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Abstract. Large-scale pre-training methods of learning cross-modal rep-
resentations on image-text pairs are becoming popular for vision-language
tasks. While existing methods simply concatenate image region features
and text features as input to the model to be pre-trained and use self-
attention to learn image-text semantic alignments in a brute force man-
ner, in this paper, we propose a new learning method Oscar', which
uses object tags detected in images as anchor points to significantly ease
the learning of alignments. Our method is motivated by the observation
that the salient objects in an image can be accurately detected, and are
often mentioned in the paired text. We pre-train an OSCAR model on
the public corpus of 6.5 million text-image pairs, and fine-tune it on
downstream tasks, creating new state-of-the-arts on six well-established
vision-language understanding and generation tasks.?
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1 Introduction

Learning cross-modal representations is fundamental to a wide range of vision-
language (V+L) tasks, such as visual question answering, image-text retrieval,
image captioning. Recent studies [21, 36, 5, 33, 19, 18, 41] on vision-language pre-
training (VLP) have shown that it can effectively learn generic representations
from massive image-text pairs, and that fine-tuning VLP models on task-specific
data achieves state-of-the-art (SoTA) results on well-established V+L tasks.

These VLP models are based on multi-layer Transformers [37]. To pre-train
such models, existing methods simply concatenate image region features and text
features as input and resort to the self-attention mechanism to learn semantic
alignments between image regions and text in a brute force manner. However,
the lack of explicit alignment information between the image regions and text
poses alignment modeling a weakly-supervised learning task. In addition, visual
regions are often over-sampled [2], noisy and ambiguous, which makes the task
even more challenging.

1 Object-Semantics Aligned Pre-training
2 The code and pre-trained models are released: https://github.com/microsoft /Oscar
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Fig. 1: OscAR pipeline. The model takes a triple as input, is pre-trained with two
losses (a masked token loss over words & tags, and a contrastive loss between tags and
others), and fine-tuned for 5 understanding and 2 generation tasks (detailed in Sec. 4).

In this study, we show that the learning of cross-modal representations can be
significantly improved by introducing object tags detected in images as anchor
points to ease the learning of semantic alignments between images and texts. We
propose a new VLP method OSCAR, where we define the training samples as
triples, each consisting of a word sequence, a set of object tags, and a set of image
region features. Our method is motivated by the observation that the salient
objects in an image can be accurately detected by modern object detectors [27],
and that these objects are often mentioned in the paired text. For example, on
the MS COCO dataset [20], the percentages that an image and its paired text
share at least 1, 2, 3 objects are 49.7%, 22.2%, 12.9%, respectively. Our OSCAR
model is pre-trained on a large-scale V+L dataset composed of 6.5 million pairs,
and is fine-tuned and evaluated on seven V+L understanding and generation
tasks. The overall setting is illustrated in Fig 1.

Although the use of anchor points for alignment modeling has been explored
in natural language processing e.g., [3], to the best of our knowledge, this work
is the first that explores the idea for VLP. There have been previous works that
use object or image tags in V4L tasks for the sake of enhancing the feature
representation of image regions, rather than for learning image-text alignments.
For example, Zhou et al. [41] uses the object prediction probability as a soft label
and concatenate it with its corresponding region features. Wu et al. [38] and
You et al. [39] introduce image-level labels or attributes to improve image-level
visual representations.

The main contributions of this work can be summarized as follows: (i) We
introduce OSCAR, a powerful VLP method to learn generic image-text represen-
tations for V4L understanding and generation tasks. (i) We have developed an
OscAR model that achieves new SoTA on multiple V+L benchmarks, outper-
forming existing approaches by a significant margin; (7i4) We present extensive
experiments and analysis to provide insights on the effectiveness of using object
tags as anchor points for cross-modal representation learning and downstream
tasks.

2 Background

The training data for many V+L tasks consists of image-text pairs, as shown in
Fig. 2(a). We denote a dataset of size N by D = {(I;, w;)}}¥,, with image I and
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Fig. 2: Tllustration on the process that OSCAR represents an image-text pair into
semantic space via dictionary look up. (a) An example of input image-text pair
(b) The object tags are used as anchor points to align image regions with word
embeddings of pre-trained language models. (¢) The word semantic space is more
representative than image region features. In this example, dog and couch are
similar in the visual feature space due to the overlap regions, but distinctive in
the word embedding space.

text sequence w. The goal of pre-training is to learn cross-modal representations
of image-text pairs in a self-supervised manner, which can be adapted to serve
various down-stream tasks via fine-tuning.

