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28

Model Comparison and Occam’s Razor

Figure 28.1. A picture to be
interpreted. It contains a tree and
some boxes.

28.1 Occam’s razor

How many boxes are in the picture (figure 28.1)? In particular, how many
boxes are in the vicinity of the tree? If we looked with x-ray spectacles,
would we see one or two boxes behind the trunk (figure 28.2)? (Or even
more?) Occam’s razor is the principle that states a preference for simple

1?

or 2?

Figure 28.2. How many boxes are
behind the tree?

theories. ‘Accept the simplest explanation that fits the data’. Thus according
to Occam’s razor, we should deduce that there is only one box behind the tree.
Is this an ad hoc rule of thumb? Or is there a convincing reason for believing
there is most likely one box? Perhaps your intuition likes the argument ‘well,
it would be a remarkable coincidence for the two boxes to be just the same
height and colour as each other’. If we wish to make artificial intelligences
that interpret data correctly, we must translate this intuitive feeling into a
concrete theory.

Motivations for Occam’s razor

If several explanations are compatible with a set of observations, Occam’s
razor advises us to buy the simplest. This principle is often advocated for one
of two reasons: the first is aesthetic (‘A theory with mathematical beauty is
more likely to be correct than an ugly one that fits some experimental data’
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Figure 28.3. Why Bayesian
inference embodies Occam’s razor.
This figure gives the basic
intuition for why complex models
can turn out to be less probable.
The horizontal axis represents the
space of possible data sets D.
Bayes’ theorem rewards models in
proportion to how much they
predicted the data that occurred.
These predictions are quantified
by a normalized probability
distribution on D. This
probability of the data given
model Hi, P (D |Hi), is called the
evidence for Hi.
A simple model H1 makes only a
limited range of predictions,
shown by P (D |H1); a more
powerful model H2, that has, for
example, more free parameters
than H1, is able to predict a
greater variety of data sets. This
means, however, that H2 does not
predict the data sets in region C1

as strongly as H1. Suppose that
equal prior probabilities have been
assigned to the two models. Then,
if the data set falls in region C1,
the less powerful model H1 will be
the more probable model.

(Paul Dirac)); the second reason is the past empirical success of Occam’s razor.
However there is a different justification for Occam’s razor, namely:

Coherent inference (as embodied by Bayesian probability) auto-
matically embodies Occam’s razor, quantitatively.

It is indeed more probable that there’s one box behind the tree, and we can
compute how much more probable one is than two.

Model comparison and Occam’s razor

We evaluate the plausibility of two alternative theories H1 and H2 in the light
of data D as follows: using Bayes’ theorem, we relate the plausibility of model
H1 given the data, P (H1 |D), to the predictions made by the model about
the data, P (D |H1), and the prior plausibility of H1, P (H1). This gives the
following probability ratio between theory H1 and theory H2:

P (H1 |D)
P (H2 |D)

=
P (H1)
P (H2)

P (D |H1)
P (D |H2)

. (28.1)

The first ratio (P (H1)/P (H2)) on the right-hand side measures how much our
initial beliefs favoured H1 over H2. The second ratio expresses how well the
observed data were predicted by H1, compared to H2.

How does this relate to Occam’s razor, when H1 is a simpler model than
H2? The first ratio (P (H1)/P (H2)) gives us the opportunity, if we wish, to
insert a prior bias in favour of H1 on aesthetic grounds, or on the basis of
experience. This would correspond to the aesthetic and empirical motivations
for Occam’s razor mentioned earlier. But such a prior bias is not necessary:
the second ratio, the data-dependent factor, embodies Occam’s razor auto-
matically. Simple models tend to make precise predictions. Complex models,
by their nature, are capable of making a greater variety of predictions (figure
28.3). So if H2 is a more complex model, it must spread its predictive proba-
bility P (D |H2) more thinly over the data space than H1. Thus, in the case
where the data are compatible with both theories, the simpler H1 will turn out
more probable than H2, without our having to express any subjective dislike
for complex models. Our subjective prior just needs to assign equal prior prob-
abilities to the possibilities of simplicity and complexity. Probability theory
then allows the observed data to express their opinion.

Let us turn to a simple example. Here is a sequence of numbers:

−1, 3, 7, 11.

The task is to predict the next two numbers, and infer the underlying process
that gave rise to this sequence. A popular answer to this question is the
prediction ‘15, 19’, with the explanation ‘add 4 to the previous number’.

