
Guess again (and again and again):
Measuring password strength by simulating password-cracking algorithms

Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Richard Shay, Timothy Vidas
Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Julio López
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Abstract—Text-based passwords remain the dominant au-
thentication method in computer systems, despite significant
advancement in attackers’ capabilities to perform password
cracking. In response to this threat, password composition
policies have grown increasingly complex. However, there is
insufficient research defining metrics to characterize password
strength and using them to evaluate password-composition
policies. In this paper, we analyze 12,000 passwords collected
under seven composition policies via an online study. We
develop an efficient distributed method for calculating how
effectively several heuristic password-guessing algorithms guess
passwords. Leveraging this method, we investigate (a) the
resistance of passwords created under different conditions to
guessing; (b) the performance of guessing algorithms under
different training sets; (c) the relationship between passwords
explicitly created under a given composition policy and other
passwords that happen to meet the same requirements; and
(d) the relationship between guessability, as measured with
password-cracking algorithms, and entropy estimates. Our
findings advance understanding of both password-composition
policies and metrics for quantifying password security.
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I. INTRODUCTION

Text-based passwords are the most commonly used au-
thentication method in computer systems. As shown by
previous research (e.g., [1]–[3]), passwords are often easy
for attackers to compromise. A common threat model is an
attacker who steals a list of hashed passwords, enabling him
to attempt to crack them offline at his leisure. The many
recent examples of data breaches involving large numbers of
hashed passwords (Booz Allen Hamilton, HBGary, Gawker,
Sony Playstation, etc.), coupled with the availability of
botnets that offer large computational resources to attackers,
make such threats very real [4]–[7]. Once these passwords
have been cracked, they can be used to gain access not
only to the original site, but also to other accounts where
users reuse their passwords. Password reuse (exactly and
with minor variations) is a common and growing practice as
users acquire more online accounts [8], [9].

To mitigate the danger of such attacks, system adminis-
trators specify password-composition policies. These poli-
cies force newly created passwords to adhere to various
requirements intended to make them harder to guess. Typical

requirements are that passwords include a number or a
symbol, that they exceed a certain minimum length, and
that they are not words found in a dictionary.

Although it is generally believed that password-
composition policies make passwords harder to guess, and
hence more secure, research has struggled to quantify
the level of resistance to guessing provided by different
password-composition policies or the individual require-
ments they comprise. The two most commonly used methods
for quantifying the effect of password-composition poli-
cies are estimating the entropy of the resulting passwords
(e.g., [10], [11]), and empirically analyzing the resulting
passwords with password-guessing tools (e.g., [12], [13]).
The former, however, is not based on empirical data, and the
latter is difficult to apply because of the dearth of available
password sets created under different password-composition
policies.

In this paper, we take a substantial step forward in un-
derstanding the effects of password-composition policies on
the guessability of passwords. First, we compile a dataset of
12,000 plaintext passwords collected from different partic-
ipants under seven different password-composition policies
using an online study. Second, we develop approaches for
calculating how long it would take for various password-
guessing tools to guess each of the passwords we collected.
This allows us to evaluate the impact on security of each
password-composition policy.

Contributions. We make the following contributions:

1) We implement a distributed technique (guess-number
calculator) to determine if and when a given
password-guessing algorithm, trained with a given
data set, would guess a specific password. This allows
us to evaluate the effectiveness of password-guessing
attacks much more quickly than we could using exist-
ing cracking techniques.

2) We compare, more accurately than was previously
possible, the guessability of passwords created under
different password-composition policies. Because of
the efficiency of our approach (compared to guessing
passwords directly), we can investigate the effective-



ness of multiple password-guessing approaches with
multiple tunings. Our findings show that a password-
composition policy requiring long passwords with no
other restrictions provides (relative to other tested
policies) excellent resistance to guessing.

3) We study the impact of tuning on the effectiveness of
password-guessing algorithms. We also investigate the
significance of test-set selection when evaluating the
strength of different password-composition policies.

4) We investigate the effectiveness of entropy as a mea-
sure of password guessability. For each composition
policy, we compare our guessability calculations to
two independent entropy estimates: one based on the
NIST guidelines mentioned above, and a second that
we calculate empirically from the plaintext passwords
in our dataset. We find that both measures of en-
tropy have only very limited relationships to password
strength as measured by guessability.

Mechanical Turk and controlled password collection. As
with any user study, it is important to reflect on the origin
of our dataset to understand the generalizability of our
findings. We collected 12,000 plaintext passwords using
Amazon’s Mechanical Turk crowdsourcing service (MTurk).
Many researchers have examined the use of MTurk workers
(Turkers) as participants in human-subjects research. About
half of all Turkers are American, with Indian participation
increasing rapidly in the last 2-3 years to become about
one third of Turkers [14]. American Turkers are about two-
thirds women, while Indian Turkers are similarly weighted
toward men [15]. Overall, the Turker population is younger
and more educated than the general population, with 40%
holding at least a bachelor’s degree; both of these trends are
more pronounced among Indian Turkers [14], [15].

Buhrmester et al. find that the Turker population is signif-
icantly more diverse than samples used in typical lab-based
studies that heavily favor college-student participants [16].
This study, and others, found that well-designed MTurk tasks
provide high-quality user-study data [16]–[19].

This analysis of MTurk has important implications in
the context of studying passwords. We expect our findings
will be more generalizable than those from lab studies with
a more constrained participant base. Because we collected
demographic information from our participants, our sample
(and any biases it introduces) can be more accurately char-
acterized than samples based on leaked password lists from
various websites collected under uncertain circumstances.

A related consideration is that while our participants
created real passwords that were needed several days later to
complete the study and obtain a small bonus payment, these
passwords did not protect high-value accounts. Password
research has consistently been limited by the difficulty of
studying passwords used for high-value accounts. Lab stud-
ies have asked participants to create passwords that protect

simulated accounts, $5, a chance to win an iPod in a raffle,
or access to university course materials including homework
and grades [20]–[23]. Other studies have relied on leaked
password lists like the RockYou set [13], [24]. While this
set contains millions of passwords, it also contains non-
password artifacts that are difficult to filter out definitively,
its provenance and completeness are unclear, and it is
hard to say how much value users place on protecting an
account from a social gaming service. Other commonly used
leaked password lists come from sites including MySpace,
silentwhisper.net, and a variety of Finnish websites, with
user valuations that are similarly difficult to assess [2],
[25]. In Section VI, we briefly compare our MTurk users’
behavior to results from a survey of people using higher-
value passwords in practice.

Overall, although our dataset is not ideal, we contend that
our findings do provide significant insight into the effects
of password-composition policies on password guessability.
Because so little is known about this important topic, even
imperfect information constitutes progress.

