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Abstract

As non-expert users produce increasing amounts of per-
sonal digital data, usable access control becomes critical.
Current approaches often fail, because they insufficiently
protect data or confuse users about policy specification.
This paper presents Penumbra, a distributed file sys-
tem with access control designed to match users’ mental
models while providing principled security. Penumbra’s
design combines semantic, tag-based policy specification
with logic-based access control, flexibly supporting intu-
itive policies while providing high assurance of correct-
ness. It supports private tags, tag disagreement between
users, decentralized policy enforcement, and unforgeable
audit records. Penumbra’s logic can express a variety of
policies that map well to real users’ needs. To evaluate
Penumbra’s design, we develop a set of detailed, real-
istic case studies drawn from prior research into users’
access-control preferences. Using microbenchmarks and
traces generated from the case studies, we demonstrate
that Penumbra can enforce users’ policies with overhead
less than 5% for most system calls.

1 Introduction

Non-expert computer users produce increasing amounts
of personal digital data, distributed across devices (lap-
tops, tablets, phones, etc.) and the cloud (Gmail, Face-
book, Flickr, etc.). These users are interested in access-
ing content seamlessly from any device, as well as shar-
ing it with others. Thus, systems and services designed
to meet these needs are proliferating [6,37,42,43,46,52].

In this environment, access control is critical. News
headlines repeatedly feature access-control failures with
consequences ranging from embarrassing (e.g., students
accessing explicit photos of their teacher on a classroom
iPad [24]) to serious (e.g., a fugitive’s location being re-
vealed by geolocation data attached to a photo [56]). The
potential for such problems will only grow. Yet, at the
same time, access-control configuration is a secondary
task most users do not want to spend much time on.

Access-control failures generally have two sources:
ad-hoc security mechanisms that lead to unforeseen be-
havior, and policy authoring that does not match users’

mental models. Commercial data-sharing services some-
times fail to guard resources entirely [15]; often they
manage access in ad-hoc ways that lead to holes [33].
Numerous studies report that users do not understand pri-
vacy settings or cannot use them to create desired poli-
cies (e.g., [14,25]). Popular websites abound with advice
for these confused users [38, 48].

Many attempts to reduce user confusion focus only on
improving the user interface (e.g., [26, 45, 54]). While
this is important, it is insufficient—a full solution also
needs the underlying access-control infrastructure to pro-
vide principled security while aligning with users’ un-
derstanding [18]. Prior work investigating access-control
infrastructure typically either does not support the flex-
ible policies appropriate for personal data (e.g., [20]) or
lacks an efficient implementation with system-call-level
file-system integration (e.g., [31]).

Recent work (including ours) has identified features
that are important for meeting users’ needs but largely
missing in deployed access-control systems: for exam-
ple, support for semantic policies, private metadata, and
interactive policy creation [4, 28, 44]. In this paper, we
present Penumbra, a distributed file system with access
control designed to support users’ policy needs while
providing principled security. Penumbra provides for
flexible policy specification meant to support real access-
control policies, which are complex, frequently include
exceptions, and change over time [8, 34, 35, 44, 53]. Be-
cause Penumbra operates below the user interface, we
do not evaluate it directly with a user study; instead, we
develop a set of realistic case studies drawn from prior
work and use them for evaluation. We define “usabil-
ity” for this kind of non-user-facing system as supporting
specific policy needs and mental models that have been
previously identified as important.

Penumbra’s design is driven by three important fac-
tors. First, users often think of content in terms of its
attributes, or tags—photos of my sister, budget spread-
sheets, G-rated movies—rather than in traditional hier-
archies [28, 47, 49]. In Penumbra, both content and pol-
icy are organized using tags, rather than hierarchically.
Second, because tags are central to managing content,
they must be treated accordingly. In Penumbra, tags are
cryptographically signed first-class objects, specific to a
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single user’s namespace. This allows different users to
use different attribute values to describe and make policy
about the same content. Most importantly, this design
ensures tags used for policy specification are resistant to
unauthorized changes and forgery. Policy for accessing
tags is set independently of policy for files, allowing for
private tags. Third, Penumbra is designed to work in
a distributed, decentralized, multi-user environment, in
which users access files from various devices without a
dedicated central server, an increasingly important envi-
ronment [47]. We support multi-user devices; although
these devices are becoming less common [13], they re-
main important, particularly in the home [27, 34, 61].
Cloud environments are also inherently multi-user.

This paper makes three main contributions. First, it
describes Penumbra, the first file-system access-control
architecture that combines semantic policy specifica-
tion with logic-based credentials, providing an intuitive,
flexible policy model without sacrificing correctness.
Penumbra’s design supports distributed file access, pri-
vate tags, tag disagreement between users, decentralized
policy enforcement, and unforgeable audit records that
describe who accessed what content and why that access
was allowed. Penumbra’s logic can express a variety of
flexible policies that map well to real users’ needs.

Second, we develop a set of realistic access-control
case studies, drawn from user studies of non-experts’
policy needs and preferences. To our knowledge, these
case studies, which are also applicable to other personal-
content-sharing systems, are the first realistic policy
benchmarks with which to assess such systems. These
case studies capture users’ desired policy goals in detail;
using them, we can validate our infrastructure’s efficacy
in supporting these policies.

Third, using our case studies and a prototype imple-
mentation, we demonstrate that semantic, logic-based
policies can be enforced efficiently enough for the inter-
active uses we target. Our results show enforcement also
scales well with policy complexity.

2 Related work

In this section, we discuss four related areas of research.

Access-control policies and preferences. Users’
access-control preferences for personal data are nuanced,
dynamic, and context-dependent [3, 35, 44]. Many poli-
cies require fine-grained rules, and exceptions are fre-
quent and important [34, 40]. Users want to protect per-
sonal data from strangers, but are perhaps more con-
cerned about managing access and impressions among
family, friends, and acquaintances [4, 12, 25, 32]. Fur-
thermore, when access-control mechanisms are ill-suited
to users’ policies or capabilities, they fall back on

clumsy, ad-hoc coping mechanisms [58]. Penumbra is
designed to support personal polices that are complex,
dynamic, and drawn from a broad range of sharing pref-
erences.