What about the alternative answer ‘−19.9, 1043.8’ with the underlying
rule being: ‘get the next number from the previous number, x, by evaluating
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−x3/11 + 9/11x2 + 23/11’? I assume that this prediction seems rather less
plausible. But the second rule fits the data (−1, 3, 7, 11) just as well as the
rule ‘add 4’. So why should we find it less plausible? Let us give labels to the
two general theories:

Ha – the sequence is an arithmetic progression, ‘add n’, where n is an integer.

Hc – the sequence is generated by a cubic function of the form x → cx3 +
dx2 + e, where c, d and e are fractions.

One reason for finding the second explanation, Hc, less plausible, might be
that arithmetic progressions are more frequently encountered than cubic func-
tions. This would put a bias in the prior probability ratio P (Ha)/P (Hc) in
equation (28.1). But let us give the two theories equal prior probabilities, and
concentrate on what the data have to say. How well did each theory predict
the data?

To obtain P (D |Ha) we must specify the probability distribution that each
model assigns to its parameters. First, Ha depends on the added integer n,
and the first number in the sequence. Let us say that these numbers could
each have been anywhere between −50 and 50. Then since only the pair of
values {n=4, first number= − 1} give rise to the observed data D = (−1, 3,
7, 11), the probability of the data, given Ha, is:

P (D |Ha) =
1

101
1

101
= 0.00010. (28.2)

To evaluate P (D |Hc), we must similarly say what values the fractions c, d
and e might take on. [I choose to represent these numbers as fractions rather
than real numbers because if we used real numbers, the model would assign,
relative to Ha, an infinitesimal probability to D. Real parameters are the
norm however, and are assumed in the rest of this chapter.] A reasonable
prior might state that for each fraction the numerator could be any number
between −50 and 50, and the denominator is any number between 1 and 50.
As for the initial value in the sequence, let us leave its probability distribution
the same as in Ha. There are four ways of expressing the fraction c = −1/11 =
−2/22 = −3/33 = −4/44 under this prior, and similarly there are four and two
possible solutions for d and e, respectively. So the probability of the observed
data, given Hc, is found to be:

P (D |Hc) =
(

1
101

)(
4

101
1
50

)(
4

101
1
50

)(
2

101
1
50

)

= 0.0000000000025 = 2.5 × 10−12. (28.3)

Thus comparing P (D |Hc) with P (D |Ha) = 0.00010, even if our prior prob-
abilities for Ha and Hc are equal, the odds, P (D |Ha) : P (D |Hc), in favour
of Ha over Hc, given the sequence D = (−1, 3, 7, 11), are about forty million
to one. !

This answer depends on several subjective assumptions; in particular, the
probability assigned to the free parameters n, c, d, e of the theories. Bayesians
make no apologies for this: there is no such thing as inference or prediction
without assumptions. However, the quantitative details of the prior proba-
bilities have no effect on the qualitative Occam’s razor effect; the complex
theory Hc always suffers an ‘Occam factor’ because it has more parameters,
and so can predict a greater variety of data sets (figure 28.3). This was only
a small example, and there were only four data points; as we move to larger
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Figure 28.4. Where Bayesian
inference fits into the data
modelling process.
This figure illustrates an
abstraction of the part of the
scientific process in which data
are collected and modelled. In
particular, this figure applies to
pattern classification, learning,
interpolation, etc. The two
double-framed boxes denote the
two steps which involve inference.
It is only in those two steps that
Bayes’ theorem can be used.
Bayes does not tell you how to
invent models, for example.
The first box, ‘fitting each model
to the data’, is the task of
inferring what the model
parameters might be given the
model and the data. Bayesian
methods may be used to find the
most probable parameter values,
and error bars on those
parameters. The result of
applying Bayesian methods to this
problem is often little different
from the answers given by
orthodox statistics.
The second inference task, model
comparison in the light of the
data, is where Bayesian methods
are in a class of their own. This
second inference problem requires
a quantitative Occam’s razor to
penalize over-complex models.
Bayesian methods can assign
objective preferences to the
alternative models in a way that
automatically embodies Occam’s
razor.

and more sophisticated problems the magnitude of the Occam factors typi-
cally increases, and the degree to which our inferences are influenced by the
quantitative details of our subjective assumptions becomes smaller.

