
Leaving Timing Channel Fingerprints in Hidden Service
Log Files

Bilal Shebaroy, Fernando Perez-Gonzalezz, and Jedidiah R. Crandally
yUniv. of New Mexico Dept. of Computer Science

zUniversity of Vigo, Spain, Signal Theory and Communications Dept.
zUniv. of New Mexico Dept. of Electrical and Computer Engineering

fbshebaro,crandallg@cs.unm.edu, fperez@gts.tsc.uvigo.es

Abstract

Hidden services are anonymously hosted services that
can be accessed over an anonymity network, such as Tor.
While most hidden services are legitimate, some host il-
legal content. There has been a fair amount of research
on locating hidden services, but an open problem is to
prove that a physical machine, once confiscated, was in
fact the machine that had been hosting the illegal con-
tent. In this paper we assume that the hidden service
logs requests with some timestamp, and give experimen-
tal results for leaving an identifiable fingerprint in this
log file as a timing channel that can be recovered from
the timestamps. In 60 minutes, we are able to leave a
36-bit fingerprint that can be reliably recovered.

The main challenges are the packet delays caused by
the anonymity network that requests are sent over and
the existing traffic in the log from the actual clients ac-
cessing the service. We give data to characterize these
noise sources and then describe an implementation of
timing-channel fingerprinting for an Apache web-server
based hidden service on the Tor network, where the fin-
gerprint is an additive channel that is superencoded with
a Reed-Solomon code for reliable recovery. Finally, we
discuss the inherent tradeoffs and possible approaches to
making the fingerprint more stealthy.

1 Introduction

In this paper, we consider the problem of leaving fin-
gerprints in the log files of hidden services so that if
the machine hosting the service is recovered by law en-
forcement the fingerprint can be recovered as proof that
that particular machine was hosting the service. Our
threat model is the following. Illegal content is be-

ing hosted on a hidden service of an anonymity net-
work such as Tor [5]. Hidden services allow clients
on the anonymity network to access the service while
preserving the anonymity of both the client and server.
The server’s IP address is not revealed to clients, in-
stead clients request the service using a pseudodomain,
e.g., http://gaddbiwdftapglkq.onion/. There are
many ways that the hidden service can be identified, both
technical (e.g., the methods [12, 18, 1, 13, 16] that we
describe in Section 6 where we discuss related works)
and non-technical (e.g., the crime is reported). In this
paper we consider the following problem: given a hid-
den service that is believed to be hosted by a machine
that will be confiscated by law enforcement, how can
we leave a fingerprint on the machine through the hid-
den service that can be recovered and identified on the
physical machine at a later time1?

The threat model we assume in this paper is a passive
observer that does not suspect this form of fingerprinting
but does observe bursts in the log file. A stronger threat
model where the hidden service host suspects that fin-
gerprinting will be employed is left for future work. The
approach we take in this paper is to assume that the un-
derlying service that is being offered as a hidden service
has a log file of client requests that contains a timestamp.
For our implementation, we use an Apache web server.
By making requests to the service from a client on the
anonymity network that will be logged, we can create
an additive timing channel to leave the fingerprint in the
log. The main challenge for this type of channel is the
tradeoff between stealth and the amount of time it takes
to leave the fingerprint. Because IP addresses are hid-
den by anonymity technologies, we assume that during

1In practice, more than one fingerprint will typically be left to en-
sure sufficient evidence for conviction.

1



0

50

100

150

200

250

300

350

400

1 60 11
9

17
8

23
7

29
6

35
5

41
4

47
3

53
2

59
1

65
0

70
9

76
8

82
7

88
6

94
5

10
04

10
63

11
22

11
81

12
40

12
99

13
58

14
17

Minute

Pa
ge

 v
ie

w
s

Figure 1: Web server traffic for a 24-hour period.

the process of recovering the fingerprint no distinction
can be made between the added requests and requests
from real clients. The two main sources of noise that
must be accounted for through redundancy in the finger-
print, then, are the delays of requests that are added by
the anonymity network and bursts in the actual traffic
from real clients for that particular service. We present
results that characterize both of these sources of noise,
and describe an implementation that can leave an easily
recoverable 36-bit fingerprint in an Apache log file over
the Tor network in 60 minutes.

