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confidence scores

Is CW loss always the best?

Lcw =" Zt + maXi#tZi
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Is CW loss always the best?

Loy =~ 4+ max 2z Our first main contribution:
A loss function that captures all non-target logits

Minimal Difference (MD) loss
Lyp=2a1; ReLU(=Z+ Z,+A)
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‘ perturbation x’

What else can we do to find
a stronger attack? \ ¢ boundary

Auto-PGD:

Our solution: Constrained Gradient Descent (CGD)
e Distance limit as part of the loss function
e Perturbation gradually encouraged to stay within distance limit
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How well do our attacks work?

e Auto-PGD with MD loss
— up to 12% more adversarial examples

e CGD

— up to additional 1% more adversarial examples
— and, up to 19% faster

31



What are our takeaways?

32



What are our takeaways?

e \We define a new loss function, MD loss
o Improves the previous best targeted evasion attack
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What are our takeaways?

e \We define a new loss function, MD loss

o Improves the previous best targeted evasion attack
e \We propose a new attack, CGD

o finds more adversarial examples

o and is also faster
e \We use CGD as a framework for attacks

o second example use: a stronger untargeted attack
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