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Abstract—The operational, academic, and policy communities
disagree on which threats against the power grid are likely and
what damage would ensue. For instance, the feasibility and
impact of MadIoT-style attacks is being actively debated. By
surveying grid experts (N=18) we find that disagreements are
not unique to MadIoT attacks but occur across multiple well-
studied grid threats. Based on prior work and our survey, we
hypothesize that the disagreements stem from inconsistencies
in how grid threats are modeled. We identify five likely causes
of modeling inconsistencies: 1) using unrealistic grid topologies,
2) assuming unrealistic capabilities for attackers, 3) exploring
too few grid scenarios, 4) using incomplete simulators that omit
relevant grid processes, and 5) using simulators that incorrectly
model key grid processes. To check these hypotheses, we create
a modeling framework and examine how these factors change
our understanding of the feasibility and impact of grid threats.
We use four diverse grid threats as case studies: MadIoT, False
Data Injection Attacks, Substation Circuit Breaker Takeover,
and Power Plant Takeover. We find that each of our hypothe-
sized causes of modeling inconsistencies has a significant effect
on modeling the outcomes of attacks. For example, we find that
MadIoT attacks are much less feasible and require significantly
more high-wattage IoT devices on realistic topologies than on
topologies previously used to model them. In contrast, we find
that Substation Circuit Breaker Takeover attacks are much
more feasible in emergency scenarios and may require signif-
icantly fewer substations for failure than previous modeling
suggested. We conclude with actionable recommendations for
accurately assessing the impact of threats against the grid.

Index Terms—power grid, cybersecurity, grid security, com-
puter security, industrial control systems

1. Introduction

Over the last decade, the frequency and impact of cyber
attacks on the electric grid infrastructure have increased. For
instance, the Ukrainian power grid had major outages in
2015 and 2016 due to cyber attacks [1], resulting in electric

supply disruption to hundreds of thousands of people. In
addition, the U.S. electric grid has had several instances of
cyber-intrusions as well [1]. A 2015 report [2] estimated
that a large-scale cyber-attack on the U.S. grid “could leave
15 states and 93 million people [...] without power.” The
report projected the economic impact of such an outage
to be between 243 billion and 1 trillion USD, resulting
from “direct damage to assets and infrastructure, decline in
sales revenue to electricity supply companies, loss of sales
revenue to business and disruption to the supply chain.”

Despite the importance of grid security, there are sig-
nificant disconnects across operational, academic security,
academic grid, and policy communities on which threats
against the grid are dangerous. For example, in 2018, Soltan
et al., proposed a novel threat against the power grid,
MadIoT [3], in which an attacker compromises a set of high-
wattage IoT devices (e.g., smart thermostats, refrigerators,
solar panels) and synchronously turns on or off the compro-
mised devices to drastically change the grid’s load demand
and cause a blackout. Unfortunately, it is not clear how
much change in demand (from high-wattage IoT devices) an
attack would require. While the original study estimated that
a 2% demand increase could induce a blackout [3], another
study estimated that the attack would require at least a 10%
demand increase [4], while a third suggested that in some
scenarios the attack is not possible [5].

While it is tempting to dismiss this inconsistency in
assessing risk as unique to this threat and specific studies,
the reality could be far worse. We surveyed grid security
experts and asked them about the likelihood and impact (see
Sec. 3) of four threats proposed in the literature [1], [3], [6],
[7]; participants disagreed on the likelihood and impact of
all four threats.

Our goal in this paper is to provide actionable rec-
ommendations for avoiding such confusion going forward.
We do so by revisiting, from first principles, how prior
work has modeled various grid threats. Specifically, any
attempt to model the effectiveness of a grid threat consists
of three components: a topology (a description of the grid
connectivity and component properties; see Sec. 2), an



attack, and a simulator. Inconsistencies or errors in these
components can lead to different outcomes in likelihood and
impact estimates. For example, even a simulator with perfect
precision can yield unrealistic attack impact estimates if
used with unrealistic grid topologies.

We identify five (non-exhaustive) likely causes of mod-
eling inconsistencies in prior literature:

1) attacks modeled on unrealistic grid topologies (e.g.,
that did not meet standard resiliency requirements [8]);

2) attacks assumed unrealistic attacker capabilities (e.g.,
attackers required control of all sensors [6]);

3) attacks studied on too few grid scenarios (e.g., attacks
not evaluated on overall high demand scenarios);

4) simulators did not model relevant grid processes (e.g.,
did not simulate reserve generation [9]); and

5) simulators modeled grid processes incorrectly (e.g.,
simulated droop reserves incorrectly [3]).

To quantitatively analyze these factors and validate the
potential sources of inconsistencies, we implement a frame-
work to evaluate how various design and dataset choices
influence findings on threat likelihood and impact. The
framework contains 1) a topology-verification module, 2) a
steady-state power-flow module to model attacks that target
physical grid elements, and 3) a state-estimation module that
models attacks that target grid operators.

Using the framework we find that:
1) Simulations on realistic topologies show that successful

MadIoT attacks require a significantly greater change in
demand from high-wattage IoT devices than suggested
by prior work that analyzed less realistic topologies [3].

2) Prior work assumes that during a False Data Injection
Attack attackers have control over all grid measurement
devices. If attackers control only a subset of measure-
ment devices, which we argue is overwhelmingly likely,
attacks become detectable and less impactful.

3) Substation Circuit Breaker Takeover attacks on grids in
emergency scenarios need to compromise significantly
fewer substations than previously suggested to cause
grid failure.

4) When droop reserves are correctly modeled, attackers
can induce grid failure by compromising fewer high-
power generators than previously suggested.

Based on these findings we recommend (1) creating stan-
dardized realistic public topologies for evaluation; (2) stan-
dardizing simulation tools, techniques, and procedures; (3)
using evaluation methodology that considers more compre-
hensive scenarios, including emergency scenarios; and (4)
developing assumed-failure cybersecurity reliability stan-
dards that consider the grid as a single entity.

Reproducibility: We released all of the topologies used
in this study, in standard formats so that any steady-state
power flow solver can simulate them [10]. Additionally, we
released the extensions [10] we have built on top of a state-
of-art power-flow solver [11].

Contributions and roadmap: In summary, this paper
makes the following contributions:

Figure 1. The grid consists of three distinct sections: generation, transmis-
sion, and distribution. The generation and transmission sections operate
at >100kV while the distribution section operates at 0–99kV [13]. Op-
erators manage these three sections. Transmission control centers monitor
and manage generation power plants and transmission substations. Local
control centers monitor and manage substations, distribution loads, and
distribution generation. Independent system operators (ISOs) are non-profit
organizations that manage the generation and transmission sections of the
grid

1) Identifying key factors that lead to modeling inconsis-
tencies in prior work.

2) Evaluating the variation in threat outcomes due to
modeling inconsistencies on four grid threats: MadIoT,
False Data Injection Attack, Substation Circuit Breaker
Takeover, and Power Plant Takeover.

3) Recommendations for the grid security community to
avoid inconsistencies in the future.

The next section provides background on the power grid
and grid threats. Sec. 3 uses anecdotal evidence from prior
work and an expert survey to motivate a first-principles ap-
proach to identifying grid modeling inconsistencies. Sec. 4
identifies five key (but non-exhaustive) factors that likely
contribute to modeling disparities. Sec. 5 describes how we
validate that the identified factors change the understanding
of the feasibility and impact of grid threats. These findings
inform our recommendations, in Sec. 7. Sec. 8 reviews other
relevant related work, and we conclude in Sec. 9.

2. Background: Grid and Grid Threats

In this section, we first provide a background on the
components of the power grid and how operators manage
the grid. A detailed tutorial is outside the scope of this
paper, and we refer readers to reference guides on power
systems [12]. Our focus here is on explaining the relevant
components and management strategies as they pertain to
grid threats. We also provide a taxonomy of grid threats to
scope our work.



2.1. Overview of grid

Grid devices are categorized into three sections (Fig. 1).
1) The generation section includes large-scale power

plants that generate hundreds of megawatts (MW).
2) The transmission section consists of high-capacity

power lines and transformers carrying high-voltage
(> 100kV ) [13] generator power over long distances.
For example, they transfer electricity from Cleveland
to Boston.

3) The distribution section has low voltage equipment
(< 99kV [13]), which includes consumer and industrial
loads, low voltage transmission lines, and distributed
energy resources. For example, Boston distributes elec-
tricity to homes through the distribution section.

The generation and transmission sections together comprise
the bulk energy system, where equipment operates at high
voltage (> 100kV) [13]. Power from the transmission sec-
tion transfers to the distribution section through substations,
which step-up or step-down voltages through transformers.
These physical sections are managed by the operations
section, as shown in Fig. 1.

2.2. Grid operation

The operations section monitors electrical properties by
creating a power grid topology (GT ), which describes the
energized section of the grid at an instance in time. A grid
topology GT = G(V,E) comprises a collection of vertices
V and a collection of edges E. In the grid community, a
vertex is called a bus. A bus is a connection point that
aggregates power from devices such as generators and loads.
A generator is a device that produces electricity and a
load is a device that consumes electricity. The edges in a
grid topology are the transmission lines and transformers
that carry power between the buses in the grid. The edges
and vertices in a grid topology have attributes that describe
device properties, such as the maximum generation power
of a generator or the power capacity of a transmission line.

