Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks

Weiran Lin¹ Keane Lucas¹ Lujo Bauer¹ Michael K. Reiter² Mahmood Sharif³

¹ Carnegie Mellon University

- ² Duke University
- ³ Tel Aviv University

Why is studying targeted attacks important?

Why is studying targeted attacks important?

What are our contributions?

What are our contributions?

- We define a new loss function, MD loss
 - improves the previous best targeted evasion attack

What are our contributions?

- We define a new loss function, MD loss
 - improves the previous best targeted evasion attack
- We propose a new attack, CGD
 - finds more adversarial examples
 - and is also faster

What are the previous best targeted attacks?

• Previous best targeted evasion attack: auto-PGD

What are the previous best targeted attacks?

- Previous best targeted evasion attack: auto-PGD
- Previous best loss function: CW loss

$$L_{CW} = -Z_t + \max_{i \neq t} Z_i$$

Logit of target class

Logit of target class

$$L_{CW} = -Z_t + max_{i \neq t}Z_i$$

 $L_{CW} = -Z_t + \max_{i \neq t} Z_i$

Our first main contribution:

A loss function that captures **all** non-target logits

 $L_{CW} = -Z_t + \max_{i \neq t} Z_i$

Our first main contribution:

A loss function that captures **all** non-target logits

Minimal Difference (MD) loss $L_{MD} = \sum_{all i} ReLU(-Z_t + Z_i + \Delta)$

What else can we do to find a stronger attack?

What else can we do to find a stronger attack?

Our solution: Constrained Gradient Descent (CGD)

Our solution: Constrained Gradient Descent (CGD)

• Distance limit as part of the loss function

Our solution: Constrained Gradient Descent (CGD)

- Distance limit as part of the loss function
- Perturbation gradually encouraged to stay within distance limit

How does CGD work?

How does CGD work?

L_{boundary} > 0

How does CGD work?

Auto-PGD with MD loss
 → up to 12% more adversarial examples

- Auto-PGD with MD loss
 → up to 12% more adversarial examples
- CGD

 \rightarrow up to additional 1% more adversarial examples

- Auto-PGD with MD loss
 → up to 12% more adversarial examples
- CGD

 \rightarrow up to additional 1% more adversarial examples \rightarrow and, up to 19% faster

- We define a new loss function, MD loss
 - improves the previous best targeted evasion attack

Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks Weiran Lin Keane Lucas Lujo Bauer Michael K. Reiter Mahmood Sharif

- We define a new loss function, MD loss
 - improves the previous best targeted evasion attack
- We propose a new attack, CGD
 - finds more adversarial examples
 - and is also faster

Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks Weiran Lin Keane Lucas Lujo Bauer Michael K. Reiter Mahmood Sharif

- We define a new loss function, MD loss
 - improves the previous best targeted evasion attack
- We propose a new attack, CGD
 - finds more adversarial examples
 - and is also faster
- We use CGD as a *framework* for attacks
 - second example use: a stronger untargeted attack

Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks Weiran Lin Keane Lucas Lujo Bauer Michael K. Reiter Mahmood Sharif