigation allow-scripts allow-forms"></iframe>

</body>
</html>

Note that the sandbox attribute has been set on the iframe element, and allows
allow-top-navigation. This allows the returnUrl callbacks to be targeted at the top page.

Handling The Response

Once the user has completed the transaction, a HTTP POST call-back will be performed to
the returnUrl provided. The POST will contain the following form fields:

PUBLIC Page 48 of 74

Encoded Gateway API

Developer Guide

EeENCoDeD

secure automated payments

Field Name

Field Values

Notes

orderld

The ID of the Order that was
processed.

This can be used to tie up the call-back
with the Order ID provided when creating
the Order in the server back-end.

transactionld

The ID of the Transaction
that was processed.

This can be used to look-up all additional
information relating to the transaction via
the Gateway API.

result One of:
e accepted
e declined
e error
authCode If accepted, the This is a reference that can be displayed
authorisation code of the to the user, and that can be provided back
transaction. to their issuing bank if required.
tokenld The ID of any token that Supplied only if a token was created as

may have been created as
part of this transaction.

part of this transaction. Allows additional
token management steps to be
performed.

If further information is required, a lookup can be performed against the Gateway API for the
full transaction details. See Transactions for more information.

The implementer should display an appropriate page to the user to inform them of the result
of the transaction and provide any further information that may be required.

Token Management

The tokenld field indicates whether a Token was created as part of this transaction and
supplied the ID of the created Token. This is useful if the implementer wants to perform
additional token management functionality.

For example, if a Customer may only have one active Token on their account, the
implementer may wish to use the Gateway API to remove any previously held tokens.

PUBLIC

Page 49 of 74

Encoded Gateway API ENCOoOoDheEeD

Developer Guide secure automated payments

Hosted Payment Fields

In order to be eligible for the lowest level of PCI Compliance - SAQ-A - a payment form must
have all elements of the payment page hosted securely by a third-party Level 1 PCI DSS
Compliant Service Provider.

It is not enough to simply POST the card details to the service provider. If any part of the
page can be modified in any way to intercept or interrupt the gathering and submission of the
card details, then the payment form will fall under SAQ-AEP, a far more stringent set of
requirements.

An iframe provides a suitable level of protection for the payment form to comply with SAQ-A,
but provides a reduced experience for usability and flexibility to the implementers. An iframe
may not fit in with the existing user interface, and may not provide the flexibility required to
accept additional fields at the same time.

Hosted Payment Fields attempts to bridge the gap between compliance, and the usability
and flexibility of the payment form, by rendering each individual input in its own iframe. This
allows much more flexibility for implementers to style their payment forms whilst not having
to worry about dealing with sensitive card details.

Generating a Payment Session

The Gateway API will be used to create a Payment Session. This provides a Session ID
which can be used to collect card details via various methods, and then complete the
transaction via the Gateway API.

When creating a Payment Session, the fields which will make up the payment session can
be specified. This is useful for situations where you may not require all of the fields, for
example when collecting only the stored card to use alongside a token object. Below shows
an example payment session being created for all available fields.

Request:

HTTP POST https://sit.encoded.services/api/vl/sessions
{

"object": "session",
"fields": ["pan", "expiryDate", "securityCode"]

}

Response:

"object": "session",

PUBLIC Page 50 of 74

Encoded Gateway API ENCOoOoDheEeD

Developer Guide

secure automated payments

"id": "1@0b3ca21-d9fd-4030-b5f5-fba5f220a6dd",
"creationDate": "2020-09-24T09:43:18.625Z2",
"lastUpdated": "2020-09-24T09:43:18.625Z2",
"sessionFields": [
{
"object": "sessionField",
"name": "pan",
"value": ""
"state": "unset",
"selected": false,
"additionalParams": {},
"links": {
"iframeURL":
"https://sit.encoded.services/hpf/v1l/10b3ca21-d9fd-4030-b5f5-fb45f220a6dd/pan”
¥
s
{
"object": "sessionField",
"name": "expiryDate",
"value": ""
"state": "unset",
"selected": false,
"additionalParams": {},
"links": {
"iframeURL":
"https://sit.encoded.services/hpf/v1/10b3ca21-d9fd-4030-b5f5-fb45f220a6dd/expiryDate”
}
s
{

"object": "sessionField",

"name": "securityCode",

"value":
"state": "unset",
"selected": false,
"additionalParams": {},
"links": {
"iframeURL":
"https://sit.encoded.services/hpf/v1l/10b3ca21-d9fd-4030-b5f5-fb4a5f220a6dd/securityCode”

The response returned provides all of the details currently for this session. The Session ID
(returned as the id field) is required to use Hosted Payment Fields. Once the Session ID has
been generated, this can then be used in the next step to generate the Hosted Payment
Field iframes via a Javascript library.

