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Last Time: Bayesian Statistics

For most of the course, we considered MAP estimation:

ŵ = argmax
w

p(w|X, y) (train)

ŷi = argmax
ŷ

p(ŷ|x̂i, ŵ) (test).

But w was random: I have no justification to only base decision on ŵ.
Ignores other reasonable values of w that could make opposite decision.

Last week, we considered Bayesian approach:
Treat w as a random variable, and define probability over what we want given data:

ŷi = argmax
ŷ

p(ŷ|x̂i, X, y)

= argmax
ŷ

∫
w
p(ŷ|x̂i, w)p(w|X, y)dw.

Directly follows from rules of probability, and no separate training/testing.
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ŷ

∫
w
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ŷ
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Beta-Bernoulli Model

Consider again a coin-flipping example with a Bernoulli variable,

x ∼ Ber(θ).

Last time we considered that either θ = 1 or θ = 0.5.

Today let’s view θ as a continuous random variable.

In particular, let’s assume θ comes from a beta distribution,

θ ∼ B(α, β).

The parameters α and β of the prior are called hyper-parameters.
Similar to λ in regression, these are parameters of the prior.

The PDF for the beta distribution has the form

p(θ|α, β) =
1

B(α, β)
θα−1(1− θ)β−1,

where the beta function is B(α, β) = Γ(α)Γ(β)/Γ(α+ β).
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Beta-Bernoulli Model
Why the beta distribution?

“It’s a flexible distribution that includes uniform as special case”.

https://en.wikipedia.org/wiki/Beta_distribution

Uniform distribution if α = 1 and β = 1.

“It makes the integrals easy”.

https://en.wikipedia.org/wiki/Beta_distribution


Baysics Empirical Bayes Hierarchical Bayes

Beta-Bernoulli Model
Why the beta distribution?

“It’s a flexible distribution that includes uniform as special case”.

https://en.wikipedia.org/wiki/Beta_distribution

Uniform distribution if α = 1 and β = 1.

“It makes the integrals easy”.

https://en.wikipedia.org/wiki/Beta_distribution


Baysics Empirical Bayes Hierarchical Bayes

Ingredients of Bayesian Inference
1 Likelihood p(x|θ).

Probability of seeing data given parameters.

2 Prior p(θ|α, β).
Belief that parameters are correct before we’ve seen data.

3 Posterior p(θ|x, α, β).
Probability that parameters are correct after we’ve seen data.
We won’t use the MAP “point estimate”, we want the whole distribution.

4 Posterior predictive p(x̂|x, α, β).
Probability of new data given old, integrating over parameters.
This tells us which prediction is most likely given data and prior.

5 Marginal likelihood p(x|α, β) (also called evidence).
Probability of seeing data given hyper-parameters.

6 We might also have a cost g(x̃|x̂).
The penalty you pay for predicting x̂ when it was really was x̃.
Leads to Bayesian decision theory.
Straightforward extension: predict to minimize expected cost.
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Posterior and Marginal Likelihood

Our model is: x ∼ Ber(θ), θ ∼ B(α, β).

If we observe ‘HTH’ then our posterior distribution is

p(θ|HTH,α, β) =
p(HTH|θ, α, β)p(θ|α, β)

p(HTH|α, β)
(Bayes)

=

(
θ2(1− θ)1

) (
1

B(α,β)θ
α−1(1− θ)β−1

)
p(HTH|α, β)

(likelihood/prior)

=

1
B(α,β)θ

(2+α)−1(1− θ)(1+β)−1

p(HTH|α, β)
.

Denominator is marginal likelihood,

p(HTH|α, β) =

∫
θ

1

B(α, β)
θ(2+α)−1(1− θ)(1+β)−1dθ.

Understanding Bayesian inference is much easier once you can notice that:
The posterior is a beta distribution and the marginal likelihood integral is trivial.
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Posterior and Marginal Likelihood

Given HTH, we’ve shown that posterior is

p(θ|HTH,α, β) =

1
B(α,β)θ

(2+α)−1(1− θ)(1+β)−1

p(HTH|α, β)

∝ θ(2+α)−1(1− θ)(1+β)−1.

Consider a B(α′, β′) distribution on θ with α′ = 2 + α and β′ = 1 + β,

p(θ|α′, β′) =
1

B(α′, β′)
θα

′−1(1− θ)β′−1

∝ θ(2+α)−1(1− θ)(1+β)−1.
Probabilities sum to 1: these have same distribution and normalizing constant.