Bayesian methods and data analysis

Let us now relate the discussion above to real problems in data analysis.
There are countless problems in science, statistics and technology which

require that, given a limited data set, preferences be assigned to alternative
models of differing complexities. For example, two alternative hypotheses
accounting for planetary motion are Mr. Inquisition’s geocentric model based
on ‘epicycles’, and Mr. Copernicus’s simpler model of the solar system with
the sun at the centre. The epicyclic model fits data on planetary motion at
least as well as the Copernican model, but does so using more parameters.
Coincidentally for Mr. Inquisition, two of the extra epicyclic parameters for
every planet are found to be identical to the period and radius of the sun’s
‘cycle around the earth’. Intuitively we find Mr. Copernicus’s theory more
probable.

The mechanism of the Bayesian razor: the evidence and the Occam factor

Two levels of inference can often be distinguished in the process of data mod-
elling. At the first level of inference, we assume that a particular model is true,
and we fit that model to the data, i.e., we infer what values its free param-
eters should plausibly take, given the data. The results of this inference are
often summarized by the most probable parameter values, and error bars on
those parameters. This analysis is repeated for each model. The second level
of inference is the task of model comparison. Here we wish to compare the
models in the light of the data, and assign some sort of preference or ranking
to the alternatives.

Note that both levels of inference are distinct from decision theory. The goal
of inference is, given a defined hypothesis space and a particular data set, to
assign probabilities to hypotheses. Decision theory typically chooses between
alternative actions on the basis of these probabilities so as to minimize the
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expectation of a ‘loss function’. This chapter concerns inference alone and no
loss functions are involved. When we discuss model comparison, this should
not be construed as implying model choice. Ideal Bayesian predictions do not
involve choice between models; rather, predictions are made by summing over
all the alternative models, weighted by their probabilities.

Bayesian methods are able consistently and quantitatively to solve both
the inference tasks. There is a popular myth that states that Bayesian meth-
ods differ from orthodox statistical methods only by the inclusion of subjective
priors, which are difficult to assign, and which usually don’t make much dif-
ference to the conclusions. It is true that, at the first level of inference, a
Bayesian’s results will often differ little from the outcome of an orthodox at-
tack. What is not widely appreciated is how a Bayesian performs the second
level of inference; this chapter will therefore focus on Bayesian model compar-
ison.

Model comparison is a difficult task because it is not possible simply to
choose the model that fits the data best: more complex models can always
fit the data better, so the maximum likelihood model choice would lead us
inevitably to implausible, over-parameterized models, which generalize poorly.
Occam’s razor is needed.

Let us write down Bayes’ theorem for the two levels of inference described
above, so as to see explicitly how Bayesian model comparison works. Each
model Hi is assumed to have a vector of parameters w. A model is defined
by a collection of probability distributions: a ‘prior’ distribution P (w |Hi),
which states what values the model’s parameters might be expected to take;
and a set of conditional distributions, one for each value of w, defining the
predictions P (D |w,Hi) that the model makes about the data D.

1. Model fitting. At the first level of inference, we assume that one model,
the ith, say, is true, and we infer what the model’s parameters w might
be, given the data D. Using Bayes’ theorem, the posterior probability
of the parameters w is:

P (w |D,Hi) =
P (D |w,Hi)P (w |Hi)

P (D |Hi)
, (28.4)

that is,

Posterior =
Likelihood × Prior

Evidence
.

The normalizing constant P (D |Hi) is commonly ignored since it is irrel-
evant to the first level of inference, i.e., the inference of w; but it becomes
important in the second level of inference, and we name it the evidence
for Hi. It is common practice to use gradient-based methods to find the
maximum of the posterior, which defines the most probable value for the
parameters, wMP; it is then usual to summarize the posterior distribution
by the value of wMP, and error bars or confidence intervals on these best-
fit parameters. Error bars can be obtained from the curvature of the pos-
terior; evaluating the Hessian at wMP, A = −∇∇ lnP (w |D,Hi)|wMP

,
and Taylor-expanding the log posterior probability with ∆w = w−wMP:

P (w |D,Hi) % P (wMP |D,Hi) exp
(
−1/2∆wTA∆w

)
, (28.5)

we see that the posterior can be locally approximated as a Gaussian
with covariance matrix (equivalent to error bars) A−1. [Whether this
approximation is good or not will depend on the problem we are solv-
ing. Indeed, the maximum and mean of the posterior distribution have
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σw|D
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P (w |Hi)