Operators use the topology to simulate the grid to esti-
mate a grid state. A grid state describes all of the electrical
properties of the grid at a single instance of time, such as
power flow along transmission lines and voltages of buses.
Operators will take corrective action if they notice electrical
properties of concern. For instance, if a disturbance such as a
grid attack occurs, grid electrical states will begin to deviate
from their nominal values, requiring corrective actions.

Threats against the grid typically involve causing an im-
balance between supply (generation) and demand (load) [3],
[9], [14]. We next give a brief overview of the techniques
operators use to compensate for such imbalances. For de-
scriptions of other control mechanisms, we refer the reader
to reference textbooks [12], [15], [16].

Droop control (primary control) serves as the first safe-
guard against a change in power demand. As power de-
mand increases, the grid’s electrical frequency decreases.
Governor systems in generators monitor grid frequency,

and if the frequency starts rising or falling, a generator’s
governor control changes its power output to stabilize the
frequency [17]. Droop control occurs within seconds of the
change in power demand. Almost all generators in the bulk
energy system participate in droop control. Furthermore,
regulations require droop reserves to be sufficient compen-
sation for the failure of any one grid component [18].

Droop can stabilize the grid frequency, but the stabilized
frequency will be different than the nominal frequency
(50Hz or 60Hz) [19]. To correct the frequency to a nominal
value, operators use secondary control to alter the power
output for a select group of generators. For example, if a
US grid stabilizes to a frequency of 59.90 Hz, the secondary
control signal (also known as automatic generation control
(AGC)) will order several generators to increase their power
output to get the frequency closer to the nominal 60Hz. In
the US, secondary control signals are sent once every minute
or two [18].

If both primary and secondary control fail to compensate
for insufficient generation and restore the grid state to nomi-
nal values, operators will resort to using responsive reserves
or tertiary control to increase grid generation. Responsive
reserves are a type of generation that can turn on within
minutes of a disturbance [18]. For example, the Texas grid
regulations require that at least a total of 3000MW of
generation is available within three minutes of a disturbance
[20]. Operators use responsive reserves in conjunction with
primary and secondary control to stabilize the grid. Tertiary
control refers to operators purchasing additional energy
through a process called economic dispatch. Tertiary control
takes at least 10 minutes because of generation-ramping
constraints and the slow speed of economic dispatch algo-
rithms [18].

If operators use all the aforementioned tools and gen-
eration still cannot meet demand, operators will use under-
frequency load shedding to maintain grid stability. In under-
frequency load shedding, devices disconnect from the grid
because their protective relays trip when they sense the
frequency is below a set threshold. Operators set a relay’s
frequency threshold based on the importance of the device:
thresholds for non-critical devices are set to higher than for
critical devices. As a result, if a disturbance occurs, non-
critical devices will disconnect and stabilize the grid before
critical devices shut off. Grid operators use under frequency-
load shedding to shut off power to non-critical sections of
the grid as a last-ditch effort to preserve power delivery to
critical sections (e.g., hospitals, transportation) and prevent
uncontrolled grid failure (like the 2003 Northeast Black-
out [24]). For instance, in the winter of 2020 when the
demand spiked, the Texas grid had to use load shedding
(e.g., rolling blackouts) to prevent a total blackout.

During extreme events, operators may be unable to
prevent the grid from failing and a blackout will occur. A
blackout is when a significant portion of the grid loses elec-
tricity (e.g., a hurricane causing a city to lose power) [25].
Blackouts take at least a few hours to recover from but can
last much longer [26]. Temporary reductions in electrical
quality (e.g., lights flickering) are brownouts [25].



TABLE 1. TAXONOMY OF POWER GRID THREATS, WITH EXAMPLES.

Threat Description Goals Capabilities
Target Damage Resource Action

MadIoT [3]
Attackers compromise high-wattage
IoT devices to destabilize the grid
by synchronously powering devices.

Distribution Power delivery
Economic

High-wattage IoT
devices Toggle power

False Data
Injection
Attack [6]

Attackers compromise grid
measurement devices and modify
the data sent back to operators.

Generation
Transmission
Distribution

Power delivery
Economic

Measurement devices Send false measurements

Topology/state
information

Craft data to avoid bad
data detection

Substation
Circuit Breaker
Takeover [1]

Attackers open substation circuit
breakers to disconnect devices and
prevent power delivery.

Transmission
Distribution Power delivery

Substations’ circuit
breakers

Open circuit breaker to
disconnect devices

Grid topology
information

Strategically
compromise substations

Power Plant
Takeover [21]

Attackers compromise power plant
control systems to turn off power
delivery or safety protocols.

Generation
Power delivery
Human
endangerment

Power plant control
system

Shut off power
Disable safety equipment

Grid topology
information

Strategically target
power plants

Measurement
Jitter [22]

Attackers compromise grid
measurement devices and delay the
data sent back to operators.

Generation
Transmission
Distribution

Power delivery
Economic Measurement devices Delay measurement data

Ransomware [23]
Attackers encrypt computer systems
data to prevent power delivery or
hold the data ransom.

Generation
Transmission
Distribution

Power delivery
Economic IT computer systems Disk encryption

2.3. Grid threats

Before we describe the specific threats we study,
we define key terms. We define a Threat as a tuple
〈Goals,Capabilities〉; the threat will attempt to achieve
its goals by using its capabilities. For example, for
a MadIoT threat, the goal is to cause a power-grid
blackout and the capability is to synchronously turn
on or off high-wattage IoT devices. We define an At-
tack as a specific instance of a threat and a tuple of:
〈Goals, Instance of Capabilities,Strategy〉. An attack’s
goals are a subset of the threat’s goals; an attack’s capa-
bilities are an instantiation of the threat’s capabilities. For
example, for a MadIoT attack, the capabilities are the set of
high-wattage IoT devices that the attacker can control. An
attack’s strategy is how the attacker utilizes their capabilities
to achieve their goals. For example, one MadIoT attack
strategy is to briefly power on all compromised IoT devices
and subsequently power off all those devices.

To describe and categorize grid threats, we created a
non-exhaustive taxonomy based on a threat’s goals and
capabilities. We define a Goal as a tuple 〈Target ,Damage〉,
where the Target is the section of the grid targeted and
the Damage is the type of impact the threat causes. A
Capability is a tuple 〈Resource,Actions〉. A capability
maps a Resource to the set of Actions the attacker can
perform if they compromise the resource. For example, if
an attacker compromises a generator (Resource), the at-
tacker gains access to the following actions: shutting off the

generator, raising the generator’s power output set-point, or
even destabilizing the generator causing it to explode [27].
Table 1 gives an overview of well-studied grid threats.

Scope: Our paper considers only threats that directly impact
power delivery. Other threats, such as market manipula-
tion [28] and wearing down devices [27], are out of scope.
Within threats that directly stop power delivery, we examine
those that 1) target different sections of the grid, 2) are a
mix of theoretical and real-world threats, and 3) are relevant
to the grid, security, and operational communities. As a
result, we focus on MadIoT, False Data Injection Attacks
(FDIA), Substation Circuit Breaker Takeover (SCBT), and
Power Plant Takeover (PPT) threats. MadIoT targets the
distribution section, FDIA targets the operations section,
SCBT targets the transmission section, and PPT targets the
generation section. To the best of our knowledge, MadIoT
and FDIA attacks have not been observed in practice. In con-
trast, SCBT and PPT have been documented and observed
in practice [1], [21]. Finally, papers discussing each of these
threats are highly cited [3], [6], [9], [14]. We discuss these
four threats in more detail below.

MadIoT: An attacker compromises a set of high-wattage
IoT devices (e.g., smart thermostats, refrigerators, solar pan-
els). Next, the attacker synchronously toggles power for all
of the compromised IoT devices to cause a drastic change
in the grid’s load demand. This change in load can cause a
blackout.

False Data Injection Attack (FDIA): An attacker com-



promises grid measurement devices and uses them to send
fake data to grid operators. To remain stealthy, the at-
tacker uses their knowledge of grid topology structure (i.e.,
nodes and edge connections), topology attributes (e.g., edge
impedance, resistance), and grid state (i.e., voltages of all
nodes) to generate adversarial data. Operators process raw
measurement data through AC state estimation, which out-
puts a grid state and a J-value, a measure of how likely it is
that some measurement data is incorrect. An FDIA attack
succeeds if the adversarial data does not raise the J-value
enough to cause an alarm, thereby deceiving operators into
believing the grid is in a different state than reality.1

Substation Circuit Breaker Takeover (SCBT): An at-
tacker compromises substations and disconnects substations’
loads, generators, and transmission lines from the grid.
Substations are critical to the stability of the grid; a 2014
estimate stated that if any nine of the US’s 30 critical
substations are taken offline, all US grids will experience
blackouts [29]. In 2015 and 2016, hackers used an SCBT
attack to take down portions of the Ukrainian grid [1].

Power Plant Takeover (PPT): An attacker compromises
multiple high-power generators. The attacker can then turn
off power generation, increase power output, or even disable
safety equipment to endanger human lives [21]. A sudden
loss or increase in power output can cause a supply-demand
imbalance and other grid stability issues [7], [14].