Posterior is a beta distribution, p(θ|HTH,α, β) is a B(2 + α, 1 + β) distribution.
Marginal likelihood is ratio of posterior and prior normalizing constants,

p(HTH|α, β) =
B(2 + α, 1 + β)

B(α, β)
.
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Posterior Predictive
If we observe ‘HHH’ then our different estimates are:

Maximum likelihood:

θ̂ =
nH
n

=
3

3
= 1.

MAP with uniform Beta(1,1) prior,

θ̂ =
(3 + α)− 1

(3 + α) + β − 2
=

3

3
= 1.

Posterior predictive with Beta(1,1) prior,

p(H|HHH) =

∫ 1

0
p(H|θ)p(θ|HHH)dθ

=

∫ 1

0
Ber(H|θ)Beta(θ|3 + α, β)dθ

=

∫ 1

0
θBeta(θ|3 + α, β)dθ = E[θ]

=
(3 + α)

(3 + α) + β
=

4

5
= 0.8.
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Beta Bernoulli Model Discussion

If we observe h heads and t tails, the posterior will be B(h+ α, t+ β).

Posterior summarized by hyper-parameters {α, β} and counts {h, t}.
Hyper-parameters α and β are like “pseudo-counts” in our mind before we flip:

B(1, 1) is like seeing one head and one tail before we flip.

For HHH, posterior predictive is 0.800.

B(3, 3) prior is like seeing 3 heads and 3 tails (stronger uniform prior),

For HHH, posterior predictive is 0.667.

B(100, 1) prior is like seeing 100 heads and 1 tail (biased),

For HHH, posterior predictive is 0.990.

B(.01, .01) biases towards having unfair coin (head or tail),

For HHH, posterior predictive is 0.997.
Called “improper” prior (does not integrate to 1), but posterior can be “proper”.
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Bayesian Linear Regression

In week 2, we argued that L2-regularized linear regression,

argmin
w

1

2σ2
‖Xw − y‖2 +

λ

2
‖w‖2,

corresponds to MAP estimation in the model

yi ∼ N (wTxi, σ2I), wj ∼ N (0, λ−1).

By some tedious Gaussian identities, the posterior has the form

w|X, y ∼ N
(

1

σ2
A−1XT y,A−1

)
, with A =

1

σ2
XTX + λI.

Notice that mean of posterior is the MAP estimate (not true in general).

Bayesian perspective gives us variability in w and optimal predictions given prior.

But it also gives different ways to choose λ and choose basis.
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Learning the Prior from Data?

Can we use the data to set the hyper-parameters?

In theory: No!

It would not be a “prior”.
It’s no longer the right thing to do.

In practice: Yes!

Approach 1: use a validation set or cross-validation as before.
Approach 2: optimize the marginal likelihood,

p(y|X,λ) =

∫
w

p(y|X,w)p(w|λ)dw.

Also called type II maximum likelihood or evidence maximization or empirical Bayes.
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Type II Maximum Likelihood for Basis Parameter

Consider polynomial basis, and treat degree M as a hyper-parameter:

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

Marginal likelihood (evidence) is highest for M = 2.
“Bayesian Occam’s Razor”: prefers simpler models that fit data well.∑

D′ p(D′|m) = 1, for M = 7 we have low p(D|m) since it can fit many datasets.
Model selection criteria like BIC are approximations to marginal likelihood as n→∞.

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf
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Type II Maximum Likelihood for Regularization Parameter

Maximum likelihood maximizes probability of data given parameters,

ŵ = argmax
w

p(y|X,w).

If we have a complicated model, this often overfits.

Type II maximum likelihood maximizes probability of data given hyper-parameters,

λ̂ = argmax
λ

p(y|X,λ), where p(y|X,λ) =

∫
w
p(y|X,w)p(w|λ)dw,

and the integral has closed-form solution because posterior is Gaussian.

We are using the data to optimize the prior.

Even if we have a complicated model, much less likely to overfit:

Complicated models need to integrate over many more alternative hypotheses.
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Learning Principles

Maximum likelihood:

ŵ = argmax
w

p(y|X,w) ŷi = argmax
ŷ

p(ŷ|x̂i, ŵ).

MAP:

ŵ = argmax
w

p(w|X, y, λ) ŷi = argmax
ŷ

p(ŷ|x̂i, ŵ).

Optimizing λ in this setting does not work: sets λ = 0.

Bayesian:

ŷi = argmax
ŷ

∫
w
p(ŷ|x̂i, w)p(w|X, y, λ)dw.

