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Abstract
Several hundred Tor exit relays together push more than
1 GiB/s of network traffic. However, it is easy for exit
relays to snoop and tamper with anonymised network
traffic and as all relays are run by independent volun-
teers, not all of them are innocuous. In this paper, we
seek to expose malicious exit relays and document their
actions. First, we monitored the Tor network after devel-
oping a fast and modular exit relay scanner. We imple-
mented several scanning modules for detecting common
attacks and used them to probe all exit relays over a pe-
riod of four months. We discovered numerous malicious
exit relays engaging in different attacks. To reduce the
attack surface users are exposed to, we further discuss
the design and implementation of a browser extension
patch which fetches and compares suspicious X.509 cer-
tificates over independent Tor circuits. Our work makes
it possible to continuously monitor Tor exit relays. We
are able to detect and thwart many man-in-the-middle at-
tacks which makes the network safer for its users. All
our code is available under a free license.

1 Introduction

As of January 2014, nearly 1,000 exit relays [24] dis-
tributed all around the globe serve as part of the Tor
anonymity network [7]. As illustrated in Figure 1, the
purpose of these relays is to establish a bridge between
the Tor network and the “open” Internet. A user’s Tor
circuits, which are encrypted tunnels, terminate at exit
relays and from there, the user’s traffic proceeds to travel
over the open Internet to its final destination. Since exit
relays can see traffic as it is sent by a Tor user, their
role is particularly sensitive compared to entry guards
and middle relays; especially because traffic frequently
lacks end-to-end encryption.

By design, exit relays act as a “man-in-the-middle”
(MitM) in between a user and her destination. This

renders it possible for exit relay operators to run vari-
ous MitM attacks such as traffic sniffing, DNS poison-
ing, and SSL-based attacks such as HTTPS MitM and
sslstrip [19]. An additional benefit for attackers is that
exit relays can be set up quickly and anonymously, mak-
ing it very difficult to trace attacks back to their origin.
While it is possible for relay operators to specify con-
tact information such as an email address1, this is op-
tional. As of January 2014, only 56% out of all 4,962
relays publish contact information. Even fewer relays
have valid contact information.

To thwart a number of popular attacks, Tor-
Browser [23]—the Tor Project’s modified version
of Firefox—ships with extensions such as HTTPS-
Everywhere [8] and NoScript [14]. While HTTPS-
Everywhere provides rules to rewrite HTTP traffic to
HTTPS traffic, NoScript attempts to prevent many script-
based attacks. However, there is little users can do if
web sites implement poor security such as the lack of
site-wide TLS, session cookies being sent in the clear, or
using weak cipher suites in their web server configura-
tion. Often, such bad practices enable attackers to spy on
users’ traffic or, even worse, hijack accounts. Besides,
TorBrowser cannot protect against attacks targeting pro-
tocols such as SSH.

All these attacks are not just of theoretical nature. In
2007, a security researcher published 100 POP3 govern-
ment credentials he captured by sniffing traffic on a set
of exit relays under his control [22]; supposedly to show
the need for end-to-end encryption when using Tor. In
Section 2, we will discuss additional attacks which were
found in the wild.

1.1 What Happens to Bad Exits?
The Tor Project has a way to prevent clients from se-
lecting bad exit relays as the last hop in their three-hop

1Contact information can be useful to get in touch with relay oper-
ators, e.g., if they misconfigured their relay.
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circuits. After a suspected relay is communicated to the
project, the reported attack is first reproduced. If the at-
tack can be verified, a subset of two (out of all nine) di-
rectory authority operators manually blacklist the relay
using Tor’s AuthDirBadExit configuration option. Every
hour, the directory authorities vote on the network con-
sensus which is a signed list of all relays, the network
is comprised of. Among other information, the consen-
sus includes the BadExit flag. As long as the majority
of the authorities responsible for the BadExit flag, i.e.,
two out of two, agree on the flag being set for a partic-
ular relay, the next network consensus will label the re-
spective relay as BadExit. After the consensus was then
signed by a sufficient number of directory authorities, it
propagates through the network and is eventually used
by all Tor clients after a maximum of three hours. From
then on, clients will no longer select relays labelled as
BadExit as the last hop in their circuits. Note that this
does not mean that BadExit relays become effectively
useless. They keep getting selected by clients as their
entry guards and middle relays. All the malicious relays
we discovered were assigned the BadExit flag.