There are three main reasons why, among the many
information channels various log files afford, we focus
on only timing channels using the timestamps:

� For legal reasons, standardized methods are prefer-
able to ad-hoc methods, because precedents can be
established for well-analyzed algorithms for recov-
ering a footprint. This requires that a single method
be used for many services, and, while various ser-
vices log different data that is application-specific,
most contain some sort of timestamp.

� Anonymization technologies sometimes hide IP ad-
dresses, URLs, and other objects in the log file. For
example, when Apache is set up as a Tor hidden
service using privoxy [19], the IP address for all
logged GET requests is 127.0.0.1 due to local
proxying. Timing information, on the other hand,
is typically preserved.

� By using exclusively timing and timestamps for
leaving the fingerprint, the other channels of infor-
mation (e.g., the URL of the document being re-
quested) can be reserved for other information that
the fingerprinter may want to preserve in the log
(e.g., proof of the existence of a file on the server at
a given time).

The rest of this paper is structured as follows. First,
we describe our measurement methodology for charac-
terizing the two main sources of noise in Section 2, fol-
lowed by the results from these measurements in Sec-
tion 3. Then, we describe our implementation of hid-
den service fingerprinting in Section 4. A discussion of
stealth techniques and possibilities for future work is in
Section 5. Related works are discussed in Section 6, fol-
lowed by the conclusion.

2 Measurement methodology
In this section we describe our methodology for two sets
of measurements: delays of HTTP GET requests in the
Tor network, and the traffic characteristics of existing
GET requests for a web service. Because our finger-
printing method uses an additive code where GET re-
quests are added to existing traffic in the log file, Tor
network delays and existing GET requests are the two
main sources of noise that must be accounted for to reli-
ably recover the fingerprint.

2



0

0.02

0.04

0.06

0.08

0.1

0.12

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Delay in seconds

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Figure 2: Histogram for Tor delays in seconds.

2.1 Tor network delays

To measure the delays of (and potentially also dropping
of) GET requests that the fingerprinter as a client will
send to the hidden web service, we set up two Linux
machines. One hosts the Apache web server version
2.2.12 as a Tor hidden service and is configured using
privoxy [19], which acts as a local web proxy interface
to the Tor network. Thus, all GET requests appear to
come from the IP address 127.0.0.1, which is the loop-
back interface. The Apache log file logs GET requests
when they are received, with a granularity of 1 second.
For these experiments, the other machine acts as a web
client, also configured with privoxy, with wget as the
web client which makes requests for the hidden service.
The server and client were located in the same place ge-
ographically, but Tor onion routing sets up a new circuit
between server and client every ten minutes that each use
different entry, exit, and intermediate nodes which are
geographically distributed across the globe. For mea-
surement purposes only, each GET request was tagged
with a unique integer identifier so that we could easily
detect dropping and reordering of packets. For our fin-
gerprinting implementation in Section 4, we assume that
no such identifier can be put in the GET request and use
only the timing channel.

We sent a GET request from the client to the server
every 5 seconds for 55 hours, to ascertain the distribu-
tion of delays introduced by onion routing and the con-

nection loss rate. Because different circuits being built
on a global scale every 10 minutes accounts for most of
the variance in Tor delays, diurnal patterns were not evi-
dent in this data so we consider it as a single distribution
independent of the time of day.

2.2 Existing HTTP GET requests

The other major source of noise in our fingerprint timing
channel is existing traffic in the log file. For our imple-
mentation, we assume that the fingerprinter, when recov-
ering the fingerprint, cannot distinguish their requests
from existing requests (from real clients that are access-
ing the service). The additive channel is thus prone
to errors due to bursts of traffic in the web server, so
we sought to characterize existing traffic for a real web
server. We obtained the log file for a university depart-
ment that runs Apache 2.2.3 and receives approximately
35K to 40K requests per day. The log file we obtained
covers a 36-hour time period.

