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Abstract—Tor is a well-known low-latency anonymous com-
munication system that is able to bypass Internet censorship.
However, publicly announced Tor routers are being blocked by
various parties. To counter this blocking, Tor introduced non-
public bridges as the first-hop relay into its core network. In this
paper, we analyzed the effectiveness of two categories of bridge-
discovery approaches: (i) enumerating bridges from bridge https
and email servers, and (ii) inferring bridges by malicious Tor
middle routers. Large-scale experiments were conducted and
validated our theoretic analysis. We discovered 2365 Tor bridges
through the two enumeration approaches and 2369 bridges by
only one Tor middle router in 14 days. The malicious middle
router based bridge discovery approach is simple, incurs little
overhead, can discover bridges distributed by any approach, and
is efficient and effective. We also discussed countermeasures to
the malicious bridge discovery.
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I. INTRODUCTION

Tor is a popular low-latency anonymous communication
system and supports TCP applications over the Internet [1].
It is often adopted for resisting various censorship. Because
Tor uses source routing for communication privacy, and the
information of all Tor routers is available to clients and
publicly listed on the Internet [2]. Blocking Tor was as simple
as blocking connections to those known Tor routers.

To resist the blocking of public Tor routers, Tor introduced
bridges. A bridge can act as the first hop relaying user traffic
into the core Tor network. The bridge information is not listed
on the Internet. There are a few bridge pools and some are
stored within bridge https and email servers. A user can access
the bridge https server or send a google/yahoo email to the
bridge email server to retrieve three bridges at one time.
Bridges are also distributed through various friend-to-friend
networks including social networks.

However, our work and related work [3], [4] have shown
two categories of bridge-discovery approaches: (i) enumera-
tion of bridges via bulk email and Tor’s https server, and (ii)
use of malicious middle routers to discover bridges, which
may pick up a malicious middle router as the second hop of
a Tor routing path. Tor almost completely fails in China and
we believe the Great Firewall of China may have blocked Tor
bridges using these approaches as well as blocking all public
Tor routers. Censorship wins the battle against privacy.

To understand why Tor fails in China, in this paper, we
provide the first formal analysis and large scale empirical

evaluation of the effectiveness of Tor bridges resisting censor-
ship. We conducted a comprehensive theoretical analysis of
two bridge-discovery strategies and our experimental results
demonstrate the effectiveness of large-scale bridge discovery
in real-world environments. Although there is related work on
discovering bridges [3], [4], the discussion is very limited and
there are no formal analysis and large scale experiments as
we conducted in this paper. The contributions of this paper
are summarized as follows.

We formalize bridge discovery via email and https enu-
meration as a weighted coupon collector problem and derive
the expected number of bridges in terms of the number of
enumerations (samplings). Our real-world experiments support
the theory well. We use a master machine to control over
500 PlanetLab nodes [5], via which emails are sent from
2000 yahoo email accounts in a round robin fashion. We
also use the master machine to control over 1000 Tor and
PlanetLab nodes, which send https requests to retrieve bridges
from the bridge https server. Our email and https enumeration
produced a list of 2365 Tor bridges over one month. However,
the two enumeration approaches have considerable overhead.
Yahoo and Google use CAPTCHA to prevent continuous
generation of bulk email accounts. Tor takes countermeasures
against malicious enumeration. It controls how many fresh
bridges can be obtained by an IP or a subnet within a time
period. Therefore, the two enumeration approaches are not
very efficient and effective.

We formally analyze the capability of bridge discovery
through malicious middle Tor routers. If a Tor router is not
configured as an exit and does not meet the criterion being
an entry guard, it can only be a middle router. Therefore, if
a bridge’s next hop is a malicious middle router, the middle
router will find that the bridge IP is not within the public Tor
router list and thus can identify the bridge. We are able to
prove that with three malicious middle routers of 10MB/s, if
30 circuits are established through a bridge, the probability of
discovering the bridge approaches 100%. In other words, if 30
clients use the same bridge to create a circuit, that bridge will
be exposed with the probability of almost 100%. Our real-
world experimental data show that the 21th circuit created
by a bridge client traverses one of 500 PlanetLab nodes of
50KB/s. We have proved in Theorem 3 that the effectiveness
of bridge discovery is determined by the total bandwidth
contributed by those malicious middle routers. Using one
malicious middle router of 10MB/s, we discovered 2369 Tor
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bridges over two weeks. The malicious middle router based
approach can discover bridges distributed by any approach
and is efficient and effective.

The rest of the paper is organized as follows. In Section II,
we introduce the components of Tor and bridges along with
the basic operation of Tor for both normal clients and bridge
clients. In Section III, we present our approaches for discov-
ering Tor bridges via email, https, and Tor middle routers.
In Section IV, we analyze the effectiveness of those bridge
discovery approaches. In Section V, we show experimental
results on Tor and validate our theory. We present a set of
guidelines to counteract those discovery approaches in Section
VI. We review related work in Section VII and conclude this
paper in Section VIII.

II. BACKGROUND

In this section, we first review the components of Tor and
bridges and then present the basic operation of Tor for both
normal clients and bridge clients. Please note: Tor algorithms
presented in this paper were discovered from reading the Tor
code and include details that Tor documents miss. These de-
tails make our analysis solid and match the real Tor behavior.

A. Basic Components of Tor and Bridge

Figure 1 illustrates basic components of Tor with bridges.
The client runs a local software called onion proxy (OP) to
anonymize the client data into Tor. We differentiate two types
of clients: normal clients use the Tor core network directly, and
bridge clients use bridges to access the Tor core network. The
server runs applications such as web service and anonymously
communicates with the client over Tor. Onion routers (OR)
(or Tor routers) relay the application data between clients and
servers. Directory servers hold the onion router information
such as IP address. All users have a copy of onion router list
locally. This is why it is easy to block the Tor core network.

Functions of onion proxy, onion router, directory servers,
and bridge are integrated into the Tor software package. A
user may edit a configuration file to configure a computer to
have different combinations of those functions.