Tags for access control. Penumbra relies on tags to
define access-control policies. Researchers have proto-
typed tag-based access-control systems for specific con-
texts, including web photo albums [7], corporate desk-
tops [16], microblogging services [17], and encrypting
portions of legal documents [51]. Studies using role-
playing [23] and users’ own tags [28] have shown that
tag-based policies are easy to understand and accurate
policies can be created from existing tags.

Tags for personal distributed file systems. Many dis-
tributed file systems use tags for file management, an
idea introduced by Gifford et al. [22]. Many suggest
tags will eclipse hierarchical management [49]. Several
systems allow tag-based file management, but do not ex-
plicitly provide access control [46, 47, 52]. Homeviews
provides capability-based access control, but remote files
are read-only and each capability governs files local to
one device [21]. In contrast, Penumbra provides more
principled policy enforcement and supports policy that
applies across devices. Cimbiosys offers partial replica-
tion based on tag filtering, governed by fixed hierarchical
access-control policies [60]. Research indicates personal
policies do not follow this fixed hierarchical model [34];
Penumbra’s more flexible logic builds policies around
non-hierarchical, editable tags, and does not require a
centralized trusted authority.

Logic-based access control. An early example of
logic-based access control is Taos, which mapped au-
thentication requests to proofs [59]. Proof-carrying au-
thentication (PCA) [5], in which proofs are submitted to-
gether with requests, has been applied in a variety of sys-
tems [9,11,30]. PCFS applies PCA to a local file system
and is evaluated using a case study based on government
policy for classified data [20]. In contrast, Penumbra
supports a wider, more flexible set of distributed policies
targeting personal data. In addition, while PCFS relies
on constructing and caching proofs prior to access, we
consider the efficiency of proof generation.

One important benefit of logic-based access control is
meaningful auditing; logging proofs provides unforge-
able evidence of which policy credentials were used to
allow access. This can be used to reduce the trusted com-
puting base, to assign blame for unintended accesses, and
to help users detect and fix policy misconfigurations [55].

3 System overview

This section describes Penumbra’s architecture as well as
important design choices.
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3.1 High-level architecture

Penumbra encompasses an ensemble of devices, each
storing files and tags. Users on one device can remotely
access files and tags on other devices, subject to access
control. Files are managed using semantic (i.e., tag-
based) object naming and search, rather than a directory
hierarchy. Users query local and remote files using tags,
e.g., type=movie or keyword=budget. Access-control
policy is also specified semantically, e.g., Alice might
allow Bob to access files with the tags type=photo and
album=Hawaii. Our concept of devices can be extended
to the cloud environment. A cloud service can be thought
of as a large multi-user device, or each cloud user as be-
ing assigned her own logical “device.” Each user runs a
software agent, associated with both her global public-
key identity and her local uid, on every device she uses.
Among other tasks, the agent stores all the authorization
credentials, or cryptographically signed statements made
by principals, that the user has received.

Each device in the ensemble uses a file-system-level
reference monitor to control access to files and tags.
When a system call related to accessing files or tags is
received, the monitor generates a challenge, which is for-
matted as a logical statement that can be proved true
only if the request is allowed by policy. To gain ac-
cess, the requesting user’s agent must provide a logical
proof of the challenge. The reference monitor will ver-
ify the proof before allowing access. To make a proof,
the agent assembles a set of relevant authorization cre-
dentials. The credentials, which are verifiable and un-
forgeable, are specified as formulas in an access-control
logic, and the proof is a derivation demonstrating that
the credentials are sufficient to allow access. Penumbra
uses an intuitionistic first-order logic with predicates and
quantification over base types, described further in Sec-
tions 3.3 and 4.

The challenges generated by the reference monitors
have seven types, which fall into three categories: au-
thority to read, write, or delete an existing file; authority
to read or delete an existing tag; and authority to create
content (files or tags) on the target device. The ratio-
nale for this is explained in Section 3.2. Each challenge
includes a nonce to prevent replay attacks; for simplic-
ity, we omit the nonces in examples. The logic is not
exposed directly to users, but abstracted by an interface
that is beyond the scope of this paper.

For both local and remote requests, the user must
prove to her local device that she is authorized to access
the content. If the content is remote, the local device
(acting as client) must additionally prove to the remote
device that the local device is trusted to store the con-
tent and enforce policy about it. This ensures that users
of untrusted devices cannot circumvent policy for remote
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Figure 1: Access-control example. (0) Using her tablet, Alice
requests to open a file stored on the desktop. (1) The interface
component forwards this request to the reference monitor. (2)
The local monitor produces a challenge, which (3) is proved
by Alice’s local agent, then (4) asks the content store for the
file. (5) The content store requests the file from the desktop,
(6) triggering a challenge from the desktop’s reference monitor.
(7) Once the tablet’s agent proves the tablet is authorized to
receive the file, (8) the desktop’s monitor instructs the desktop’s
content store to send it to the tablet. (9–11) The tablet’s content
store returns the file to Alice via the interface component.

data. Figure 1 illustrates a remote access.

3.2 Metadata
Semantic management of access-control policy, in addi-
tion to file organization, gives new importance to tag han-
dling. Because we base policy on tags, they must not be
forged or altered without authorization. If Alice gives
Malcolm access to photos from her Hawaiian vacation,
he can gain unauthorized access to her budget if he can
change its type from spreadsheet to photo and add the
tag album=Hawaii. We also want to allow users to keep
tags private and to disagree about tags for a shared file.

To support private tags, we treat each tag as an object
independent of the file it describes. Reading a tag re-
quires a proof of access, meaning that assembling a file-
access proof that depends on tags will often require first
assembling proofs of access to those tags (Figure 2).