We calculated the distribution of GET requests per
minute for a normal web service using this log file. We
assert that this distribution shape is representative of
typical web services, but the mean of the distribution
depends on how popular the web service is. Our fin-
gerprinting technique assumes that the fingerprinter has
some estimate of this mean for a given web service that
they want to fingerprint2.

2This estimate can be a conservative estimate, at the cost of finger-

3



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

Requests per minute

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Figure 3: Histogram for existing HTTP GET requests per minute.

Figure 1 shows the number of requests over time for
this department web log file. There is a spike in traf-
fic at about midnight GMT, which corresponds to late
afternoon local time. We designed our fingerprinting al-
gorithm to be robust for any hour of the day, but since
the fingerprinter can choose when to leave the finger-
print they can also choose a time of day when the traffic
for the web service is known to be lower.

3 Measurement results

The purpose of our measurements was to characterize
the two main sources of noise for our finerprinting tech-
nique: delays or connection drops by the Tor network
and existing traffic in the web service log file. The main
tradeoff we consider in this paper is the amount of time it
takes to leave the fingerprint vs. the number of requests
we need to make per minute. The faster fingerprinting
is performed, the more requests per minute will be nec-
essary to reliably recover the fingerprint. Our main con-
sideration in this paper is this tradeoff, we do not make
any claims regarding the stealthiness of our current im-
plemention. Other stealth techniques besides reducing
the rate of requests are discussed in Section 5.

The main questions regarding the speed vs. request
rate tradeoff that we sought to answer are:

printing taking a longer time if the mean is overestimated, due to the
redundant bits necessary for the error correction code.

1. When the fingerprinter sends a request, what is the
loss rate and distribution of delays for when the
server actually sees and logs the request? This is
one of the two major sources of noise in our timing
channel fingerprinting. Note that anonymity net-
works such as Tor deliberately route packets in un-
predictable ways, meaning that the delays will also
be much more unpredictable than normal Internet
traffic.

2. What is the distribution of existing traffic in a web
service log file? In particular, the relationship be-
tween the number of requests we add per minute
and bit error rate when recovering the fingerprint is
determined by this distribution.

3.1 Tor delays

Figure 2 shows the histogram for the delays added to re-
quests by the Tor network from our measurements. The
mean delay is 21.1. Not pictured are the 2975 requests
that were dropped. Based on the measured probability
density, 83.6% of sent requests will be logged by the
server within a minute of being sent, 8.9% will arrive
after more than a minute, and 7.5% will be dropped.
Based on these results, for our additive timing channel
we chose to send all requests for a 60-second period in
a burst at the beginning of the 60-second period. They
will arrive with roughly the same distribution shown in

4



Figure 4: Histogram of existing HTTP GET requests per minute before (thin line) and after adding additional
requests for fingerprinting purposes (bold line).

Figure 2. Because of these delays, the server will not see
the packets in a burst as the client had sent them. This
is important so that conspicuous bursts of traffic do not
appear in the log file.

3.2 Existing HTTP GET requests

Figure 3 shows the distribution of requests per minute
for the university department log file. This distribution
helps us to predict the rate of errors due to existing re-
quests that we can expect for different numbers of re-
quests per minute added. This is illustrated in Figure 4,
which shows this error rate for the parameters we chose
for our implementation as the shaded area under the in-
tersection between the two curves (the bold line is the
same distribution with 35 added to each value). For this
chosen parameter of adding 35 requests in a minute for
our additive channel, the error rate for errors that are due
to existing requests is approximately 11.5% and the op-
timal cutoff to determine whether requests were added
to a given minute is 40. Lowering the parameter of 35
to make the fingerprint less conspicuous will move the
bold curve to the left and increase the error rate, mean-
ing that longer error correction codewords are needed
and therefore more time is required to leave a fingerprint
that can be reliably recovered. Increasing this parameter
moves the bold curve to the right which decreases the
error rate and makes fingerprinting quicker, but creates a