Roadmap. In Section II we survey related work. We de-
scribe our data collection and analysis methodology in Sec-
tions III and IV. We convey our main results in Section V,
and address their generalizability and ethical considerations
in Section VI. We conclude in Section VII by discussing
the implications of our results for future research and for
defining practical password-composition policies.

II. BACKGROUND AND RELATED WORK

Research on passwords has been active for many years.
We first summarize the different types of data collection and
analysis that have been used. We then discuss evaluations of
the impact of password policies and metrics for quantifying
password strength.

Collection and analysis of password data. Many prior
password studies have used small sample sizes [26]–[29],
obtained through user surveys or lab studies. Kuo et al.
estimated the security of 290 passwords created in an online
survey [21]. We also use an online survey, but we consider
larger and more varied sets of passwords. In addition, we
recruit participants using Mechanical Turk, which produces
more diverse samples than typical lab studies [16].

Other studies analyze large samples of passwords os-
tensibly created by users for actual accounts of varying
importance [1]–[3], [13], [30], [31]. Unlike these studies,
we study the impact of different password policies on pass-
word strength and use passwords collected under controlled
password-policy conditions.

Impact of password policies. Several studies have consid-
ered the impact of password policies on password strength.
In lab studies, Proctor et al. [12] and Vu et al. [32] found
passwords created under stricter composition requirements
were more resistant to automated cracking, but also more



difficult for participants to create and remember. We consider
similar data for a much larger set of users, allowing for more
comprehensive evaluation. Other findings suggest too-strict
policies, which make creating and remembering passwords
too difficult, induce coping strategies that can hurt both
security and productivity [33]–[37]. Further, Florêncio and
Herley found that the strictest policies are often used not by
organizations with high-value assets to protect, but rather by
those that do not have to compete on customer service [38].

An increasingly popular password-strengthening measure
that we also investigate is subjecting new passwords to a
blacklist check. Schechter et al. proposed a password policy
in which passwords chosen by too many users are blacklisted
for subsequent users [39]. This offers many theoretical
advantages over other password-composition schemes.
Measuring password strength. Effective evaluation of
password strength requires a proper metric. One possible
metric is information entropy, defined by Shannon as the
expected value (in bits) of the information contained in a
string [40]. Massey connects entropy with password strength
by demonstrating that entropy provides a lower bound on
the expected number of guesses to find a text [41]. A
2006 National Institute of Standards and Technology (NIST)
publication uses entropy to represent the strength of a
password, but does not calculate entropy empirically [11].
Florêncio and Herley estimated theoretical entropy for the
field data they analyzed [1].

An alternative metric of password strength is “guessabil-
ity,” which characterizes the time needed for an efficient
password-cracking algorithm to discover a password. In one
example, Weir et al. divide a large set of existing passwords
into different categories based on composition, then apply
automated cracking tools to examine how well NIST’s
entropy estimates predict measured guessing difficulty [13].
Castelluccia et al. use Markov models to measure password
strength based on the distribution of already-selected pass-
words [42]. Dell’Amico et al. evaluate password strength
by calculating guessing probabilities yielded by popular
password-cracking heuristics [2]. We use a related approach
but focus on comparing password policies.

Narayanan et al. discuss a password-cracking technique
based on a Markov model, in which password guesses are
made based on contextual frequency of characters [27].
Marechal [43] and Weir [44] both examine this model and
find it more effective for password cracking than the popular
password-cracking program John the Ripper [45]. Weir et al.
present a novel password-cracking technique that uses the
text structure from training data while applying mangling
rules to the text itself [25]. The authors found their technique
to be more effective than John the Ripper. In a separate
study, Zhang et al. found Weir’s algorithm most effective
among the techniques they used [31].

In this work, we apply the Weir algorithm and a varia-
tion of the Markov model to generate blacklists restricting

password creation in some of our study conditions, and to
implement a new measure of password strength, the guess
number, which we apply to user-created passwords collected
under controlled password-composition policies.

III. METHODOLOGY: DATA COLLECTION

In this section, we discuss our methodology for collecting
plaintext passwords, the word lists we used to assemble the
blacklists used in some conditions, and the eight conditions
under which we gathered data. We also summarize partici-
pant demographics.

A. Collection instrument
From August 2010 to January 2011, we advertised a two-

part study on Mechanical Turk, paying between 25 and 55
cents for the first part and between 50 and 70 cents for the
second part. The consent form indicated the study pertained
to visiting secure websites.

Each participant was given a scenario for making a new
password and asked to create a password that met a set
of password-composition requirements; the scenarios and
requirements are detailed in Section III-C. Participants who
entered a password that did not conform to requirements
were shown an error message indicating which requirements
were not met and asked to try again until they succeeded.
After creating a password, participants took a brief survey
about demographics and password creation. Participants
were then asked to recall the password just created; after five
failed attempts, the password was displayed. For the second
part of the study, participants were emailed two days later
and asked to return to the website and recall their passwords.
We measured the incidence of passwords being written down
or otherwise stored (via detecting browser storage and copy-
paste behavior, as well as asking participants; see Section VI
for details). The second part of the study primarily concerns
memorability and usability factors. We report detailed results
on these topics in a prior paper, which uses a large subset
of the dataset we analyze here [46]; we briefly revisit these
findings when we discuss our results in Section V.

B. Word lists for algorithm training
We use six publicly available word lists as training data in

our analysis and to assemble the blacklists used in some of
our experimental conditions. The RockYou password set [24]
includes more than 30 million passwords, and the MySpace
password set [47] contains about 45,000 passwords. (We
discuss ethical considerations related to these datasets in
Section VI.) The inflection list1 contains 250,000 words in
varied grammatical forms such as plurals and past tense.
The simple dictionary contains about 200,000 words and is a
standard English dictionary available on most Unix systems.
We also used two cracking dictionaries from the Openwall
Project2 containing standard and mangled versions of dic-

1http://wordlist.sourceforge.net
2http://www.openwall.com/wordlists/



tionary words and common passwords: the free Openwall
list with about 4 million words and the paid Openwall list
with more than 40 million. While these data sources are not
ideal, they are publicly available; we expect attackers would
use these word lists or others like them for training data. In
Section V-B, we consider the effect of a variety of training
sets drawn from these word lists as well as our collected
password data.

C. Conditions

Our participants were divided into eight conditions com-
prising seven sets of password-composition requirements
and two password-creation scenarios. We used two scenarios
in order to measure the extent to which giving participants
different instructions affects password strength. The survey
scenario was designed to simulate a scenario in which
users create low-value passwords, while the email scenario
was designed to elicit higher-value passwords. All but one
condition used the email scenario.

In the survey scenario, participants were told, “To link
your survey responses, we will use a password that you
create below; therefore it is important that you remember
your password.”