For tag integrity and to allow users to disagree about
tags, we implement tags as cryptographically signed cre-
dentials of the form principal signed tag(attribute, value,

file). For clarity in examples, we use descriptive file
names; in reality, Penumbra uses globally unique IDs.
For example, Alice can assign the song “Thriller” a four-
star rating by signing a credential: Alice signed tag(rating,

4, “Thriller”). Alice, Bob, and Caren can each assign dif-
ferent ratings to “Thriller.” Policy specification takes this
into account: if Alice grants Bob permission to listen to
songs where Alice’s rating is three stars or higher, Bob’s
rating is irrelevant. Because tags are signed, any prin-
cipal is free to make any tag about any file. Principals
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Alice&signed&
Alice.album=Hawaii&for&Luau.jpg&

PROOF:&&
Alice&says&read&Luau.jpg&Bob&signed&read&Luau.jpg&

Bob&signed&read&
Alice.album&for&Luau.jpg&

PROOF:&Alice&says&read&
Alice.album&for&Luau.jpg&

Alice&signed&Bob&can&read&
Alice.album&for&any&file&

Alice&signed&Bob&can&
read&any&file&with&
Alice.album=Hawaii&&

Figure 2: Example two-stage proof of access, expressed in-
formally. In the first stage, Bob’s agent asks which album Al-
ice has placed the photo Luau.jpg in. After making the proof,
Bob’s agent receives a metadata credential saying the photo is
in the album Hawaii. By combining this credential with Bob’s
authority to read some files, Bob’s agent can make a proof that
will allow Bob to open Luau.jpg.

can be restricted from storing tags on devices they do not
own, but if Alice is allowed to create or store tags on a
device then those tags may reference any file.

Some tags are naturally written as attribute-value pairs
(e.g., type=movie, rating=PG ). Others are commonly
value-only (e.g., photos tagged with vacation or with
people’s names). We handle all tags as name-value pairs;
value-only tags are transformed into name-value pairs,
e.g., from “vacation” to vacation=true.

Creating tags and files. Because tags are cryptograph-
ically signed, they cannot be updated; instead, the old
credential is revoked (Section 4.4) and a new one is is-
sued. As a result, there is no explicit write-tag authority.

Unlike reading and writing, in which authority is de-
termined per file or tag, authority to create files and tags
is determined per device. Because files are organized
by their attributes rather than in directories, creating one
file on a target device is equivalent to creating any other.
Similarly, a user with authority to create tags can always
create any tag in her own namespace, and no tags in any
other namespace. So, only authority to create any tags
on the target device is required.

3.3 Devices, principals, and authority

We treat both users and devices as principals who can
create policy and exercise authority granted to them.
Each principal has a public-private key pair, which is
consistent across devices. This approach allows multi-
user devices and decisions based on the combined trust-
worthiness of a user and a device. (Secure initial distri-
bution of a user’s private key to her various devices is
outside the scope of this paper.)

Access-control logics commonly use A signed F to de-
scribe a principal cryptographically asserting a statement

F . A says F describes beliefs or assertions F that can be
derived from other statements that A has signed or, using
modus ponens, other statements that A believes (says):

A says F A says (F → G)

A says G

Statements that principals can make include both del-
egation and use of authority. In the following example,
principal A grants authority over some action F to prin-
cipal B, and B wants to perform action F.

A signed deleg (B, F ) (1)
B signed F (2)

These statements can be combined, as a special case
of modus ponens, to prove that B’s action is supported
by A’s authority:

(1) (2)
A says F

Penumbra’s logic includes these rules, other construc-
tions commonly used in access control (such as defining
groups of users), and a few minor additions for describ-
ing actions on files and tags (see Section 4).

In Penumbra, the challenge statements issued by a ref-
erence monitor are of the form device says action, where
action describes the access being attempted. For Alice to
read a file on her laptop, her software agent must prove
that AliceLaptop says readfile( f ).

This design captures the intuition that a device storing
some data ultimately controls who can access it: sensi-
tive content should not be given to untrusted devices, and
trusted devices are tasked with enforcing access-control
policy. For most single-user devices, a default policy in
which the device delegates all of its authority to its owner
is appropriate. For shared devices or other less common
situations, a more complex device policy that gives no
user full control may be necessary.

3.4 Threat model
Penumbra is designed to prevent unauthorized access to
files and tags. To prevent spoofed or forged proofs, we
use nonces to prevent replay attacks and rely on stan-
dard cryptographic assumptions that signatures cannot be
forged unless keys are leaked. We also rely on standard
network security techniques to protect content from ob-
servation during transit between devices.

Penumbra employs a language for capturing and rea-
soning about trust assertions. If trust is misplaced, viola-
tions of intended policy may occur—for example, an au-
thorized user sending a copy of a file to an unauthorized
user. In contrast to other systems, Penumbra’s flexibility
allows users to encode limited trust precisely, minimiz-
ing vulnerability to devices or users who prove untrust-
worthy; for example, different devices belonging to the
same owner can be trusted differently.
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4 Expressing semantic policies

This section describes how Penumbra expresses and en-
forces semantic policies with logic-based access control.

4.1 Semantic policy for files
File accesses incur challenges of the form device says ac-

tion(f ), where f is a file and action can be one of readfile,
writefile, or deletefile.

A policy by which Alice allows Bob to listen to any of
her music is implemented as a conditional delegation: If
Alice says a file has type=music, then Alice delegates to
Bob authority to read that file. We write this as follows:

Alice signed ∀ f :
tag(type,music, f ) → deleg(Bob,readfile( f )) (3)

To use this delegation to listen to “Thriller,” Bob’s
agent must show that Alice says “Thriller” has
type=music, and that Bob intends to open “Thriller” for
reading, as follows:

Alice signed tag(type,music,“Thriller”) (4)
Bob signed readfile(“Thriller”) (5)

(3) (4)
Alice says deleg(Bob,readfile(“Thriller”)) (5)

Alice says readfile(“Thriller”)

In this example, we assume Alice’s devices grant her
access to all of her files; we elide proof steps showing
that the device assents once Alice does. We similarly
elide instantiation of the quantified variable.

We can easily extend such policies to multiple attrib-
utes or to groups of people. To allow the group “co-
workers” to view her vacation photos, Alice would as-
sign users to the group (which is also a principal) by is-
suing credentials as follows:

Alice signed speaksfor(Bob, Alice.co-workers) (6)

Then, Alice would delegate authority to the group rather
than to individuals:

Alice signed ∀ f : tag(type,music, f ) →
deleg(Alice.co-workers,readfile( f )) (7)

4.2 Policy about tags
Penumbra supports private tags by requiring a proof of
access before allowing a user or device to read a tag.
Because tags are central to file and policy management,
controlling access to them without impeding file system
operations is critical.
Tag policy for queries. Common accesses to tags fall
into three categories. A listing query asks which files be-
long to a category defined by one or more attributes, e.g.,

list all Alice’s files with type=movie and genre=comedy.
An attribute query asks the value of an attribute for a spe-
cific file, e.g., the name of the album to which a photo be-
longs. This kind of query can be made directly by users
or by their software agents as part of two-stage proofs
(Figure 2). A status query, which requests all the sys-
tem metadata for a given file—last modify time, file size,
etc.—is a staple of nearly every file access in most file
systems (e.g., the POSIX stat system call).