Note that the BadExit flag is not only given to relays
which are proven to be malicious. It is also assigned to
relays which are misconfigured or are otherwise unable
to fulfil their duty of providing unfiltered Internet access.
A frequent cause of misconfiguration is the use of third-
party DNS resolvers which block certain web site cate-
gories.

Apart from the BadExit flag, directory authorities can
blacklist relays by disabling its Valid flag which prevents
clients from selecting the relay for any hop in its circuit.
This option can be useful to disable relays running a bro-
ken version of Tor or are suspected to engage in end-to-
end correlation attacks.

1.2 Contributions
The three main contributions of this paper are as follows.

• We discuss the design and implementation of ex-
itmap; a flexible and fast exit relay scanner which is
able to detect several popular MitM attacks.

• Using exitmap, we monitored the Tor network over
a period of four months. We analyse the attacks we
discovered in the wild during that time period.

• We propose the design and prototype of a browser
extension patch which fetches and compares X.509
certificates over diverging Tor circuits. That allows
our patch to detect MitM attacks against HTTPS.

The remainder of this paper is structured as follows.
Section 2 begins by giving an overview of related work.
It is followed by Section 3 which discusses the design

Tor client

Destination

Exit relay

Entry guard

Middle relay

Tor
network

Encrypted by Tor
Not encrypted by Tor

Figure 1: The structure of a three-hop Tor circuit. Exit
relays constitute the bridge between encrypted circuits
and the open Internet. As a result, exit relay opera-
tors can see—and tamper with—the anonymised traffic
of users.

and implementation of exitmap. Section 4 then presents
the attacks we discovered in the wild. Next, Section 5
proposes the design and implementation of a browser ex-
tension patch which can protect against HTTPS MitM
attacks. Finally, Section 6 concludes this paper.

2 Related Work

While MitM attacks have generally received consider-
able attention in the literature [12, 30], their occurrence
in the Tor network remains largely unexplored. This
is unfortunate as the Tor network enables the study of
real-world MitM attacks which are rare and poorly doc-
umented outside the Tor network.

In 2006, Perry began developing the framework
“Snakes on a Tor” (SoaT) [25]. SoaT is a Tor network
scanner whose purpose—similar to our work—is to de-
tect misbehaving exit relays. Decoy content is first
fetched over Tor, then over a direct Internet connection,
and finally compared. Over time, SoaT was extended
with support for HTTP, HTTPS, SSH and several other
protocols. However, SoaT is no longer maintained and
makes use of deprecated libraries. Compared to SoaT,
our design is more flexible and significantly faster.

Similar to SoaT, Marlinspike implemented tortun-
nel [20]. The tool exposes a local SOCKS interface
which accepts connections from arbitrary applications.
Incoming data is then sent over exit relays using one-hop
circuits. By default, exitmap does not use one-hop cir-
cuits as that could be detected by attackers which could
then act innocuously.

A first attempt to detect malicious exit relays was
made in 2008 by McCoy et al. [21]. The authors estab-
lished decoy connections to servers under their control.
They further controlled the authoritative DNS server re-
sponsible for the decoy hosts’ domain names. As long as
an attacker on an exit relay sniffed network traffic with
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reverse DNS lookups being enabled, the authors were
able to map reverse lookups to exit relays by monitor-
ing the authoritative DNS server’s traffic. Using that side
channel, McCoy et al. were able to find one exit re-
lay sniffing POP3 traffic at port 110. However, attack-
ers could avoid that side channel by disabling reverse
lookups. The popular tool tcpdump implements the com-
mand line switch -n for that exact purpose.

In 2011, Chakravarty et al. [3] attempted to detect exit
relays sniffing Tor users’ traffic by systematically trans-
mitting decoy credentials over all active exit relays. Over
a period of ten months, the authors uncovered ten relays
engaging in traffic snooping. Chakravarty et al. could
verify that the operators were sniffing exit traffic because
they were later found to have logged in using the snooped
credentials. While the work of Chakravarty et al. rep-
resents an important first step towards monitoring the
Tor network, their technique only focused on SMTP and
IMAP. At the time of writing, only 20 out of all ∼1,000
exit relays allow exiting to port 25. HTTP appears to be
significantly more popular [13, 21]. Also, similar to Mc-
Coy et al., the authors only focused on traffic snooping
attacks which are passive. Active attacks remain entirely
unexplored until today.

The Tor Project used to maintain a web page doc-
umenting misbehaving relays which were assigned the
BadExit flag [15]. As of January 2014, this page lists 35
exit relays which were discovered in between April 2010
and July 2013. Note that not all of these relays engaged
in attacks; almost half of them ran misconfigured anti
virus scanners or used broken exit policies2.