In the email scenario, participants were told, “Imagine
that your main email service provider has been attacked,
and your account became compromised. You need to create
a new password for your email account, since your old
password may be known by the attackers. Because of the
attack, your email service provider is also changing its
password rules. Please follow the instructions below to
create a new password for your email account. We will ask
you to use this password in a few days to log in again, so it
is important that you remember your new password. Please
take the steps you would normally take to remember your
email password and protect this password as you normally
would protect the password for your email account. Please
behave as you would if this were your real password!”

The eight conditions are detailed below.

basic8survey: Participants were given the survey scenario
and the composition policy “Password must have at least 8
characters.” Only this condition uses the survey scenario.

basic8: Participants were given the email scenario and
the composition policy “Password must have at least 8
characters.” Only the scenario differs from basic8survey.

basic16: Participants were given the email scenario and
the composition policy “Password must have at least 16
characters.”

dictionary8: Participants were given the email scenario and
the composition policy “Password must have at least 8 char-
acters. It may not contain a dictionary word.” We removed
non-alphabetic characters and checked the remainder against
a dictionary, ignoring case. This method is used in practice,

including at our institution. We used the free Openwall list
as the dictionary.

comprehensive8: Participants were given the email sce-
nario and the composition policy “Password must have at
least 8 characters including an uppercase and lowercase
letter, a symbol, and a digit. It may not contain a dictionary
word.” We performed the same dictionary check as in dic-
tionary8. This condition reproduced NIST’s comprehensive
password-composition requirements [11].

blacklistEasy: Participants were given the email scenario
and the composition policy “Password must have at least
8 characters. It may not contain a dictionary word.” We
checked the password against the simple Unix dictionary,
ignoring case. Unlike the dictionary8 and comprehensive8
conditions, the password was not stripped of non-alphabetic
characters before the check.

blacklistMedium: Same as the blacklistEasy condition,
except we used the paid Openwall list.

blacklistHard: Same as the blacklistEasy condition, except
we used a five-billion-word dictionary created using the
algorithm outlined by Weir et al. [25]. For this condition, we
trained Weir et al.’s algorithm on the MySpace, RockYou,
and inflection lists. Both training and testing were conducted
case-insensitively, increasing the strength of the blacklist.

These conditions represent a range of NIST entropy
values: 18 bits for basic8 and basic8survey, 30 bits for com-
prehensive8 and basic16, and 24 bits for the four dictionary
and blacklist conditions [11], [46]. We test the increasingly
popular blacklist approach (see Section II) with a wide range
of blacklist sizes.

D. Participant demographics

Of participants who completed part one of our study, 55%
returned within 3 days and completed part two. We detected
no statistically significant differences in the guessability of
passwords between participants who completed just part one
and those who completed both. As a result, to maximize data
for our analyses and use the same number of participants
for each condition, our dataset includes passwords from
the first 1,000 participants in each condition to successfully
complete the first part of the study. To conduct a wider
variety of experiments, we used data from an additional
2,000 participants each in basic8 and comprehensive8.

Among these 12,000 participants, 53% percent reported
being male and 45% female, with a mean reported age of
29 years. This sample is more male and slightly younger
than Mechanical Turk participants in general [14], [16].
About one third of participants reported studying or working
in computer science or a related field. This did not vary
significantly across conditions, except between blacklistEasy
and blacklistHard (38% to 31%; pairwise Holm-corrected
Fisher’s exact test [PHFET], p < 0.03). Participants in the
basic16 condition were slightly but significantly older (mean



30.3 years) than those in blacklistHard, basic8, and com-
prehensive8 (means 28.6, 28.9, and 29.1 years respectively;
PHFET, p < 0.03). We observed no significant difference in
gender between any pair of conditions (PHFET, p > 0.05).

IV. METHODOLOGY: DATA ANALYSIS

This section explains how we analyzed our collected
password data. First, and most importantly, Section IV-A
discusses our approach to measuring how resistant pass-
words are to cracking, i.e., guessing by an adversary. We
present a novel, efficient method that allows a broader
exploration of guessability than would otherwise be possible.
For comparison purposes, we also compute two independent
entropy approximations for each condition in our dataset,
using methods described in Section IV-B.

A. Guess-number calculators

Traditionally, password guess resistance is measured by
running one or more password-cracking tools against a
password set and recording when each password is cracked.
This works well when the exploration is limited to a
relatively small number of guesses (e.g., 1010, or roughly
the number of guesses a modern computer could try in
one day). However, as the computational power of potential
adversaries increases, it becomes important to consider how
many passwords can be cracked with many more guesses.

To this end, we introduce the guess-number calcula-
tor, a novel method for measuring guess resistance more
efficiently. We take advantage of the fact that, for most
deterministic password-guessing algorithms, it is possible to
create a calculator function that maps a password to the
number of guesses required to guess that password. We
call this output value the guess number of the password.
A new guess-number calculator must be implemented for
each cracking algorithm under consideration. For algorithms
(e.g., [13]) that use a training set of known passwords to
establish guessing priority, a new tuning of the calculator is
generated for each new training set to be tested.

Because we collect plaintext passwords, we can use a
guessing algorithm’s calculator function to look up the
associated guess number for each password, without actually
running the algorithm. This works for the common case
of deterministic guessing algorithms (e.g., [13], [27], [43],
[45]).

We use this approach to measure the guessability of a set
of passwords in several ways. We compute the percentage
of passwords that would be cracked by a given algorithm,
which is important because the most efficient cracking tools
use heuristics and do not explore all possible passwords.
We also compute the percentage that would be cracked
with a given number of guesses. We also use calculators to
compare the performance of different cracking algorithms,
and different training-set tunings within each algorithm. By

combining guess-number results across a variety of algo-
rithms and training sets, we can develop a general picture
of the overall strength of a set of passwords.

We implemented two guess-number calculators: one for a
brute-force algorithm loosely based on the Markov model,
and one for the heuristic algorithm proposed by Weir et al.,
which is currently the state-of-the-art approach to password
cracking [13], [31]. We selected these as the most promising
brute-force and heuristic options, respectively, after compar-
ing the passwords we collected to lists of 1, 5, and 10 billion
guesses produced by running a variety of cracking tools and
tunings. Henceforth, we refer to our implementations as the
brute-force Markov (BFM) and Weir algorithms.

1) Training sets: Both algorithms require a training set: a
corpus of known passwords used to generate a list of guesses
and determine in what order they should be tried.

We explore a varied space of training sets constructed
from different combinations of the publicly available word
lists described in Section III-B and subsets of the passwords
we collected. This allows us to assess whether comple-
menting publicly available data with passwords collected
from the system under attack improves the performance
of the cracking algorithms. We further consider training-set
variations specifically tuned to our two most complex policy
conditions, comprehensive8 and basic16.