Tag challenges have the form device says ac-

tion(attribute list,file), where action is either readtags

or deletetags. An attribute list is a set of (princi-

pal,attribute,value) triples representing the tags for which
access is requested. Because tag queries can apply to
multiple values of one attribute or multiple files, we use
the wildcard * to indicate all possible completions. The
listing query example above, which is a search on mul-
tiple files, would be specified with the attribute list [(Al-

ice,type,movie), (Alice,genre,comedy)] and the target file
*. The attribute query example identifies a specific tar-
get file but not a specific attribute value, and could be
written with the attribute list [(Alice,album,*)] and target
file “Luau.jpg.” A status query for the same file would
contain an attribute list like [(AliceLaptop,*,*)].

Credentials for delegating and using authority in the
listing query example can be written as:

Alice signed ∀ f : deleg(Bob,readtags(
[(Alice,type,movie),(Alice,genre,comedy)], f )) (8)

Bob signed readtags(
[(Alice,type,movie),(Alice,genre,comedy)],*) (9)

These credentials can be combined to prove Bob’s au-
thority to make this query.
Implications of tag policy. One subtlety inherent in
tag-based delegation is that delegations are not separa-
ble. If Alice allows Bob to list her Hawaii photos (e.g.,
files with type=photo and album=Hawaii ), that should
not imply that he can list all her photos or non-photo files
related to Hawaii. However, tag delegations should be
additive: a user with authority to list all photos and au-
thority to list all Hawaii files could manually compute the
intersection of the results, so a request for Hawaii photos
should be allowed. Penumbra supports this subtlety.

Another interesting issue is limiting the scope of
queries. Suppose Alice allows Bob to read the
album name only when album=Hawaii, and Bob
wants to know the album name for “photo127.” If
Bob queries the album name regardless of its value
(attributelist[(Alice,album,*)]), no proof can be made and
the request will fail. If Bob limits his request to the at-
tribute list [(Alice,album,Hawaii)], the proof succeeds. If
“photo127” is not in the Hawaii album, Bob cannot learn
which album it is in.

Users may sometimes make broader-than-authorized
queries: Bob may try to list all of Alice’s photos when
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he only has authority for Hawaii photos. Bob’s agent
will then be asked for a proof that cannot be constructed.
A straightforward option is for the query to simply fail.
A better outcome is for Bob to receive an abridged list
containing only Hawaii photos. One way to achieve this
is for Bob’s agent to limit his initial request to something
the agent can prove, based on available credentials—in
this case, narrowing its scope from all photos to Hawaii
photos. We defer implementing this to future work.

4.3 Negative policies

Negative policies, which forbid access rather than al-
low it, are important but often challenging for access-
control systems. Without negative policies, many intu-
itively desirable rules are difficult to express. Examples
taken from user studies include denying access to photos
tagged with weird or strange [28] and sharing all files
other than financial documents [34].

The first policy could naively be formulated as forbid-
ding access to files tagged with weird=true; or as allow-
ing access when the tag weird=true is not present. In our
system, however, policies and tags are created by many
principals, and there is no definitive list of all creden-
tials. In such contexts, the inability to find a policy or
tag credential does not guarantee that no such credential
exists; it could simply be located somewhere else on the
network. In addition, policies of this form could allow
users to make unauthorized accesses by interrupting the
transmission of credentials. Hence, we explore alterna-
tive ways of expressing deny policies.

Our solution has two parts. First, we allow delega-
tion based on tag inequality: for example, to protect fi-
nancial documents, Alice can allow Bob to read any file
with topic6=financial. This allows Bob to read a file if
his agent can find a tag, signed by Alice, placing that file
into a topic other than financial. If no credential is found,
access is still denied, which prevents unauthorized ac-
cess via credential hiding. This approach works best for
tags with non-overlapping values—e.g., restricting chil-
dren to movies not rated R. If, however, a file is tagged
with both topic=financial and topic=vacation, then this
approach would still allow Bob to access the file.

To handle situations with overlapping and less-well-
defined values, e.g., denying access to weird photos, Al-
ice can grant Bob authority to view files with type=photo
and weird=false. In this approach, every non-weird
photo must be given the tag weird=false. This suggests
two potential difficulties. First, we cannot ask the user
to keep track of these negative tags; instead, we assume
the user’s policymaking interface will automatically add
them (e.g., adding weird=false to any photo the user has
not marked with weird=true). As we already assume
the interface tracks tags to help the user maintain con-

sistent labels and avoid typos, this is not an onerous re-
quirement. Second, granting the ability to view files with
weird=false implicitly leaks the potentially private infor-
mation that some photos are tagged weird=true. We as-
sume the policymaking interface can obfuscate such neg-
ative tags (e.g., by using a hash value to obscure weird ),
and maintain a translation to the user’s original tags for
purposes of updating and reviewing policy and tags. We
discuss the performance impact of adding tags related to
the negative policy (e.g., weird=false) in Section 7.

4.4 Expiration and revocation
In Penumbra, as in similar systems, the lifetime of policy
is determined by the lifetimes of the credentials that en-
code that policy. To support dynamic policies and allow
policy changes to propagate quickly, we have two fairly
standard implementation choices.

One option is short credential lifetimes: the user’s
agent can be set to automatically renew each short-lived
policy credential until directed otherwise. Alternatively,
we can require all credentials used in a proof to be online
countersigned, confirming validity [29]. Revocation is
then accomplished by informing the countersigning au-
thority. Both of these options can be expressed in our
logic; we do not discuss them further.

5 Realistic policy examples

We discussed abstractly how policy needs can be trans-
lated into logic-based credentials. We must also ensure
that our infrastructure can represent real user policies.

It is difficult to obtain real policies from users for
new access-control capabilities. In lab settings, espe-
cially without experience to draw on, users struggle to
articulate policies that capture real-life needs across a
range of scenarios. Thus, there are no applicable stan-
dard policy or file-sharing benchmarks. Prior work has
often, instead, relied on researcher experience or intu-
ition [41,46,52,60]. Such an approach, however, has lim-
ited ability to capture the needs of non-expert users [36].