VLP typically employs multi-layer self-attention Transformers [37] to learn
cross-modal contertualized representations, based on the singular embedding of
each modality. Hence, the success of VLP fundamentally relies on the quality
of the input singular embeddings. Existing VLP methods take visual region
features v = {vy, -+ , vk} of an image and word embeddings w = {w1,- -+ ,wr}
of its paired text as input, and relies on the self-attention mechanism to learn
image-text alignments and produce cross-modal contextual representations.

Though intuitive and effective, existing VLP methods suffer from two issues:
(i) Ambiguity. The visual region features are usually extracted from over-sampled
regions [2] via Faster R-CNN object detectors [27], which inevitably results in
overlaps among image regions at different positions. This renders ambiguities for
the extracted visual embeddings. For example, in Fig. 2(a) the region features
for dog and couch are not easily distinguishable, as their regions heavily overlap.
(i) Lack of grounding. VLP is naturally a weakly-supervised learning problem
because there is no explicitly labeled alignments between regions or objects in an
image and words or phrases in text. However, we can see that salient objects such
as dog and couch are presented in both image and its paired text as in Fig. 2(a),
and can be used as anchor points for learning semantic alignments between image
regions and textual units as in Fig. 2(b). In this paper we propose a new VLP
method that utilizes these anchor points to address the aforementioned issues.

3 Oscar Pre-training

Humans perceive the world through many channels. Even though any individual
channel might be incomplete or noisy, important factors are still perceivable since
they tend to be shared among multiple channels (e.g., dog can be described
visually and verbally, as in Fig. 2). With this motivation, we propose a new
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Fig. 3: Hlustration of OSCAR. We represent the image-text pair as a triple
[ word tokens , object tags, region features ], where the object tags (e.g.,
“dog” or “couch”) are proposed to align the cross-domain semantics; when
removed, OSCAR reduces to previous VLP methods. The input triple can be
understood from two perspectives: a modality view and a dictionary view.

VLP method OSCAR to learn representations that capture channel-invariant (or
modality-invariant) factors at the semantic level. Oscar differs from existing VLP
in the way that the input image-text pairs are represented and the pre-training
objective, as outlined in Fig. 3.

Input OSCAR represents each input image-text pair as a Word-Tag-Image triple
(w, q,v), where w is the sequence of word embeddings of the text, q is the word
embedding sequence of the object tags (in text) detected from the image, and v
is the set of region vectors of the image.

Existing VLP methods represent each input pair as (w, v). OSCAR introduces
q as anchor points to ease the learning of image-text alignment. This is motivated
by the observation that in training data, important objects in an image are often
also presented in the image-paired text, using either the same words as object
tags or different but semantically similar or related words. Since the alignments
between g and w, both in text, are relatively easy to identified by using pre-
trained BERT models [6], which are used as initialization for VLP in OSCAR, the
image regions from which the object tags are detected are likely to have higher
attention weights than other regions, when queried by the semantically related
words in the text. This alignment learning process is conceptually illustrated in
Fig. 2(b). The process can also be interpreted as learning to ground the image
objects, which might be ambiguously represented in the vision space such as dog
and couch in Fig. 2(a), in distinctive entities represented in the language space,
as illustrated in Fig. 2(c).

Specifically, v and q are generated as follows. Given an image with K regions
of objects (normally over-sampled and noisy), Faster R-CNN [27] is used to
extract the visual semantics of each region as (v/, z), where region feature v’ € R
is a P-dimensional vector (i.e., P = 2048), and region position z a R-dimensional
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vector (i.e., R =4 or 6)3. We concatenate v' and z to form a position-sensitive
region feature vector, which is further transformed into v using a linear projection
to ensure that it has the same vector dimension as that of word embeddings.
Meanwhile, the same Faster R-CNN is used to detect a set of high precision
object tags. q is the sequence of word embeddings of the object tags.

Pre-Training Objective The OSCAR input can be viewed from two different
perspectives as

Sl w . gv]=[wgqg, v |2 (1)

~— ——

image image

xTr

where x is the modality view to distinguish the representations between a text
and an image; while o’ is the dictionary view* to distinguish the two different
semantic spaces, in which the input is represented. The two-view perspective
allows us to design a novel pre-training objective.