P (w |D,Hi)

Figure 28.5. The Occam factor.
This figure shows the quantities
that determine the Occam factor
for a hypothesis Hi having a
single parameter w. The prior
distribution (solid line) for the
parameter has width σw. The
posterior distribution (dashed
line) has a single peak at wMP

with characteristic width σw|D.
The Occam factor is

σw|DP (wMP |Hi) =
σw|D

σw
.

no fundamental status in Bayesian inference – they both change under
nonlinear reparameterizations. Maximization of a posterior probabil-
ity is useful only if an approximation like equation (28.5) gives a good
summary of the distribution.]

2. Model comparison. At the second level of inference, we wish to infer
which model is most plausible given the data. The posterior probability
of each model is:

P (Hi |D) ∝ P (D |Hi)P (Hi). (28.6)

Notice that the data-dependent term P (D |Hi) is the evidence for Hi,
which appeared as the normalizing constant in (28.4). The second term,
P (Hi), is the subjective prior over our hypothesis space, which expresses
how plausible we thought the alternative models were before the data
arrived. Assuming that we choose to assign equal priors P (Hi) to the
alternative models, models Hi are ranked by evaluating the evidence. The
normalizing constant P (D) =

∑
i P (D |Hi)P (Hi) has been omitted from

equation (28.6) because in the data-modelling process we may develop
new models after the data have arrived, when an inadequacy of the first
models is detected, for example. Inference is open ended: we continually
seek more probable models to account for the data we gather.

To repeat the key idea: to rank alternative models Hi, a Bayesian eval-
uates the evidence P (D |Hi). This concept is very general: the ev-
idence can be evaluated for parametric and ‘non-parametric’ models
alike; whatever our data-modelling task, a regression problem, a clas-
sification problem, or a density estimation problem, the evidence is a
transportable quantity for comparing alternative models. In all these
cases the evidence naturally embodies Occam’s razor.

Evaluating the evidence

Let us now study the evidence more closely to gain insight into how the
Bayesian Occam’s razor works. The evidence is the normalizing constant for
equation (28.4):

P (D |Hi) =
∫

P (D |w,Hi)P (w |Hi) dw. (28.7)

For many problems the posterior P (w |D,Hi) ∝ P (D |w,Hi)P (w |Hi) has
a strong peak at the most probable parameters wMP (figure 28.5). Then,
taking for simplicity the one-dimensional case, the evidence can be approx-
imated, using Laplace’s method, by the height of the peak of the integrand
P (D |w,Hi)P (w |Hi) times its width, σw|D:
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P (D |Hi) % P (D |wMP,Hi)︸ ︷︷ ︸ × P (wMP |Hi)σw|D︸ ︷︷ ︸
.

Evidence % Best fit likelihood × Occam factor

(28.8)

Thus the evidence is found by taking the best-fit likelihood that the model
can achieve and multiplying it by an ‘Occam factor’, which is a term with
magnitude less than one that penalizes Hi for having the parameter w.

Interpretation of the Occam factor

The quantity σw|D is the posterior uncertainty in w. Suppose for simplicity
that the prior P (w |Hi) is uniform on some large interval σw, representing the
range of values of w that were possible a priori, according to Hi (figure 28.5).
Then P (wMP |Hi) = 1/σw, and

Occam factor =
σw|D
σw

, (28.9)

i.e., the Occam factor is equal to the ratio of the posterior accessible volume
of Hi’s parameter space to the prior accessible volume, or the factor by which
Hi’s hypothesis space collapses when the data arrive. The model Hi can be
viewed as consisting of a certain number of exclusive submodels, of which only
one survives when the data arrive. The Occam factor is the inverse of that
number. The logarithm of the Occam factor is a measure of the amount of
information we gain about the model’s parameters when the data arrive.

A complex model having many parameters, each of which is free to vary
over a large range σw, will typically be penalized by a stronger Occam factor
than a simpler model. The Occam factor also penalizes models that have to
be finely tuned to fit the data, favouring models for which the required pre-
cision of the parameters σw|D is coarse. The magnitude of the Occam factor
is thus a measure of complexity of the model; it relates to the complexity of
the predictions that the model makes in data space. This depends not only
on the number of parameters in the model, but also on the prior probability
that the model assigns to them. Which model achieves the greatest evidence
is determined by a trade-off between minimizing this natural complexity mea-
sure and minimizing the data misfit. In contrast to alternative measures of
model complexity, the Occam factor for a model is straightforward to evalu-
ate: it simply depends on the error bars on the parameters, which we already
evaluated when fitting the model to the data.