Type II maximum likelihood:

λ̂ = argmax
λ

p(y|, X, λ) ŷi = argmax
ŷ

∫
w
p(ŷ|x̂i, w)p(w|X, y, λ̂)dw.
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p(ŷ|x̂i, ŵ).
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ŷ

∫
w
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ŷ

∫
w
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ŷ
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ŷ

∫
w
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Type II Maximum Likelihood for Individual Regularization Parameter

Consider having a hyper-parameter λj for each wj ,

yi ∼ N (wTxi, σ2I), wj ∼ N (0, λ−1j ).

Too expensive for cross-validation, but type II maximum likelihood works.

You can do gradient descent to optimize the λj .

Weird fact: yields sparse solutions (automatic relevance determination).

Can send λj →∞, concentrating posterior for wj at 0.
This is L2-regularization, but empirical Bayes naturally encouages sparsity.

Non-convex and theory not well understood, but recent work shows:

Never performs worse than L1-regularization, and exists cases where it does better.
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Bonus Slide: Overivew of Bayesian Variable Selection

If we fix λ and use L1-regularization (Bayesian lasso), posterior is not sparse.

Probability that a variable is exactly 0 is zero.
L1-regularization only lead to sparsity because the MAP point estimate is sparse.

Type II maximum likelihood leads to sparsity in the posterior because variance
goes to zero.

We can encourage sparsity in Bayesian models using a spike and slab prior:

Mixture of Dirac delta function 0 and another prior with non-zero variance.
Places non-zero posterior weight at exactly 0.
Posterior is still non-sparse, but answers the question “what is the probability that
variable is non-zero”?
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Hierarchical Bayesian Models

Type II maximum likelihood is not really Bayesian:
We’re dealing with w using the rules of probability.
But we’re using a “point estimate” of λ.

Hierarchical Bayesian models introduce a hyper-prior p(λ|γ).
This is a “very Bayesian” model.

For dealing with hyper-parameters like λ, we can now do Bayesian inference:
Work with posterior over λ, p(λ|X, y, γ).
Computing p(λ1|X, y, γ)/p(λ2|X, y, γ) is called Bayes factor.

Bayes factors provide an alternative to classic statistical tests:
E.g., we can compute posterior of “fair coin” vs. coin from beta prior.

Natural test, but not easy with classic methods.

No need for null hypothesis, p-values etc.
This month from American Statistical Assocation:

“Statement on Statistical Significance and P-Values”.
http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

But can only tell you which model is more likely, not whether any model is correct.

http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
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Bayesian Model Selection and Averaging

Bayesian model selection (“type II MAP”): maximize hyper-parameter posterior,

λ̂ = argmax
λ

p(λ|X, y, γ)

= argmax
λ

p(y|X,λ)p(λ|γ),

which further takes us away from overfitting (thus allowing more complex models).

We could do the same thing to choose order of polynomial basis, σ in RBFs, etc.

Bayesian model averaging considers posterior over hyper-parameters,

ŷi = argmax
ŷ

∫
λ

∫
w
p(ŷ|x̂i, w)p(w, λ|X, y, γ)dw.

We could also maximize marginal likelihood of γ, (“type III ML”),

γ̂ = argmax
γ

p(y|X, γ) = argmax
γ

∫
λ

∫
w
p(y|X,w)p(w|λ)p(λ|γ)dwdλ.
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We could do the same thing to choose order of polynomial basis, σ in RBFs, etc.

Bayesian model averaging considers posterior over hyper-parameters,

ŷi = argmax
ŷ

∫
λ

∫
w
p(ŷ|x̂i, w)p(w, λ|X, y, γ)dw.

We could also maximize marginal likelihood of γ, (“type III ML”),

γ̂ = argmax
γ

p(y|X, γ) = argmax
γ

∫
λ

∫
w
p(y|X,w)p(w|λ)p(λ|γ)dwdλ.
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Discussion of Hierarchical Bayes

“Super Bayesian” approach:

Go up the hierarchy until all your assumptions about the world are in the model.
Some people try to do this, and have argued that this may be how humans reason.

Key advantage:
Mathematically simple to know what to do as you go up the hierarchy:

Same math for w, λ, γ, and so on.

Key disadvantages:

It can be hard to exactly encode your prior beliefs.
The integrals get ugly very quickly.
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Summary

Posterior predictive lets us directly model what we want given hyper-parameters.

Marginal likelihood is probability seeing data given hyper-parameters.

Empirical Bayes optimizes this to set hyper-parameters:

Allows tuning a large number of hyper-parameters.
Bayesian Occam’s razor: naturally encourages sparsity and simplicity.

Hierarchical Bayes goes even more Bayesian with prior on hyper-parameters.

Leads to Bayesian model selection and Bayesian model averaging.

Next time: can we actually compute these integrals?
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