A Dictionary View: Masked Token Loss. The use of different dictionaries deter-
mines the semantic spaces utilized to represent different sub-sequences. Specifi-
cally, the object tags and word tokens share the same linguistic semantic space,
while the image region features lie in the visual semantic space. We define the
discrete token sequence as h = [w, q], and apply the Masked Token Loss (MTL)
for pre-training. At each iteration, we randomly mask each input token in h with
probability 15%, and replace the masked one h; with a special token [MASK]. The
goal of training is to predict these masked tokens based on their surrounding
tokens hy; and all image features v by minimizing the negative log-likelihood:

Lyrr = —E(y hy~p log p(hilhy, v) (2)

This is similar to masked language model used by BERT. The masked word or tag
needs to be recovered from its surroundings, with additional image information
attended to help ground the learned word embeddings in the vision context.

A Modality View: Contrastive Loss. For each input triple, we group h’ £ [gq,v]
to represent the image modality, and consider w as the language modality. We
then sample a set of “polluted” image representations by replacing q with prob-
ability 50% with a different tag sequence randomly sampled from the dataset D.
Since the encoder output on the special token [CLS] is the fused vision-language
representation of (h',w), we apply a fully-connected (FC) layer on the top of
it as a binary classifier f(.) to predict whether the pair contains the original

3 Tt includes coordinates of top-left & bottom-right corners, and/or height & width.

4 A semantic space can be viewed a vector space defined by a dictionary, which maps
an input to a vector representation in the semantic space. For example, BERT can
be viewed as a dictionary that defines a linguistic semantic space. BERT maps an
input word or word sequence into a feature vector in the semantic space.
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image representation (y = 1) or any polluted ones (y = 0). The contrastive loss
is defined as

Lo = —Emns wyplogp(y| (B, w)). (3)

During the cross-modal pre-training, we utilize object tags as the proxy of images
to adjust the word embedding space of BERT, where a text is similar to its
paired image (or more specifically, the object tags detected from the image),
and dissimilar to the polluted ones.

The full pre-training objective of OSCAR is:

£Pre—training = ACMTL + EC- (4)

Discussion. Although other loss function designs can be considered as pre-
training objectives, we perform experiments with these two losses for two reasons:
(i) Each loss provides a representative learning signal from its own perspective.
We deliberately keep a clear and simple form for the joint loss to study the
effectiveness of the proposed dictionary and modality views, respectively. (i)
Though the overall loss is much simpler than those of existing VLP methods, it
yields superior performance in our experiments.

Pre-training Corpus We have built the pre-training corpus based on the
existing V+L datasets, including COCO [20], Conceptual Captions (CC) [30],
SBU captions [25], flicker30k [40], GQA [12] etc.. In total, the unique image set
is 4.1 million, and the corpus consists of 6.5 million text-tag-image triples. The
detail is in Appendix.

Implementation Details We pre-train two model variants, denoted as Os-
CARp and OSCARy,, initialized with parameters Opgrr of BERT base (H = 768)
and large (H = 1024), respectively, where H is the hidden size. To ensure that
the image region features have the same input embedding size as BERT, we
transform the position-sensitive region features using a linear projection via ma-
trix W. The trainable parameters are @ = {OggrT, W }. The AdamW Optimizer
is used. OSCARg is trained for at least 1.0M steps, with learning rate 5e~° and
batch size 768. OSCARy, is trained for at least 900k steps, with learning rate le~>
and batch size 512. The sequence length of discrete tokens h and region features
v are 35 and 50, respectively.

4 Adapting to V4L Tasks

We adapt the pre-trained models to seven downstream V+L tasks, including
five understanding tasks and two generation tasks. Each task poses different
challenges for adaptation. We introduce the tasks and our fine-tuning strategy
in this section, and leave the detailed description of datasets and evaluation
metrics to Appendix.
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Image-Text Retrieval heavily relies on the joint representations. There are
two sub-tasks: image retrieval and text retrieval, depending on which modality
is used as the retrieved target. During training, we formulate it as a binary
classification problem. Given an aligned image-text pair, we randomly select
a different image or a different caption to form an unaligned pair. The final
representation of [CLS] is used as the input to the classifier to predict whether
the given pair is aligned or not. We did not use ranking losses [13, 17], as we found
that the binary classification loss works better, similarly as reported in [26]. In
the testing stage, the probability score is used to rank the given image-text pairs
of a query. Following [18], we report the top-K retrieval results on both the 1K
and 5K COCO test sets.