Bridges are special Tor routers. Bridges publish their in-
formation to a bridge directory server. This server holds
the information of all bridges. A client can retrieve bridge
information by accessing the bridge https/email server or
privately get it from friend-to-friend networks.
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Algorithm 1 Tor Path Selection Algorithm at Client
1: Create a new circuit and initialize global circuit ID, etc.
2: Add the circuit into the global circuit list
3: Decide a suitable length (3 by default) for the circuit
4: if Option ‘ExitNodes’ is defined in the configuration file

then
5: Use one of ‘ExitNodes’ as the exit router
6: else
7: Exclude nodes by Algorithm 2
8: Select an exit node by Algorithm 3
9: end if

10: Exclude the chosen exit node, and select an entry node by
Algorithm 4

11: Exclude the chosen exit node and entry node, and select
a middle node by Algorithm 4

Algorithm 2 Node Exclusion for Selecting Exit Nodes
1: Exclude clients that are possible exit nodes (in case that

client is an OR node)
2: Exclude nodes not running or remarked as bad exits
3: Exclude nodes not meeting capacity or uptime require-

ments
4: Exclude nodes remarked as invalid
5: Exclude exit nodes whose policies reject all traffic

B. Normal Clients Using Tor

In order to anonymously communicate with a web server, a
normal client uses source routing and chooses a series of onion
routers from the locally cached directory [6]. We denote the
series of onion routers as a path through Tor [7], along which
a circuit will be built incrementally. The number of routers
is called path length. Algorithm 1 presents the path selection
algorithm. Tor does not choose the same router twice for the
same path [7]. From Algorithm 1, we know that to create a
circuit, Tor selects an exit node, an entry node and then a
middle node in order. There are four types of Tor routers:
pure entry router (entry guard), pure exit router, both entry
and exit router (denoted as EE router) and neither entry nor
exit router (denoted as N-EE router). A router is marked as
an entry guard by the authoritative directory server only if its
mean uptime is above the median of all “familiar” routers and
its bandwidth is greater than max(median, 250KB/s) [6].
A router is called an exit only if it allows traffic to go out to
two public ports among 80, 443, and 6667, and at least one
C class IP address space. An EE router is one marked as both
entry guard and exit router by directory servers, and the N-EE
router is marked as neither of them.

To ensure circuit performance, Tor adopts weighted band-
width routing algorithms. We use default path length 3 in
Figure 1 to illustrate how a path is selected for normal clients.
First, the client chooses an appropriate exit onion router OR3
from the set of exit routers, including the pure exit routers and
EE routers. Algorithm 2 presents the node exclusion algorithm
for selecting exit nodes. The bandwidth of exit routers is
weighted as follows. Assume that the total bandwidth is B,
the total exit bandwidth is BE , and the total entry bandwidth
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Algorithm 3 Bandwidth Weighted Node Selection Algorithm
Require:

(a) B, the total bandwidth of the nodes in the node list (b)
BE , the total bandwidth of the exit nodes in the node list
(c) BG, the total bandwidth of the guard nodes in the node
list (d) q, the number of the nodes in the list (e) b[i], the
bandwidth of the ith node in the list (f) WE , the weight
of the exit nodes (g) WG, the weight of the guard nodes
(h) bw, the weighted bandwidth of the nodes (i) totalbw,
the totally weighted bandwidth of the nodes (j) randbw,
the random sampling bandwidth value from the totalbw

Ensure: Find a suitable node from the node list
1: Derive a list of qualified running nodes
2: Count B, BE and BG

3: if try to find a exit node then
4: WE = 1
5: else
6: WE = 1−B/(3×BE)
7: end if
8: if try to find a guard node then
9: WG = 1

10: else
11: WG = 1−B/(3×BG)
12: end if
13: if WE < 0 then
14: WE = 0
15: end if
16: if WG < 0 then
17: WG = 0
18: end if
19: for i = 1 : q do
20: if the node is both exit and guard node then
21: bw = b[i]×WG ×WE

22: else if the node is entry then
23: bw = b[i]×WG

24: else if the node is exit then
25: bw = b[i]×WE

26: else
27: bw = b[i]
28: end if
29: totalbw = totalbw + bw
30: end for
31: Randomly sample a bandwidth randbw from totalbw
32: for j = 1 : q do
33: if the node is both exit and guard node then
34: temp = temp+ b[i]×WG ×WE

35: else if the node is entry then
36: temp = temp+ b[i]×WG

37: else if the node is exit then
38: temp = temp+ b[i]×WE

39: else
40: temp = temp+ b[i]
41: end if
42: if temp > randbw then
43: return the ith node
44: end if
45: end for

Algorithm 4 Selection of an Entry/Middle Node
1: Derive a list of qualified running nodes
2: if Bandwidth or a guard node is required then
3: Use a bandwidth weighted Algorithm 3 to choose one;

(this is the default branch)
4: else
5: Choose the middle node randomly
6: end if

is BG. If BE < B
3 , i.e., the bandwidth of exit routers is scarce

and the exit routers will not be considered for non-exit use.
The bandwidth of EE routers are weighted by

WG = 1− B

3BG
, (1)

where WG is the bandwidth weight of entry routers and BG >
B
3 . If BG < B

3 , then WG = 0. The probability of selecting
the ith exit router from the exit set is BiE

Bexit+BEE ·WG
, where

BEE is the total bandwidth of EE routers, Bexit is the total
bandwidth of pure exit routers, BiE indicates the bandwidth
of the ith exit router. Note that BE = Bexit+BEE . Algorithm
3 is used to choose the exit node from the corresponding
candidates.

