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Our first main contribution: 
A loss function that captures all non-target logits

Minimal Difference (MD) loss
LMD=∑all i  ReLU(− Zt+ Zi +∆ )
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What else can we do to find 
a stronger attack?

Our solution: Constrained Gradient Descent (CGD)
● Distance limit as part of the loss function
● Perturbation gradually encouraged to stay within distance limit

ϵ boundary

input x
Auto-PGD: projection

perturbation x’

clip(x’)
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How well do our attacks work?

● Auto-PGD with MD loss 
→ up to 12% more adversarial examples

● CGD
→ up to additional 1% more adversarial examples
→ and, up to 19% faster
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What are our takeaways?

Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks
Weiran Lin       Keane Lucas       Lujo Bauer       Michael K. Reiter       Mahmood Sharif

● We define a new loss function, MD loss
○ improves the previous best targeted evasion attack

● We propose a new attack, CGD
○ finds more adversarial examples
○ and is also faster

● We use CGD as a framework for attacks
○ second example use: a stronger untargeted attack