PUBLIC Page 51 of 74

Encoded Gateway API ENCOoOoDheEeD

Developer Guide secure automated payments

Generate a Session Limited JWT

You must then generate a Session Limited JWT that is safe to send to the browser to

initialise the Hosted Payment Fields Javascript. See Authentication for Hosted Payment
Fields for details.

Generate the Hosted Payment Fields

Hosted Payment Fields are applied to an existing HTML payment form by using Javascript to
generate the iframes and apply them to existing <div> containers in the payment form.

A Javascript module is provided by Encoded which creates, initialises and interacts with the
Hosted Payment Fields. The latest version is available at:

https://[env].encoded.services/assets/js/hpf/hpf .min.js

Here is an example basic HTML payment form with Hosted Payment Fields:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Payment Form</title>

<script src="https://sit.encoded.services/assets/js/hpf/hpf-2.1.0.min.js"></script>
<script>
HostedPaymentFields.initialise(JWT_AUTH_TOKEN, {
sessionld: "1@0b3ca2l-d9fd-4030-b5f5-fb45f220a6dd",
form: {
id: "payment-form",
fields: {
pan: {
id: "pan"
¥
expiry: {
id: "expiry"
s
securityCode: {
id: "securityCode"
}
}
bs

onEvent: function (event) {
// Handle the event

}

PUBLIC Page 52 of 74

Encoded Gateway API ENCOoOoDheEeD

Developer Guide secure automated payments

})s
</script>
</head>
<body>
<form id="payment-form" action="/make-payment" method="post">
<label for="pan">Card Number</label>
<div id="pan"></div>

<label for="expiry">Expiry Date</label>
<div id="expiry"></div>

<label for="securityCode">Security Code</label>
<div id="securityCode"></div>

<input type="submit" value="Make Payment" />
</form>
</body>
</html>

The Hosted Payment Fields Javascript module will generate an iframe containing the correct
input element within each of the <div> containers.

Interact with the Hosted Payment Fields

The Hosted Payment Fields Javascript modules will generate and dispatch synthetic events,
which are used to provide the implementer with real-time feedback. This is the primary
mechanism with which the implementer can update the frontend in response to input being
entered by the user and validated by the Hosted Payment Fields client.

All events dispatched use jQuery event namespace notation, with a namespace of
encodedHpf. So as an example, for the initialisationStart event below, the type field of the
Event object would be initialisationStart.encodedHpf.

A full list of events can be found at A ndix 1 - Hosted Payment Fields Events.

Below is a sample of JS to add an event listener for a specific synthetic event.

document.addEventListener('fieldStatusChange.encodedHpf', function(theEvent) {
var target = theEvent.target;
var detail = theEvent.detail;

})s

PUBLIC Page 53 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

Sync Hosted Payment Fields with the Payment Session

At the point where you are ready to perform the transaction - once all fields have been
completed by the user and have passed validation - the Hosted Payment Fields must be
synced to ensure that the card data is saved against the Payment Session generated.

To do this, you must generate and dispatch a synthetic event from the payment form element
supplied when initialising the Hosted Payment Fields, which will be received by the
Javascript module, and will trigger the sync process. You may wish to perform this action
once the payment form’s Submit button has been clicked by the user.

For more information about this event, please refer to the paymentSessionSyncRequest in
Appendix 1 - Hosted Payment Fields Events.

Below is a sample of JS for generating and dispatching the event:

const syncRequest = new CustomEvent('paymentSessionSyncRequest.encodedHpf');

document.getElementById('payment-form').dispatchEvent(syncRequest);

You will then receive events to provide feedback on the sync process. If the Payment
Session sync was successful, you may then submit the payment.

Submitting the Payment

The Gateway API will then be used to perform the transaction in the normal way, supplying
the Session ID as the source of the transaction.