To address this, we develop the first set of access-
control-policy case studies that draw from target users’
needs and preferences. They are based on detailed re-
sults from in-situ and experience-sampling user stud-
ies [28, 34] and were compiled to realistically represent
diverse policy needs. These case studies, which could
also be used to evaluate other systems in this domain, are
an important contribution of this work.

We draw on the HCI concept of persona development.
Personas are archetypes of system users, often created
to guide system design. Knowledge of these personas’
characteristics and behaviors informs tests to ensure an
application is usable for a range of people. Specifying
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An access-control system should support ... Sources Case study
access-control policies on metadata [4, 12] All
policies for potentially overlapping groups of people, with varied granularity

(e.g., family, subsets of friends, strangers, “known threats”) [4, 12, 25, 40, 44, 50] All
policies for potentially overlapping groups of items, with varied granularity

(e.g., health information, “red flag” items) [25, 34, 40, 44] All
photo policies based on photo location., people in photo [4, 12, 28] Jean, Susie
negative policies to restrict personal or embarrassing content [4, 12, 28, 44] Jean, Susie
policy inheritance for new and modified items [4, 50] All
hiding unshared content [35, 44] All
joint ownership of files [34, 35] Heather/Matt
updating policies and metadata [4, 12, 50] —

Table 1: Access control system needs from literature.

individuals with specific needs provides a face to types
of users and focuses design and testing [62].

To make the case studies sufficiently concrete for test-
ing, each includes a set of users and devices, as well as
policy rules for at least one user. Each also includes a
simulated trace of file and metadata actions; some ac-
tions loosely mimic real accesses, and others test spe-
cific properties of the access-control infrastructure. Cre-
ating this trace requires specifying many variables, in-
cluding policy and access patterns, the number of files
of each type, specific tags (access-control or otherwise)
for each file, and users in each user group. We deter-
mine these details based on user-study data, and, where
necessary, on inferences informed by HCI literature and
consumer market research (e.g., [2, 57]). In general, the
access-control policies are well-grounded in user-study
data, while the simulated traces are more speculative.

In line with persona development [62], the case stud-
ies are intended to include a range of policy needs, espe-
cially those most commonly expressed, but not to com-
pletely cover all possible use cases. To verify coverage,
we collated policy needs discussed in the literature. Ta-
ble 1 presents a high-level summary. The majority of
these needs are at least partially represented in all of our
case studies. Unrepresented is only the ability to up-
date policies and metadata over time, which Penumbra
supports but we did not include in our test cases. The
diverse policies represented by the case studies can all
be encoded in Penumbra; this provides evidence that our
logic is expressive enough to meet users’ needs.

Case study 1: Susie. This case (Figure 3), drawn from
a study of tag-based access control for photos [28], cap-
tures a default-share mentality: Susie is happy to share
most photos widely, with the exception of a few contain-
ing either highly personal content or pictures of children
she works with. As a result, this study exercises several
somewhat-complex negative policies. This study focuses
exclusively on Susie’s photos, which she accesses from
several personal devices but which other users access
only via simulated “cloud” storage. No users besides

Susie have write access or the ability to create files and
tags. Because the original study collected detailed infor-
mation on photo tagging and policy preferences, both the
tagging and the policy are highly accurate.

Case study 2: Jean. This case study (Figure 3) is
drawn from the same user study as Susie. Jean has a
default-protect mentality; she only wants to share pho-
tos with people who are involved in them in some way.
This includes allowing people who are tagged in photos
to see those photos, as well as allowing people to see
photos from events they attended, with some exceptions.
Her policies include some explicit access-control tags—
for example, restricting photos tagged goofy —as well
as hybrid tags that reflect content as well as policy. As
with the Susie case study, this one focuses exclusively
on Jean’s photos, which she accesses from personal de-
vices and others access from a simulated “cloud.” Jean’s
tagging scheme and policy preferences are complex; this
case study includes several examples of the types of tags
and policies she discussed, but is not comprehensive.

Case study 3: Heather and Matt. This case study
(Figure 3) is drawn from a broader study of users’ access-
control needs [34]. Heather and Matt are a couple with
a young daughter; most of the family’s digital resources
are created and managed by Heather, but Matt has full
access. Their daughter has access to the subset of con-
tent appropriate for her age. The couple exemplifies a
default-protect mentality, offering only limited, identi-
fied content to friends, other family members, and co-
workers. This case study includes a wider variety of con-
tent, including photos, financial documents, work docu-
ments, and entertainment media. The policy preferences
reflect Heather and Matt’s comments; the assignment of
non-access-control-related tags is less well-grounded, as
they were not explicitly discussed in the interview.

Case study 4: Dana. This case study (Figure 3) is
drawn from the same user study as Heather and Matt.
Dana is a law student who lives with a roommate and
has a strong default-protect mentality. She has confiden-
tial documents related to a law internship that must be
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SUSIE%

Individuals:"Susie,"mom"
Groups:"friends,"acquaintances,"older"friends,"public"
Devices:"laptop,"phone,"tablet,"cloud"
Tags%per%photo:"082"access8control,"185"other"
Policies:%%
Friends"can"see"all"photos."
Mom"can"see"all"photos"except"mom8sensi@ve."
"Acquaintances"can"see"all"photos"except"personal,""
very"personal,"or"red"flag."
"Older"friends"can"see"all"photos"except"red"flag.!
"Public"can"see"all"photos"except"personal,"very"
personal,"red"flag,"or"kids."

HEATHER%AND%MATT%

Individuals:"Heather,"MaJ,"daughter"
Groups:"friends,"rela@ves,"co8workers,"guests"
Devices:"laptop,"two"phones,"DVR,"tablet""
Tags%per%item:"183,"including"mixed8use"access"control"
Policies:%%
Heather"and"MaJ"can"see"all"files"
Co8workers"can"see"all"photos"and"music"
Friends"and"rela@ves"can"see"all"photos,"TV"shows,"and"music"
Guests"can"see"all"TV"shows"and"music"
Daughter"can"see"all"photos;"music,"TV"except"inappropriate"
Heather"can"update"all"files"except"TV"shows"
MaJ"can"update"TV"shows"

JEAN%

Individuals:"Jean,"boyfriend,"sister,"Pat,"supervisor,"Dwight""
Groups:"volunteers,"kids,"acquaintances"
Devices:"phone,"two"cloud"services"
Tags%per%photo:"1810,"including"mixed8use"access"control"
Policies:%%
Anyone""can"see"photos"they"are"in."
Kids"can"only"see"kids"photos."
Dwight"can"see"photos"of"his"wife."
Supervisor"can"see"work"photos."
Volunteers"can"see"volunteering"photos."
"Boyfriend"can"see"boyfriend,"family"reunion,"and"kids"photos."
Acquaintances"can"see"beau@ful"photos."
No"one"can"see"goofy"photos."