Image Captioning requires the model to generate a natural language descrip-
tion of the content of an image. To enable sentence generation, we fine-tune
OSCAR using the seq2seq objective. The input samples are processed to triples
consisting of image region features, captions, and object tags, in the same way as
that during the pre-training. We randomly mask out 15% of the caption tokens
and use the corresponding output representations to perform classification to
predict the token ids. Similar to VLP [41], the self-attention mask is constrained
such that a caption token can only attend to the tokens before its position to
simulate a uni-directional generation process. Note that all caption tokens will
have full attentions to image regions and object tags but not the other way
around.

During inference, we first encode the image regions, object tags, and a special
token [CLS] as input. Then the model starts the generation by feeding in a
[MASK] token and sampling a token from the vocabulary based on the likelihood
output. Next, the [MASK] token in the previous input sequence is replaced with
the sampled token and a new [MASK] is appended for the next word prediction.
The generation process terminates when the model outputs the [STOP] token.
We use beam search (i.e., beam size = 5) [2] in our experiments and report our
results on the COCO image captioning dataset.

Novel Object Captioning (NoCaps) [1] extends the image captioning task,
and provides a benchmark with images from the Open Images dataset [16] to test
models’ capability of describing novel objects which are not seen in the training
corpus. Following the restriction guideline of NoCaps, we use the predicted Visual
Genome and Open Images labels to form tag sequences, and train OSCAR on
COCO without the initialization of pre-training.

VQA [8] requires the model to answer natural language questions based on an
image. Given an image and a question, the task is to select the correct answer
from a multi-choice list. Here we conduct experiments on the widely-used VQA
v2.0 dataset [8], which is built based on the MSCOCO [20] image corpus. The
dataset is split into training (83k images and 444k questions), validation (41k
images and 214k questions), and test (81k images and 448k questions) sets.
Following [2], for each question, the model picks the corresponding answer from
a shared set consisting of 3,129 answers.
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When fine-tuning on the VQA task, we construct one input sequence, which
contains the concatenation of a given question, object tags and region features,
and then the [CLS] output from OSCAR is fed to a task-specific linear classifier
for answer prediction. We treat VQA as a multi-label classification problem [2] —
assigning a soft target score to each answer based on its relevancy to the human
answer responses, and then we fine-tune the model by minimizing the cross-
entropy loss computed using the predicted scores and the soft target scores. At
inference, we simply use a Softmax function for prediction.

GQA [12] is similar to VQA, except that GQA tests the reasoning capability
of the model to answer a question. We conduct experiments on the public GQA
dataset [12]. For each question, the model chooses an answer from a shared set
of 1,852 candidate answers. We develop two fine-tuned models using OSCARp.
One is similar to that of VQA. The other, denoted as OSCAR}; in Table 2(d),
is first fine-tuned on unbalanced “all-split” for 5 epochs, and then fine-tuned on
the “balanced-split” for 2 epochs, as suggested in [4].

Natural Language Visual Reasoning for Real (NLVR2) [34] takes a
pair of images and a natural language, and the goal is to determine whether
the natural language statement is true about the image pair. When fine-tuning
on the NLVR2 task, we first construct two input sequences, each containing the
concatenation of the given sentence (the natural language description) and one
image, and then two [CLS] outputs from OSCAR are concatenated as the joint
input for a binary classifier, implemented by an MLP?.

5 Experimental Results & Analysis

5.1 Performance Comparison with SoTA

To account for parameter efficiency, we compare OSCAR against three types of
SoTA’s: (i) SoTAg indicates the best performance achieved by small models
prior to the Transformer-based VLP models. (i5) SoTA g indicates the best per-
formance achieved by VLP models of similar size to BERT base. (i) SoTAp,
indicates the best performance yielded by models that have a similar size to
BERT large. To the best of our knowledge, UNITER [5] is the only model of
BERT large size.

Table 1 summarizes the overall results on all tasks®. For all the tables in this
paper, Blue indicates the best result for a task, and gray background indicates
results produced by OSCAR. As shown in the table, our base model outperforms
previous large models on most tasks, often by a significantly large margin. It
demonstrates that the proposed OSCAR is highly parameter-efficient, partially
because the use of object tags as anchor points significantly eases the learning of
semantic alignments between images and texts. Note that OSCAR is pre-trained

5 This is not necessarily the best fine-tuning choice for NLVR2, please refer to the
Pair-biattn finetuning in UNITER [5] for a better choice, which introduces a multi-
head attention layer to look back the concatenated text-image sequences.