POST /transactions
{
"object": "transaction.request",
"action": "pay",
"amount": ,
“currency": "GBP",
"source": {
"object": "source",
"session": {
"object": "session",
"id": "10b3ca21-d9fd-4030-b5f5-fb45f220a6dd"

}

bs

"billingCustomer”: {
"object": "customer",
"forename": "test"

PUBLIC Page 54 of 74

Encoded Gateway API ENCOoOoDheEeD

Developer Guide

secure automated payments

Which provides the following response:

"object": "transaction",
"id": "b@15dd96-a8e5-46el-b390-af39dob93960",
"creationDate": "2020-09-24T710:14:207",
"status": "processed",
"request": {
"object": "transaction.request",
"id": "700ff349-4038-4063-ad45-715ce9d8a48c",
"creationDate": "2020-09-24T10:14:207",
"action": "pay",
"order": {
"object": "order",
"id": "b13dcdd5-c4c1-4b55-bf8c-9628ff2f5ac5",
"creationDate": "2020-09-24T10:14:21Z",
"ref": "bl3dcdd5-c4cl-4b55-bf8c-9628ff2f5ac5",
"currency": "GBP",
"totalAmount":
"pendingAmount":
"billingCustomer": {
"object": "customer",
"id": "c92edae3-7c45-445e-9e56-c5d8adbde52c",
"links": {
"self":
//sit.encoded.services/api/vl/customers/c92edae3-7c45-445e-9e56-c5d8adbde52c"
}
¥
"links": {
"self":
//sit.encoded.services/api/vl/orders/bl3dcdd5-c4cl-4b55-bf8c-9628ff2f5ac5"
}
3,
"currency": "GBP",
"amount": 9
"source": {
"object": "source"
s
"billingCustomer": {
"object": "customer",
"id": "c92edae3-7c45-445e-9e56-c5d8albde52c",
"links": {
"self":
"https://sit.encoded.services/api/vl/customers/c92edae3-7c45-445e-9e56-c5d8adbde52c"
}
s
"links": {
"self":
"https://sit.encoded.services/api/vl/transactions/b015dd96-a8e5-46el-b390-af39do0b93960/r

PUBLIC Page 55 of 74

Encoded Gateway API ENCOoOoDheEeD

Developer Guide

secure automated payments

equest"”

}

}s

"response": {

"object": "transaction.response",
"id": "913805d4-7ffa-46a8-a9fd-0a64b66c4e60",
"result": {
"object": "result",
"resultType": "accepted",
"resultCode": "APPROVED",
"message": "Approved"
¥
"auth": {
"object": "auth",
"code": "006348",
"date": "2020-09-24T10:14:21.208Z"

s
"links": {
"self":
"https://sit.encoded.services/api/vl/transactions/b015dd96-a8e5-46el-b390-af39d0b93960"
¥
"attributes": {}

Styling

A number of styling options can be applied to the input elements within the generated iframe
via the Hosted Payments Fields JS.

Styles can be applied at multiple levels (either at the form level or the field level) and across
different statuses (to allow different stylings when a specific status is set for an input field).

Styles are cascading, so that more specific styles override more generic styles. For example,
if a grey background is set at the form level, and a white background set under the pan field,,
all input elements will have a grey background except for the pan input field, which will have
a white background.

The following is an example of the initialisation with styling elements included:

HostedPaymentFields.initialise(JWT_AUTH_TOKEN, {
sessionId: "10b3ca2l1-d9fd-4030-b5f5-fb45f220a6dd",
form: {

id: "payment-form",
fields: {
pan: {

PUBLIC Page 56 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

style: {
default: {
height: "30px"

¥
expiry: {
id: "expiry",
style: {
default: {
height: "20px"

¥
securityCode: {
id: "securityCode",
style: {
default: {
height: "20px"

3
style: {
default: {
font: {
family: "Tacoma, sans-serif",
size: "10px",
stretch: "normal",
weight: "normal®,
style: "normal",
variant: "normal"
s
background: {
color: "transparent"

¥
invalid: {
background: {
color: "red"

¥

onEvent: function (event) {
// Handle the event

PUBLIC Page 57 of 74

Encoded Gateway API

Developer Guide

EeENCoDeD

secure automated payments

The following objects and properties exist:

Style
Property Type Description
default StatusStyle Styles applied by default. These styles are shown for all
statuses, unless specifically overridden by a specific
status’s style.
unset StatusStyle Styles applied to input elements with the “unset” status.
invalid StatusStyle Styles applied to input elements with the “invalid”
status.
valid StatusStyle Styles applied to input elements with the “valid” status.
StatusStyle
Property Type Description
background BackgroundStyle Styles applied to the background of the input
element.
color String The colour of the input element.
font FontStyle Styles applied to the font of the input element.
height String The height of the input element.
margin MarginPaddingStyle | Styles applied to the margins of the input
element.
padding MarginPaddingStyle | Styles applied to the padding of the input
element.
BackgroundStyle
Property Type Description
clip String The clip for the input element.
color String The colour of the input element.
FontStyle
Property Type Description
family String The font families for the input element.
PUBLIC Page 58 of 74

Encoded Gateway API

Developer Guide

EeENCoDeD

secure automated payments

size String The font size for the input element.

stretch String The font stretch for the input element.

style String The font style for the input element.

weight String The font weight for the input element.

variant String The font variants for the input element.
MarginPaddingStyle

Property Type Description

top String The top margin/padding for the input element.

right String The right margin/padding for the input element.

bottom String The bottom margin/padding for the input element.

left String The left margin/padding for the input element.

PUBLIC Page 59 of 74

Encoded Gateway API ENCOoOoDheD

Developer Guide secure automated payments

Notifications

To support asynchronous payment flows, a notification call-back can be provided once a
transaction has been processed. The notification call-back will be performed to a single URL
that can be set at either the account or user level.

The notification call-back will be sent as a HTTP POST request in JSON format to the
configured endpoint for either the account or user. An example notification is below:

"object": "notification",
"id": "9799936c-27be-432d-be84-e1249c7cac9e",
"creationDate": "2021-12-17T10:53:08Z",
"user": "Encodedl",
"environment”: "prod",
"payload": {
"object": "transaction",
"id": "c7b66223-927d-41fd-afcc-av06d4cecbo6”

}s

"signature":
"OTA4ZTE1YjNkMzhjNzc40DUyNTZkOGQOZDI5Yjgz0TMzYjQ3MTQzM2EWYzNjZWF jZWUXZDE
zOTdmYmJhM2FhMQ=="

}

The notification call-back provides a Notification object, which contains the date that the
notification was performed, the user who performed the action that generated the call-back,
the environment that the action was performed on, and the payload of the notification (which
is usually the created object).

The Notification object also contains a signature, which is a SHA256 HMAC in Base64
representation. This is used to ensure that the notification received came from Encoded and
that the key information contained within has not been tampered with. Different payload
objects will have differing algorithms for calculating the HMAC signature, detailed below.

Transactions

Notification call-backs can be sent when a transaction has been processed. The resulting
payload will be the Transaction object.

The signature for this payload can be calculated as follows:

PUBLIC Page 60 of 74

Encoded Gateway API ENCOoOoDheEeD

Developer Guide

secure automated payments

1. Create the string that will be hashed.

This can be done by combining the following fields from the Notification object and
Transaction object:

notification_id:user:environment:transaction_id:amount_in_decimal:c

urrency:resultType

From the above example, this would give us a string of:

C be d-be84-e c/cac9e:Encodedl:prod:c7/b

fd-afcc-avo6d4cechos: :GBP:accepted

2. Perform a SHA256 HMAC on the created string, using the HMAC Key provided.

Assuming a secret key of ‘secret’, performing a SHA256 HMAC on the above string
would output:

b3d38c d8d4d29b b adc3ceaceeld fbba3aa
3. Encode the resulting string as Base64.

The above string encoded as Base64 would output:

OTA4ZTE1YjNkMzhjNzc40DUYNTZkOGQOZDI5Ygz0TMzYjQ3MTQZzM2EwYZNZWF jZW

UxZDEzOTdmYmJhM2FhMQ==

4. Compare the computed string with the signature included in the Notification
object.

PUBLIC Page 61 of 74

Encoded Gateway API ENCOoOoDheEeD

Developer Guide

secure automated payments

Address Verification Service

The Address Verification Service (AVS) is a security feature that compares the billing
address provided as part of the transaction request against the billing address details held
by the card issuer. The merchant account can be configured to automatically decline
transactions that have failed the AVS check.