Since Chakravarty et al., no systematic study to spot
malicious exits was conducted. Only some isolated anec-
dotal evidence emerged [28]. Our work is the first to give
a comprehensive overview of active attacks. We further
publish our code under a free license3. By doing so,
we enable and encourage continuous and crowd-sourced
measurements rather than one-time scans.

3 Probing Exit Relays

We now discuss the design and implementation of ex-
itmap which is a lightweight Python-based exit relay
scanner. Its purpose is to create custom circuits to exit
relays which are then probed by modules which estab-
lish decoy connections to various destinations. We seek
to provoke exit relays to tamper with our connections,
thus revealing their malicious intent. By doing so, we

2An exit relay’s exit policy determines to which addresses and ports
the relay forwards traffic to. Often, relay operators choose to not for-
ward traffic to well-known file sharing ports in order to avoid copyright
infringement.

3See: http://www.cs.kau.se/philwint/spoiled_onions.
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Figure 2: The design of exitmap. Our scanner invokes a
Tor process and uses the library Stem to control it. Us-
ing Stem, circuits are created “manually” and attached
to decoy connections which are initiated by our probing
modules.

hope to discover and remove all “spoiled onions” which
might be part of the Tor network.

We will also show that our scanner’s modular de-
sign enables quick prototyping of new scanning modules.
Also, its event-driven architecture makes it possible to
scan the entire Tor network within a matter of only sec-
onds while at the same time sparing its resources.

3.1 The Design of exitmap

The schematic design of our scanner is illustrated in Fig-
ure 2. Our tool is run on a single machine and requires
the Python library Stem [26]. Stem implements the Tor
control protocol [27] and we use it to initiate and close
circuits, attach streams to circuits as well as to parse the
network consensus. Upon starting exitmap, it first in-
vokes a local Tor process which proceeds by fetching the
newest network consensus in order to know which exit
relays are currently online.

Next, our tool is fed with a set of exit relays. This
set can consist of a single relay, all exit relays in a given
country, or the set of all Tor exit relays. Random permu-
tation is then performed on the set so that repeated scans
do not probe exit relays in the same order. This is useful
while developing and debugging new scanning modules
as it equally distributes the load over all selected exit re-
lays.

Once exitmap knows which exit relays it has to probe,
it initiates circuits which use the respective exit relays
as last hop. All circuits are created asynchronously in
the background. Once a circuit to an exit relay is estab-
lished, Tor informs exitmap about the circuit by sending
an asynchronous circuit event over the control connec-
tion. Upon receiving the notification about a success-
fully created circuit, exitmap invokes the desired prob-
ing module which then proceeds by establishing a con-
nection to a decoy destination (see § 3.3). Tor creates
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stream events for new connections to the SOCKS port
which are also sent to exitmap. At this point, we at-
tach the stream of a probing module to the respective
circuit. Note that stream-to-circuit attaching is typically
done by Tor. In order to have control over this action,
our scanner invokes Tor with the configuration option
__LeaveStreamsUnattached which instructs Tor to leave
streams unattached.

For performance reasons, Tor builds circuits preemp-
tively, i.e., a number of circuits are kept ready even if
there is no data to be sent yet. Since we want full
control over all circuits, we prevent Tor from creating
circuits preemptively by using the configuration option
__DisablePredictedCircuits.

Probing modules can either be standalone processes
or Python modules. Processes are invoked over the
torsocks wrapper [29] which hijacks system calls such
as socket(), connect(), and gethostbyname() in or-
der to redirect them to Tor’s SOCKS port. We used
standalone processes for our HTTPS and SSH modules.
In addition, probing modules can be implemented in
Python. To redirect Python’s networking API over Tor’s
SOCKS port, we extended the SocksiPy module [10]. We
used Python for our sslstrip and DNS modules.

3.2 Performance Hacks

A naive approach to probing exit relays could cause non-
trivial costs for the Tor network; mostly computation-
ally but also in terms of network throughput. We imple-
mented a number of tweaks in order for our scanning to
be as fast and cheap as possible.