Second, the client chooses an appropriate entry onion router
OR1 from the set of entry routers, including the pure entry
routers and EE routers. Denote the total bandwidth of pure
entry routers as Bentry, where BG = Bentry + BEE . To
ensure sufficient entry bandwidth, if BG < B

3 , the entry
routers will not be considered for non-entry use. Then the
probability of selecting the ith entry router from the entry set
is BiG

Bentry+BEE ·WE
, where

WE = 1− B

3BE
. (2)

WE is the exit bandwidth weight and BiG is the ith bandwidth
in the entry set. If BE < B

3 , then WE = 0. Algorithm 3 is
also used to choose the entry node from the corresponding
candidates.

Third, any router can be selected as the middle onion
router OR2 except the already selected routers OR3 and
OR1. Algorithm 4 describes the selection of middle nodes
for a circuit1. Notice that in Algorithm 3 bandwidth is
required for creating a circuit by default. Therefore, the
bandwidth weighted router selection algorithm is used to
choose a middle router. The probability of selecting the
ith router from the remaining set of Tor routers becomes

Bi
Bexit·WE+Bentry·WE+BEE ·WE ·WG+BN−EE

, where Bi is the
ith bandwidth in the remaining set and BN−EE is the total
bandwidth of N-EE routers.

Once the path is chosen, the client creates a circuit over
the path incrementally, one hop at a time. A circuit is a
communication tunnel encrypted in an onion-like way over the
path. Once the circuit is established, the client can connect to
a web server through the circuit.

1Another constraint is that each router on a path must be from a distinct
/16 subnet.
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C. Bridge Clients Using Tor

In order to access Tor, a bridge client needs to obtain a
least one bridge. As we can see from Figure 1, the bridge
client can obtain the information of bridges via email and
https. We will further discuss these methods in Section III.
The bridge client uses a bridge as a hidden first-hop relay into
the Tor network to avoid censorship. She follows the similar
procedures discussed earlier, i.e., downloading the information
of Tor nodes and choosing the appropriate exit onion router
OR3 and middle onion router (e.g., malicious middle router
in Figure 1), respectively. She can then create a circuit and
anonymously surf the Internet.

III. THREE APPROACHES FOR LARGE-SCALE TOR BRIDGE
DISCOVERY

In this section, we first introduce the basic ideas of discov-
ering Tor bridges and then present our experimental strategies.

A. Basic Ideas

In this paper, we investigate two categories of approaches
to discover bridges:

Email and https enumeration. An attacker can use a Yahoo
or gmail account to send an email to the bridge email server
(bridges@torproject.org) with the line “get bridges” in the
body of the mail. The bridge email server promptly replies
with 3 distinct bridges. To avoid malicious enumeration, the
bridge email server only replies one email to an email account
each day. Alternatively, the user can access the bridge website
(https://bridges.torproject.org/) to obtain 3 bridges. To avoid
malicious enumeration, the https server distributes 3 bridges
to each 24-bit IP prefix each day.

Bridges inference by malicious Tor middle routers. A circuit
created by a bridge client traverses both the bridge and
the malicious middle router. By deploying middle routers at
an apartment, PlanetLab or Amazon EC2, we may discover
bridges from any bridge pool including those privately dis-
tributed in friend-to-friend networks.

B. Discovering Bridges via Email

We can enumerate Tor bridges through massive number
of email accounts. The Tor bridge email server only replies
to Yahoo email and gmail. To obtain the 2000 yahoo email
accounts, we use iMacros [8] to automate the email account
application. iMacros can record email application procedures
into a script and repeat most of the labor work automatically.
During each automation cycle, humans still need to change the
email account, fill out the CAPTCHA, and submit the appli-
cation. Yahoo limits the number of email account applications
from a single IP address. To address this issue, we deploy more
than 500 PlanetLab nodes to carry out the email application
tasks each day. We may also use the Tor network to apply
for email accounts. More than 500 Tor exit routers were used
as the proxies [9]. Consequently, those exit routers provide
enough distinct IP addresses for acquiring a large number of
email accounts. PlanetLab nodes can also be used as proxies
for email account application.

We adopt a command-and-control architecture to send bulk
emails soliciting bridges. Yahoo does not allow a large number
of emails to be send from a single IP address via SMTP
(Simple Mail Transfer Protocol). We use a master computer
to control the PlanetLab agents, which are deployed to the
PlanetLab nodes via a parallel SSH execution tool Pssh [10].
Agents receive the email accounts and passwords from the
master server and send emails to the bridge email server. A
tiny SMTP client [11] is used by a PlanetLab agent. Since
Yahoo does not provide free POP3 (Post Office Protocol 3)
service, we use a tiny POP3 client Mpop [12] to retrieve Yahoo
emails via an emulated POP3 server FreePOPs [13], which is
able to access Yahoo webmail service. A script can then be
used to analyze the downloaded emails and retrieve bridge IPs
embedded in emails.

This is the first time that bulk emails are used for enumer-
ating Tor bridges.

C. Discovering Bridges via HTTPS

Since Tor limits bridge retrieval from each C class IP
address, we have to control a large number of hosts with
different IP address prefixes to obtain a large number of
bridges in a short time. We introduce the following two
schemes to this end:

(i) https via PlanetLab nodes. A master computer can
control a large number of PlanetLab nodes for retrieving the
bridges. We select around 500 PlanetLab nodes and upload the
agent software to each node. An agent receives the command
from the master to download the bridge webpage via wget. To
avoid congesting the Tor https server, the master manages the
PlanetLab agents in a round robin fashion for bridge retrieval.
We use the parallel SSH execution tool Pslurp to download
the webpages from the PlanetLab agents and a script is used
to analyze the webpages for embedded bridges.

(ii) https via Tor exit nodes. Tor has around 500 exit nodes.
Most of them have IP addresses with different 24-bit IP pre-
fixes. We use a Tor client to create the circuits through different
exit nodes and retrieve bridges via https. We implemented this
approach by exploring the Tor control protocol [14], which is
an interface between customer programs and the Tor network.
The control protocol allows a client to control its usage of
Tor and acquire Tor status such as circuit status. Therefore,
a malicious Tor client can utilize this control protocol to
command Tor. The control messages include “command”,
“keyword” and “arguments”. There are different “commands”
for various functionalities. For example, the command “SET-
CONF” changes the values of Tor configuration variables. We
can utilize the command “EXTENDCIRCUIT” to establish a
new circuit along a specified path.