In order to support AVS, a billingCustomer object must be provided as part of the transaction
request, and must contain at least the billingCustomer.contact.address.postcode field.

AVS is not supported by all acquirers or card issuers.

PUBLIC Page 62 of 74

Encoded Gateway API

Developer Guide

Response Codes

EeENCoDeD

secure automated payments

The following response codes are available as part of the transaction response.

Response codes provided are translations of the responses received from the underlying
gateway and/or card issuer once a transaction has processed. Not all gateways and card
issuers will support all response codes. Many gateways and card issuers provide only basic
response codes. Responses from the underlying gateway and/or card issuer without a
specific response code will be mapped to the closest generic response code.

Code

Description

Validation

invalid_merchant_account

The merchant account is incorrectly configured.
Contact Encoded Support to rectify.

invalid_card_number

The card number supplied is invalid. In this
circumstance, the card number provided

invalid_expiry_date

The expiry date supplied is invalid.

invalid_security _code

The security code supplied is invalid.

requires_cardholder_name

If no cardholder name has been provided as part
of the billing address for card schemes or
transaction types that mandate a cardholder name
being provided

insufficient_billing_address

If insufficient billing address details have been
provided for card schemes or transaction types
that mandate certain address details being
provided

invalid_email

The email supplied is invalid.

invalid_phone

The phone number supplied is invalid.

invalid_amount

The amount supplied is invalid.

invalid_currency

The currency supplied is invalid.

invalid_source_transaction

The source transaction referenced could not be
found.

expired_source_transaction

The source transaction referenced has expired.

PUBLIC

Page 63 of 74

Encoded Gateway API

Developer Guide

EeENCoDeD

secure automated payments

requires_source_transaction

A transaction has been attempted that requires a
source transaction.

excessively captured

The transaction attempts to capture more than was
authorised

excessively refunded

The transaction attempts to refund more than was
captured.

cannot_refund

Can not perform a refund on this type of
transaction.

cannot_void

Can not perform a void on this type of transaction.

unsupported_currency

Unsupported currency.

expired_card

The card has expired.

requires_security _code

The security code is required.

already_settled

The transaction has already been settled and can
not be voided.

already_voided

The transaction has been voided.

invalid_3ds

The 3DS details provided were invalid.

requires_3ds

The transaction was attempted without 3DSecure.

invalid_apple_pay_token

Invalid Apple Pay token has been provided.

invalid_google_pay_token

Invalid Google Pay token has been provided.

expired_google pay_token

An expired Google Pay token has been provided.

unsupported_source

The source provided for the transaction is
unsupported for your account. This could be
because it is unsupported by the underlying
acquirer and/or gateway configured.

unsupported_recurrence

The type of recurrence attempted is invalid for this
card

invalid_request

Generic invalid request response.

Declined

declined

Non-specific declined response.

declined_insufficient_funds

Declined due to insufficient funds.

PUBLIC

Page 64 of 74

Encoded Gateway API

Developer Guide

EeENCoDeD

secure automated payments

referred_retain_card

The card should be retained.

blocked_blacklisted

The card is on a blacklist.

excessively authed

Card authorisation attempt limit reached.

excessively_declined

The card has reached a limit of declines for the
card scheme and should continue to be declined.

cancelled_continuous_authority

The continuous authority for this card has been

cancelled.

incorrect_security _code

The security code provided is incorrect.

incorrect_expiry_date

The expiry date provided is incorrect.

blocked_fraud

Blocked due to anti-fraud checks

referred

Referral.

declined_3ds

Declined by the 3DS2 authentication server prior to

the transaction being processed.

Errors

error_comms

Error communicating with the issuer.

error_system

Error in the system.

error_unknown

An unknown error has occurred.

timeout

The request has timed out.

no_response

The issuer did not respond.

PUBLIC

Page 65 of 74

Encoded Gateway API

Developer Guide

Test Cards

EeENCoDeD

secure automated payments

The following test cards can be used to perform test transactions against the SIT

environment.

You must use the specified Security Code to guarantee an approved transaction.