more conspicuous burstiness in the log file.
Figure 3 shows the same shape for the histogram as

previous work on measuring Tor network delays [10],
but the mean of our histogram is different. One pos-
sible reason for this is that the Tor network has grown
considerably in the past several years. Another possible
reason is that in that work changes were made to the Tor
client to choose the first introduction point from the hid-
den service descriptor, whereas our measurements are
end-to-end application-layer measurements from when
the request was made by the client to when the server
logged the incoming GET request. In general, we found
the Tor network delays to have a large amount of vari-
ance between different circuits. In our additive chan-
nel, we can account for this variance, but in future work
to improve the stealthiness of fingerprinting a more de-
tailed and up-to-date model of Tor network delays will
be needed.

4 Implementation

Based on the results in Section 3, we developed a pro-
totype implementation of timing channel log file finger-
printing that is based on an additive channel that is su-
perencoded with a Reed-Solomon code [21]. In this sec-
tion we describe the implementation and present results
to demonstrate that it is robust to Tor delays and exist-

5



Cut-off

Bit flip

Figure 5: How a 60-bit codeword appears in the log file.

ing requests in terms of the ability to reliably recover the
fingerprint.

Our implementation starts with a random 36-bit bit-
string that will serve as the fingerprint. In this way,
the probability of recovering a matching fingerprint by
chance is approximately 1

236
� 1:46�10

�11. Before be-
ing sent over the Tor network to appear in the server log
file, this fingerprint is superencoded as a Reed-Solomon
code word, which is 60 bits in length. Reed-Solomon
coding is an error correction code that uses redundancy
of the original word in a codeword that is based on an
oversampled polynomial to recover from errors automat-
ically (in contrast to an error detection code, in which
errors could be detected, but not corrected).

We then transmit this 60-bit codeword, at a rate of 1
bit per minute, to the server’s log file as follows. To
transmit a 0 in a given minute, we do nothing. To trans-
mit a 1 we make 35 requests for the hidden service over
the Tor network at the beginning of the minute. These
requests will arrive at the server and be logged with the
distribution shown in Figure 2. The overall distribution
of requests that will be seen in the log is not conspicu-
ous, as is shown in Figure 8 where lights bars show the
histogram before fingerprinting and dark bars show the
histogram after fingerprinting.

To recover the fingerprint once the log file is obtained,
we scan the log file near the time when the fingerprint
was transmitted and attempt to recover the code word as
follows. Within a minute, we read a 0 if less than 40

requests appear in the log file within that minute, and a
1 for 40 or more requests. We then apply Reed-Solomon
error correction and compare the word that is recovered
from the measured codeword to the fingerprint. When a
match is found, then we are highly confident that the log
file provided is the log file for the hidden webservice that
was fingerprinted. Bit errors can occur in two different
ways, which are discussed in Section 4.1.

We tested our fingerprinting implementation for dif-
ferent hours of the day for the department log file as
follows. First, we do the fingerprinting for a Tor hid-
den service and record the requests as they are received
by our hidden service. Then we superimpose this onto
an hour of the log file. This is equivalent to doing the
fingerprint live, since we are using an additive channel,
but allows for repeatability of our results and does not
require access to a hidden service that receives a lot of
traffic. We tested the fingerprinting 24 times (once for
each hour of the day) and were able to recover the fin-
gerprint 22 times. This includes three tests that were
performed for the three highest-traffic hours of Figure 1.
We did this to test the robustness of the fingerprinting
implementation in the limit. The fingerprints recovered
in the two cases that failed had a low Hamming distance
with the original fingerprint, but our results suggest that
leaving multiple fingerprints at different times of day is
important in practice.

Note that Reed-Solomon codes perform well for cor-
related bit errors, which is why they are used in scenarios

6



14181

::::

::::

025250

168331

166281

03871

025250

0970

183501

Output 
Codeword

Page View / Min 
after 

Fingerprinting
Page View / MinInput Codeword

Figure 6: Details on a bit error from the example.

such as compact disc encoding where bit errors can be
due to scratches. Thus, the small correlations between
bit errors in our scheme (such as delayed requests show-
ing up in the next minute) are easily handled by the su-
perencoding.