5 All the (single-model) SoTAs are from the published results.
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Table 1: Overall results on six tasks. A indicates the improvement over SoTA.
SoTA with subscript S, B, L indicates performance achieved by small models,
VLP of similar size to BERT base and large model, respectively. Most results are
from [5], except that image captioning results are from[10,41], NoCaps results
are from [1], VQA results are from [36].

Image Retrieval

Task  pa@1 R@5 R@10

Text Retrieval
R@1 R@5 R@10

Image Captioning
B@4 M C S

NoCaps
C S

VQA
test-std

NLVR2
test-P

SoTAg
SOTAB
SoTA L

39.2 68.0
48.4 76.7
51.7 78.4

81.3
85.9
86.9

56.6 84.5 92.0
63.3 87.0 93.1
66.6 89.4 94.3

38.9 29.2 129.8 22.4
39.5 29.3 129.3 23.2

61.5 9.2
73.1 11.2

70.90
72.54
73.40

53.50
78.87
79.50

54.0 80.8 88.5
57.5 82.8 89.8

OSCARB
OSCARY,

70.0 91.1 95.5
73.5 92.2 96.0

40.5 29.7 137.6 22.8
41.7 30.6 140.0 24.5

78.8 11.7
80.9 11.3

73.44
73.82

78.36
80.37

A 581441 297

691281 1.771

2211311071137

787057

04271

087 T

on 6.5 million pairs, which is less than 9.6 million pairs used for UNITER pre-
training and 9.18 million pairs for LXMERT.

We report the detailed comparison on each task in Table 2. (4) VLP methods
dominate empirical performance across many V+L tasks, compared with small
models. OSCAR outperforms all existing VLP methods on all seven tasks, and
achieves new SoTA on six of them. On GQA, neural state machine (NSM) [11]
relies on a strong structural prior, which can also be incorporated into OSCAR
for improvement in the future. (i) 12-in-1 is a recently proposed multi-task
learning model [22] for V+L, implemented on BERT base. We see that OSCARp
outperforms 12-in-1 on almost all the tasks, except on Test-P of NLVR2. Given
that our method is based on single task fine-tuning, the result demonstrates
the effectiveness of our proposed pre-training scheme. (i) overall, OSCAR is the
best performer on both understanding and generation tasks. On the captioning
task, we further fine-tune OSCAR with self-critical sequence training (SCST) [29]
to improve sequence-level learning. The only comparable VLP method for cap-
tioning is [41]. The results in Table 2 (e) show that OSCAR yields a much bet-
ter performance, e.g., improving BLEU@4 and CIDEr by more than 2 and 10
points, respectively. (iv) The NoCaps guideline requires to only use the COCO
captioning training set. Hence, we initialize with BERT, and train OSCAR on
the COCO training set. Constrained beam search (CBS) is used. The results in
Table 2 (f) show that the variants of OSCAR consistently outperform the previ-
ous SoTA method UpDown [1]. The gap is much larger on the near-domain or
out-of-domain cases, demonstrating the strong generalization ability of OSCAR.

5.2 Qualitative Studies

We visualize the learned semantic feature space of image-text pairs of the COCO
test set on a 2D map using -SNE [23]. For each image region and word token,
we pass it through the model, and use its last-layer output as features. Pre-
trained models with and without object tags are compared. The results in Fig 4
reveal some interesting findings. () Intra-class. With the aid of object tags, the
distance of the same object between two modalities is substantially reduced. For