3. Motivation

Although there are many known grid threats, there is
lack of consensus on how important or impactful a particular
threat can be. We begin by illustrating the inconsistencies
from the debate on the MadIoT threat. We then discuss the
results of an expert survey that suggest that this confusion
is not restricted to MadIoT and also affects the other grid
threats we study.

3.1. Debate around MadIoT

The literature is inconsistent in estimating potential the
likelihood and potential impact of the MadIoT threat. When
Soltan et al., first postulated the attack, they showed that
using compromised IoT devices to increase demand by as
little as 2% was enough to collapse the (synthetic) Polish
grid [3]. Follow-up work, however, came to different conclu-
sions. For example, Huang et al., simulated MadIoT attacks
on a confidential North America Regional grid topology and
found that a 1% demand increase attack had no negative
impact, but a 10% demand increase caused minor amounts
of load shedding [4]. Ospine et al., modeled the impact of a
MadIoT attacks on four New York grid scenarios and found
in one scenario that “there are no time periods an attacker
could effectively compromise the frequency [to cause a grid
failure]” [5]. Taken together, it is unclear to what extent an
attacker would need to modify demand (and therefore the

1. Both FDIA and MadIot have secondary goals of manipulating power
grid markets, but this is out of scope for our analyses.

number of compromised high-wattage IoT devices) to cause
grid failure or if the attack is even feasible.

3.2. Expert survey

The confusion surrounding the likelihood and impact of
MadIoT threats motivated us to ask a broader question: Is
this confusion specific to MadIoT? Or is this lack of consis-
tency restricted to a specific set of academic papers? To this
end, we conducted an expert survey (N=18) to understand
if threat evaluation inconsistencies are common across other
threats as well. The survey is qualitative and illustrative; it
elicits experts’ perception of threat likelihood and impact
and does not empirically evaluate the likelihood and impact.
Specifically, we asked experts for their perception of four
grid threats: MadIoT, FDIA, SCBT, and PPT. We found that
experts were not confident in their answers and diverged on
their content. Next, we discuss the methodology and insights
from the survey results. The survey questions are in App. A
and additional results in App. B.
Expert recruitment: The survey was distributed from May
to August 2021. Participants were grid security experts from
academia and industry. To trial the survey, we recruited
a participants by reaching out to colleagues working in
grid security from academia and industry (N=2). After the
trial, we distributed the survey on PowerGlobe [30] (N=10),
a professional power-systems forum, and CRED-C [31]
(N=6), an academic and industry grid-resilience consortium.
We chose PowerGlobe because of its high engagement with
power-systems experts and CRED-C because its members
have professional experience with power-systems cyberse-
curity. Of the 18 participants, seven specialized in both
computer security and power systems, five just in power
systems, two in computer security, and four preferred not to
state their specialization.
Survey design: Experts were told to evaluate threats based
on the most dangerous attacks that instantiate each threat.
We asked experts the likelihood of a grid threat causing
a significant disruption on the grid, where a significant
disruption was defined as either 1) 300 MW of load dropped
in a dispatch cycle, 2) economic loss greater than ten million
dollars, or 3) endangering any number of human lives (defi-
nition based on NERC’s event reporting requirements [32]).

Threat impact was elicited by asking about power out-
age size and duration: for power outage size, participants
estimated the largest amount of load dropped from the grid
because of the attack; for power outage duration, experts
estimated the amount of time required to restore power if
the threat caused a significant disruption.

Experts were asked about likehood and impact of attacks
for each of three grid states, based on the North American
Electric Reliability Corporation standard [33]:

1) Normal: Physical Responsive Capability (PRC) is at
normal capacity and grid frequency is stable at 60Hz.

2) Energy Emergency Alert Level 2 (EEA2): Operators
begin utilizing load management procedures such as
reserve generation.



Figure 2. Expert opinions on the likelihood of grid threats causing a
significant disruption. Experts did not agree about the likelihood of any
grid threat.

3) Energy Emergency Alert Level 3 (EEA3): Operators
begin to use load interruption techniques (e.g., load
shedding) to stabilize the grid.

For example, experts were asked “If the power grid is in
EEA2, what would be the likelihood of a MadIoT attack
causing a significant disruption?” For each question, partic-
ipants were asked about their confidence in their response.2

In addition, throughout the survey we provided options
for free-form responses for participants to explain the rea-
soning behind their answers and to provide comments in
the context of specific questions. While these free-form
responses were optional, they provided useful hints on the
underlying reasons on why participants responded to the
questions the way they did.
Findings: Next, we report on key findings from our survey.

Finding 1: For all grid states and threats, experts gave
conflicting answers for likelihood (Fig. 2), outage size,
and outage duration (Fig. 3).

At a high level, experts had conflicting perceptions about
both the likelihood and the impact of attacks. As shown
in Fig. 2, experts disagreed on the likelihood of attacks;
in several scenarios, predictions had ranges greater than
95%. Additionally, Fig. 3 illustrates that experts disagreed
about threat impact. When the grid is in normal state, the
greatest consensus for outage size was for the Substation
Circuit Breaker Takeover threat, for which 36% of experts
believed it would cause an outage of 1–9MW and 36%
believed 100–999MW, which are drastically different outage
sizes. Consensus for outage size was higher if the grid is
in EEA3. For example, 53% of experts agreed that a power
plant takeover threat would cause more than 1000MW of
load dropped if the grid was in EEA3. In addition, for all
grid states experts disagreed about recovery time after an
attack. The largest consensus for threat recovery time was
for MadIoT when the grid is in EEA2 with 50% of experts
believing it would take 1–23 hours for the grid to recover.

Finding 2: For all grid states and threats, experts report
low confidence in their answers for likelihood, outage
size, and outage duration (Fig. 4).

2. To limit survey time, we did not ask the likelihood and impact
questions for EEA1, when all non-reserve generation is at capacity.

Figure 3. Expert opinions on the outage size and duration of grid threats.
Experts did not agree about the outage size and duration for any grid threat.

Fig. 4 shows that experts were not confident in their
answers. We considered an expert to have high confidence
if they reported they were very confident or confident in their
answers. For all threat questions, the average confidence
was only 24% reporting high confidence in their answers.
Experts were most confident about the outage duration of a
PPT attack, for which 45% reported high confidence. They
were least confident about their predictions for the likelihood
of a MadIoT attack causing a significant disruption, with
85% reporting low confidence.
Free-form inputs from experts: We manually analyzed
the free-form responses to see if there was some emerging
pattern. Interestingly, we found that many experts indicated
that inconsistencies may be due to shortcomings in mod-
eling. For example, one expert claimed FDIA attacks were
infeasible because of a modeling error “Other sorts of attack
are inherently much more likely and plausible and that the
conception and modeling for this attack [FDIA] is likely in
error”. In addition, experts had conflicting views on the state
of the art in MadIoT modeling. One expert cited work saying
the MadIoT threat was not possible “Granger Morgan’s
work has shown that this sort of attack [MadIoT] is very
unlikely to cause a significant disruption,” but another expert
thought the field was poorly studied, “Black start [starting a
collapsed grid from a MadIoT attack] with extensive DER
[Distributed Energy Reserves] is poorly studied.”3

3. To protect anonymity, we do not share the full text of free-form
responses.



Figure 4. Expert confidence in their predictions for likelihood, outage size,
and outage duration. Low confidence is defined as an expert reporting not
at all confident, not confident, or somewhat confident. High confidence is
defined as an expert reporting confident or very confident. The majority of
experts reported low confidence in their predictions for all threats.

Figure 5. An abstract view of grid threat modeling. Previous literature has
had challenges with 1) creating a sufficient set of attack scenarios and 2)
simulating the attack scenario with sufficient accuracy.

4. Factors Likely Causing Inconsistencies

Based on the MadIoT debate and the survey responses,
we hypothesize that many of the disagreements in literature
stem from inconsistencies in modeling grid attacks. To
qualitatively understand these inconsistencies, we create an
abstract view of existing efforts in grid threat simulation.
This abstract view then helps identify candidate factors that
cause modeling and outcome inconsistencies.

4.1. Abstract view of grid threat simulation

Fig. 5 shows an abstract view of the grid modeling
procedure. First, users generate a set of attack scenarios
to evaluate a grid threat’s impact. An attack scenario is
an attack occurring on a grid topology, defined by a tuple
(Attack ,Topology). A threat is typically analyzed through
a set of attack scenarios. For example, to study a MadIoT

threat on the Texas grid, a set of attack scenarios describing
various Texas grid topologies and MadIoT attacks will be
analyzed. Next, each of the attack scenarios is modeled and
evaluated with a simulator (e.g., MATPOWER [34], Pow-
erWorld [35], SUGAR [11]). The simulator evaluates the
impact of the threat by modeling grid operation processes
and estimating the grid state for each attack scenario. A
power-grid process is any control or procedure used to
operate the grid reliably and securely. Examples include
droop control and economic dispatch (see Sec. 2).

4.2. Likely sources of modeling inconsistencies

Given this abstraction, we revisit the literature on these
various threats [3], [6], [7], [9], and manually identify
factors in this modeling process that potentially lead to
inconsistent estimates of likelihood and impact.