Tor has a cross-platform controller GUI, Vidalia [15]. We
implemented the custom circuit creation using Tor control
protocol and integrated it into Vidalia. To successfully create
and use custom circuits, we should first disable Tor’s automatic
circuit creation mechanism by using two commands, “SET-
CONF DisablePredictedCircuits=1” and “SETCONF Max-
OnionsPending=0”. We then use the command “EXTEND-
CIRCUIT CircuitID ServerSpec *(, ServerSpec)” to establish



5

our custom circuits. If the “CircuitID” is zero, it is a request
that Tor build a new circuit along the specified path. Otherwise,
it is a request that the server should extend an existing circuit
with that ID along the specified path. Note: “ServerSpec” is
the nickname of the specified Tor node. In this way, we can
control the Tor network to create a two-hop circuit via distinct
exit nodes. Once the circuit is created, the tool wget is used
to download bridge web pages.

D. Discovering Bridges Via Tor Middle Routers

Figure 1 illustrates the basic idea of discovering Tor bridges
via middle Tor routers. We deploy malicious Tor middle
routers on PlanetLab to discover bridges connected to these
Tor middle routers. Recall a client uses a bridge as an
entry node to establish a three-hop circuit for surfing the
Internet. Traffic forwarded by the bridges may traverse these
middle routers. Then the middle routers can identify the IP
addresses of the bridges. The recorded IP addresses will
be from either Tor entry guards or bridges. Because the
information of entry guards is public, it is trivial to distinguish
bridges from entry nodes. We modified the Tor source code to
embed the aforementioned functions, log incoming connection
information, differentiate bridges from other Tor nodes, and
send email with bridge IPs to us. This approach allows us
to automatically retrieve bridges via the controlled Tor middle
routers on PlanetLab. Of course, such malicious middle routers
can be deployed at any place, including the researchers’ home
and Amazon EC2 [16]. PlanetLab nodes have very limited
bandwidth while home and Amazon EC2 nodes may provide
large bandwidth.

Note that we need to prevent malicious routers from becom-
ing entry or exit routers automatically because of the rule of
Tor. When onion routers advertise an uptime and bandwidth at
or above the median among all routers, these routers will be
marked as entry guards by directory servers [6]. To prevent
malicious routers from becoming entry routers, we need to
lower their bandwidth or control their uptime. By configuring
the exit policy, we also prevent those malicious routers from
becoming exit routers.

IV. ANALYSIS

In this section, we first analyze the effectiveness of the
bridge discovery via emails and https. We model the bridge
discovery problem as a weighted coupon collector problem
and derive the theoretical expected number of samplings for
obtaining all bridges. We then analyze the effectiveness of the
bridge discovery approach via malicious Tor middle routers.

A. Bridge Discovery via Emails and HTTPS

The approaches that enumerate bridges via emails and https
can be molded as a weighted coupon collector problem. In
the classical coupon collector problem [17], all n coupons
are obtained with an equal chance of 1

n . To derive the entire
collection, the collector needs to collect Θ(n lnn) coupons
on average. However, bridges are not distributed with equal
probability, but weighted on their bandwidth. This is confirmed

by our real-world experiments in Section V. We now explain
the weighted coupon collector problem in our context.

To enhance Tor performance, Tor adopts the weighted band-
width routing algorithm for path (circuit) selection. Specifi-
cally, the higher a router’s advertised bandwidth, the higher
the chance that the router is selected for a circuit. Recall a
bridge can act as a Tor entry router. Considering this weighted
bandwidth routing algorithm, we have the following theorem.

Theorem 1. In a Tor network, there are n Tor bridges.
Assume that the bandwidth of the bridges comprises a set
{B1, B2, . . . , Bn}. The probability pi that the ith router of
bandwidth Bi can be selected is pi = Bi∑n

i=1 Bi
. Denote Xh

as the number of distinct bridges after h (≥ 1) circuits are
created by the attacker. The expected number of different
bridges generated by these h samplings can be calculated by

E(Xh) = n−
n∑

i=1

(1− pi)
h. (3)

The proof of Theorem 1 is given in Appendix A of our
technical report [18]. It can be observed from Theorem 1
that when we sample more (h increases), we can get more
bridges. Notice that to avoid malicious enumeration, the bridge
authority divides available bridges into pools. Each pool is
available in a certain time window [19]. However, in one time
window, the enumeration can still be formalized as a weighted
coupon collector problem. This is confirmed by experimental
results in Figure 4.

B. Bridge Discovery via Middle Routers
Recall that if a TCP stream from a bridge traverses mali-

cious Tor middle routers, the bridge will be exposed. In order
to understand the effectiveness of this discovery approach, we
analyze catch probability that a TCP stream from a bridge
traverses malicious middle routers.

Assume that k computers are injected into the
Tor network and are malicious Tor middle routers.
The bandwidth of all onion routers comprises a set
{B1, B2, ..., Bk, Bk+1, ..., Bk+N}, where {B1, ..., Bk}
is the bandwidth of the malicious middle routers. All
malicious middle routers advertise the same bandwidth2,
B1 = B2 = · · · = Bk = b. Denote B as the aggregated
bandwidth of all original onion routers, B =

∑k+N
i=k+1 Bi.