10 X. Li, X. Yin, C. Li et al.
Table 2: Detailed results on V+L tasks.
Method Size Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@l1 R@5 R@10 |[R@1 R@5 R@I10|R@l R@5 R@10|R@l1 R@5 R@I0
1K Test Set 5K Test Set
DVSA [14] - 384 69.9 80.5 |27.4 60.2 74.8 - - - - - -
VSE++ [7] - 64.7 - 95.9 |52.0 - 92.0 |41.3 - 81.2 |30.3 - 72.4
DPC [46] - 65.6 89.8 95.5 [47.1 79.9 90.0 |41.2 70.5 81.1 |25.3 53.4 66.4
CAMP [42] - 72.3 94.8 98.3 |58.5 87.9 95.0 |50.1 82.1 &89.7 |39.0 68.9 80.2
SCAN [18] - 72.7 94.8 98.4 |58.8 88.4 94.8 |50.4 82.2 90.0 |38.6 69.3 80.4
SCG [33] - 76.6 96.3 99.2 |61.4 88.9 95.1 |56.6 84.5 92.0 |39.2 68.0 81.3
PFAN [41] - 76.5 96.3 99.0 |61.6 89.6 95.2 - - - - - -
Unicoder-VL [19] B 84.3 97.3 99.3 |69.7 93.5 97.2 |62.3 87.1 92.8 |46.7 76.0 85.3
12-in-1 [24] B - - - 65.2 91.0 96.2 - - - - - -
UNITER [5] B - - - - - - 63.3 87.0 93.1 |48.4 76.7 85.9
UNITER [5] L - - - - - - 66.6 89.4 94.3 |51.7 78.4 86.9
OSCAR B 88.4 99.1 99.8 |75.7 95.2 98.3 |70.0 91.1 95.5 [54.0 80.8 88.5
L 89.8 98.8 99.7 [78.2 95.8 98.3 [73.5 92.2 96.0 (57.5 82.8 89.8

(a) Image-text retrieval

Method ‘ViLBERT VL-BERT VisualBERT LXMERT 12-in-1 UNITERg UNITERL‘OSCARB OSCARL

Test-dev| 70.63 70.50 70.80 72.42 73.15 72.27 73.24 73.16 73.61
Test-std 70.92 70.83 71.00 72.54 - 72.46 73.40 73.44 73.82
(b) VQA

Method || MAC VisualBERT LXMERT 12-in-1 UNITERp UNITERy |OscARg OSCARL,

Dev 50.8 67.40 74.90 — 77.14 78.40 78.07 79.12
Test-P | 51.4 67.00 74.50 78.87 77.87 79.50 78.36 80.37
(c) NLVR2
Method ‘Test-dev Test-std Method cross-entropy optimization CIDEr optimization
Q Q
LXMERT [39]| 60.00  60.33 Bed c S |Be4 M c s

MMN [4] - 60.83 BUTD [2] 36.2 27.0 1135 20.3 [36.3 27.7 120.1 21.4
12-in-1 [24] - 60.65 VLP [47] 36.5 28.4 117.7 21.3 39.5 29.3 129.3 23.2
NSM [12] — 63.17 AoANet [11] 37.2 284 119.8 21.3 38.9 29.2 1298 224
OSCARp 61.19 61.23 OSCARB 36.5 30.3 123.7 23.1 |40.5 29.7 137.6 22.8
OSCARB ™ 61.58 61.62 OSCARy, 37.4 30.7 127.8 235 |41.7 30.6 140.0 24.5

(d) GQA (e) Image captioning on COCO
Method in-domain near-domain | out-of-domain overall

CIDEr SPICE |CIDEr SPICE |CIDEr SPICE |CIDEr SPICE

UpDown [1] 78.1 11.6 57.7 10.3 31.3 8.3 55.3 10.1
UpDown + CBS [1] 80.0 12.0 73.6 11.3 66.4 9.7 73.1 11.1
UpDown + ELMo + CBS [1] 79.3 124 73.8 11.4 71.7 9.9 74.3 11.2
OSCARB 79.6 12.3 66.1 11.5 45.3 9.7 63.8 11.2
OscAarp + CBS 80.0 12.1 80.4 12.2 75.3 10.6 79.3 11.9
Oscarg + SCST + CBS 83.4 12.0 81.6 12.0 77.6 10.6 81.1 11.7
OSCARf, 79.9 124 68.2 11.8 45.1 9.4 65.2 11.4
OscARry, + CBS 78.8 12.2 789 12.1 77.4 10.5 78.6 11.8
OscARry, + SCST + CBS 85.4 11.9 84.0 11.7 80.3 10.0 83.4 114

(f) Evaluation on NoCaps Val. Models are trained on COCO only without pre-training.

example, the visual and textual representations for person (or zebra) in OSCAR
is much closer than that in the baseline method. (i) Inter-class. Object classes
of related semantics are getting closer (but still distinguishable) after adding
tags, while there are some mixtures in the baseline, such as animal (person,
zebra, sheep, bird), furniture (chair, couch, bench), and transportation (bus,
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Fig. 4: 2D visualization using ¢-SNE. The points from the same object class share
the same color. Please refer Appendix for full visualization.

Oscar: a small train on a city street with people near by .
Baseline: a train that is sitting on the side of the road .