In each experiment we calculate guess numbers only for
those passwords on which we did not train, using a cross-
validation approach. For a given experiment, we split our
passwords into n partitions, or folds. We generate a training
set from public data plus (n−1) folds of our data, and test it
on the remaining fold. We use each of the n folds as test data
exactly once, requiring n iterations of testing and training.
We combine results from the n folds, yielding guess-number
results for all of our passwords. Because training often
involves significant computational resources, as described
in Section IV-A3, we limit to two or three the number of
iterations in our validation. Based on the similarity of results
we observed between iterations, this seems sufficient. We
describe our training and test sets in detail in Appendix A.

We do not claim these training sets or algorithms repre-
sent the optimal technique for guessing the passwords we
collected; rather, we focus on comparing guess resistance
across password-composition policies. Investigating the per-
formance of guessing algorithms with different tunings also
provides insight into the kind of data set an attacker might
need in order to efficiently guess passwords created under a
specific password-composition policy.

2) BFM calculator: The BFM calculator determines
guess numbers for a brute-force cracking algorithm loosely
based on Markov chains [27], [43]. Our algorithm differs
from previous work by starting with the minimum length
of the password policy and increasing the length of guesses
until all passwords are guessed. Unlike other implementa-
tions, this covers the entire password space, but does not try



guesses in strict probability order.
The BFM algorithm uses the training set to calculate the

frequency of first characters and of digrams within the pass-
word body, and uses these frequencies to deterministically
construct guessing order. For example, assume an alphabet
of {A, B, C} and a three-character-minimum configuration.
If training data shows that A is the most likely starting
character, B is the character most likely to follow A, and C
is the character most likely to follow B, then the first guess
will be ABC. If the next-most-likely character to follow B
is A, the second guess will be ABA, and so forth.

Our guess-number calculator for this algorithm processes
the training data to generate a lookup table that maps each
string to the number of guesses needed to reach it, as follows.
For an alphabet of N characters and passwords of length L,
if the first character tried does not match the first character
of the target password, we know that the algorithm will
try NL−1 incorrect guesses before switching to a different
first character. So, if the first character of the password
to be guessed is the k-th character to be tried, there will
be at least (k − 1)NL−1 incorrect guesses. We can then
iterate the computation: when the first character is correct,
but the second character is incorrect, the algorithm will
try NL−2 incorrect guesses, and so forth. After looking
up the order in which characters are tried, we sum up the
number of incorrect guesses to discover how many iterations
will be needed before hitting a successful guess for a given
password, without having to actually try the guesses.

3) Weir algorithm calculator: We also calculate guess
numbers for Weir et al.’s more complex algorithm. The
Weir algorithm determines guessing order based on the
probabilities of different password structures, or patterns
of character types such as letters, digits, and symbols [25].
Finer-grained guessing order is determined by the probabil-
ities of substrings that fit into the structure. The algorithm
defines a terminal as one instantiation of a structure with
specific substrings, and a probability group as a set of
terminals with the same probability of occurring.

As with the BFM calculator, we process training data to
create a lookup table, then calculate the guess number for
each password. The mechanism for processing training data
is outlined in Algorithm 1. To calculate the guess number for
a password, we determine that password’s probability group.
Using the lookup table created from the training set, we
determine the number of guesses required to reach that prob-
ability group. We then add the number of guesses required to
reach the exact password within that probability group. This
is straightforward because once the Weir algorithm reaches a
given probability group, all terminals in that group are tried
in a deterministic order.

Because creating this lookup table is time-intensive, we
set a cutoff point of 50 trillion guesses past which we do
not calculate the guess number for additional passwords.
This allows most Weir-calculator experiments to run in 24

hours or less in our setup. Using the structures and termi-
nals learned from the training data, we can still determine
whether passwords that are not guessed by this point will
ever be guessed, but not exactly when they will be guessed.

Algorithm 1 Creation of a lookup table that, given a proba-
bility group, returns the number of guesses required for the
Weir algorithm to begin guessing terminals of that group. An
l.c.s. is a longest common substring, the longest substrings in
a probability group made from characters of the same type.
For example, for UUss9UUU, the l.c.s.’s would be UU, ss, 9,
and UUU. (In this example, U represents uppercase letters,
s represents lowercase letters, and 9 represents digits.)
T = New Lookup Table
for all structures s do

for all probability group pg ∈ s do
for all l.c.s. ∈ pg do
ci=Number of terminals of l.c.s.
pi=Probability of l.c.s. in training data

end for
probability =

∏
pi; size =

∏
ci

T .add: pg, probability, size
end for

end for
Sort(T ) by probability
Add to each value in (T ) the sum of prior size values

Distributed computation. Calculating guess numbers for
Weir’s algorithm becomes data intensive as Algorithm 1 gen-
erates a large number of elements to build the lookup table
T . To accelerate the process, we implemented a distributed
version of Algorithm 1 as follows. We split the top-most
loop into coarse-grained units of work that are assigned to
m tasks, each of which processes a subset of the structures
in s. Each task reads a shared dictionary with the training
data and executes the two internal loops of the algorithm.
Each iteration of the loop calculates the probability and size
for one probability group in s. This data is then sorted by
probability. A final, sequential pass over the sorted table
aggregates the probability group sizes to produce the starting
guess number for each probability group.

We implemented our distributed approach using Hadoop
[48], an open-source version of the MapReduce frame-
work [49]. In our implementation, all m tasks receive
equally sized subsets of the input, but perform different
amounts of work depending on the complexity of the struc-
tures in each subset. As a result, task execution times vary
widely. Nevertheless, with this approach we computed guess
numbers for our password sets in days, rather than months,
on a 64-node Hadoop cluster. The resulting lookup tables
store hundreds of billions of elements with their associated
probabilities and occupy up to 1.3 TB of storage each.
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Figure 1. The number of passwords cracked vs. number of guesses, per condition, for experiment E. This experiment uses the Weir calculator and our
most comprehensive training set, which combines our passwords with public data.

B. Entropy

To investigate how well entropy estimates correlate with
guess resistance, we compare our guess-number results for
each condition to two independently calculated entropy
approximations. First, we apply the commonly used NIST
guidelines, which suggest that each password-composition
rule contributes a specific amount of entropy and that the
entropy of the policy is the sum of the entropy contributed
by each rule. Our second approximation is calculated em-
pirically from the plaintext passwords in our dataset, using
a technique we described previously [9]. In this method,
we calculate for each password condition the entropy con-
tributed by the number, content, and type of each character,
using Shannon’s formula [50]. We then sum the individual
entropy contributions to estimate the total entropy of the
passwords in that condition.

V. FINDINGS

We calculated guess numbers under 31 different com-
binations of algorithm and training data. Although we do
not have space to include all the results, we distill from
them four major findings with application both to selecting
password policies and to conducting password research:

• Among conditions we tested, basic16 provides the
greatest security against a powerful attacker, outper-
forming the more complicated comprehensive8 con-
dition. We also detail a number of other findings
about the relative difficulty of cracking for the different
password-composition policies we tested.