Card Number Scheme Type Expiry Security Code
4000000000000002 Visa Standard Any Valid 123
4462030000000000 Visa Prepaid Any Valid 444
5555555555554444 Mastercard Standard Any Valid 321
5597507644910558 Mastercard Prepaid Any Valid 888
340001916255521 American Express | Standard Any Valid 1234

To force a declined transaction, please use Security Code 999.

PUBLIC

Page 66 of 74

Encoded Gateway API

Developer Notes

Appendix 1 - Hosted Payment Fields Events

EeENCoDeD

secure automated payments

Events generated by the Hosted Payment Fields have the following fields available, which are detailed in the table below for each Event type:

o type
e target
o detall
Normal Events
Type Target Description Detail
initialisationStart DOM Document | Dispatched when the initialisation of the Hosted N/A
Payment Fields has started.
initialisationReady Payment Form Dispatched when the initialisation of the Hosted N/A

Element

Payment Fields has completed, and the fields are ready
for user entry. An implementer may wish to hide the
payment form from the user until this event has been
received.

fieldStatusChange Payment Field Dispatched when the validation status of a payment field | FieldStatusChangeObject
Element is updated by user input.
issuerArrived Payment Field Dispatched when Issuer information becomes available | IssuerObject
Element for the payment card information entered by the user.
This will likely be in response to the first six digits of the
PAN being entered by the user.
issuerCleared Payment Field Dispatched when Issuer information is no longer N/A

PUBLIC

Page 67 of 74

Encoded Gateway API

Developer Notes

EeENCoDeD

secure automated payments

Element

available. This will likely be in response to the PAN
being cleared or removed by the user.

paymentSessionFieldSync

Payment Form
Element

Dispatched after a paymentSessionSyncRequest event
has been dispatched by the implementor. Indicates that
the field specified has been synced with the Payment
Session.

FieldSyncSuccessObject

paymentSessionSyncComplete

Payment Form

Dispatched after a paymentSessionSyncRequest event

SessionSyncCompleteObject

Element has been dispatched by the implementor. Indicates that
the Payment Session sync process has completed. The
implementer should ensure that all payment fields are
still valid following this process.
Error Events
Type Target Description Detail
configurationError DOM Document | Dispatched after initialisationStarted and before Array of ConfigurationErrorObject

initialisationReady has been received. Indicates that a
configuration error has occurred, and the Hosted
Payment Fields have been unable to initialise.

unrecognisedBrowser

Payment Form
Element

Dispatched after initialisationStarted and before
initialisationReady has been received. Indicates that the
user is using a browser that is not recognised by Hosted
Payment Fields. The Hosted Payment Fields may still
work, but has not been tested nor is supported in the
current browser.

BrowserInfoObject

PUBLIC

Page 68 of 74

Encoded Gateway API

Developer Notes

EeENCoDeD

secure automated payments

unsupportedBrowser

Payment Field
Element

Dispatched after initialisationStarted and before
initialisationReady has been received. Indicates that the
user is using a browser that does not work with Hosted
Payment Fields.

BrowserInfoObject

Element

error.

paymentSessionError Payment Field Dispatched after initialisationStarted and before ErrorObject
Element initialisationReady has been received. Indicates that the
Payment Session for the ID provided during initialisation
could not be loaded.
fieldInitialisationError Payment Field Dispatched after initialisationStarted and before N/A
Element initialisationReady has been received. Indicates that one
of the payment fields could not be initialised.
fieldGetlssuerError Payment Field Dispatched when Issuer information was attempted to N/A
Element be retrieved, but could not due to an error.
fieldUpdateError Payment Field Dispatched when a field could not be updated due to an | N/A

paymentSessionSyncFailure

Payment Field
Element

Dispatched

FieldSyncFailureObject

PUBLIC

Page 69 of 74

Encoded Gateway API

Developer Notes

Objects

FieldStatusChangeObject

EeENCoDeD

secure automated payments

Property Type Description
field String The name of the field that's status has changed.
state String The new state of the field. One of: valid, invalid, unset.
container DOM Element | The DOM Element for the Div container of the field.
type String The type of event that triggered the status change. One of: blur, focus.
IssuerObject
Property Type Description
type String The type of card. One of: DEBIT, CREDIT, CHARGE_CARD
scheme String The scheme of the card: For example: VISA, MASTERCARD, AMERICAN_EXPRESS
brand String The brand of the card. Usually the issuing bank. For example: BARCLAYS, MONZO, HSBC
level String The level of the card. Used to identify standard, corporate, platinum, etc.
country String Two digit country code of the issuing country.
accepted Boolean Whether this type of card is accepted for the merchants configuration within the Gateway API.
PUBLIC Page 70 of 74