GT: asmall train on a city street with people near by .
A black and red small train in shopping area.
A group of people near a small railroad train in a mall .

Tags: sign, tree, sidewalk, train, woman, person, trees,
street, bus, stairs, store, man, balcony, building, people

Oscar: a red rose and white flowers in a vase .
Baseline: a vase filled with red and white flowers .

GT: Ared rose in a glass vase on a fablé
beautiful red rose and white flowers are in a vase .
The Bolquet has one red rose in it.

Tags: leaf, Boliguet, flowers, stem, fablé, rose, flower, leaves,
vase, plant

/

Fig.5: Examples of image captioning. Objects are colored, based on their ap-
pearance against the groud-truth (GT): all , OSCAR & tags , tags only .

train, truck, motorcycle, car). This verifies the importance of object tags in
alignment learning: it plays the role of anchor points in linking and regularizing
the cross-modal feature learning.

We compare generated captions of different models in Fig. 5. The baseline
method is VLP without object tags. We see that OSCAR generates more detailed
descriptions of images than the baseline, due to the use of the accurate and
diverse object tags detected by Faster R-CNN. They are the anchor points in
the word embedding space, guiding the text generation process.

5.3 Ablation Analysis

We perform ablation experiments over a number of design choices of OSCAR
in both pre-training and fine-tuning to better understand their relative impor-
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Fig. 6: The learning curves of fine-tuning downstream tasks with different object
tags. Each curve is with 3 runs.

tance to four representative downstream tasks. All the ablation experiments are
conducted on the base model.

The Effect of Object Tags To study the effect of object tags, we experiment
three different settings: (i) Baseline (No Tags): this reduces the models to their
previous VLP counterparts, where no tag information is exploited. (4i) Predicted
Tags: we use an off-the-shelf object detector (trained on COCO dataset) to pre-
dict object tags. (i) Ground-truth Tags: The ground-truth tags from COCO
dataset are utilized to serve as a performance “upper bound” for our method.
The experiments are conducted with the same BERT base model on three repre-
sentative tasks, including VQA, image retrieval, and image captioning. As shown
in Fig. 6, the learning curves for fine-tuning with object tags converges signifi-
cantly faster and better than the VLP method without tags on all tasks. On the
VQA and retrieval tasks, training using tags only takes half of the training time
to achieve the final performance of the baseline, showing that OSCAR is a more
practical and efficient scheme for VLP. With more accurate object detectors de-
veloped in the future, OSCAR can achieve even better performance, closing the
gap demonstrated by using the ground-truth tags.

Attention Interaction To further under- Typle 3: Retrieval results on the
stand the interaction among the text, ob- COCO 1K test set, with different
ject tags and object regions, we conduct fine- types of attention interactions.
tuning experiments by varying the attention

masks for image-text retrieval. The default Attention | Text R. | Image R.
. . v w-q v-q [R@1 R@5 |R@1 R@5

setting uses full attentions across all modal- 2% *9 ¥4 ¥

o . v v v |73 956 [652 915

ities. We then enable certain part of the at- 7, 754 o018 |64 914

tention masks. All models are initialized from v 32.3 57.6 |25.7 60.1

BERT base without pre-training. Table 3 re-

ports the performance on the COCO 1K test set. By comparing the results of
using full attention and partial attention w-v, we see that it is beneficial to add
object tags. Moreover, region features are more informative than object tags
(w-v, vs. v-q) in representing an image. This suggests that tags yield minor
improvement when used as features; a more promising way is to use them as
anchor points, as done in OSCAR.
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Table 4: Results with various pre-training schemes.

Image Captioning

Pre-trai VQA Text Retrieval Image Retrieval

re-tram dev |R@1 R@5 R@10 |R@1 R@5 R@10 [B@4 M C 8
BASELINE (NO TaGs) [70.93 |84.4 98.1 99.5 |73.1 94.5 97.9 |34.5 29.1 115.6 21.9
0scarVE 71.70 |88.4 99.1 99.8 |75.7 95.2 98.3 [36.4 30.3 123.4 23.0
0scar®! 71.15 |85.9 97.9 99.5 |72.9 94.3 97.6 [35.3 29.6 119.5 22.6

Object Tags in Pre-training To study the impact of different object tag
sets in pre-trained models, we pre-train two variants: OSCARYS and OscAr©!
utilizes object tags produced by the object detector trained on the visual genome
(VG) dataset [15] and the open images (OI) dataset [16], respectively. In this
ablation, all the models are pre-trained for 589k steps. The results are shown in
Table 4, where BASELINE (NO TAGS) is also listed for comparison. It is clear that
the OSCAR scheme of using object tags as anchor points improves the baseline,
regardless of which set of object tags is used. VG tags performs slightly better
than OI. We hypothesize that the object detector trained on VG has a more
diverse set of objects, although the object detector trained on OI has a higher
precision.