• Access to abundant, closely matched training data is
important for successfully cracking passwords from
stronger composition policies. While adding more and
better training data provides little to no benefit against
passwords from weaker conditions, it provides a sig-
nificant boost against stronger ones.

• Passwords created under a specific composition policy
do not have the same guess resistance as passwords
selected from a different group that happen to meet the
rules of that policy; effectively evaluating the strength
of a password policy requires examining data collected
under that policy.

• We observe a limited relationship between Shannon
information entropy (computed and estimated as de-
scribed in Section IV-B) and guessability, especially
when considering attacks of a trillion guesses or more;
however, entropy can provide no more than a very
rough approximation of overall password strength.

We discuss these findings in the rest of this section.
We introduce individual experiments before discussing their
results. For convenience, after introducing an experiment we
may refer to it using a shorthand name that maps to some
information about that experiment, such as P for trained with
public data, E for trained with everything, C8 for special-
ized training for comprehensive8, etc. A complete list of
experiments and abbreviations can be found in Appendix A.

A. Comparing policies for guessability

In this section, we compare the guessability of passwords
created under the eight conditions we tested. We focus on
two experiments that we consider most comprehensive. In
each experiment we evaluate the guessability of all condi-
tions, but against differently trained guessing algorithms.

Experiment P4 is designed to simulate an attacker with
access to a broad variety of publicly available data for
training. It consists of a Weir-algorithm calculator trained on
all the public word lists we use and tested on 1000 passwords
from each condition. Experiment E simulates a powerful
attacker with extraordinary insight into the password sets
under consideration. It consists of a Weir-algorithm calcu-
lator trained with all the public data used in P4 plus 500
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Figure 2. The number of passwords cracked vs. the number of guesses,
per condition, for experiment P4. This experiment uses the Weir calculator
and trains on a variety of publicly available data.

passwords from each of our eight conditions. We test on 500
other passwords from those conditions, with two-fold cross-
validation for a total of 1000 test passwords. The results
from these experiments are shown in Figures 1 and 2.

As these figures suggest, which password-composition
policy is best at resisting guessing attacks depends on
how many guesses an attacker will make. At one million
and one billion guesses in both experiments, significantly
fewer blacklistHard and comprehensive8 passwords were
guessed than in any other condition.3 At one billion guesses
in experiment E, 1.4, 2.9, 9.5, and 40.3% of passwords
were cracked in comprehensive8, blacklistHard, basic16, and
basic8, respectively.

As the number of guesses increases, basic16 begins to
outperform the other conditions. At one trillion guesses, sig-
nificantly fewer basic16 passwords were cracked than com-
prehensive8 passwords, which were cracked significantly
less than any other condition. After exhausting the Weir-
algorithm guessing space in both experiments, basic16 re-
mains significantly hardest to crack. Next best at resisting
cracking were comprehensive8 and blacklistHard, perform-
ing significantly better than any other condition. Condition
comprehensive8 was significantly better than blacklistHard
in experiment P4 but not in experiment E. In experiment
E, 14.6, 26.4, 31.0% of passwords were cracked in basic16,
comprehensive8, and blacklistHard, respectively; in contrast,
63.0% of basic8 passwords were cracked.

Although guessing with the Weir algorithm proved more
effective, we also compared the conditions using BFM. The
findings (shown in Figure 3) are generally consistent with
those discussed above: basic16 performs best.

In prior work examining memorability and usability for
much of this dataset, we found that while in general less
secure policies are more usable, basic16 is more usable
than comprehensive8 by many measures [46]. This suggests
basic16 is an overall better choice than comprehensive8.

3All comparisons in Sections V-A, V-B, and V-C tested using PHFET,
significance level α = 0.05.
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Figure 3. The number of passwords cracked vs. the number of guesses,
using the BFM calculator trained on both our data and public data (B2). The
red vertical line at 50 trillion guesses facilitates comparison with the Weir
experiments. We stopped the Weir calculator at this point (as described in
Section IV-A3), but because the BFM algorithm is so much less efficient,
we ran it for many more guesses in order to collect useful data.

It is important to note that 16-character-minimum policies
are rare in practice. Hence, current guessing algorithms,
including the Weir algorithm, are not built specifically with
them in mind. Although we do not believe this affects our
overall findings, it may merit further investigation.

B. Effects of training-data selection

Like most practical cracking algorithms, the ones we use
rely on training data to determine guessing order. As a result,
it is important to consider how the choice of training data
affects the success of password guessing, and consequently
the guess resistance of a set of passwords. To address this,
we examine the effect of varying the amount and source of
training data on both total cracking success and on cracking
efficiency. Interestingly, we find that the choice of training
data affects different password-policy conditions differently;
abundant, closely matched training data is critical when
cracking passwords from harder-to-guess conditions, but less
so when cracking passwords from easier ones.

For purposes of examining the impact of training data, the
password-policy conditions we consider divide fairly neatly
into two groups. For the rest of this section, we will refer to
the harder-to-guess conditions of comprehensive8, basic16,
and blacklistHard as group 1, and the rest as group 2.

Training with general-purpose data. We first measure,
via three experiments, the effect of increasing the amount
and variety of training data. Experiment P3 was trained on
public data including the MySpace and RockYou password
lists as well as the inflection list and simple dictionary, and
tested on 1000 passwords from each of our eight conditions.
Experiment P4, as detailed in Section V-A, was trained on
everything from P3 plus the paid Openwall list. Experiment
E, also described in V-A, used everything from P4 plus
500 passwords from each of our conditions, using two-fold
cross-validation. Figure 4 shows how these three training
sets affect four example conditions, two from each group.
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Figure 4. Showing how increasing training data by adding the Openwall
list (P4) and then our collected passwords (E) affects cracking, for four
example conditions. Adding training data proves more helpful for the
group 1 conditions (top) than for the others (bottom).

As expected, cracking success increases as training data
is added. For group 1, adding Openwall increases total
cracking by 45% on average, while adding both Openwall
and our data provides an average 96% improvement; these
increases are significant for both experiments in all three
conditions. In group 2, by contrast, the increases are smaller
and only occasionally significant.

At one trillion and one billion guesses, the results are
less straightforward, but increasing training data remains
generally more helpful for cracking group 1 than group 2.
Adding Openwall alone is not particularly helpful for group
1 conditions, with few significant improvements at either
guessing point, but it actually decreases cracking at one
billion guesses significantly for several group 2 conditions.
(We hypothesize this decrease occurs because Openwall is
a dictionary and not a password set, so it adds knowledge
of structures and strings at the cost of accurately assessing
their probabilities.) At these guessing points, adding our
data is considerably more effective for group 1 than adding
Openwall alone, increasing cracking for each of the three
conditions by at least 50% (all significant). By contrast,
adding our data provides little to no improvement against
group 2 conditions at either guessing point.