4.1 Example

Here we give an example of one iteration of fingerprint-
ing. The process is shown in Figure 7. The process can
be repeated to leave multiple fingerprints at different
hours of the day for added robustness, but here we
describe only one iteration, which takes 60 minutes.
The first step is to choose a random 36-bit word as the
fingerprint. In our example we choose “1101 1000

1111 0011 1100 0101 1010 0010 1101”. The
second step is to apply Reed-Solomon encoding to
produce a 60-bit codeword: “1001 1101 0110 0101

1001 1010 1101 1000 1111 0011 1100 0101

1010 0010 1101”. For each minute in the 60-minute
process, if the corresponding sequential bit in the
codeword is a 0, we do nothing, if it is a 1 we make 35
requests from a Tor client to the hidden service at the
beginning of the minute.

After the fingerprinting process is complete, we as-
sume that the machine that hosted the hidden service
has been physically recovered (e.g., by law enforcement)
and then the second half of the process is to recover the
36-bit fingerprint. To account for inaccuracies in the hid-
den server’s system time, the process of attempting to
recover the fingerprint can be repeated for some num-
ber of seconds into the past or future. For a given start

time alignment, the 60-bit codeword that is received in
the log file is generated as follows. For each sequen-
tial minute, we record a 0 if less than 40 total requests
appear in the log during that minute, and a 1 if 40 or
more appear. If there are 12 bit errors or less then ap-
plying Reed-Solomon decoding to this 60-bit codeword
will produce the original 36-bit fingerprint.

There are two types of bit flips. One is that the number
of requests from actual clients during that minute is very
low and thus the number of requests we add to the log
file for a 1 (which can be less than 35 if Tor drops some
connections or delays them for more than 60 seconds) is
not sufficient to put the total above the threshold of 40.
This will flip a bit in the codeword from 1 to 0. The more
common type of bit flip is from 0 to 1. This happens
when either the number of existing requests from actual
clients already exceeds the threshold, or it is near the
threshold and a few delayed requests from a previous bit
in the codeword show up during that minute instead of
the earlier minute they were intended for.

Figure 5 shows how the codeword “1001 1101

0110 0101 1001 1010 1101 1000 1111 0011

1100 0101 1010 0010 1101” is added to a log file.
The lighter bars are the existing requests from actual
clients and the darker bars are the requests added by
fingerprinting. This figure has 8 bit flips, one of which
is highlighted and shown in more detail in Figure 6.
Note that there are 7 bit flips from 0 to 1 and only
1 from 1 to 0. The received codeword in the log file
will be: “1001 1111 0110 0001 1001 1010 1111

1101 1111 1011 1100 0101 1110 0010 1111”.

7



60 min

process
Analyze log fileFingerprint log file

Encode by RS Decode by RS

Choose a new 
36 bit word

60 bit codeword 60 bit codeword

Recover original 

36 bit word

Start

Figure 7: Our fingerprinting algorithm cycle.

By applying Reed-Solomon decoding, we then recover
the original fingerprint of “1101 1000 1111 0011

1100 0101 1010 0010 1101”.

5 Discussion and future work

In this paper we have explored the tradeoff in terms of
how long it takes to leave a fingerprint in a hidden ser-
vice log file vs. how much traffic must be added per
minute. The threat model we assumed was a passive
observer that does not suspect this form of fingerprint-
ing but does observe bursts in the log file. For future
work, we plan to explore the tradeoffs in a stronger threat
model where the hidden web service host suspects that
fingerprinting will be employed so that an extra degree
of stealth in leaving the fingerprint is required.