Figure 28.6 displays an entire hypothesis space so as to illustrate the var-
ious probabilities in the analysis. There are three models, H1,H2,H3, which
have equal prior probabilities. Each model has one parameter w (each shown
on a horizontal axis), but assigns a different prior range σW to that parame-
ter. H3 is the most ‘flexible’ or ‘complex’ model, assigning the broadest prior
range. A one-dimensional data space is shown by the vertical axis. Each
model assigns a joint probability distribution P (D,w |Hi) to the data and
the parameters, illustrated by a cloud of dots. These dots represent random
samples from the full probability distribution. The total number of dots in
each of the three model subspaces is the same, because we assigned equal prior
probabilities to the models.

When a particular data set D is received (horizontal line), we infer the pos-
terior distribution of w for a model (H3, say) by reading out the density along
that horizontal line, and normalizing. The posterior probability P (w |D,H3)
is shown by the dotted curve at the bottom. Also shown is the prior distribu-
tion P (w |H3) (cf. figure 28.5). [In the case of model H1 which is very poorly
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σw

σw|D

P (w |H3)
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Figure 28.6. A hypothesis space
consisting of three exclusive
models, each having one
parameter w, and a
one-dimensional data set D. The
‘data set’ is a single measured
value which differs from the
parameter w by a small amount
of additive noise. Typical samples
from the joint distribution
P (D, w,H) are shown by dots.
(N.B., these are not data points.)
The observed ‘data set’ is a single
particular value for D shown by
the dashed horizontal line. The
dashed curves below show the
posterior probability of w for each
model given this data set (cf.
figure 28.3). The evidence for the
different models is obtained by
marginalizing onto the D axis at
the left-hand side (cf. figure 28.5).

matched to the data, the shape of the posterior distribution will depend on
the details of the tails of the prior P (w |H1) and the likelihood P (D |w,H1);
the curve shown is for the case where the prior falls off more strongly.]

We obtain figure 28.3 by marginalizing the joint distributions P (D,w |Hi)
onto the D axis at the left-hand side. For the data set D shown by the dotted
horizontal line, the evidence P (D |H3) for the more flexible model H3 has
a smaller value than the evidence for H2. This is because H3 placed less
predictive probability (fewer dots) on that line. In terms of the distributions
over w, model H3 has smaller evidence because the Occam factor σw|D/σw is
smaller for H3 than for H2. The simplest model H1 has the smallest evidence
of all, because the best fit that it can achieve to the data D is very poor.
Given this data set, the most probable model is H2.

Occam factor for several parameters

If the posterior is well approximated by a Gaussian, then the Occam factor
is obtained from the determinant of the corresponding covariance matrix (cf.
equation (28.8) and Chapter 27):

P (D |Hi) % P (D |wMP,Hi)︸ ︷︷ ︸× P (wMP |Hi) det−
1
2 (A/2π)︸ ︷︷ ︸,

Evidence % Best fit likelihood × Occam factor

(28.10)

where A = −∇∇ ln P (w |D,Hi), the Hessian which we evaluated when we
calculated the error bars on wMP (equation 28.5 and Chapter 27). As the
amount of data collected increases, this Gaussian approximation is expected
to become increasingly accurate.

In summary, Bayesian model comparison is a simple extension of maximum
likelihood model selection: the evidence is obtained by multiplying the best-fit
likelihood by the Occam factor.

To evaluate the Occam factor we need only the Hessian A, if the Gaussian
approximation is good. Thus the Bayesian method of model comparison by
evaluating the evidence is no more computationally demanding than the task
of finding for each model the best-fit parameters and their error bars.
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28.2 Example

Let’s return to the example that opened this chapter. Are there one or two
boxes behind the tree in figure 28.1? Why do coincidences make us suspicious?

Let’s assume the image of the area round the trunk and box has a size
of 50 pixels, that the trunk is 10 pixels wide, and that 16 different colours of
boxes can be distinguished. The theory H1 that says there is one box near
the trunk has four free parameters: three coordinates defining the top three
edges of the box, and one parameter giving the box’s colour. (If boxes could
levitate, there would be five free parameters.)