Taken together, these results demonstrate that increas-
ing the amount and variety of information in the training
data provides significant improvement in cracking harder-
to-guess conditions, while providing little benefit and some-
times decreasing efficiency for easier-to-guess conditions.

Training with specialized data. Having determined that
training with specalized data is extremely valuable for crack-
ing group 1 passwords, we wanted to examine what quantity
of closely related training data is needed to effectively
crack these “hard” conditions. For these tests, we focus on
comprehensive8 as an example harder-to-guess condition,
using the easier-to-guess basic8 condition as a control; we
collected 3000 passwords each for these conditions.

In five Weir-algorithm experiments, C8a through C8e, we
trained on all the public data from P4, as well as between
500 and 2500 comprehensive8 passwords, in 500-password
increments. For each experiment, we tested on the remaining
comprehensive8 passwords. We conducted a similar set of
five experiments, B8a through B8e, in which we trained and
tested with basic8 rather than comprehensive8 passwords.

Our results, illustrated in Figure 5, show that incremen-
tally adding more of our collected data to the training
set improves total cracking slightly for comprehensive8
passwords, but not for basic8. On average, for each 500
comprehensive8 passwords added to the training set, 2%
fewer passwords remain uncracked. This effect is not linear,
however; the benefit of additional training data levels off
sharply between 2000 and 2500 training passwords. The
differences between experiments begin to show significance
around one trillion guesses, and increase as we approach the
total number cracked.

For basic8, by contrast, adding more collected passwords
to the training set has no significant effect on total cracking,
with between 61 and 62% of passwords cracked in each
experiment. No significant effect is observed at one million,
one billion, or one trillion guesses, either.

One way to interpret this result is to consider the diversity
of structures found in our basic8 and comprehensive8 pass-
word sets. The comprehensive8 passwords are considerably
more diverse, with 1598 structures among 3000 passwords,
as compared to only 733 structures for basic8. For com-
prehensive8, the single most common structure maps to 67
passwords, the most common 180 structures account for half
of all passwords, and 1337 passwords have structures that
are unique within the password set. By contrast, the most
common structure in basic8 maps to 293 passwords, the top
13 structures account for half the passwords, and only 565
passwords have unique structures. As a result, small amounts
of training data go considerably farther in cracking basic8
passwords than comprehensive8.
Weighting training data. The publicly available word
lists we used for training are all considerably larger than the
number of passwords we collected. As a result, we needed to
weight our data (i.e., include multiple copies in the training
set) if we wanted it to meaningfully affect the probabilities
used by our guess-number calculators. Different weightings
do not change the number of passwords cracked, as the same
guesses will eventually be made; however, they can affect
the order and, therefore, the efficiency of guessing.
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Figure 5. Top: Incremental increases in specialized training data have
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increases in specialized training data have a small but significant effect on
the comprehensive8 condition (C8a-C8e). Results from P4 (the same public
training data, no specialized training data) are included for comparison.

We tested three weightings, using 500 passwords from
each condition weighted to one-tenth, equal, and ten times
the cumulative size of the public lists. We tested each
weighting on 500 other passwords from each condition.

Overall, we found that weighting had only a minor effect.
There were few significant differences at one million, one
billion, or one trillion guesses, with equal weighting occa-
sionally outperforming the other two in some conditions.
From these results, we concluded that the choice of weight-
ing was not particularly important, but we used an equal
weighting in all other experiments that train with passwords
from our dataset because it provides an occasional benefit.

BFM training. We also investigated the effect of training
data on BFM calculator performance, using four training
sets: one with public data only, one that combined public
data with collected passwords across our conditions, and one
each specialized for basic8 and comprehensive8. Because the
BFM algorithm eventually guesses every password, we were
concerned only with efficiency, not total cracking. Adding
our cross-condition data had essentially no effect at either
smaller or larger numbers of guesses. Specialized training
for basic8 was similarly unhelpful. Specialized training for
comprehensive8 did increase efficiency somewhat, reaching
50% cracked with about 30% fewer guesses.

C. Effects of test-data selection

Researchers typically don’t have access to passwords
created under the password-composition policy they want
to study. To compensate, they start with a larger set of
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Figure 6. Passwords generated under the comprehensive8 condition
proved significantly easier to guess than passwords that conform to the
comprehensive8 requirements but are generated under other composition
policies. In experiment S1 (top), the Weir calculator was trained with only
public data; in experiment S2 (bottom), the Weir calculator was trained on
a combination of our data and public data.

passwords (e.g., the RockYou set), and pare it down by dis-
carding passwords that don’t meet the desired composition
policy (e.g., [1], [13]). A critical question, then, is whether
subsets like these are representative of passwords actually
created under a specific policy. We find that such subsets
are not representative, and may in fact contain passwords
that are more resistant to guessing than passwords created
under the policy in question.

In our experiments, we compared the guessability of 1000
comprehensive8 passwords to the guessability of the 206
passwords that meet the comprehensive8 requirements but
were collected across our other seven conditions (the com-
prehensiveSubset set). We performed this comparison with
two different training sets: public data, with an emphasis on
RockYou passwords that meet comprehensive8 requirements
(experiment S1); and the same data enhanced with our other
2000 collected comprehensive8 passwords (experiment S2).

Both experiments show significant differences between
the guessability of comprehensive8 and comprehensiveSub-
set test sets, as shown in Figure 6. In the two experi-
ments, 40.9% of comprehensive8 passwords were cracked
on average, compared to only 25.8% comprehensiveSubset
passwords. The two test sets diverge as early as one billion
guesses (6.8% to 0.5%).

Ignoring comprehensiveSubset passwords that were cre-
ated under basic16 leaves 171 passwords, all created under
less strict conditions than comprehensive8. Only 25.2% of
these are cracked on average, suggesting that subsets drawn
exclusively from less strict conditions are more difficult to
guess than passwords created under stricter requirements.

To understand this result more deeply, we examined the
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distribution of structures in the two test sets. There are 618
structures in the 1000-password comprehensive8 set, com-
pared to 913 for comprehensiveSubset (normalized), indi-
cating greater diversity in comprehensiveSubset passwords.
This distribution of structures explains why comprehensive8
is significantly easier to guess.

We suspect this difference may be related to comprehen-
siveSubset isolating those users who make the most complex
passwords. Regardless of the reason for this difference,
however, researchers seeking to compare password policies
should be aware that such subsets may not be representative.