In our work under progress we are modelling the
probability distribution of the network delays, which is
required for a closed-form expression of the uncoded bit
error probability. This expression will in turn constitute
the basis for predicting the probability of correct detec-
tion when superencoding is used. Furthermore, a time
domain analysis of the gathered data will provide useful
elements for the design of channel coding mechanisms,
as they will depend among other factors on the coher-
ence time. For instance, preliminary results show that
the autocorrelation of the observed data can be reason-
ably modelled by an autoregressive process. The fact
that the delays corresponding to consecutive requests are
strongly correlated suggests that a differential encoding

scheme would be beneficial.
A good model for both the distribution and the sec-

ond order statistics of the request delay is also crucial for
an information-theoretic approach to the problem, which
will reveal what the fundamental limits of this delay-
based communication scheme are. In addition, this ap-
proach will give insights for the design of better channel
codes.

An underlying assumption of our current fingerprint-
ing technique is that the fingerprinter has a good esti-
mate of the mean of traffic requests per minute for the
hidden service. This estimate can be an overestimate,
which will cause the fingerprinter to use more redundant
bits than necessary for superencoding and take longer
than necessary to do the fingerprint. Overestimation
also makes the fingerprinting more conspicuous. For fu-
ture work, we plan to explore methods for estimating
the traffic rate of a hidden service indirectly and accu-
rately. For example, infrequent observations of the last
access/modification time have been shown to be useful
in estimating the access/modification rate [11].

6 Related work

The work most related to ours is efforts to locate
hidden servers. Overlier and Syverson [18] describe
several different methods for locating hidden services
in Tor and provide recommendations to prevent them,
which were adopted by the Tor project. Murdoch and
Danezis [13] consider the problem of traffic analysis,

8



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

Requests per minute

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Figure 8: Histograms with and without fingerprinting.

and Murdoch [16] considers Internet Exchange-level
adversaries. Bauer et al. [1] describe attacks on Tor
anonymity based on nodes misrepresenting the amount
of resources they have. Murdoch [12] demonstrates that
it is possible to determine whether a given IP address is
hosting a particular hidden service or not based on clock
skew. The basic idea is to send some amount of traf-
fic to the hidden service, and query for TCP timestamps
from the IP address suspected of hosting the service. As
the server becomes busier, it will heat up causing a tim-
ing skew in the quartz crystal that maintains the system
time, which will be seen in the timestamps. Murdoch
also shows some results suggesting that geolocation is
possible based on diurnal patterns associated with heat.
In contrast to these works, our work assumes that the
hidden server has been located and we describe a way
to prove that a physical machine (once confiscated) was
the one that had been hosting the service.

Our work falls in the general domain of covert timing
channels [22, 8, 9, 7, 6]. There has been a considerable
amount of work on creating and detecting covert timing
channels based on TCP/IP [2, 17, 14]. To the best of
our knowledge, ours is the first work to consider timing
channels as a method for leaving fingerprints in hidden
service log files.

The relationship of our measurement results for Tor
delays to the results of Loesing et al. [10] was described
in Section 3. Other works have considered the timing
characteristics of Tor and other anonymity networks in
the context of timing attacks on anonymity [3, 4, 20,

15].

7 Conclusion
We demonsrated a technique for leaving timing channel
fingerprints in hidden service log files. The technique
presented in this paper is robust, even for the random de-
lays introduced by the Tor network and realistic, bursty
traffic from existing clients for the web service. We were
able to reliably recover a 36-bit fingerprint with a 60-
minute fingerprinting process.

References
[1] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and

D. Sicker. Low-resource routing attacks against tor.
In WPES ’07: Proceedings of the 2007 ACM work-
shop on Privacy in electronic society, pages 11–20,
New York, NY, USA, 2007. ACM.

[2] S. Cabuk, C. E. Brodley, and C. Shields. Ip covert
timing channels: design and detection. In CCS ’04:
Proceedings of the 11th ACM conference on Com-
puter and communications security, pages 178–
187, New York, NY, USA, 2004. ACM.

[3] G. Danezis. The traffic analysis of continuous-time
mixes. In Proceedings of Privacy Enhancing Tech-
nologies workshop (PET 2004), volume 3424 of
LNCS, pages 35–50, May 2004.