DANA%

Individuals:"Dana,"sister,"mom,"boyfriend,"roommate,"boss"
Groups:"colleagues,"friends"
Devices:"laptop,"phone,"cloud"service"
Tags%per%item:"183,"including"mixed8use"access"control"
Policies:%"
Boyfriend"and"sister"can"see"all"photos"
Friends"can"see"favorite"photos"
Boyfriend,"sister,"friends"can"see"all"music"and"TV"shows"
Roommate"can"read"and"write"household"documents"
Boyfriend"and"mom"can"see"health"documents"
Boss"can"read"and"write"all"work"documents"
Colleagues"can"read"and"write"work"documents"per"project"

Figure 3: Details of the four case studies

protected. This case study includes documents related
to work, school, household management, and personal
topics like health, as well as photos, e-books, television
shows, and music. The policy preferences closely reflect
Dana’s comments; the non-access-control tags are drawn
from her rough descriptions of the content she owns.

6 Implementation

This section describes our Penumbra prototype.

6.1 File system implementation

Penumbra is implemented in Java, on top of FUSE [1].
Users interact normally with the Linux file system;
FUSE intercepts system calls related to file operations
and redirects them to Penumbra. Instead of standard file
paths, Penumbra expects semantic queries. For exam-
ple, a command to list G-rated movies can be written ‘ls
“query:Alice.type=movie & Alice.rating=G”.’

Figure 4 illustrates Penumbra’s architecture. System
calls are received from FUSE in the front-end interface,
which also parses the semantic queries. The central con-
troller invokes the reference monitor to create challenges
and verify proofs, user agents to create proofs, and the
file and (attribute) database managers to provide pro-
tected content. The controller uses the communications
module to transfer challenges, proofs, and content be-
tween devices. We also implement a small, short-term
authority cache in the controller. This allows users who

controller(

user(
agents(

ref.(mon.( file(
manager(

db(
manager(

file(
store( DB(

com
m
s(

front5end(interface(
To(FUSE(

To(other(devices(

Figure 4: System architecture. The primary TCB (controller
and reference monitor) is shown in red (darkest). The file and
database managers (medium orange) also require some trust.

have recently proved access to content to access that con-
tent again without submitting another proof. The size
and expiration time of the cache can be adjusted to trade
off proving time with faster response to policy updates.

The implementation is about 15,000 lines of Java and
1800 lines of C. The primary trusted computing base
(TCB) includes the controller (1800 lines) and the ref-
erence monitor (2500 lines)—the controller guards ac-
cess to content, invoking the reference monitor to create
challenges and verify submitted proofs. The file manager
(400 lines) must be trusted to return the correct content
for each file and to provide access to files only through
the controller. The database manager (1600 lines) sim-
ilarly must be trusted to provide access to tags only
through the controller and to return only the requested
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System call Required proof(s)
mknod create file, create metadata
open read file, write file
truncate write file
utime write file
unlink delete file
getattr read tags: (system, *, *)
readdir read tags: attribute list for *
getxattr read tags: (principal, attribute, *)
setxattr create tags
removexattr delete tags: (principal, attribute, *)

Table 2: Proof requirements for file-related system calls

tags. The TCB also includes 145 lines of LF (logical
framework) specification defining our logic.

Mapping system calls to proof goals. Table 2 shows
the proof(s) required for each system call. For example,
calling readdir is equivalent to a listing query—asking
for all the files that have some attribute(s)—so it must
incur the appropriate read-tags challenge.

Using “touch” to create a file triggers four system
calls: getattr (the FUSE equivalent of stat), mknod,
utime, and another getattr. Each getattr is a status query
(see Section 4.2) and requires a proof of authority to read
system tags. The mknod call, which creates the file and
any initial metadata set by the user, requires proofs of
authority to create files and metadata. Calling utime in-
structs the device to update its tags about the file. Up-
dated system metadata is also a side effect of writing to
a file, so we map utime to a write-file permission.

Disconnected operation. When a device is not con-
nected to the Penumbra ensemble, its files are not avail-
able. Currently, policy updates are propagated immedi-
ately to all available devices; if a device is not available,
it misses the new policy. While this is obviously im-
practical, it can be addressed by implementing eventual
consistency (see for example Perspective [47] or Cim-
biosys [43]) on top of the Penumbra architecture.

6.2 Proof generation and verification

Users’ agents construct proofs using a recursive theo-
rem prover loosely based on the one described by Elliott
and Pfenning [19]. The prover starts from the goal (the
challenge statement provided by the verifier) and works
backward, searching through its store of credentials for
one that either proves the goal directly or implies that if
some additional goal(s) can be proven, the original goal
will also be proven. The prover continues recursively
solving these additional goals until either a solution is
reached or a goal is found to be unprovable, in which
case the prover backtracks and attempts to try again with
another credential. When a proof is found, the prover
returns it in a format that can be submitted to the refer-

ence monitor for checking. The reference monitor uses a
standard LF checker implemented in Java.

The policy scenarios represented in our case studies
generally result in a shallow but wide proof search: for
any given proof, there are many irrelevant credentials,
but only a few nested levels of additional goals. In enter-
prise or military contexts with strictly defined hierarchies
of authority, in contrast, there may be a deeper but nar-
rower structure. We implement some basic performance
improvements for the shallow-but-wide environment, in-
cluding limited indexing of credentials and simple fork-
join parallelism, to allow several possible proofs to be
pursued simultaneously. These simple approaches are
sufficient to ensure that most proofs complete quickly;
eliminating the long tail in proving time would require
more sophisticated approaches, which we leave to future
work.