Then the total bandwidth becomes B + k · b.
Recall that there are four types of routers in the Tor network:

pure entry router (entry guard), pure exit router, both entry and
exit router (denoted as EE router) and neither entry nor exit
router (denoted as N-EE router). Denote the bandwidth of all
original pure entry routers, pure exit routers, EE routers and N-
EE routers as Bentry , Bexit, BEE and BN−EE , respectively.
Note that B = Bentry + BN−EE + BEE + Bexit. Based on
the weighted bandwidth routing algorithm discussed in Section
II-B, the bandwidth weight can be derived by,

WE =

{
1− B+k·b

3·(Bexit+BEE) : WE > 0,

0 : WE 6 0.
(4)

2The Tor project released a new version that changes the upper-bound of
high bandwidth to 10MB/s on August 30, 2007.
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WG =

{
1− B+k·b

3·(Bentry+BEE) : WG > 0,

0 : WG 6 0.
(5)

The weighted bandwidth Bexit′ , BEE′ , Bentry′ and
BN−EE′ can be derived as follows,

Bexit′ = Bexit ·WE , (6)
BEE′ = BEE ·WE ·WG, (7)

Bentry′ = Bentry ·WG, (8)
BN−EE′ = BN−EE + k · b. (9)

With the total weighted bandwidth Bexit′ + BEE′ +
Bentry′ +BN−EE′ derived above and the total bandwidth of
malicious Tor middle routers k · b, according to the weighted
bandwidth route selection algorithm in Section II-B (the total
bandwidth of malicious Tor middle routers divided by the total
weighted bandwidth is the probability that malicious middle
nodes are chosen for a circuit), we have the following theorem
for calculating the catch probability.

Theorem 2. The catch probability can be calculated by

P (k, b) =
k · b

Bexit′ +BEE′ +Bentry′ +BN−EE′
, (10)

where k = 1, 2, 3 . . . and 0 < b < 10MB/s.

Theorem 2 is intuitive based on the bandwidth weighted
path selection algorithm. From Theorem 2, we derive the
following corollaries.

Corollary 1. The catch probability increases with the number
of malicious Tor middle routers.

P (r, b) > P (k, b), where r > k. (11)

Corollary 2. The catch probability increases with the band-
width of malicious Tor middle routers, i.e., P (k, b) is a
monotonous increasing function in terms of b.

P (k, l) > P (k, b), where l > b. (12)

The proof of Corollary 1 and Corollary 2 is given in
Appendix B of [18]. These two corollaries indicate that the
catch probability increase with both the number of malicious
Tor middle routers and the bandwidth of malicious Tor middle
routers. This is not a surprise.

We want to know what affects the catch probability, the
number of malicious middle routers or the aggregated band-
width of malicious middle routers. This is important in practice
since we may not have so many computers with different IPs.
Theorem 3 answers this question.

Theorem 3. The catch probability is determined by the
aggregated bandwidth contributed by malicious Tor middle
routers. That is, if M = k · b, M ′ = k′ · b′, and M ≥ M ′,

P (M) ≥ P (M ′). (13)

The equality holds when M = M ′.

The proof of Theorem 3 is given in Appendix C of [18].
Theorem 3 implies that an attacker may not need to inject
many malicious middle routers into the Tor network. A middle

router with large bandwidth can achieve the same catch prob-
ability as a number of middle routers with small bandwidth.
Our experiments in Section V-B validate this observation.

In practice, we also want to know the catch probability in
terms of the number of created circuits. Theorem 4 answers
this question.

Theorem 4. After q circuits are created, the catch probability
that at least one bridge connects to one of the malicious k
routers of bandwidth b can be derived by

P (k, b, q) = 1− (1− P (k, b))q, where q = 1, 2, 3, . . .. (14)

Theorem 4 is intuitive. From Theorem 4, we can have
Corollary 3.

Corollary 3. The catch probability increases with the number
of created circuits.

P (k, b, h) > P (k, b, q), where h > q. (15)

The proof of Corollary 3 is given in Appendix D of [18].
We can also derive the relationship among the catch proba-

bility, the total bandwidth of the malicious Tor middle routers
and the number of created circuits based on Equation (14).

Corollary 4. After q circuits are created, the probability that
at least one bridge connects to one of the malicious routers
with the total bandwidth of the Tor nodes M can be derived
by

P (M, q) = 1− (1− P (M))q. (16)

Corollary 4 is intuitive given Theorem 4. From Theorems
3 and 4, we also derive Corollary 5. Its proof is given in
Appendix D of [18].

Corollary 5. The catch probability increases with the total
bandwidth of the malicious Tor middle routers.

P (M, q) > P (M ′, q), where M > M ′. (17)

In summary, the catch probability increases with two factors,
the total bandwidth of malicious Tor middle routers and the
number of created circuits. Our experimental data in Section V
validate these theoretical results. Our theory and experimental
evaluation show that the bridge discovery approach via Tor
middle routers is effective even if we can only control a small
number of Tor middle routers.

V. EVALUATION

We have implemented the proposed Tor bridge discovery
approaches in Section III. In this section, we present the results
of the large-scale empirical evaluation of these approaches.
Our experimental results match the theoretical analysis in
Section IV well.

A. Bridge Enumeration via Email and HTTPS

To evaluate the bridge-discovery approaches via emails and
https, we conducted large-scale experiments in PlanetLab from
May to June, 2010. Figure 2 gives the number of newly
collected distinct bridges, the number of totally collected
distinct bridges, and the number of collected emails along the
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time. Because the Yahoo SMTP server may not successfully
deliver emails sent from PlanetLab, we didn’t receive all
replies all the time. From Figure 2, we can see that more
emails produce more distinct bridges. On May 5, 2010, we
received 2000 emails and collected more bridges than other
dates.

Figure 2 also shows that the number of totally collected
bridges increases over time. Actually, we are told that Tor
has more than 10,000 bridges! This is the reason why the
number of bridges keeps increasing steadily. However, this
set of experiments show that the discovery approach works
effectively since it discovered the new bridges. To enumerate
all the bridges, we just need lasting experiments. Figure 3
gives the data obtained via https. The number of discovered
bridges via https has a similar trend to that in Figure 2.