We cluster these potential factors into two primary
groups: (1) issues with the set of evaluated attack scenarios
(labeled as Scen); and (2) issues with the choice of simulator
and the processes it captures (labeled as Sim). Within each
group, we identify several sub-factors, which we highlight
next and then quantitatively analyze in Sec. 5.

The first set of factors relates to the simulator input in
Fig. 5.
Scen 1. Attacks evaluated on unrealistic grid topologies.

Grid attacks have been studied on a variety of topologies,
such as small bus systems (<300 buses)4 [3], [5], [6], [37],
synthetic topologies [3], [9],5 and confidential real-world
topologies [4]. It is often unclear how realistic these topolo-
gies are or whether any lack of realism has a significant
impact on the evaluation of a threat. For example, in many
cases of prior work [3], [6], [9], [38], it is unclear if the grid
topologies satisfy N-1, which is a regulatory requirement for
operators [8].
Scen 2. Attacks assume unrealistic attacker capabilities.

In addition, previous work has studied threats using
attacks that assume unrealistic attacker capabilities. For ex-
ample, previous work evaluating FDIA assumes the attacker
has control over all or a majority of grid measurement
devices [6]. In reality, simultaneously compromising all grid
measurement devices is a monumental task for attackers.
Scen 3. Low coverage of grid topology scenarios.

Finally, previous work has evaluated the impact of
threats by simulating attacks on few grid scenarios [4], [37].
By only sampling a small number of grid scenarios, the
analyses may miss critical or extreme grid situations. For
instance, to our knowledge, there is little understanding of
the impact of SCBT attacks during various extreme weather
conditions (e.g., hot or winter weather).

The second group of factors relates to the simulation
engine. We identify two candidate sub-factors:

4. For comparison, the eastern US grid has over 85K buses [36]
5. “Synthetic” refers to topologies that have similar power demand

profiles as their realistic-grid counterparts but do not divulge proprietary
grid information.



Sim 1. Simulators do not model all relevant grid processes.
The FDIA threat has repeatedly been evaluated by simu-

lating state-estimation algorithms not used on real grids [6],
[39]: the original analysis [6] uses DC state-estimation,
while operator control rooms use AC-state estimation [37]).
In another case, the MadIoT threat has been evaluated
without simulating responsive reserves [3]–[5], a process
that would likely occur during a real MadIoT attack.
Sim 2. Simulators model grid processes incorrectly.

Generators take time to change power output during
droop control. The impact of a MadIoT threat has been
evaluated using droop control [3], [4]; however, the rate
at which generators can physically ramp up or down was
sometimes not considered [3]. Most generators can only
change their power output by 5–10% of operating power
within ten minutes [18].

Our goal in this paper is to be illustrative rather than
comprehensive. While we identify some factors that can lead
to inconsistencies and illustrate their impact (Sec. 5.2), we
do not claim that this set of factors is exhaustive.

5. Quantitative Assessment of Factors

After enumerating candidate factors, we next quantita-
tively validate that these factors indeed cause inconsistencies
in modeling outcomes. Since the errors are intrinsic to the
custom simulation approaches in prior work, we revisit
the simulation process and develop a framework to avoid
reintroducing the same biases. We describe the framework
(Sec. 5.1) and then discuss our key findings (Sec. 5.2).

5.1. Approach

Our framework has three modules: 1) a topology-
verification module, 2) a steady-state power-flow module
to model attacks that target the physical sections of the grid
(i.e., generation, transmission, and distribution), and 3) a
state-estimation module to simulate attacks that target the
operations section. We use the topology-verification module
to evaluate whether grid topologies are realistic. We use
the steady-state module to study the impact of unrealistic
topologies on the attack outcome and to evaluate whether
emergency grid scenarios are more susceptible to attacks.
We also use the steady-state module to evaluate how simu-
lating an incorrect set of processes or simulating processes
incorrectly affects attack outcomes. Finally, we use the state-
estimation module to evaluate FDIA attacks with varying
levels of unrealistic capabilities. Next, we discuss the design
of each module in more detail.
Topology verification: To ensure that the topologies used
for threat assessment are realistic, we implement two checks:

1) N-1 verification interates over the components in the
power grid topology and runs a power-flow simulation
with the component in a failure state. One device failure
can alter the electrical properties of the grid and cause
other devices to (attempt to) operate outside of their ca-
pabilites. For example, if a high-capacity transmission

Figure 6. An overview of the framework’s steady-state simulator. The
simulator models the impact of attacks that target the physical sections
of the grid (i.e., Generation, Transmission, and Distribution).

line fails, electricity may be rerouted to low-capacity
transmission lines and may cause them to exceed their
capacity (causing them to also fail). If any simulation
does not converge or results in device failures, we
consider the power-grid topology unrealistic, because
real grids are regulated to satisfy N-1 [8].

2) Topology verification checks that device parameters are
realistic, e.g., that all line flows (for nominal and all N-
1 contingent states) are below each line’s capacity.

Steady-state power flow: Power-flow solvers simulate the
physical sections of the grid by solving the equations that
describe a grid scenario and estimating the grid state.
SUGAR [11], MATPOWER [34], and PowerWorld [35]
are examples of power-flow solvers. They use different
underlying algorithms, but should provide the same results
if they converge. We extend SUGAR to analyze threats that
affect the physical sections of the grid, such as MadIoT,
SCBT, and PPT. Our choice of SUGAR is driven both
by the solver’s robustness of convergence (i.e., ability to
solve topologies that other power-flow tools cannot) and its
ability to distinguish blackouts from failures due to initial
conditions being far from the solution (topologies with
initial conditions far from the solution are harder to solve
and may cause some power-flow solvers to incorrectly report
a blackout) [40]. Our extensions output RAW files [41],
a standard grid-simulation file format. RAW files can be
solved using any power-flow solver, but we leave integrating
the extensions with other solvers for future work.6

First, we extend SUGAR to simulate droop, AGC, and
responsive reserve generation to create a physics engine
with realistic ten-minute power reserves. We simulate droop
control by having generators increase or decrease their
power generation proportionally to operational power. Most
generators can only change their power output by 5–10%
of operating power within ten minutes [18]. To be con-
servative, we constrain the change to be within ±5% of
the generator’s power output. In regards to AGC, operators
pay a select group of large generators to have additional
reserves [18]. We implement AGC by increasing power
reserves of generators with operating power greater than

6. Integrating with other solvers requires additional engineering effort
due to different programming languages and solver configurations.



100MW and bounding the change to ±10% of the oper-
ating power. The engine adds AGC until the topology has
realistic AGC reserves [42]. We simulate responsive reserve
generation by adding generators in diverse locations with a
total power output matching real-world estimates [42]. The
total ten-minute power reserves of US grids are 6–15% of
total operating demand [42]. In our physics engine, of the
overall reserves (6–15% of total operating demand), droop
contributes 5% of total operating demand.

Next, we use our physics engine to implement a cas-
cading analysis simulator following the procedure shown in
Fig. 6: The simulator runs the attack scenario on a physics
engine. The simulation ends if the physics engine does not
find a feasible solution. If the physics engine finds a feasible
solution (i.e., a candidate grid state), but components violate
their thermal or voltage limits, the simulator removes those
components and simulates the attack again with the modified
topology. The process repeats until a solution is found or
the physics engine fails to find a feasible solution. A grid
failure occurs if the physics engine fails to find a feasible
solution; this is consistent with operational and prior security
literature (e.g., [3], [43]).

State-estimation module: State-estimation modeling is for
analyzing threats that target the operations section of the
grid, such as FDIA. We extend an open-source AC state-
estimation simulator [34] to accurately evaluate the outcome
of FDIA attacks. AC state-estimation outputs an estimated
grid state and a J-value by solving a weighted least-squares
optimization problem. The J-value is the residual sum of
squares and signifies how likely it is that some measurement
data is incorrect. The greater the J-value, the more likely
it is that operators will identify the attack through bad
data detection [44], [45], a process in which operators
run hypothesis tests on J-values. Several bad-data-detection
algorithms have been proposed [44], [45]; we simulate the
original bad-data detection [44] because control rooms still
utilize this algorithm [6].

We extend the simulator to model FDIA attacks by
generating adversarial measurements based on the attacker’s
goal. AC state-estimation interprets the measurements and
outputs J-values and an erroneous grid state. FDIA attacks
that cause large errors in grid-state estimates but insignif-
icant changes in J-values are successful because operators
may think the grid is in a different state than it actually is.

Our simulator is more accurate and realistic than prior
work along several dimensions. We use state-of-the-art,
realistic topologies [36] (unlike [3], [5]). The simulator has
realistic FDIA attacker capability assumptions (unlike [6],
[37], [46]). Threats are evaluated on a variety of emergency
scenarios (unlike [3], [4], [6]). Additionally, we simulate
AGC, Responsive Reserve Generation, and realistic power
limits to accurately evaluate MadIoT attacks (unlike [3]). We
increase the accuracy of our analysis by using robust solvers
and realistic grid scenarios (based on grid regulations [17],
[47]). Additionally, we verify our key simulator results with
PowerWorld [35] (a standard, commercial modeling tool) to
confirm the correctness of our simulator implementation.