User agents build proofs using the credentials of which
they are aware. Our basic prototype pushes all delega-
tion credentials to each user agent. (Tag credentials are
guarded by the reference monitor and not automatically
shared.) This is not ideal, as pushing unneeded creden-
tials may expose sensitive information and increase prov-
ing time. However, if credentials are not distributed au-
tomatically, agents may need to ask for help from other
users or devices to complete proofs (as in [9]); this could
make data access slower or even impossible if devices
with critical information are unreachable. Developing a
strategy to distribute credentials while optimizing among
these tradeoffs is left for future work.

7 Evaluation

To demonstrate that our design can work with reasonable
efficiency, we evaluated Penumbra using the simulated
traces we developed as part of the case studies from Sec-
tion 5 as well as three microbenchmarks.

7.1 Experimental setup

We measured system call times in Penumbra using the
simulated traces from our case studies. Table 3 lists fea-
tures of the case studies we tested. We added users to
each group, magnifying the small set of users discussed
explicitly in the study interview by a factor of five. The
set of files was selected as a weighted-random distribu-
tion among devices and access-control categories. For
each case study, we ran a parallel control experiment
with access control turned off—all access checks suc-
ceed immediately with no proving. These comparisons
account for the overheads associated with FUSE, Java,
and our database accesses—none of which we aggres-
sively optimized—allowing us to focus on the overhead
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Deleg. System
Case study Users Files creds. Proofs calls
Susie 60 2,349 68 46,646 212,333
Jean 65 2,500 93 30,755 264,924
Heather/Matt 60 3,098 101 39,732 266,501
Dana 60 3,798 89 27,859 74,593

Table 3: Case studies we tested. Proof and system call counts
are averaged over 10 runs.

of access control. We ran each case study 10 times with
and 10 times without access control.

During each automated run, each device in the case
study was mounted on its own four-core (eight-thread)
3.4GHz Intel i7-4770 machine with 8GB of memory,
running Ubuntu 12.04.3 LTS. The machines were con-
nected on the same subnet via a wired Gigabit-Ethernet
switch; 10 pings across each pair of machines had mini-
mum, maximum, and median round-trip times of 0.16,
0.37, and 0.30 ms. Accounts for the people in the
case study were created on each machine; these users
then created the appropriate files and added a weighted-
random selection of tags. Next, users listed and opened
a weighted-random selection of files from those they
were authorized to access. The weights are influenced
by research on how the age of content affects access pat-
terns [57]. Based on the file type, users read and wrote all
or part of each file’s content before closing it and choos-
ing another to access. The specific access pattern is less
important than broadly exercising the desired policy. Fi-
nally, each user attempted to access forbidden content
to validate that the policy was set correctly and measure
timing for failed accesses.

7.2 System call operations
Adding theorem proving to the critical path of file op-
erations inevitably reduces performance. Usability re-
searchers have found that delays of less than 100 ms
are not noticeable to most users, who perceive times less
than that as instantaneous [39]. User-visible operations
consist of several combined system calls, so we target
system call operation times well under the 100 ms limit.

Figure 5 shows the duration distribution for each sys-
tem call, aggregated across all runs of all case studies,
both with and without access control. Most system calls
were well under the 100 ms limit, with medians below 2
ms for getattr, open, and utime and below 5 ms for getx-
attr. Medians for mknod and setxattr were 20 ms and
25 ms. That getattr is fast is particularly important, as
it is called within nearly every user operation. Unfor-
tunately, readdir (shown on its own axis for scale) did
not perform as well, with a median of 66 ms. This arises
from a combination of factors: readdir performs the most
proofs (one local, plus one per remote device); polls each
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Figure 5: System call times with (white, left box of each pair)
and without (shaded, right) access control, with the number of
operations (n) in parentheses. ns vary up to 2% between runs
with and without access control. Other than readdir (shown
separately for scale), median system call times with access con-
trol are 1-25 ms and median overhead is less than 5%.

remote device; and must sometimes retrieve thousands
of attributes from our mostly unoptimized database on
each device. In addition, repeated readdirs are sparse in
our case studies and so receive little benefit from proof
caching. The results also show that access-control over-
head was low across all system calls. For open and utime,
the access control did not affect the median but did add
more variance.

In general, we did little optimization on our simple
prototype implementation; that most of our operations
already fall well within the 100 ms limit is encouraging.
In addition, while this performance is slower than for a
typical local file system, longer delays (especially for re-
mote operations like readdir) may be more acceptable for
a distributed system targeting interactive data sharing.

7.3 Proof generation

Because proof generation is the main bottleneck inherent
to our logic-based approach, it is critical to understand
the factors that affect its performance. Generally sys-
tem calls can incur up to four proofs (local and remote,
for the proofs listed in Table 2). Most, however, incur
fewer—locally opening a file for reading, for example,
incurs one proof (or zero, if permission has already been
cached). The exception is readdir, which can incur one
local proof plus one proof for each device from which
data is requested. However, if authority has already been
cached no proof is required. (For these tests, authority
cache entries expired after 10 minutes.)

Proving depth. Proving time is affected by prov-
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ing depth, or the number of subgoals generated by the
prover along one search path. Upon backtracking, prov-
ing depth decreases, then increases again as new paths
are explored. Examples of steps that increase proving
depth include using a delegation, identifying a member
of a group, and solving the “if” clause of an implica-
tion. Although in corporate or military settings proofs
can sometimes extend deeply through layers of authority,
policies for personal data (as exhibited in the user studies
we considered) usually do not include complex redele-
gation and are therefore generally shallow. In our case
studies, the maximum proving depth (measured as the
greatest depth reached during proof search, not the depth
of the solution) was only 21; 11% of observed proofs
(165,664 of 1,468,222) had depth greater than 10.

To examine the effects of proving depth, we developed
a microbenchmark that tests increasingly long chains of
delegation between users. We tested chains up to 60 lev-
els deep. As shown in Figure 6a, proving time grew lin-
early with depth, but with a shallow slope—at 60 levels,
proving time remained below 6 ms.