Encoded Gateway API

Developer Notes

EeENCoDeD

secure automated payments

infringement

Array of If not accepted, which of the properties has caused the card not to be accepted. For example: Type,
Strings Scheme, Country, etc. Useful to be able to provide feedback to the user such as “Sorry, but we do not

accept credit cards.”

FieldSyncSuccessObject

Property Type Description
field FieldStatusObject | The field status object.
FieldStatusObject
Property Type Description
type String The name of the field
state String The new state of the field. One of: valid, invalid, unset.

SessionSyncComplete Object

Property Type Description

pan String The state of the PAN. One of: valid, invalid, unset.

expiry String The state of the expiry date. One of: valid, invalid, unset.
securityCode String The state of the security code. One of: valid, invalid, unset.

PUBLIC

Page 71 of 74

Encoded Gateway API

Developer Notes

ConfigurationErrorObject

EeENCoDeD

secure automated payments

Property Type Description

id String The configuration option that was provided.

reason String The reason that the configuration option was invalid.
BrowserinfoObject

Property Type Description

browser BrowserObject The browser object
BrowserObject

Property Type Description

name String The name of the browser.

version BrowserVersionObject | The browser version object
BrowserVersionObject

Property Type Description

current String The current version of the browser.

PUBLIC Page 72 of 74

Encoded Gateway API

Developer Notes

EeENCoDeD

secure automated payments

supported String The lowest supported version of the browser.
ErrorObject

Property Type Description

reason String A single description outlining the reason for the error.

FieldSyncFailureObject

Property Type

Description

field FieldErrorStatusObject

The field error status object.

FieldErrorStatusObject

Property Type Description

type String The name of the field.

reason String The reason for the error.

PUBLIC Page 73 of 74

Encoded Gateway API

Developer Notes

Version History

EeENCoDeD

secure automated payments

Version Status Date Author Approved | Notes

0.1 Draft 2020-01-14 | ABH Submitted for approval

1.0 Release | 2020-01-15 | ABH FHP Approved

1.1 Draft 2020-02-14 | ABH Added Authorisation & Capture section. Clarified use of
Tokens.

1.1 Release | 2020-02-19 | ABH FHP Approved.

1.2 Draft 2020-02-20 | ABH Added response codes.

1.2 Release | 2020-02-20 | ABH FHP Approved.

1.3 Draft 2020-06-24 | ABH Added information about Customer object creation and using
custom attributes. Updated Token section with more
information about how they are tied to Customer objects.
Added page breaks between each section.

1.3 Release | 2020-06-24 | ABH FHP Approved.

1.4 Draft 2020-08-03 | ABH Add 3DS2 information.

1.4 Release | 2020-08-06 | ABH FHP Approved.

1.5 Release | 2021-05-10 | ABH FHP Incorporate HPF into combined document

1.6 Release | 2021-12-15 | ABH FHP Update documentation on Hosted Payment Pages to make
the flow clearer.

1.7 Release | 2022-01-12 | ABH FHP Added notification call-back documentation. Removed
references to RAML and replaced with URL to online
documentation.

1.8 Draft 2022-03-02 | ABH Added HPFv2.

2.0 Release | 2023-03-16 | ABH FHP Added Google Pay implementation details. Removed 3DSv1.
Added new result codes for Google Pay, and for declined due
to 3DS decline.

21 Release | 2023-07-13 | ABH FHP Added multiple 3DS2 challenge functionality.

3.0 Draft 2023-07-14 | ABH e Added Apple Pay implementation details.

e Updated 3DS2 to include messageVersion
e Added changelogs link and updated Service Desk URL.

3.0 Release | 2023-07-17 | ABH JC Approved.

3.1 Release | 2023-08-01 | ABH FHP e Added action to Hosted Payment Pages.

3.2 Release | 2023-10-03 | ABH ABH e Added section on Merchant Accounts, and explicit

Merchant Account Selection.
PUBLIC Page 74 of 74