5.2. Findings

Next, we use this framework to validate that the factors
illustrated in Sec. 4 change our understanding of the feasi-
bility and impact of grid threats. For each identified factor,
we choose one of the four grid threats from our survey as
an example on which to illustrate the impact of this factor.
Grid topologies: For attacks targeting the physical sections
of the grid, we use the following public topologies: the
3120-bus Synthetic Polish Summer Peak 2008 [38], the 2k-
bus Synthetic Texas [36], and the 10k-bus Synthetic Western
Interconnection [36]. Due to scalability limitations of the
state-estimation tool, we only analyze FDIA attacks on the
500-bus Synthetic South Carolina [36] topology. We use
these topologies because they are commonly used in prior
work [3], [11]. To our knowledge, these US topologies are
the most realistic publicly available US grid topologies.

Finding 3 (Scen 1): Many publicly available grid topolo-
gies are unrealistic on two fronts: 1) they do not satisfy
N-1 criteria (mainly due to line and transformer flow
violations) and 2) they have insufficient power reserves.

We analyze topologies used in prior literature to deter-
mine if they meet minimum operational standards. Specif-
ically, we evaluate whether they meet the real-world N-1
property for resilience [8] and whether they have sufficient
10-minute power reserves [18].

The N-1 property states that the grid must withstand any
single device failure. US regulators require grids to satisfy
the N-1 property at all times [8] and operators often strive
for even higher resiliency [47]. However, in practice the
grid frequently does not satisfy even the N-1 property (i.e.,
is not secure against the loss of even a single element). In
2019 and 2020, the US grids had 19 and 17 EEA3 events,
respectively; by definition, when those events occur the grid
is not N-1 secure [26]. As an aside, we note that the N-
1 property is insufficient to defend against many practical
threats, including cyber attacks. For example, a substation
failure should be considered an N-x event, where x is the
number of devices attached to the substation; under a cyber
attack, for example, it is feasible to compromise all of the
devices attached to a substation [1].

Another notion of resilience is N-2, which requires the
grid to be robust to the concurrent failure of the two devices
that are currently carrying or producing the greatest amount
of power [47]. The N-2 property does not require that the
grid tolerate the failure of any two devices: it only needs to
tolerate the failure of the two devices currently carrying or
producing the most power. In theory, a grid could satisfy the
N-2 property without satisfying the N-1 property: if a single
device fails, and that device isn’t one of the two currently
carrying or producing the most power, this could cause a
grid failure that wouldn’t violate the N-2 property. US power
grids attempt to satisfy N-2 [47], particularly in times of
stability. However, just as with N-1, under EEA3 events the
grid does not satisfy the N-2 property. In our experiments,
we make the conservative assumption that the grid is N-1
secure, except when we simulate emergency scenarios.



TABLE 2. PROPERTIES OF A SELECT SET OF PUBLICLY AVAILABLE
GRID TOPOLOGIES.

Topology

# of single
device

failures
that cause
a blackout

# line
limits

doubled
to satisfy

N-1
criteria

Topology
10-min.
power

reserves
(% of

demand)

Real-world
10-min.
power

reserves (%
of demand)

Syn. Polish
Summer

Peak
2008 [38]

4195/4195 358/3693 4.4 9.0 [48]

Syn.
Texas [36] 134/3749 121/3206 2.0 12.0 [18]

Syn.
Western [36] 17/15190 7/12706 0.6 12.2 [18]

In the second column, the denominator is the total components in the
topology. If a topology satisfies the N-1 property, the numerator should
be 0. For example, on the Synthetic Polish Summer Peak 2008 topology
the failure of any device will cause a blackout. The 10-minute power
reserves are the reserve generation that operators can deploy within 10
minutes of an attack (i.e., droop, AGC, and responsive reserves). We
compare the 10-minute power reserves of each topology to their real-
world counterpart (gathered from public information [18], [48]).

Table 2 illustrates that three often-cited grid topolo-
gies (Synthetic Polish Summer Peak 2008 [38], Synthetic
Texas [36], and Synthetic Western Interconnection [36]) are
unrealistic because of insufficient line capacities and 10-
minute power reserves. The unmodified Synthetic Polish
Summer Peak 2008 topology has 21 lines exceeding their
capacity ratings, causing any device failure to cause a black-
out. We validated these results with PowerWorld, another
commercial power-flow simulator. Additionally, although
the Texas Synthetic and Western Synthetic topologies had
fewer device failures cause a blackout, neither topology
satisfied the N-1 property. Furthermore, all three topologies
had lower power reserves than their real-world counterparts.

To make these three datasets more realistic, we modify
them by adjusting line capacity ratings and increasing re-
serve generation. We double any line capacities that cause a
blackout until the topology satisfies the N-1 property, mak-
ing the topology more representative of real-world topolo-
gies. Additionally, we modify the topologies to have realis-
tic, 10-minute power reserves. We change generator limits so
that all generators have at least 5% droop reserves. Similarly,
we include AGC and responsive reserve generation to match
real values [42], [48]. The resulting topologies are both N-1
resilient and contain realistic reserve generation that meets
common standards [8]. We use these extended topologies
for the following analyses, unless otherwise specified.

Finding 4 (Scen 1): Simulations on more realistic
topologies show that successful MadIoT attacks require
significantly more high-wattage IoT devices to cause
blackouts than suggested by prior work [3], which an-
alyzed less realistic topologies (Fig. 7).

As an example of how unrealistic topologies impact
the outcome, we focus specifically on MadIoT attacks. We
assume that attackers compromise high-wattage IoT devices

Figure 7. We simulate MadIoT attacks on the original unrealistic and
the adjusted, more realistic topologies. MadIoT attacks on unrealistic
topologies require a lower amount of load increase to cause a grid failure.

proportional to the power consumption of each load. For
example, during a 2% demand increase attack, all load
consumption increases by 2%. Furthermore, we assume that
operators have 10-minute generation reserve capabilities to
counteract the attack.

As shown in Fig. 7, the unrealistic Synthetic Polish
topology7 failed after only a 0.3% increase in demand,
while its more realistic counterpart requires an attacker to
increase demand by 8.9%. Similar results hold for the Texas
Synthetic and Western Synthetic topologies: the original and
realistic Texas topologies require load increases of 2.1% and
8.3%, respectively; while the original and realistic Western
topologies require load increases of 0.8% and 9.4%, respec-
tively. Our results reconfirm the prior findings that sufficient
load increase for successful MadIoT attacks in practice is
likely challenging for an adversary [4]. Furthermore, we go
beyond prior analyses in identifying an additional source
of inconsistency: the effect of using unrealistic topologies
when evaluating MadIoT attacks.

Finding 5 (Scen 2): FDIA attacks become more de-
tectable and less impactful when the attackers’ capabili-
ties are more realistic (Fig. 8).

To show how unrealistic attack capabilities affect perceived
threat feasibility, we simulate FDIA attacks on the Synthetic
South Carolina topology [36].8 Previous work assumes
that attackers have control over all system measurement
devices [37], [49], [50]. As prior work noted, to bypass
AC-state estimation, even for less complex attacks, the
attackers would require control of almost all measurement
devices [37]. There are no documented examples of real
attackers conducting large-scale attacks on measurement
devices. Given the diversity of operators and devices and

7. The unmodified Synthetic Polish Summer 2008 topology cascades into
failure even without a MadIoT attack. Therefore, the unrealistic Synthetic
Polish Summer 2008 topology refers to the unmodified topology with 21
line limits doubled.

8. The Synthetic South Carolina topology does not pass the topology-
verification checks as it has insufficient 10-minute power reserves. We
could not use a realistic topology because of scalability limitations of the
MATPOWER state-estimation tool. Since power reserves are not relevant
to FDIA attacks, we run this analysis in spite of this known limitation.



Figure 8. FDIA attacks on the Synthetic South Carolina Topology [36] with
varying number of compromised measurement devices. We average the J-
value of 1000 simulations without an attack occurring to calculate a base-
line J-value. For each proportion of compromised devices, we randomly
selected a set of compromised devices and perform 1000 simulations.
J-values increase as the attacker controls fewer devices, increasing the
likelihood of detection. In addition, when the attacker controls fewer
devices they can exert only limited influence on the perceived state of
the system (in this case, lowering the perceived load).

the grid’s distributed nature, we posit that compromising
all or almost all measurement devices is unlikely.

To understand the sensitivity to attackers’ capabilities,
we model FDIA attacks while varying the proportion of
sensors the attacker controls. For each proportion of com-
promised sensors, we ran N=1000 FDIA simulations where
we randomly selected the set of compromised sensors. The
attacker creates fake measurement data to trick the operators
into believing that the overall system demand is 20% less
than in reality. We conservatively assume the attacker has
perfect system knowledge, which is in practice unlikely
because the grid is constantly changing [51].