First, we expose a configuration option for avoiding
the default of three-hop circuits. Instead, we only use two
hops as illustrated in Figure 3. Tor’s motivation for three
hops is anonymity but since our scanner has no need for
strong anonymity, we only select a static entry relay—
ideally operated by exitmap’s user—which then directly
forwards all traffic to the respective exit relays. We offer
no option to use one-hop circuits as that would make it
possible for exit relays to isolate scanning connections:
A malicious exit relay could decide not to tamper with a
circuit if it originates from a non-Tor machine. Since
we use a static first hop which is operated by us, we
concentrate most of the scanning load on a single ma-
chine which is well-suited to deal with the load. Other
entry and middle relays do not have to “suffer” from
scans. However, note that over time malicious exit relays
are able to correlate scans with relays, thus determining
which relays are used for scans. To avoid this problem,
exitmap’s first hop could be changed periodically and we
hope that by crowd-sourcing our scanner, isolating mid-
dle relays is no longer a viable option for attackers.

Another computational performance tweak can be

exitmap
Destination

Exit relays

Static
relay

Tor
network

"Spoiled" exit
doing MitM

Figure 3: Instead of establishing a full three-hop circuit,
our scanner is able to use a static middle relay; prefer-
ably operated by whoever is running our scanner. By
doing so, we concentrate the load on one machine while
making our scanning activity slightly more obvious.

achieved on Tor’s authentication layer. At the moment,
there are two ways how a circuit handshake can be con-
ducted; either by using the traditional TAP or the newer
NTor handshake. TAP—short for Tor Authentication
Protocol [9]—is based on Diffie-Hellman key agreement
in a multiplicative group. NTor, on the other hand, uses
the more efficient elliptic curve group Curve25519 [2]. A
non-trivial fraction of a relay’s computational load can be
traced back to computationally expensive circuit hand-
shakes. By preferring NTor over TAP, we slightly reduce
the computational load on exit relays. Since NTor super-
sedes TAP and is becoming more and more popular as
Tor clients upgrade, we believe that it is not viable for
attackers to “whitelist” NTor connections.

3.3 Scanning Modules

After discussing the architecture of exitmap, we now
present several probing modules we developed in order
to detect specific attacks. When designing a module, it is
important to consider its indistinguishability from gen-
uine Tor clients. As mentioned above, malicious relay
operators could closely inspect exit traffic (e.g., by exam-
ining the user agent string of browsers) and only attack
connections which appear to be genuine Tor users.

3.3.1 HTTPS

McCoy et al. [21] showed that HTTP is the most popu-
lar protocol in the Tor network, clearly dominating other
protocols such as instant messaging or e-mail4. While
HTTPS lags behind, it is still widely used and unsurpris-
ingly, several exit relays were documented to have tam-
pered with HTTPS connections [15] in the past.

4This is particularly true based on connections but not so much
based on bytes transferred.
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We implemented an HTTPS module which fetches a
decoy destination’s X.509 certificate and extracts its fin-
gerprint. This fingerprint is then compared to the ex-
pected fingerprint which is hard-coded in the module. If
there is a mismatch, an alert is triggered. Originally, we
began by fetching the certificate using the command line
utility gnutls-cli. We later extended the module to send
a TLS client hello packet as it is sent by TorBrowser to
make the scan less distinguishable from what a real Tor
user would send.

Note that an attacker might become suspicious after
observing that a Tor user only fetched an X.509 certifi-
cate without actually browsing the web site. However, at
the point in time an attacker would become suspicious,
we already have what we need; namely the X.509 cer-
tificate. Also, our module could be extended to simulate
simple browsing activity.

3.3.2 sslstrip

Instead of interfering with TLS connections, an attacker
can seek to prevent TLS connections. This is the pur-
pose of the tool sslstrip [19]. The tool achieves this
goal by transparently rewriting HTML documents sent
from the server to the client. In particular, it rewrites
HTTPS links to HTTP links. A secure login form such as
https://login.example.com is subsequently rewritten
to HTTP which can cause a user’s browser to submit her
credentials in the clear. While the HTTP Strict Transport
Security policy [11] prevents sslstrip, it is still an effec-
tive attack against many large-scale web sites with Ya-
hoo! being one of them as of January 2014. From an at-
tacker’s point of view, the benefit of sslstrip is that it is a
comparatively silent attack. Browsers will not show cer-
tificate warnings but vigilant users might notice the ab-
sence of browser-specific TLS indicators such as a green
address bar.

We implemented a probing module which can detect
sslstrip attacks. Our module fetches web sites contain-
ing HTTPS links over unencrypted HTTP. Afterwards,
the module simply verifies whether the fetched HTML
document contains the expected HTTPS links or if they
were “downgraded” to HTTP. After experiments in a lab
setting showed our module to work, we began sslstrip
scans on October 24, 2013.