9



[4] C. Diaz, L. Sassaman, and E. Dewitte. Comparison
between two practical mix designs. In Proceed-
ings of ESORICS 2004, LNCS, France, September
2004.

[5] R. Dingledine, N. Mathewson, and P. Syverson.
Tor: The second-generation onion router, 2004.

[6] S. Gianvecchio and H. Wang. Detecting covert
timing channels: an entropy-based approach. In
CCS ’07: Proceedings of the 14th ACM conference
on Computer and communications security, pages
307–316, New York, NY, USA, 2007. ACM.

[7] M. H. Kang and I. S. Moskowitz. A pump for
rapid, reliable, secure communication. In CCS ’93:
Proceedings of the 1st ACM conference on Com-
puter and Communications Security, pages 119–
129, New York, NY, USA, 1993. ACM Press.

[8] B. W. Lampson. A note on the confinement prob-
lem. Communications of the ACM, 16(10):613–
615, 1973.

[9] S. B. Lipner. A comment on the confinement
problem. In SOSP ’75: Proceedings of the fifth
ACM Symposium on Operating Systems Principles,
pages 192–196, New York, NY, USA, 1975. ACM
Press.

[10] K. Loesing, W. Sandmann, C. Wilms, and
G. Wirtz. Performance measurements and statistics
of tor hidden services. In SAINT ’08: Proceedings
of the 2008 International Symposium on Applica-
tions and the Internet, pages 1–7, Washington, DC,
USA, 2008. IEEE Computer Society.

[11] N. Matloff. Estimation of internet file-
access/modification rates from indirect data.
ACM Trans. Model. Comput. Simul., 15(3):233–
253, 2005.

[12] S. J. Murdoch. Hot or not: revealing hidden ser-
vices by their clock skew. In CCS ’06: Proceed-
ings of the 13th ACM conference on Computer and
communications security, pages 27–36, New York,
NY, USA, 2006. ACM.

[13] S. J. Murdoch and G. Danezis. Low-cost traffic
analysis of tor. In SP ’05: Proceedings of the
2005 IEEE Symposium on Security and Privacy,
pages 183–195, Washington, DC, USA, 2005.
IEEE Computer Society.

[14] S. J. Murdoch and S. Lewis. Embedding covert
channels into tcp/ip. In Information Hiding: 7th
International Workshop, volume 3727 of LNCS,
pages 247–261. Springer, 2005.

[15] S. J. Murdoch and R. N. M. Watson. Metrics for se-
curity and performance in low-latency anonymity
networks. In N. Borisov and I. Goldberg, edi-
tors, Proceedings of the Eighth International Sym-
posium on Privacy Enhancing Technologies (PETS
2008), pages 115–132, Leuven, Belgium, July
2008. Springer.

[16] S. J. Murdoch and P. Zieliński. Sampled traffic
analysis by Internet-exchange-level adversaries. In
N. Borosov and P. Golle, editors, Proceedings of
the Seventh Workshop on Privacy Enhancing Tech-
nologies (PET 2007), Ottawa, Canada, June 2007.
Springer.

[17] J. G. N, R. Greenstadt, P. Litwack, and R. Tib-
betts. Covert messaging through tcp timestamps.
In in Workshop on Privacy Enhancing Technolo-
gies, pages 194–208, 2002.

[18] L. Overlier and P. Syverson. Locating hidden
servers. In SP ’06: Proceedings of the 2006 IEEE
Symposium on Security and Privacy, pages 100–
114, Washington, DC, USA, 2006. IEEE Computer
Society.

[19] privoxy. http://www.privoxy.org/.

[20] V. Shmatikov and M.-H. Wang. Timing analy-
sis in low-latency mix networks: Attacks and de-
fenses. In Proceedings of ESORICS 2006, Septem-
ber 2006.

[21] S. B. Wicker. Reed-Solomon Codes and Their
Applications. IEEE Press, Piscataway, NJ, USA,
1994.

[22] J. C. Wray. An analysis of covert timing chan-
nels. In IEEE Symposium on Security and Privacy,
pages 2–7, 1991.

10