Red herrings. We define a red herring as an unsuccess-
ful proving path in which the prover recursively pursues
at least three subgoals before detecting failure and back-
tracking. To examine this, we developed a microbench-
mark varying the number of red herrings; each red her-
ring is exactly four levels deep. As shown in Fig-
ure 6b, proving time scaled approximately quadratically
in this test: each additional red herring forces additional
searches of the increasing credential space. In our case
studies, the largest observed value was 43 red herrings;
proofs with more than 20 red herrings made up only
0.5% of proofs (7,437 of 1,468,222). For up to 20 red
herrings, proving time in the microbenchmark was gen-
erally less than 5 ms; at 40, it remained under 10 ms.

Proving time in the case studies. In the presence of
real policies and metadata, changes in proving depth and
red herrings can interact in complex ways that are not
accounted for by the microbenchmarks. Figure 7 shows
proving time aggregated in two ways. First, we compare
case studies. Heather/Matt has the highest variance be-
cause files are jointly owned by the couple, adding an
extra layer of indirection for many proofs. Susie has a
higher median and variance than Dana or Jean because
of her negative policies, which lead to more red herrings.
Second, we compare proof generation times, aggregated
across case studies, based on whether a proof was made
by the primary user, by device agents as part of remote
operations, or by other users. Most important for Penum-
bra is that proofs for primary users be fast, as users do not
expect delays when accessing their own content; these
proofs had a median time less than 0.52 ms in each case
study. Also important is that device proofs are fast, as

they are an extra layer of overhead on all remote oper-
ations. Device proofs had median times of 1.1-1.7 ms
for each case study. Proofs for other users were slightly
slower, but had medians of 2-9 ms in each case study.

We also measured the time it takes for the prover
to conclude no proof can be made. Across all experi-
ments, 1,375,259 instances of failed proofs had median
and 90th-percentile times of 9 and 42 ms, respectively.

Finally, we consider the long tail of proving times.
Across all 40 case study runs, the 90th-percentile proof
time was 10 ms, the 99th was 45 ms, and the maximum
was 1531 ms. Of 1,449,920 proofs, 3,238 (0.2%) took
longer than 100 ms. These pathological cases may have
several causes: high depth, bad luck in red herrings, and
even Java garbage collection. Reducing the tail of prov-
ing times is an important goal for future work.

Effects of negative policy. Implementing negative pol-
icy for attributes without well-defined values (such as the
allow weird=false example from Section 4.3) requires
adding inverse policy tags to many files. A policy with
negative attributes needs n×m extra attribute credentials,
where n is the number of negative attributes in the policy
and m is the number of affected files.

Users with default-share mentalities who tend to spec-
ify policy in terms of exceptions are most affected. Susie,
our default-share case study, has five such negative at-
tributes: personal, very personal, mom-sensitive, red-
flag, and kids. Two other case studies have one each:
Jean restricts photos tagged goofy, while Heather and
Matt restrict media files tagged inappropriate from their
young daughter. Dana, an unusually strong example of
the default-protect attitude, has none. We also reviewed
detailed policy data from [28] and found that for pho-
tos, the number of negative tags ranged from 0 to 7, with
median 3 and mode 1. For most study participants, nega-
tive tags fall into a few categories: synonyms for private,
synonyms for weird or funny, and references to alcohol.
A few also identified one or two people who prefer not to
have photos of them made public. Two of 18 participants
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(right) primary user, device, and other users.
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Figure 6: Three microbenchmarks showing how proving time scales with proving depth, red herrings, and attributes-per-policy.
Shown with best-fit (a) line and (b,c) quadratic curve.

used a wider range of less general negative tags.
The value of m is determined in part by the complex-

ity of the user’s policy: the set of files to which the neg-
ative attributes must be attached is the set of files with
the positive attributes in the same policy. For example, a
policy on files with type=photo & goofy=false will have
a larger m-value than a policy on files with type=photo &
party=true & goofy=false.

Because attributes are indexed by file in the prover,
the value of n has a much stronger affect on proving time
than the value of m. Our negative-policy microbench-
mark tests the prover’s performance as the number of at-
tributes per policy (and consequently per file) increases.

Figure 6c shows the results. Proving times grew ap-
proximately quadratically but with very low coefficients.
For policies of up to 10 attributes (the range discussed
above), proving time was less than 2.5 ms.

Adding users and devices. Penumbra was designed to
support groups of users who share with each other reg-
ularly – household members, family, and close friends.
Based on user studies, we estimate this is usually under
100 users. Our evaluation (Section 7) examined Penum-
bra’s performance under these and somewhat more chal-
lenging circumstances. Adding more users and devices,
however, raises some potential challenges.

When devices are added, readdir operations that must
visit all devices will require more work; much of this
work can be parallelized, so the latency of a readdir
should grow sub-linearly in the number of devices. With
more users and devices, more files are also expected,
with correspondingly more total attributes. The latency
of a readdir to an individual device is approximately lin-
ear in the number of attributes that are returned. Prov-
ing time should scale sub-linearly with increasing num-
bers of files, as attributes are indexed by file ID; increas-
ing the number of attributes per file should scale lin-
early as the set of attributes for a given file is searched.
Adding users can also be expected to add policy creden-
tials. Users can be added to existing policy groups with
sub-linear overhead, but more complex policy additions

can have varying effects. If a new policy is mostly dis-
joint from old policies, it can quickly be skipped dur-
ing proof search, scaling sub-linearly. However, policies
that heavily overlap may lead to increases in red herrings
and proof depths; interactions between these could cause
proving time to increase quadratically (see Figure 6) or
faster. Addressing this problem could require techniques
such as pre-computing proofs or subproofs [10], as well
as more aggressive indexing and parallelization within
proof search to help rule out red herrings sooner.

In general, users’ agents must maintain knowledge of
available credentials for use in proving. Because they are
cryptographically signed, credentials can be up to about
2 kB in size. Currently, these credentials are stored in
memory, indexed and preprocessed in several ways, to
streamline the proving process. As a result, memory re-
quirements grow linearly, but with a large constant, as
credentials are added. To support an order of magnitude
more credentials would require revisiting the data struc-
tures within the users’ agents and carefully considering
tradeoffs among insertion time, deletion time, credential
matching during proof search, and memory use.

8 Conclusion

Penumbra is a distributed file system with an access-
control infrastructure for distributed personal data that
combines semantic policy specification with logic-based
enforcement. Using case studies grounded in data from
user studies, we demonstrated that Penumbra can ac-
commodate and enforce commonly desired policies, with
reasonable efficiency. Our case studies can also be ap-
plied to other systems in this space.
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