We now verify Theorem 1 in Section IV using real-world
data. Recall that Tor distributes different pools of bridges
(there is crossover among pools) via email and https servers
along the time. However, experiments on a certain day can be
formulated as a weighted coupon collector problem since the
pool has not be shifted. One retrieved bridge can be treated
as one sampling. Figure 4 shows the relationship between the
number of samplings and the number of distinct bridges. It
can be observed that the curve of the not-weighted classical
coupon collector problem is much steeper than the curve for
the real data at the beginning. This implies that the bridges
are not distributed uniformly.

To verify the bridge distribution is a weighted coupon
collector problem, we assume that the bridge bandwidth
distribution is similar to the public Tor router bandwidth
distribution. We randomly pick up a set of public Tor routers
and use their bandwidth to simulate bridge bandwidth (since
we don’t know bridge bandwidth). We then obtain the curve
of the weighted coupon collector problem based on Equation
(21). Figure 4 shows that the theoretical curve is only slightly
lower than the real data generated curve. Therefore, it is highly
possible that bridges are distributed with their bandwidth as the
weight. Such weighted distribution is also consistent with Tor’s
weighted routing algorithm for performance enhancement.
Actually, Tor developers later confirmed this fact to us.

B. Bridge Discovery via Tor Middle Routers

Figure 5 shows the public Tor router bandwidth cumulative
distribution function on July 10, 2010. There were 1604

active Tor routers, including 326 pure entry onion routers,
525 pure exit onion routers, and 132 EE routers. Using the
real-world data, Figure 6 gives the relationship between the
theoretical catch probability and the number of controlled
Tor middle routers based on Theorem 2. As we can see, the
catch probability is 14.7% when 512 Tor middle routers with
bandwidth 50KB/s are used, i.e., P (512, 50) = 14.7%. Based
on Theorem 4, Figure 7 illustrates the catch probability when
the bridge clients create q circuits, that is P (512, 50, q). From
Figure 7, we can see that in theory, the catch probability
approaches 99%, after the bridge clients created 30 circuits,
i.e., P (512, 50, 30) ≈ 99%. In addition, from Equation (39),
we know that by only configuring three nodes as malicious
Tor middle routers, we can also obtain the catch probability
P (3 ∗ 10000, 30) > P (512 ∗ 50, 30) ≈ 99%.

To demonstrate correctness of our theory, we used 512
PlanetLab nodes as malicious Tor middle routers and set their
bandwidth as 50KB/s (because of the limited bandwidth of
PlanetLab nodes). To avoid affecting the Tor network, we
only conducted a short experiment for 2 days. We set up a
Tor client to create 430 circuits via our own Tor bridge at
an apartment. We found that the 21th circuit passed through
our Tor middle routers in PlanetLab. The experimental results
match the theoretical results above well.

We now show data supporting the fact that high bandwidth
routers have a higher chance to be selected as middle routers.
Figure 8 gives the empirical cumulative distribution function
(ECDF) of the bandwidth of onion routers selected as middle
routers for these 430 circuits. Recall that we are able to record
routers selected for a circuit at the client. We can see that
60% of those routers have a bandwidth more than 1MB/s.
However, as shown in Figure 5, only 10% of Tor routers have
a bandwidth of larger than 1MB/s. This implies that the higher
bandwidth the routers have, the higher chance these routers are
selected as middle routers for circuits.

Figure 9 illustrates the theoretical catch probability that
a circuit passes malicious Tor middle routers in terms of
router bandwidth advertisement and the number of malicious
middle routers, based on Theorem 2. We can see that the
theoretical probability is monotonously increasing with both
the number of controlled middle routers and their bandwidth
advertisement. These observations match our analytical results
in Theorems 1 and 2 well. As expected, the catch probability
approaches 90% when there are 20 malicious middle routers
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with 10MB/s bandwidth, i.e., P (20, 10000) ≈ 90%.
To verify Theorem 3 that the bridge discovery is determined

by the aggregated bandwidth of the malicious Tor nodes,
we configured a high bandwidth middle router of 10MB/s.
We recorded the bridges that pass through this middle router
from July 10 to 23, 2010. Figure 10 gives the number of
newly discovered distinct bridges and the number of totally
collected distinct bridges. The number of totally collected
bridges increases over time. Eventually, we got 2369 bridges,
indicating that catching the bridge via middle routers can be
very effective and efficient and catch probability is determined
by total bandwidth contributed by malicious middle routers.
Note: to prevent the middle router from becoming an entry
router in 7 days, we restarted the router on the 6th day.

VI. DISCUSSION OF COUNTERMEASURES

We have demonstrated the impact of our bridge-discovery
approaches. We now discuss possible countermeasures against
these malicious discovery. We note that those countermeasures
can reduce the effectiveness of the malicious bridge discovery,
but none of them will be an ultimate solution.

Explore the human interactive proofs (HIPs) method to
resist automatically large-scale bridge discovery: CAPTCHA
as a known HIP-based approach could be used to add difficulty
to large-scale automatic bridge enumeration through emails
and https. A CAPTCHA consists of a visual challenge in the
form of alphanumeric characters that are distorted in such a

way that available computer vision algorithms have difficulty
segmenting and recognizing the text. The Tor bridge https
and email server may adopt CAPTCHA to this end. However,
there have been various efforts in automatically deciphering
CAPTCHA [20].

Design new router selection strategies: As we discussed,
the weighted bandwidth routing strategy speeds up the bridge
discovery through controlled Tor middle onion routers. One
naive approach to reduce the impact of malicious Tor middle
routers is to revise the routing strategy and select routers
for circuits uniformly and randomly. However, this uniform
routing strategy will deteriorate Tor performance since low
bandwidth routers will have a high probability of being
selected for a circuit.

Build a backbone of trusted routers: Tor may establish a
backbone of trusted routers, to which bridges can connect.
This strategy will defeat the Tor middle router based bridge
discovery approach. However, the centralized backbone may
become Tor network performance bottleneck.