D. Guessability and entropy

Historically, Shannon entropy (computed or estimated by
various methods) has provided a convenient single statistic to
summarize password strength. It remains unclear, however,
how well entropy reflects the guess resistance of a password
set. While information entropy does provide a theoretical
lower bound on the guessability of a set of passwords [41],
in practice a system administrator may be more concerned
about how many passwords can be cracked in a given num-
ber of guesses than about the average guessability across the
population. Although there is no mathematical relationship
between entropy and this definition of guess resistance, we
examine whether the two are correlated in practice. To do
this, we consider two independent measures of entropy, as
defined in Section IV-B: an empirically calculated estimate
and a NIST estimate. For both measures, we find that en-
tropy estimates roughly indicate which composition policies
provide more guess resistance than others, but provide no
useful information about the magnitude of these differences.
Empirically estimated entropy. We ranked our password
conditions based on the proportion of passwords cracked in
our most complete experiment (E) at one trillion guesses,
and compared this to the rank of conditions based on
empirically estimated entropy. We found these rankings,
shown in Figure 7, to be significantly correlated (Kendall’s

τ = 0.71, Holm-corrected p = 0.042). However, at one
million or one billion guesses, the correlation in rankings is
no longer significant (Holm-corrected p = 0.275, 0.062). We
found the same pattern, correlation at one trillion guesses
but not one billion or one million, in our largest public-
data experiment (P4). These results indicate entropy might
be useful when considering an adversary who can make a
large number of guesses, but not when considering a smaller
number of guesses.

Further, empirically estimated entropy did not predict the
ranking of dictionary8, even when considering a large num-
ber of guesses. This condition displayed greater resistance to
guessing than basic8, yet its empirically estimated entropy
was lower. This might indicate a flaw in entropy estimation,
a flaw in the guessing algorithm, or an innate shortcoming
of the use of entropy to predict guessability. Since entropy
can only lower-bound the guessability of passwords, it is
possible for the frequency distribution of dictionary8 to have
low entropy but high guess resistance. If this is the case,
Verheul theorized that such a distribution would be optimal
for password policy [51].

NIST entropy. Computing the NIST entropy of our
password conditions produces three equivalence classes, as
shown in Figure 7, because the heuristics are too coarse to
capture all differences between our conditions. First, NIST
entropy does not take into account the size of a dictionary
or details of its implementation, such as case-insensitivity
or removal of non-alphabetical characters before the check.
All five of our dictionary and blacklist conditions meet
the NIST requirement of a dictionary with at least 50,000
words [11]. Our results show that these variations lead to
password policies with very different levels of password
strength, which should be considered in a future heuristic.

Second, the NIST entropy scores for basic16 and compre-
hensive8 are the same, even though basic16 appears to be
much more resistant to powerful guessing attacks. This may



suggest that future heuristics should assign greater value to
length than does the NIST heuristic.

Perhaps surprisingly, the equivalence classes given by
NIST entropy are ordered correctly based on our results
for guessability after 50 trillion guesses. Though it fails to
capture fine-grained differences between similar password
conditions, NIST entropy seems to succeed at its stated
purpose of providing a “rough rule of thumb” [11].

We stress that although both measures of entropy provide
a rough ordering among policies, they do not always cor-
rectly classify guessability (see for example dictionary8),
and they do not effectively measure how much additional
guess resistance one policy provides as compared to another.
These results suggest that a “rough rule of thumb” may be
the limit of entropy’s usefulness as a metric.

VI. DISCUSSION

We next discuss issues regarding ethics, ecological valid-
ity, and the limitations of our methodology.
Ethical considerations. Most of our results rely on
passwords collected via a user study (approved by our insti-
tution’s IRB). However, we also use the RockYou and MyS-
pace password lists. Although these have collectively been
used by a number of scientific works that study passwords
(e.g., [2], [13], [25], [30]), this nevertheless creates an ethical
conundrum: Should our research use passwords acquired
illicitly? Since this data has already been made public and is
easily available, using it in our research does not increase the
harm to the victims. We use these passwords only to train
and test guessing algorithms, and not in relationship with
any usernames or other login information. Furthermore, as
attackers are likely to use these password sets as training
sets or cracking dictionaries, our use of them to evaluate
password strength implies our results are more likely to be
of practical relevance to security administrators.
Ecological validity. As with any user study, our results
must be understood in context. As we describe in Sec-
tion I, our participants are somewhat younger and more
educated than the general population, but more diverse than
typical small-sample password studies. The passwords we
collected did not protect high-value accounts, reflecting a
long-standing limitation of password research.

To further understand this context, we tested two
password-creation scenarios (Section III-C): a survey sce-
nario directly observing user behavior with a short-term,
low-value account, and an email scenario simulating a
longer-term, higher-value account. In both cases, users knew
they might be asked to return and recall the password. Our
users provided stronger passwords (measured by guessability
and entropy) in the email scenario, a result consistent with
users picking better passwords to protect a (hypothetical)
high-value e-mail account than a low-value survey account.

To get real-world measures of password-related behavior,
we surveyed users of Carnegie Mellon University’s email

system, which uses the comprehensive8 policy [9]. Com-
paring these survey results to the reports of our MTurk
study participants, we find that on several measures of
behavior and sentiment, the university responses (n = 280)
are closer to those of our comprehensive8 participants
than those of any other condition. For example, we asked
MTurk participants who returned for the second half of the
study whether they stored the password they had created
(reassuring them they would get paid either way); we
similarly asked university participants whether they store
their login passwords. 59% of the university respondents
report writing down their password, compared with 52%
of comprehensive8 participants and a maximum of 37%
for other MTurk conditions. These results show that study
participants make different decisions based on password-
composition requirements, and that in one condition their
behavior is similar to people using that policy in practice.

We designed our study to minimize the impact of sam-
pling and account-value limitations. All our findings result
from comparisons between conditions. Behavior differences
caused by the ways in which conditions differ (e.g., us-
ing a different technique to choose longer passwords than
shorter ones) would be correctly captured and appropriately
reflected in the results. Thus, we believe it likely that
our findings hold in general, for at least some classes of
passwords and users.
Other limitations. We tested all password sets with a
number of password-guessing tools; the one we focus on
(the Weir algorithm) always performed best. There may exist
algorithms or training sets that would be more effective
at guessing passwords than anything we tested. While this
might affect some of our conclusions, we believe that most
of them are robust, partly because many of our results are
supported by multiple experiments and metrics.

In this work, we focused on automated offline password-
guessing attacks. There are many other real-life threats to
password security, such as phishing and shoulder surfing.
Our analyses do not account for these. The password-
composition policies we tested can induce different behav-
iors, e.g., writing down or forgetting passwords or using
password managers, that affect password security. We report
on some of these behaviors in prior work [46], but space
constraints dictate that a comprehensive investigation is
beyond the scope of this paper.

VII. CONCLUSION

Although the number and complexity of password-
composition requirements imposed by systems administra-
tors have been steadily increasing, the actual value added
by these requirements is poorly understood. This work takes
a substantial step forward in understanding not only these
requirements, but also the process of evaluating them.