Fig. 8 shows that when the attacker controls fewer
devices, operators see a greater change in J-value. Thus,
bad-data detection algorithms are more likely to raise an
alarm [44]. The change in J-value occurs because the at-
tacker is unable to craft sufficiently realistic fake data and
benign devices report data that conflicts with the attacker’s.
The median change in J-value is 41.3% when the attacker
controls 70% of grid measurement devices. The median J-
value rises to 68.2% when the attacker controls 50% of
measurement devices. Attacks cause slightly lower relative
changes in J-values when the attacker controls less than 30%
of devices because there is less data to manipulate and oper-
ators see more correct data. In this case, the attacker does not
meet their goal of tricking the grid operator into believing
the grid demand is low. When the attacker controlls 50%

Figure 9. For each of the four scenarios, we randomly compromise sub-
stations and disconnect all their attached devices from the grid. The high-
demand and emergency scenarios had a greater number of grid failures,
indicating they were more susceptible to substations attacks.

of measurement devices, the median perceived decrease in
load is 10.6% rather than the intended 20%.

Finding 6 (Scen 3): Substation Circuit Breaker Takeover
attacks during emergency and high-demand grid scenarios
require compromising significantly fewer substations for
grid failure, making the attack more feasible (Fig. 9).

To confirm that different grid scenarios impact levels
of susceptibility to grid threats, we focus on the Substa-
tion Circuit Breaker Takeover (SCBT) threat. Recall that
during an SCBT attack, an attacker compromises a set of
substations and uses the substations to disconnect loads,
generators, and transmission lines from the grid [9]. In the
2015 and 2016 Ukraine attacks, adversaries compromised
entire substations and opened circuit breakers (disconnect-
ing consumer power) [1], demonstrating that compromising
substations and disconnecting devices is realistic.

We model the SCBT threat as follows: We run N simula-
tions, each randomly selecting a different set of Ksubs com-
promised substations. We assume that an attacker who has
compromised a substation disconnects all devices connected
to the substation. We simulate SCBT attacks on the realistic
Texas Synthetic topology for four scenarios: 1) unmodified,
2) emergency state (N-6), 3) high demand (10% demand
increase), and 4) low demand (10% demand decrease). We
create the emergency state scenario by removing six edges
from the 40 highest power flow edges, motivated by North
American Electric Reliability Corporation’s (NERC) emer-
gency simulation requirements [47]. We report the fraction
of these simulations that result in grid failure.

Fig. 9 illustrates the impact of SCBT attacks on the
Texas synthetic topology. All four scenarios had substa-
tions that were single points of failure. In the high-demand
scenario, 9.8% of the single-substation attacks caused grid
failure. During the nine-substation attacks, 36.0% of simula-
tions under the original scenario led to grid failure; under the
emergency and high-demand scenarios, 43.9% and 54.6%,
respectively, of simulations resulted in grid failure. This
strongly suggests that grids under emergency and high-



Figure 10. We simulate MadIoT with varying sets of simulated grid
processes. When only simulating power flow and droop processes, the
engine overestimates the demand increase required for grid failure. On the
contrary, when simulating power flow, droop, and realistic power limits,
the engine underestimates the demand increase required for grid failure.

demand scenarios are more susceptible to SCBT attacks.

Finding 7 (Sim 1): MadIoT attack feasibility and impact
cannot be accurately evaluated unless we include all
relevant processes in the simulator (Fig. 10).

To show that omitting relevant grid processes within the
simulator changes our understanding of attack feasibility,
we return to the MadIoT attack. We observed that different
studies of MadIoT attacks considered very different sets
of grid processes. For example, the original MadIoT paper
simulated droop reserves but did not simulate realistic power
limits (droop could change the power by any amount) or
responsive reserve generation [3]. Other studies assumed
operators cannot deploy responsive reserve generation be-
cause attackers would simultaneously turn on compromised
high-wattage devices [4], [5]. One MadIoT follow-up study
illustrates one source of modeling inconsistency with the
original MadIoT paper [4]: modeling protection equipment
(i.e., under-frequency load shedding). In contrast, our work
identifies and models grid processes that the original pa-
per [3] missed and that follow-up work [4] did not identify
as reasons for modeling discrepancies.

We consider four sets of processes to understand whether
and how modeling choices impact outcomes. We start with
a baseline of power flow, and progressively add droop
reserves, realistic power limits, and reserve generation (AGC
and responsive reserve generation) to the simulation. For
instance, droop with realistic power limits mimics the droop
response of generators, which change power as a function
of demand but only by up to 5% of operating power [18].

Fig. 10 shows that droop and realistic power limits
are important for accurately simulating MadIoT attacks.
When simulating only power flow, predictions for minimum
load increase vary greatly per topology. Simulating just
power flow is unrealistic because no reserves are simulated
and the slack generator (an unrestricted generator used in

Figure 11. For each simulation, generators with the highest power output
are sequentially shut off until the grid fails (we conservatively omit the five
largest). A realistic amount of 10-minute droop reserves is 5% of generator
operating power, but since prior work has both under- and over-estimated
10-minute droop reserves, we vary the reserves to demonstrate how these
under- and over-estimations can alter the minimum number of generator
failures required for grid failure.

power-flow simulation) can exceed its power limit. Once
we include the droop process in the simulator, both topolo-
gies require a much higher load increase for grid collapse.
Modeling the droop process makes the simulation more
realistic, but results in a large overestimate of the required
demand increase because simulated generators can supply
more power than their limit. Next, we constrain how quickly
generators, including the slack generator, can change power.
As a result, the simulations show that a far lower increase
in load is sufficient during MadIoT attacks to cause grid
failure. Finally, we simulate responsive reserve generation,
which increases the reserves, and thereby requires a higher
increase in load during MadIoT attack for grid failure.

Finding 8 (Sim 2): Incorrect modeling of droop reserves
makes Power Plant Takeover attacks less feasible. This is
due to the unrealistic additional amount of droop power
reserves during the attack (Fig. 11).

To validate that simulating processes incorrectly results
in an inconsistent threat impact evaluation, we focus on
the Power Plant Takeover (PPT) threat [7], [14]. During a
PPT attack, an attacker compromises multiple generators.
We simulate PPT by shutting off the highest-producing
generators starting from the sixth largest generator. To be
conservative, we assume attackers cannot compromise the
five highest power-producing generators.

Prior work incorrectly modeled droop when analyzing
grid threats [3], [7]. For example, one PPT study did not
simulate any droop reserves [7], while another, MadIoT,
study had unlimited droop reserves [3]. In the real world,
droop reserve generation supplies limited amounts of power
because it takes time for generators to increase power output.
Generators only carry a limited amount of droop reserve for
technical, regulatory, and economic reasons [18].

We simulate PPT attacks with varying amounts of droop
reserves and find that if droop reserves are over-estimated,
PPT attacks appear less feasible because attackers must
compromise more generation plants to cause a grid failure
(Fig. 11). For example, with realistic droop reserves of



5% of generators’ operating power, the Synthetic Polish
topology requires shutting down five generators for grid
failure. When we overestimate reserves by reserving 30%
of the generator operating power for droop, the Synthetic
Polish topology requires shutting down ten generation plants
for grid failure.

6. Limitations

We acknowledge three key limitations: 1) we only use
steady-state simulations, 2) we do not explore all factors
that may cause modeling inconsistencies, and 3) we only
simulate threats on four emergency scenarios.
Steady-state simulations: One limitation is that we use
steady-state simulations rather than dynamic models. Dy-
namic models analyze transient phenomena, while steady-
state models are typically used in grid control rooms to
evaluate the impact of contingencies (our type of analysis).
While dynamic analysis might be more accurate with access
to precise network topologies, data that precise is not pub-
licly available. The state-of-the-art public grid topologies we
leverage are intended to be used for steady-state simulations.
Additional modeling factors: Although we used state-of-
the-art topologies and modeling techniques, there are further
modeling factors that could change the outcomes of attack
simulations. Specifically, using the modeling abstraction
(Fig. 5), we can identify many other possible sources of
inconsistency in each of the following dimensions: attack
scenarios or simulators. One unexplored attack scenario
factor is the realism of attack strategies. For example, it
is unclear how realistic MadIoT strategies are (e.g., how
quickly attackers can adjust the load of high-wattage IoT
devices). Similarly, prior work only analyzes threats us-
ing transmission level topologies. The granularity of the
topology may impact results too. Specifically, transmission
topologies aggregate distribution buses, and meaningful in-
formation may be lost. For threats that target the distribution
section, such as MadIoT, a topology containing distribution
information may have more accurate results.
Comprehensive emergency scenarios: As shown by Find-
ing 6, emergency scenarios make the grid more susceptible
to cyber attacks. We evaluate threats on only four illus-
trative scenarios. Operators have lists of additional likely
grid emergency scenarios [47]; we recommend operators
simulate threats on those scenarios. Additionally, we recom-
mend further collaboration between operators to create other
emergency scenarios that pertain to cyber threats. Evaluat-
ing attacks on a comprehensive list of realistic emergency
scenarios will help avoid underestimating the feasibility and
impact of threats.

7. Recommendations and Open Questions

Sec. 5 validates that the factors in Sec. 4 affect our
understanding of the feasibility and impact of threats. We
found that each community appears to make assumptions

realistic from their own perspective but potentially unre-
alistic from the perspective of other fields. For example,
the security community has repeatedly made unrealistic
grid operational assumptions (Findings 4, 7, and 8). In
contrast, the grid community often makes unrealistic secu-
rity assumptions (Findings 5 and 6). Better communication
and assumption standards across communities could pre-
vent these issues. Building on these insights, we provide
several actionable recommendations to avoid inconsistent
threat modeling. We also advance open research questions
for future work.