Use Anonymous Peer-to-Peer (P2P) Communication Net-
work: Anonymous P2P systems may provide much robust
anti-censorship. We can organize routers into a distributed
hash table (DTH). DHT based routing strategies are scalable
and flexible for locating routers and creating communication
tunnels such as Tor circuits. Because the DHT routing schemes
do not depend on a global list of routers, it is hard for a censor
agent to block all the routers quickly. Tor can be transformed



9

into a type of P2P network if most clients volunteer to act
as bridges. Nevertheless, routing schemes based on DHT also
have security issues [21], [22], [23].

VII. RELATED WORK

In recent years, various anonymous communications sys-
tems, including Tor [1], Anonymizer [24], I2P [25], Salsa [26],
and Torsk [27] are designed and deployed to provide online
privacy and censorship resistance. There are a large number of
works on traffic analysis of these systems. Because of space
limit, we only review the most related work.

McLachlan et al. [4] investigated the weakness of current
bridge architecture, leading to a few improved attacks on
the anonymity of bridge operators. Their results indicate that
existing attacks may expose clients to additional privacy risks
and Tor exit routers should be treated as sharing a single IP
prefix that is mentioned in the bridge design [19]. Vasserman
et al. [3] presented attacks against Tor bridges and discussed
countermeasures using DHT-based overlay networks. Bauer
et al. [28] showed that an adversary who controlls only
6 malicious Tor routers can compromise over 46% of all
clients’ circuits in an experimental Tor network with 66 total
routers. Edman and Syverson [29] found the risk associated
with a single autonomous system (AS) observing both ends
of an anonymous Tor connection is greater than previously
thought. Their results showed that the growth of the Tor
network had only a small impact on the network’s robustness
against an an AS-level adversary. Fu et al. [30] investigated a
cloud computing based approach that deploys high-bandwidth
Amazon EC2 sentinels into the Tor network. Their study
showed that with the high bandwidth and appropriate number
of sentinels, one can achieve a high probability that a Tor
circuit passes through an entry sentinel and an exit sentinel.

VIII. CONCLUSION

In this paper, we conducted extensive analysis and large-
scale empirical evaluation of Tor bridge discovery via email,
https and malicious Tor middle routers. To discover bridges
automatically, we developed a command-and-control architec-
ture on PlanetLab to send emails via Yahoo SMTP to the
bridge email server and to download bridge webpages from the
bridge web server. We formalized the email and https bridge
discovery process as a weighted coupon collector problem
and analyzed the expected number of retrieved bridges after
a number of samplings. We also exploited the Tor weighted
bandwidth routing algorithm and studied bridge discovery via
malicious Tor middle onion routers deployed on PlanetLab
and at an apartment. We formally analyzed catch probability
of discovering bridges via middle onion routers. Our real-
world implementation and large-scale experiments validated
effectiveness and feasibility of the three bridge discovery
approaches. We have discovered 2365 Tor bridges via email
and https and 2369 bridges by only one controlled Tor
middle router in 14 days. The malicious middle router based
bridge discovery approach is simple, incurs little overhead, can
discover bridges distributed by any approach, and is efficient
and effective. We also discussed potential mechanisms to
counter bridge discovery.
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APPENDIX A

In this appendix, we prove Theorem 1.
Proof: Ii is a random variable,

Ii =

{
1, if the ith bridge is collected during h samplings
0, otherwise

(18)
The probability that the ith bridge is not collected after h
samplings is

P (Ii = 0) = (1− pi)
h. (19)

Then the number of distinct bridges after h samplings becomes

Xh =

n∑
i=1

Ii. (20)

Since E(Ii) = 0 × P (Ii = 0) + 1 × P (Ii = 1) = P (Ii =
1) = 1− P (Ii = 0) = 1− (1− pi)

h, the expected number of
different bridge after h samplings becomes

E(Xh) = E(
n∑

i=1

Ii),

= E(I1) + E(I2) + . . .+ E(In),

= 1− (1− p1)
h + . . .+ 1− (1− pn)

h,

= n−
n∑

i=1

(1− pi)
h. (21)

APPENDIX B

In this appendix, we prove Corollary 1 and Corollary 2.

Proof of Corollary 1

Proof: We consider b as a constant and denote P (k, b)
as P (k). To derive the feature of P (k), we assume k is
a continuous variable. In terms of the combination of the
condition WE and WG, there are the following four cases
for deriving the catch probability.

Case 1: WE > 0 and WG > 0, i.e., k <
Min{ 3(Bexit+BEE)−B

b ,
3(Bentry+BEE)−B

b }. Then the first
derivative of function P (k) is given by

P
′
(k) =

b · (Bexit′ +BEE′ +Bentry′ +BN−EE′)

(Bexit′ +BEE′ +Bentry′ +BN−EE′)2

−k · b · (Bexit′ +BEE′ +Bentry′ +BN−EE′)
′

(Bexit′ +BEE′ +Bentry′ +BN−EE′)2
,

= b · (Bexit′ − kB
′

exit′ +BEE′ − kB
′

EE′

+Bentry′ − kB
′

entry′ +BN−EE′ − kB
′

N−EE′)

/(Bexit′ +BEE′ +Bentry′ +BN−EE′)2. (22)

Let the numerator of Equation (22) be

Y (k) = (Bexit′ − kB
′

exit′) + (BEE′ − kB
′

EE′)

+(Bentry′ − kB
′

entry′) + (BN−EE′ − kB
′

N−EE′). (23)

Since

Bexit′ − kB
′

exit′ = Bexit · (1−
B

3 · (Bexit +BEE)
), (24)

Bentry′ − kB
′

entry′ = Bentry · (1−
B

3 · (Bentry +BEE)
), (25)

BEE′ − kB
′

EE′ = BEE(1− B
3·(Bexit+BEE)

− B
3·(Bentry+BEE) +

B2−k2b2

9·Bexit+BEE)(Bentry+BEE) ), (26)

BN−EE′ − kB
′

N−EE′ = BN−EE , (27)

we have

Y (k) = Bexit +Bentry +BEE +BN−EE

− BexitB
3·(Bexit+BEE) −

BentryB
3·(Bentry+BEE) −

BEEB
3·(Bexit+BEE)

− BEEB
3·(Bentry+BEE) +

BEE(B2−k2b2)
9·(Bexit+BEE)(Bentry+BEE)

= B − B
3 − B

3 + BEE(B2−k2b2)
9·(Bexit+BEE)(Bentry+BEE)

= B
3 + BEE(B2−k2b2)

9·(Bexit+BEE)(Bentry+BEE) .