The theory H2 that says there are two boxes near the trunk has eight free
parameters (twice four), plus a ninth, a binary variable that indicates which
of the two boxes is the closest to the viewer.

1?

or 2?

Figure 28.7. How many boxes are
behind the tree?

What is the evidence for each model? We’ll do H1 first. We need a prior on
the parameters to evaluate the evidence. For convenience, let’s work in pixels.
Let’s assign a separable prior to the horizontal location of the box, its width,
its height, and its colour. The height could have any of, say, 20 distinguishable
values, so could the width, and so could the location. The colour could have
any of 16 values. We’ll put uniform priors over these variables. We’ll ignore
all the parameters associated with other objects in the image, since they don’t
come into the model comparison between H1 and H2. The evidence is

P (D |H1) =
1
20

1
20

1
20

1
16

(28.11)

since only one setting of the parameters fits the data, and it predicts the data
perfectly.

As for model H2, six of its nine parameters are well-determined, and three
of them are partly-constrained by the data. If the left-hand box is furthest
away, for example, then its width is at least 8 pixels and at most 30; if it’s
the closer of the two boxes, then its width is between 8 and 18 pixels. (I’m
assuming here that the visible portion of the left-hand box is about 8 pixels
wide.) To get the evidence we need to sum up the prior probabilities of all
viable hypotheses. To do an exact calculation, we need to be more specific
about the data and the priors, but let’s just get the ballpark answer, assuming
that the two unconstrained real variables have half their values available, and
that the binary variable is completely undetermined. (As an exercise, you can
make an explicit model and work out the exact answer.)

P (D |H2) %
1
20

1
20

10
20

1
16

1
20

1
20

10
20

1
16

2
2
. (28.12)

Thus the posterior probability ratio is (assuming equal prior probability):

P (D |H1)P (H1)
P (D |H2)P (H2)

=
1

1
20

10
20

10
20

1
16

(28.13)

= 20 × 2 × 2 × 16 % 1000/1. (28.14)

So the data are roughly 1000 to 1 in favour of the simpler hypothesis. The
four factors in (28.13) can be interpreted in terms of Occam factors. The more
complex model has four extra parameters for sizes and colours – three for sizes,
and one for colour. It has to pay two big Occam factors (1/20 and 1/16) for the
highly suspicious coincidences that the two box heights match exactly and the
two colours match exactly; and it also pays two lesser Occam factors for the
two lesser coincidences that both boxes happened to have one of their edges
conveniently hidden behind a tree or behind each other.
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H1: L(H1) L(w∗
(1) |H1) L(D |w∗

(1),H1)

H2: L(H2) L(w∗
(2) |H2) L(D |w∗

(2),H2)

H3: L(H3) L(w∗
(3) |H3) L(D |w∗

(3),H3)

Figure 28.8. A popular view of
model comparison by minimum
description length. Each model
Hi communicates the data D by
sending the identity of the model,
sending the best-fit parameters of
the model w∗, then sending the
data relative to those parameters.
As we proceed to more complex
models the length of the
parameter message increases. On
the other hand, the length of the
data message decreases, because a
complex model is able to fit the
data better, making the residuals
smaller. In this example the
intermediate model H2 achieves
the optimum trade-off between
these two trends.

28.3 Minimum description length (MDL)

A complementary view of Bayesian model comparison is obtained by replacing
probabilities of events by the lengths in bits of messages that communicate
the events without loss to a receiver. Message lengths L(x) correspond to a
probabilistic model over events x via the relations:

P (x) = 2−L(x), L(x) = − log2 P (x). (28.15)

The MDL principle (Wallace and Boulton, 1968) states that one should
prefer models that can communicate the data in the smallest number of bits.
Consider a two-part message that states which model, H, is to be used, and
then communicates the data D within that model, to some pre-arranged pre-
cision δD. This produces a message of length L(D,H) = L(H) + L(D |H).
The lengths L(H) for different H define an implicit prior P (H) over the alter-
native models. Similarly L(D |H) corresponds to a density P (D |H). Thus, a
procedure for assigning message lengths can be mapped onto posterior prob-
abilities:

L(D,H) = − log P (H) − log (P (D |H)δD) (28.16)
= − log P (H |D) + const. (28.17)