We introduced a new, efficient technique for evaluating
password strength, which can be implemented for a variety



of password-guessing algorithms and tuned using a variety
of training sets to gain insight into the comparative guess re-
sistance of different sets of passwords. Using this technique,
we performed a more comprehensive password analysis than
had previously been possible.

We found several notable results about the comparative
strength of different composition policies. Although NIST
considers basic16 and comprehensive8 equivalent, we found
that basic16 is superior against large numbers of guesses.
Combined with a prior result that basic16 is also easier for
users [46], this suggests basic16 is the better policy choice.
We also found that the effectiveness of a dictionary check
depends heavily on the choice of dictionary; in particular,
a large blacklist created using state-of-the-art password-
guessing techniques is much more effective than a standard
dictionary at preventing users from choosing easily guessed
passwords.

Our results also reveal important information about con-
ducting guess-resistance analysis. Effective attacks on pass-
words created under complex or rare-in-practice composition
policies require access to abundant, closely matched training
data. In addition, this type of password set cannot be charac-
terized correctly simply by selecting a subset of conforming
passwords from a larger corpus; such a subset is unlikely to
be representative of passwords created under the policy in
question. Finally, we report that Shannon entropy, though
a convenient single-statistic metric of password strength,
provides only a rough correlation with guess resistance and
is unable to correctly predict quantitative differences in
guessability among password sets.
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APPENDIX

Here we detail the complete training and test data used
in each of our Weir-algorithm experiments. The first column
gives the experiment number. The next three columns list the
three types of training data used to create a Weir-calculator
experiment. The structures column shows the wordlists used
to generate the set of character-type structures that define the
Weir algorithm’s search space. The wordlists in the digits
and symbols column determine the probabilities for filling
combinations of digits and symbols into these structures. The
wordlists in the strings column determine the probabilities
for filling alphabetic strings into structures. In most cases,
we train strings on as much data as possible, while restricting
structure and digit/symbol training to wordlists that contain a
quality sample of multi-character-class passwords. The final
column describes the password set(s) we attempted to guess.

We also list the complete training and test data used
in each of our BFM experiments. The experiment number
and test set columns are the same as in the Weir subtable.
Training for the BFM calculator, however, uses only one
combined wordlist per experiment; these lists are detailed
in the training set column.

Abbreviations for all the training and test sets we use are
defined in the key below the tables.



Weir experiment descriptions
Name Training sets Testing Set

Structures Digits and symbols Strings

Trained from public password data
P1 MS8 MS MS 1000-All
P2 MS8 MS MS, W2, I 1000-All
P3 MS8 MS, RY MS, W2, I, RY 1000-All
P3-C8 MSC MS, RY MS, W2, I, RY 1000-C8
P3-B16 MS16 MS, RY MS, W2, I, RY 1000-B16
P4 MS8, OW8 MS, RY, OW MS, W2, I, RY, OW 1000-All
P4-B16 MS16, OW16 MS, RY, OW MS, W2, I, RY, OW 1000-B16

Trained on half of our dataset, weighted to 1/10th, equal-size, or 10x the cumulative size of the public data
X1/10 MS8, 500-All MS, RY, 500-All MS, W2, I, RY, 500-All 500-All
X1 MS8, 500-All MS, RY, 500-All MS, W2, I, RY, 500-All 500-All
X10 MS8, 500-All MS, RY, 500-All MS, W2, I, RY, 500-All 500-All

Everything
E MS8, OW8, 500-All MS, RY, OW, 500-All MS, W2, I, RY, OW, 500-All 500-All

Testing password subsets that meet comprehensive8 requirements
S0a MSC, OWC MS, OW MS, W2, I, OW 1000-C8, 206-C8S
S0b MSC, OWC, 2000-C8 MS, OW, 2000-C8 MS, W2, I, OW, 2000-C8 1000-C8, 206-C8S
S1 MSC, OWC, RYCD MS, OW, RY MS, W2, I, OW, RY 1000-C8, 206-C8S
S2 MSC, OWC, 2000-C8, MS, OW, 2000-C8, RY MS, W2, I, OW, 2000C8, RY 1000-C8, 206-C8S

RYCD

Split ratio testing on basic8
B8a MS8, OW8, 500-B8 MS, RY, OW, 500-B8 MS, W2, I, RY, OW, 500-B8 2500-B8
B8b MS8, OW8, 1000-B8 MS, RY, OW, 1000-B8 MS, W2, I, RY, OW, 1000-B8 2000-B8
B8c MS8, OW8, 1500-B8 MS, RY, OW, 1500-B8 MS, W2, I, RY, OW, 1500-B8 1500-B8
B8d MS8, OW8, 2000-B8 MS, RY, OW, 2000-B8 MS, W2, I, RY, OW, 2000-B8 1000-B8
B8e MS8, OW8, 2500-B8 MS, RY, OW, 2500-B8 MS, W2, I, RY, OW, 2500-B8 500-B8

Split ratio testing on comprehensive8
C8test1/10 MSC, 500-C8 MS, RY, 500-C8 MS, W2, I, RY, 500-C8 2500-C8
C8test1 MSC, 500-C8 MS, RY, 500-C8 MS, W2, I, RY, 500-C8 2500-C8
C8a MSC, OWC, 500-C8 MS, RY, OW, 500-C8 MS, W2, I, RY, OW, 500-C8 2500-C8
C8b MSC, OWC, 1000-C8 MS, RY, OW, 1000-C8 MS, W2, I, RY, OW, 1000-C8 2000-C8
C8c MSC, OWC, 1500-C8 MS, RY, OW, 1500-C8 MS, W2, I, RY, OW, 1500-C8 1500-C8
C8d MSC, OWC, 2000-C8 MS, RY, OW, 2000-C8 MS, W2, I, RY, OW, 2000-C8 1000-C8
C8e MSC, OWC, 2500-C8 MS, RY, OW, 2500-C8 MS, W2, I, RY, OW, 2500-C8 500-C8

BFM experiment descriptions
Name Training set Test set

B1 RY, MS, I 1000-All
B2 RY, MS, I, 500-All 500-All
B3 RY, MS, I, 2000-B8 1000-B8
B4 RY, MS, I, 2000-C8 1000-C8

Key to password sets
RY RockYou list I inflection list

RYCD RY, filtered w/ all reqs. of C8 W2 simple Unix dictionary
MS MySpace list OW paid Openwall dictionary

MS8 MS, filtered w/ min length of 8 OW8 OW, filtered w/ min length of 8
MS16 MS, filtered w/ min length of 16 OW16 OW, filtered w/ min length of 16
MSC MS, filtered w/ min length of 8 OWC OW, filtered w/ min length 8

and character class reqs. of C8 and character class reqs. of C8

n-All n passwords from each of our conditions n-B8 n basic8 passwords
n-B16 n basic16 passwords n-C8 n comprehensive8 passwords
n-C8S n comprehensiveSubset passwords n-RYCD n RYCD passwords