(28)

Since k < Min{ 3(Bexit+BEE)−B
b ,

3(Bentry+BEE)−B
b } and

we assume that Bexit < Bentry , we have k2 <
(3(Bexit+BEE)−B)2

b2 . Then

Y (k) =
B

3
+

BEE(B
2 − k2b2)

9(Bexit +BEE)(Bentry +BEE)
,

≥ B

3
+BEE

B2 − (3(Bexit +BEE)−B)2

9(Bexit +BEE)(Bexit +BEE)
,

=
B

3
+BEE

6B(Bexit +BEE)− 9(Bexit +BEE)
2

9(Bexit +BEE)2
,

>
BEE(Bexit +BEE)

3(Bexit +BEE)
+BEE

2B − 3(Bexit +BEE)

3(Bexit +BEE)
,

= 2BEE
B − (Bexit +BEE)

3(Bexit +BEE)
> 0. (29)

Hence, P
′
(k) > 0 and P (k) is a monotonous increasing

function in terms of k.
Case 2: WE = 0 and WG > 0, i.e., 3(Bexit+BEE)−B

b ≤
k <

3(Bentry+BEE)−B
b . The catch probability can be derived

by

P (k) =
k · b

Bentry′ +BN−EE′
. (30)

Then the first derivative of function P (k) is given by

P
′
(k) =

k · b
Bentry′ +BN−EE′

,

=
b(Bentry′ +BN−EE′)− kb(B

′

entry′ +B
′

N−EE′)

(Bentry′ +BN−EE′)2
,

= b
(Bentry′ − kB

′

entry′) + (BN−EE′ − kB
′

N−EE′)

(Bentry′ +BN−EE′)2
,

= b
Bentry · (1− B

3·(Bentry+BEE) ) +BN−EE

(Bentry′ +BN−EE′)2
. (31)

Since WG > 0, i.e., 1 − B+k·b
3·(Bentry+BEE) > 0, we have

1 − B
3·(Bentry+BEE) > 0. Hence, P

′
(k) > 0 and P (k) is a

monotonous increasing function in terms of k.
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Case 3: WG = 0 and WE > 0, i.e., 3(Bentry+BEE)−B
b ≤

k < 3(Bexit+BEE)−B
b . The catch probability can be determined

by

P (k) =
k · b

Bexit′ +BN−EE′
. (32)

With the similar reason, we know that P (k) is a monotonous
increasing function in terms of k.

Case 4: WG = 0 and WE = 0, i.e., k ≥
Max{ 3(Bentry+BEE)−B

b , 3(Bexit+BEE)−B
b }. The catch prob-

ability can be determined by

P (k) =
k · b

BN−EE′
=

k · b
BN−EE + k · b

. (33)

Obviously, P (k) is a monotonous increasing function in terms
of k.

Proof of Corollary 2

Proof: According Equation (10), consider b as a constant
and k as a variable. P (k, b) can be denoted as P (k). Denote
WG and WE as WG(k) and WE(k) which are functions of k,
respectively. Then, according to Equation (10), we can get

P (k) = k · b/(BexitWE(k) +BEEWE(k)WG(k) +

BentryWG(k) +BN−EE + k · b). (34)

According to the proof of Corollary 1, we have proved P (k)
is a monotonous increasing function in terms of k. In this
case, we consider k as a constant and b as a variable. Then
we denote P (k, b) as P (b) and obtain P (b) in terms of b,

P (b) = k · b/(BexitWE(b) +BEEWE(b)WG(b) +

BentryWG(b) +BN−EE + k · b). (35)

Consequently, based on Equation (34) and Equation (35),
we can conclude that k and b are exchangeable variables,
i.e., P (k, b) = P (b, k), then we can also prove the P (b) is
a monotonous increasing function in terms of b by using the
method proving Corollary 1.

APPENDIX C

In this appendix, we prove Theorem 3.
Proof: According to Equation (4) and (5), we denote

the WG and WE as the function WG(M) and WE(M) in
terms of M , respectively. Similar with the proof of Corollary
2, Equation (10) can be written by

P (M) = M/(BexitWE(M) +BEEWE(M)WG(M)

+BentryWE(M) +BN−EE +M). (36)

Because P (b) is a monotonous increasing function in terms
of b, P (M) is a monotonous increasing function in terms of
M as well.

APPENDIX D

In this appendix, we prove Corollary 3 and Corollary 5.

Proof of Corollary 3

Proof: To obtain the feature of Equation (14), we assume
the number of created circuits q as a continuous variable. Then
the first derivative of function P (k, b, q) in terms of q is given
by

dP (k, b, q)

dq
= − ln (1− P (k, b))(1− P (k, b))q. (37)

Since 0 < 1 − P (k, b) < 1, ln (1− P (k, b)) < 0 and
(1 − P (k, b))q > 0. Then we can obtain dP (k,b,q)

dq > 0. Con-
sequently, Equation (14) is a monotonous increasing function
in terms of q. This indicates that the more circuits the bridge
clients create, the higher probability the circuits traverse the
controlled Tor middle routers.

Proof of Corollary 5

Proof: The first derivative of function P (M, q) in terms
of M is given by

dP (M, q)

dM
= P ′(M)(1− P (M))q. (38)

Since P (M) is a monotonous increasing function in terms
of M , P ′(M) > 0 and (1 − P (M))q > 0, we can derive
dP (M,q)

dM > 0. That is, Equation (16) is a monotonous increas-
ing function in terms of M , i.e.,

P (M, q) > P (M ′, q), where M > M ′. (39)