In principle, then, MDL can always be interpreted as Bayesian model compar-
ison and vice versa. However, this simple discussion has not addressed how
one would actually evaluate the key data-dependent term L(D |H), which
corresponds to the evidence for H. Often, this message is imagined as being
subdivided into a parameter block and a data block (figure 28.8). Models with
a small number of parameters have only a short parameter block but do not
fit the data well, and so the data message (a list of large residuals) is long. As
the number of parameters increases, the parameter block lengthens, and the
data message becomes shorter. There is an optimum model complexity (H2

in the figure) for which the sum is minimized.
This picture glosses over some subtle issues. We have not specified the

precision to which the parameters w should be sent. This precision has an
important effect (unlike the precision δD to which real-valued data D are
sent, which, assuming δD is small relative to the noise level, just introduces
an additive constant). As we decrease the precision to which w is sent, the
parameter message shortens, but the data message typically lengthens because
the truncated parameters do not match the data so well. There is a non-trivial
optimal precision. In simple Gaussian cases it is possible to solve for this
optimal precision (Wallace and Freeman, 1987), and it is closely related to the
posterior error bars on the parameters, A−1, where A = −∇∇ ln P (w |D,H).
It turns out that the optimal parameter message length is virtually identical to
the log of the Occam factor in equation (28.10). (The random element involved
in parameter truncation means that the encoding is slightly sub-optimal.)

With care, therefore, one can replicate Bayesian results in MDL terms.
Although some of the earliest work on complex model comparison involved
the MDL framework (Patrick and Wallace, 1982), MDL has no apparent ad-
vantages over the direct probabilistic approach.
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MDL does have its uses as a pedagogical tool. The description length
concept is useful for motivating prior probability distributions. Also, different
ways of breaking down the task of communicating data using a model can give
helpful insights into the modelling process, as will now be illustrated.

On-line learning and cross-validation.

In cases where the data consist of a sequence of points D = t(1), t(2), . . . , t(N),
the log evidence can be decomposed as a sum of ‘on-line’ predictive perfor-
mances:

log P (D |H) = log P (t(1) |H) + log P (t(2) | t(1),H)
+ log P (t(3) | t(1), t(2),H) + · · · + log P (t(N) | t(1) . . . t(N−1),H). (28.18)

This decomposition can be used to explain the difference between the ev-
idence and ‘leave-one-out cross-validation’ as measures of predictive abil-
ity. Cross-validation examines the average value of just the last term,
log P (t(N) | t(1) . . . t(N−1),H), under random re-orderings of the data. The evi-
dence, on the other hand, sums up how well the model predicted all the data,
starting from scratch.

The ‘bits-back’ encoding method.

Another MDL thought experiment (Hinton and van Camp, 1993) involves in-
corporating random bits into our message. The data are communicated using a
parameter block and a data block. The parameter vector sent is a random sam-
ple from the posterior, P (w |D,H) = P (D |w,H)P (w |H)/P (D |H). This
sample w is sent to an arbitrary small granularity δw using a message length
L(w |H) = − log[P (w |H)δw]. The data are encoded relative to w with a
message of length L(D |w,H) = − log[P (D |w,H)δD]. Once the data mes-
sage has been received, the random bits used to generate the sample w from
the posterior can be deduced by the receiver. The number of bits so recov-
ered is −log[P (w |D,H)δw]. These recovered bits need not count towards the
message length, since we might use some other optimally-encoded message as
a random bit string, thereby communicating that message at the same time.
The net description cost is therefore:

L(w |H) + L(D |w,H) − ‘Bits back’ = − log
P (w |H)P (D |w,H) δD

P (w |D,H)
= − log P (D |H) − log δD. (28.19)

Thus this thought experiment has yielded the optimal description length. Bits-
back encoding has been turned into a practical compression method for data
modelled with latent variable models by Frey (1998).

Further reading

Bayesian methods are introduced and contrasted with sampling-theory statis-
tics in (Jaynes, 1983; Gull, 1988; Loredo, 1990). The Bayesian Occam’s razor
is demonstrated on model problems in (Gull, 1988; MacKay, 1992a). Useful
textbooks are (Box and Tiao, 1973; Berger, 1985).

One debate worth understanding is the question of whether it’s permis-
sible to use improper priors in Bayesian inference (Dawid et al., 1996). If
we want to do model comparison (as discussed in this chapter), it is essen-
tial to use proper priors – otherwise the evidences and the Occam factors are
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meaningless. Only when one has no intention to do model comparison may
it be safe to use improper priors, and even in such cases there are pitfalls, as
Dawid et al. explain. I would agree with their advice to always use proper
priors, tempered by an encouragement to be smart when making calculations,
recognizing opportunities for approximation.