Evaluate threats using realistic topologies: As shown by
Findings 3 and 4, current publicly available grid topologies
are inadequate to evaluate the impact of grid attacks. We
reiterate a similar recommendation from by Soltan et al.,
that operators or industry entities should consider releasing
accurate topologies in a privacy-preserving manner [3]. We
ensure that topologies topologies satisfy N-1 and device
parameters are realistic. As future work, we recommend
the community build topologies that have other realistic
properties. For example, N-2, ensuring the largest two con-
tingencies do not cause failure, is commonly implemented
on US power grids [47].

Standardize simulation tools and techniques: As shown
by Findings 7 and 8, simulator issues cause many of
the challenges we observed in evaluating grid threats. To
overcome simulator inconsistencies we recommend two ap-
proaches: 1) create a single universal simulator capable of
accurately simulating the effect of any threat or 2) create
standard simulators for different types of threats.

Ideally, a universal simulator would require understand-
ing how different sections (physical vs. operations) of the
grid interact. For instance, to study the impact of FDIA on
physical sections of the grid, we need to simulate 1) how
operators interpret measurement data (i.e., state-estimation),
2) how operators control physical sections of the grid in
response to the data, and 3) the physical sections of the grid
(i.e., steady-state power flow). Current grid simulators model
individual sections of the grid but not their interactions.

A universal simulator may be challenging to construct
and there may exist fundamental scalability vs. fidelity
tradeoffs. In the absence of such a universal approach, we
need to create a more systematic way to identify the relevant
grid processes that need to be modeled for a type of threat
to get a high-confidence estimate of impact and likelihood.
As Finding 7 illustrated, the set of processes modeled can
impact outcomes. Less clear is how to systematically iden-
tify the set of processes that need to be simulated for a given
threat to balance these scalability-fidelity tradeoffs.

Comprehensive threat evaluation: We only examined
a few attack scenarios under each threat. We encourage
the community to develop techniques that comprehensively
evaluate grid threats. In particular, current modeling ap-
proaches and tools should be extended to be able to evaluate
threats based on attacker capabilities rather than on attack-
ers’ specific strategies.



Assumed-failure cybersecurity reliability standards: Cur-
rent grid cybersecurity standards prioritize the security of
individual entities such as power plants, or organizations.
Although these standards are important, we recommend
creating standards that consider the grid as a single entity.
For example, Finding 6 shows that compromising relatively
few substations can lead to grid failure. However, protection
measures against such events are not enforced by grid
regulators. The aforementioned standard simulation tools
would enable the research community to propose reasonable
mitigating measures for regulatory bodies to enforce.

8. Related Work

Grid threat modeling: Prior work has modeled a variety
of grid threats (e.g., [3], [6], [7], [9]). At a high level,
our work takes a broader and more systematic approach
across multiple threats and multiple dimensions of grid
modeling (i.e., Findings 4, 5, 6, and 8). MadIoT threats in
particular often have inconsistencies in threat outcomes [3],
[4]. A key observation in MadIoT follow-up work [4] is that
the original MadIoT paper [3] did not correctly simulate
protection equipment (e.g., under-frequency load shedding).
We extend this by: 1) demonstrating why topologies in
[3] are unrealistic (Finding 3), 2) adjusting the topologies
to be realistic (Finding 3), 3) illustrating the effects of
using unrealistic topologies when evaluating MadIoT attacks
(Finding 4), and 4) identifying and modeling grid processes
the original paper [3] missed and follow-up work did not
identify as reasons for modeling discrepancies [4].
Grid anomaly detection: Prior work has studied detecting
anomalous data (e.g., FDIA) in grid control rooms [44].
Reliable grid operation depends on measurements from
Supervisory Control and Data Acquisition systems, which
collect: i) continuous grid-state measurements from sensors
such as remote terminal units and phasor measurement units
and ii) the discrete status of switching devices and circuit
breakers. The Energy Management Systems within control
rooms detect anomalous grid state or sensor status data.
AC state-estimation with bad-data detection algorithms is
used for detecting anomalous data, via hypothesis tests on
the state-estimation output residuals. Additionally, topology
changes are detected by the network topology processor,
which uses Kirchhoff’s Current Laws checks to detect faulty
status readings. For more information on these processes,
please refer to [44], [51]–[53].
Grid resiliency: The power grid is designed to be resilient
to natural disasters, random failures, and cyber attacks.
Regulatory bodies (e.g., North American Electric Reliability
Corporation (NERC)) enforce reliability requirements on the
bulk grid. For instance, NERC planning reliability standards
(TPL standards [8]) ensure that the grid operates reliably
over a broad spectrum of system conditions under various
contingencies. Similarly, NERC operating standards (TOL
standards [8]) ensure that grid cascading failure does not oc-
cur under the most severe single contingency or a predefined
set of multiple contingencies. More recently, standards have

been created to safeguard against cyber threats [8]. However,
these are limited and do not protect against complex threats.
Nor are the grids protected against the loss of multiple
components, which are more likely during a cyber threat.

Cyber physical systems (CPS) security: Operators rely on
CPS to manage all sections of the grid. There is a large
body of work studying approaches to securing CPS [54].
Techniques such as attack graphs [55] and physical simula-
tions [56] have been applied. In addition, many are attempt-
ing to identify anomalous sensor data [57]. Researchers have
also focussed on securing programmable logic controllers,
a standard type of industrial computer [58].

IoT security: IoT devices have been shown to contain
numerous vulnerabilities [59], [60]. Many techniques have
been proposed to automatically identify vulnerabilities [59],
[61]. Machine-learning techniques have been proposed to
secure IoT devices at the network layer [62], [63]. Several
machine-learning techniques automatically identify devices
and create security policies for each device [62], [63].

9. Conclusions

This paper was inspired by the lack of consensus in
results surrounding MadIoT and the debate among experts
on the feasibility of this threat. We surveyed experts and
found, in hindsight perhaps unsurprisingly, that confusion is
not limited to MadIoT; there is a general lack of agreement
among grid practitioners and academic experts on the like-
lihood and impact of four threats. We qualitatively observed
that inconsistencies occur because of ad hoc simulation
and modeling methodologies, as well as because of dataset
errors. We quantitatively validated the influence of these
factors by using a custom analysis framework. We posit that
many of these inconsistencies stem from a lack of standard-
ized, public toolkits and datasets, and we recommend several
ways to increase the accuracy of evaluations. By shedding
light on these inconsistencies and potential causes, we hope
our work inspires more rigorous foundations for future grid
cybersecurity research.
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Appendix A.
Survey Questions

Q1 This survey will ask you cyber security questions about
the bulk energy system. Which of the following interconnections
would you like to answer for? Please choose the bulk grid that you
work on or the bulk grid that you are most comfortable answering
questions for.

• Western Interconnection
• Texas Interconnection
• Eastern Interconnection
For the following questions, a significant disruption on the

grid is either 1) 300 MW of load dropped in a dispatch cycle, 2)
economic loss greater than 10 million dollars, or 3) endangerment
to any number of human lives.

Q2 Do you agree that it is technically possible for a cyber
attack to cause a significant disruption on the [chosen grid] within
the next 5 years?

• Strongly agree
• Agree
• Neither agree or disagree

• Disagree
• Strongly disagree

Q3 Please rate your confidence of your answer to the previous
question

• Very confident
• Confident
• Somewhat confident

• Not confident
• Not at all confident

Q4 Roughly, how likely is it that a cyber attack will cause a
significant disruption on the [chosen grid]] within the next 5 years?

[Slider 0-100%]
Q5 [same as Q3]
Q6 Do you agree that it is technically possible for a cyber

attack to cause a significant disruption on the [chosen grid] within
the next 15 years?

• Strongly agree
• Agree
• Neither agree or disagree

• Disagree
• Strongly disagree

Q7 [same as Q3]
Q8 Roughly, how likely is it that a cyber attack will cause

a significant disruption on the [chosen grid]] within the next 15
years?

[Slider 0-100%]
Q9 [same as Q3]
Q10 Please leave any additional comments below
[Free response]
Assume the worst feasible attack has taken place.
Q11 If a cyber attack caused a significant disruption on the

[chosen grid], roughly how much of the grid would go down (In
terms of percent of total [chosen grid])? Please give your best
estimate

[Slider 0-20% ±5%]
Q12 [same as Q3]
Q13 If a cyber attack caused a significant disruption on the

[chosen grid], what is your best estimate for how long it would
take to restore power to greater than 90% of the customers that
lost power?

• Under an hour
• 1 - 23 hours
• 1 - 6 days

• 1 - 3 weeks
• 1 - 11 months
• A year or greater

Q14 [same as Q3]
Q15 Please leave any additional comments below
[Free response]
We asked experts the following questions for each of the

following attacks: MadIoT, FDIA, PPT, and SCBT. Before asking
the questions, we gave experts a brief summary of the attack.

https://www.nerc.com/files/TPL-004-1.pdf
https://www.nerc.com/files/TPL-004-1.pdf
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-gtd.2019.1330
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-gtd.2019.1330


Q16 Have you heard of this attack before?
• Yes
• No

• Not sure
• Prefer not to answer

Q17.A Is this attack against the [chosen grid] technically
feasible today?