6 Related Work

Vision-Language Pre-training There is a growing interest in pre-training
generic models to solve a variety of V+L problems, such as visual question-
answering (VQA), image-text retrieval and image captioning etc. The exist-
ing methods [35, 36,21, 5,41, 33, 18, 9] employ BERT-like objectives [6] to learn
cross-modal representations from a concatenated-sequence of visual region fea-
tures and language token embeddings. They heavily rely on the self-attention
mechanism of Transformers to learn joint representations that are appropri-
ately contextualized in both modalities. For example, early efforts such as [21,
36] propose a two-stream and three-stream Transformer-based framework with
co-attention to fuse the two modalities, respectively. Chen et al. [5] conduct
comprehensive studies on the effects of different pre-training objectives for the
learned generic representations. Zhou et al. [41] propose the first unified model to
deal with both understanding and generation tasks, using only VQA and image
captioning as the downstream tasks. In this paper, the OSCAR models have been
applied to a wider range of downstream tasks, including both understanding and
generation tasks, and have achieved new SoTA in most of them. Compared to
existing VLP methods, the most salient difference of the proposed OSCAR is the
use of object tags for aligning elements in two modalities. It alleviates the chal-
lenge of VLP models having to figure out the cross-modal semantic alignment
from scratch, and thus improves the learning efficiency. In fact, our base model
already outperforms the existing large VLP models on most V+L tasks.

Object Tags Anderson et al. [2] introduce the bottom-up mechanism to rep-
resent an image as a set of visual regions via Faster R-CNN [27], each with
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an associated feature vector. It enables attention to be computed at the ob-
ject level, and has quickly become the de facto standard for fine-grained image
understanding tasks. In this paper, we propose to use object tags to align the
object-region features in [2] in the pre-trained linguistic semantic space. The idea
of utilizing object tags has been explored for image understanding [38, 39, 41].
Based on grid-wise region features of CNNs, Wu et al. [38] employ the predicted
object tags only as the input to LSTM for image captioning, while You et al.
[39] counsider both tags and region features. Based on salient regions proposed by
object detectors, Zhou et al. [41] concatenate the object prediction probability
vector with region features as the visual input for VLP. Unfortunately, the tags
in these works are not simultaneously associated with both object regions and
word embeddings of text, resulting in a lack of grounding. Our construction of
object tags with their corresponding region features & word embeddings yields
more complete and informative representations for objects, particularly when
the linguistic entity embeddings are pre-trained, as described next.

Multimodal Embeddings It has been shown that V+L tasks can benefit from
a shared embedding space to align the inter-modal correspondences between im-
ages and text. Early attempts from Socher et al. [31] project words and image
regions into a common space using kernelized canonical correlation analysis, and
achieve good results for annotation and segmentation. Similar ideas are employed
for image captioning [13] and text-based image retrieval [28]. In particular, the
seminal work DeViSE [7] proposes to identify visual objects using semantic infor-
mation gleaned from un-annotated text. This semantic information is exploited
to make predictions of image labels that are not observed during training, and
improves zero-shot predictions dramatically across thousands of novel labels that
have never been seen by the vision model. The idea has been extended in [32, 14,
24], showing that leveraging pre-trained linguistic knowledge is highly effective
for aligning semantics and improving sample efficiency in cross-modal transfer
learning. Inspired by this line of research, we revisit the idea and propose to
leverage the rich semantics from the learned word embeddings in the era of neu-
ral language model pre-training. Indeed, our results on novel object captioning
demonstrate that OSCAR helps improve the generalizability of the pre-trained
models.

7 Conclusion

In this paper, we have presented a new pre-training method OSCAR, which uses
object tags as anchor points to align the image and language modalities in a
shared semantic space. We validate the schema by pre-training OSCAR models
on a public corpus with 6.5 million text-image pairs. The pre-trained models
archive new state-of-the-arts on six established V+L understanding and gener-
ation tasks.
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