28.4 Exercises

Exercise 28.1.[3 ] Random variables x come independently from a probability
distribution P (x). According to model H0, P (x) is a uniform distribu-
tion

P (x |H0) =
1
2

x ∈ (−1, 1). (28.20)

According to model H1, P (x) is a nonuniform distribution with an un-

x−1 1

P (x |H0)

−1 1 x

P (x |m=−0.4,H1)known parameter m ∈ (−1, 1):

P (x |m,H1) =
1
2
(1 + mx) x ∈ (−1, 1). (28.21)

Given the data D = {0.3, 0.5, 0.7, 0.8, 0.9}, what is the evidence for H0

and H1?

Exercise 28.2.[3 ] Datapoints (x, t) are believed to come from a straight line.
The experimenter chooses x, and t is Gaussian-distributed about

y = w0 + w1x (28.22)

with variance σ2
ν . According to model H1, the straight line is horizontal, x

y = w0 + w1x

so w1 = 0. According to model H2, w1 is a parameter with prior distribu-
tion Normal(0, 1). Both models assign a prior distribution Normal(0, 1)
to w0. Given the data set D = {(−8, 8), (−2, 10), (6, 11)}, and assuming
the noise level is σν = 1, what is the evidence for each model?

Exercise 28.3.[3 ] A six-sided die is rolled 30 times and the numbers of times
each face came up were F = {3, 3, 2, 2, 9, 11}. What is the probability
that the die is a perfectly fair die (‘H0’), assuming the alternative hy-
pothesis H1 says that the die has a biased distribution p, and the prior
density for p is uniform over the simplex pi ≥ 0,

∑
i pi = 1?

Solve this problem two ways: exactly, using the helpful Dirichlet formu-
lae (23.30, 23.31), and approximately, using Laplace’s method. Notice
that your choice of basis for the Laplace approximation is important.
See MacKay (1998a) for discussion of this exercise.

Exercise 28.4.[3 ] The influence of race on the imposition of the death penalty
for murder in America has been much studied. The following three-way
table classifies 326 cases in which the defendant was convicted of mur-
der. The three variables are the defendant’s race, the victim’s race, and
whether the defendant was sentenced to death. (Data from M. Radelet,
‘Racial characteristics and imposition of the death penalty,’ American
Sociological Review, 46 (1981), pp. 918-927.)

White defendant Black defendant

Death penalty Death penalty
Yes No Yes No

White victim 19 132 White victim 11 52
Black victim 0 9 Black victim 6 97
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It seems that the death penalty was applied much more often when the
victim was white then when the victim was black. When the victim was
white 14% of defendants got the death penalty, but when the victim was
black 6% of defendants got the death penalty. [Incidentally, these data
provide an example of a phenomenon known as Simpson’s paradox: a
higher fraction of white defendants are sentenced to death overall, but
in cases involving black victims a higher fraction of black defendants are
sentenced to death and in cases involving white victims a higher fraction
of black defendants are sentenced to death.]

v m

d

H11

v m

d

H11

v m

d

H10

v m

d

H10

v m

d

H01

v m

d

H01

v m

d

H00

v m

d

H00

Figure 28.9. Four hypotheses
concerning the dependence of the
imposition of the death penalty d
on the race of the victim v and
the race of the convicted murderer
m. H01, for example, asserts that
the probability of receiving the
death penalty does depend on the
murderer’s race, but not on the
victim’s.

Quantify the evidence for the four alternative hypotheses shown in fig-
ure 28.9. I should mention that I don’t believe any of these models is
adequate: several additional variables are important in murder cases,
such as whether the victim and murderer knew each other, whether the
murder was premeditated, and whether the defendant had a prior crim-
inal record; none of these variables is included in the table. So this is
an academic exercise in model comparison rather than a serious study
of racial bias in the state of Florida.

The hypotheses are shown as graphical models, with arrows showing
dependencies between the variables v (victim race), m (murderer race),
and d (whether death penalty given). Model H00 has only one free
parameter, the probability of receiving the death penalty; model H11 has
four such parameters, one for each state of the variables v and m. Assign
uniform priors to these variables. How sensitive are the conclusions to
the choice of prior?