• Definitely yes
• Probably yes

• Probably no
• Definitely no

If no selected: Q17.B Please explain why
[Free response]
Q18 [same as Q3]
Q19 Please leave any additional comments below
[Free response]
Please assume the most dangerous feasible version of the

attack. Assume the following:
Normal Condition: Physical Responsive Capability (PRC) is at

normal capacity and grid frequency is stable at 60Hz.
Emergency Level 2: PRC declines and and won’t be recovered

for at least 30 minutes. In addition, system frequency starts to
change significantly.

Emergency Level 3: PRC is drastically low and system fre-
quency is unable to stabilize after a significant delay. Load shed-
ding occurs at this emergency level.

A significant disruption on the grid is either 1) 300 MW of
load dropped in a dispatch cycle, 2) economic loss greater than 10
million dollars, or 3) endangerment to any number of human lives.

Q20 If the [chosen grid] is in normal condition, roughly how
likely is it that this attack will cause a significant disruption?

[Slider 0-100%]
Q21 [same as Q3]
Q22 If the [chosen grid] is in Emergency Level 2, roughly

how likely is it that this attack will cause a significant disruption?
[Slider 0-100%]
Q23 [same as Q3]
Q24 If the [chosen grid] is in Emergency Level 3, roughly

how likely is it that this attack will cause a significant disruption?
[Slider 0-100%]
Q25 [same as Q3]
Q26 Please leave any additional comments below
[Free response]
Q27 If the attack causes a significant disruption, for each of the

following grid states, what would be the maximum load dropped
from the [chosen grid] as a direct result of the attack?

For each grid state in: normal condition, Emergency Level 2,
and Emergency Level 3:

Outage size
• 0MW
• 1 - 10MW
• 10-99MW

• 100-999MW
• Greater than 1000MW

Confidence [same as Q3]
Q28 If the attack causes a significant disruption, for each of

the following grid states, how long do you expect it to take to
restore power to at least 90% of the customers that lost power?

For each grid state in: normal condition, Emergency Level 2,
and Emergency Level 3:

Restoration time
• No disruption would oc-

cur
• Under an hour
• 1 - 23 hours

• 1 - 6 days
• 1 - 3 weeks
• 1 - 11 months
• A year or greater

Confidence [same as Q3]
Q29 Please leave any additional comments below
Q30 Roughly, how likely is it that this attack will cause a

significant disruption on the [chosen grid] within the next 5 years?
Please give your best estimate

[Slider 0-100%]
Q31 [same as Q3]
Q32 Roughly, how likely is it that this attack will cause a

significant disruption on the [chosen grid] within the next 15 years?
Please give your best estimate

[Slider 0-100%]
Q33 [same as Q3]
Q34 How much do you agree with the following statement

“Grid operators are aware of the possibility of this kind of attack?”
• Strongly agree
• Agree
• Neither agree or disagree

• Disagree
• Strongly disagree

Q35 [same as Q3]
Q36 Are there any other grid conditions (e.g., wildfires im-

pacting distribution, a series of generators fail) that are particularly
worrisome for this type of attack?

[Free response]
Q37 If the attack were to succeed on the [chosen grid], roughly

how likely is this attack to result in permanent grid device damage
(i.e., a device that has to be replaced after the attack)? Please give
your best estimate

[Slider 0-100% ±5%]
Q38 [same as Q3]
Q39 If you believe the attack could result in permanent grid

device damage, what devices would likely be damaged?
[Free response]
Q40 Do you have any recommended changes (e.g., adding

certain types of generators to the grid, implementing better state
estimation, adding additional regulations, etc) to improve resiliency
against this attack?

[Free response]
Q41 Please leave any additional comments below
[Free response]
End of attack questions.
Q42.A Have any of the grid organizations that you have been

a part of ever been a target of a cyber attack that has impacted
power delivery?

• Yes
• No

• Prefer not to answer
• Not sure

If yes to Q42.A: If your organization has been attacked
multiple times, please apply the following questions to the most
significant attack.

Q42.B Please describe the type of attack (e.g., an attacker
infiltrates a corporate network, or an attacker takes control of a
generator):

[Free response]
If yes to Q42.A: Q42.C How many of your customers were

impacted?
[Slider 0-100% ±5%]
If yes to Q42.A: Q42.D How long did it take to restore power

to greater than 90% of the customers whom lost power?
• The attack did not impact

power delivery
• No disruption would oc-

cur
• Under an hour
• 1 - 23 hours

• 1 - 6 days
• 1 - 3 weeks
• 1 - 11 months
• A year or greater
• Prefer not to answer

Q43 What is your gender?
• Male
• Female

• Non-binary / third gender
• Prefer not to say

Q44 How old are you?



• 18 - 24
• 25 - 34
• 35 - 44

• 45 - 54
• 55 - 64
• 66+

• Prefer not to
say

Q45 What is your highest degree?
• Less than a high school

diploma
• High school degree or

equivalent (e.g., GED)
• Some college, no degree
• Associate degree (e.g.,

AA, AS)
• Bachelor’s degree (e.g.,

BA, BS)
• Master’s degree (e.g.,

MA, MS, MEd)
• Professional degree (e.g.,

MD, DDS, DVM)
• Doctorate (e.g., PhD,

EdD)
• Prefer not to answer

Q46 How many years have you worked in the grid industry
or on topics related to the grid?

• 0 - 5 years
• 6 - 10 years
• 11 - 15 years

• 16 - 20 years
• 20+ years
• Prefer not to

say

Q47.A Which of the following terms best describes the organi-
zation you work for now or your most recent form of employment
related to the electric grid?

• Independent System Operator (ISO), Regional Transmission
Organization (RTO) or Transmission System Operator (TSO)

• Utility Company
• University
• Research Organization
• Consultant Firm
• Federal Regulator or Public Utility Commission (PUC)
• Grid Product Manufacturer (e.g., Siemens, Schneider, etc)
• Other
• Prefer not to say
If other: Q47.B Please explain?
[Free response]
Q48 How many people does your organization employ?

• 1 - 49
• 50 - 999
• 1000 - 4999

• 5000+
• Prefer not to say

Q49 Check all of the following that apply to your current
employer

• Has an internal red team
• Has an internal cyberse-

curity department
• Has an internal IT depart-

ment
• Has an internal blue team
• Hires external cybersecu-

rity consultants
Q50 What is the title of your job?
[Free response]
Q51 Which best describes your professional specialty?

• Cybersecurity
• Power systems
• Both cybersecurity and

power systems
• Other (free response)
• Prefer not to answer

Appendix B.
Survey Results

Fig. 12 is a detailed breakdown of expert confidence for
likelihood, outage size, and outage duration for all grid threats.
The majority of experts reported they were somewhat confident or
less in their predictions.

We asked experts several general cybersecurity questions about
the grid (Q2-Q14) and the results can be found in Table 3.

Figure 12. Expert confidence in their predictions for likelihood, outage size,
and outage duration for all grid threats. The majority of experts reported
somewhat confident or less in their predictions for all threats.

TABLE 3. GENERAL GRID CYBERSECURITY QUESTION AND ANSWERS

Question Answers
Q2: Is it technically pos-
sible for attack to occur
within 5 years?

Strongly agree: 10, Agree: 7,
Neither agree or disagree: 0,
Disagree: 1, Strongly disagree: 0

Q3: Confidence of Q2
Very confident: 7, Confident: 7,
Somewhat confident: 7,
Not confident: 0, Not at all confident: 0

Q4: Likelihood attack to
occurring within 5 years

Average: 44.1, Median: 47.5,
Min: 10.0, Max: 90.0

Q5: Confidence of Q4
Very confident: 5, Confident: 3,
Somewhat confident: 6,
Not confident: 3, Not at all confident: 0

Q6: Is it technically pos-
sible for attack to occur
within 15 years?

Strongly agree: 12, Agree: 6,
Neither agree or disagree: 0,
Disagree: 0, Strongly disagree: 0

Q7: Confidence of Q6
Very confident: 11, Confident: 2,
Somewhat confident: 4,
Not confident: 0, Not at all confident: 0

Q8: Likelihood attack
to occurring within 15
years

Average: 60.2, Median: 61.5,
Min: 10.0, Max: 100.0

Q9: Confidence of Q8
Very confident: 6, Confident: 5,
Somewhat confident: 4,
Not confident: 2, Not at all confident: 0

Q11: Percent of grid to
go down from cyber at-
tack

Average: 8.4, Median: 5.0,
Min: 3.0, Max: 20.0

Q12: Confidence of Q11
Very confident: 2, Confident: 7,
Somewhat confident: 4,
Not confident: 4, Not at all confident: 0

Q13: Grid cyber attack
recovery time of grid

Under an hour: 0, 1 - 23 hours: 7,
1 - 6 days: 6, 1 - 3 weeks: 2,
1 - 11 months: 3, A year or greater: 0

Q14: Confidence of Q13
Very confident: 4, Confident: 6,
Somewhat confident: 5,
Not confident: 2, Not at all confident: 0
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