3.3.3 SSH

The Tor network is also used to transport SSH traffic.
This can easily be done with the help of tools such as
torsocks [29]. Analogous to HTTPS-based attacks, ma-
licious exit relays could run MitM attacks against SSH.
In practice, this is not as easy as targeting HTTPS given
SSH’s “trust on first use” model. As long as the very first

1 function probe( fingerprint, command ) {

2
3 ssh_public_key = "11:22:33:44:55:66:77:88" +

4 "99:00:aa:bb:cc:dd:ee:ff";

5
6 output = command.execute("ssh -v 1.2.3.4");

7
8 if (ssh_public_key not in output) {

9 print("Possible MitM attack by " + fingerprint);

10 }

11 }

Figure 4: Pseudo code illustrating a scanning module
which tests SSH. It establishes an SSH connection to a
given host and verifies if the fingerprint is as expected. If
the observed fingerprint differs, an alert is raised.

connection to an SSH server with a given key was secure,
the public key is then stored by the client and kept as ref-
erence for subsequent connections. That way, SSH is
able to print a warning whenever the server’s public key
is unexpected. As a result, a MitM attack has to target
a client’s very first SSH connection where the server’s
public key is not yet known.

Nevertheless, this practical problem might not stop at-
tackers from attempting to interfere with SSH connec-
tions. Our SSH module, conceptually similar to the
pseudo code shown in Figure 4, makes use of OpenSSH’s
ssh and torsocks to connect to a decoy server. Again,
the server’s key fingerprint is extracted and compared to
the hard-coded fingerprint. However, compared to the
HTTPS module, it is difficult to achieve indistinguisha-
bility over time. After all, a malicious relay operator
could monitor an entire SSH session. If it looks suspi-
cious, e.g., it only fetches the public key, or it lasts only
one second, the attacker could decide to whitelist the des-
tination in the future. Alternatively, we could establish
SSH connections to random hosts on the Internet. This,
however, is often considered undesired scanning activ-
ity and does not constitute good Internet citizenship. In-
stead, we again seek to solve this problem by publishing
our source code and encouraging people to crowdsource
exitmap scanning. Every exitmap user is encouraged to
use her own SSH server as decoy destination. That way,
we can achieve destination diversity without bothering
arbitrary SSH servers on the Internet.

3.3.4 DNS

While the Tor protocol only transports TCP streams,
clients can ask exit relays to do DNS resolution by wrap-
ping domain names in a RELAY_BEGIN cell [6]. This cell is
then sent to the exit relay, once a circuit was established.
In the past, some exit relays were found to inadvertently
censor DNS queries, e.g., by using an OpenDNS config-
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uration which blocks certain domain categories such as
“Pornography” or “Proxy/Anonymiser” [15]. Recall that
while such behaviour is not intentionally malicious, it is
certainly enough to get the BadExit flag assigned.

Our probing module maintains a whitelist of domains
together with their corresponding IP addresses and raises
an alert if the DNS A record of a domain name is un-
expected. This approach works well for sites with a
known set of IP addresses but large sites frequently
employ a diverse—and sometimes geographically load-
balanced—set of IP addresses which is difficult to enu-
merate. Our module probes several domains in the cate-
gories finance, social networking, political activism, and
pornography.

3.4 Ethical Considerations

Due to exitmap’s modular architecture, it can be used for
various unintended—and even unethical—purposes. For
example, modules for web site scraping or online voting
manipulation come to mind. All sites which naively bind
identities to IP addresses might be an attractive target.
While we do not endorse such actions, we point out that
these activities are hard to stop and will continue to hap-
pen and already happen regardless; with or without scan-
ner. If somebody decides to abuse our scanner for such
actions, it will at least spare the Tor network’s resources
more than a naive design. As a result, we believe that by
publishing our code, the benefit to the public outweighs
the damage caused by unethical use.

4 Experimental Results

On September 19th, we ran our first full scan over all
∼950 exit relays which were part of the Tor network at
the time. From then on, we scanned all exit relays several
times a week. Originally, we began our scans while only
armed with our HTTPS module but as time passed, we
added additional modules which allowed us to scan for
additional attacks. In this section, we will discuss the
results we obtained by monitoring the Tor network over
a period of several months.

4.1 Scanning Performance

The performance of our probing modules is illustrated
in Figure 5. The ECDF’s x-axis shows the time it takes
for a module to finish successfully. The y-axis shows the
cumulative fraction of all exit relays. The diagram shows
that all modules are able to scan at least 98% of all Tor
exit relays under 50 seconds.

Our data further shows that for all modules, 84%–88%
of circuit creations succeeded. The remaining circuits
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Figure 5: The performance of our probing modules. The
DNS module is slower because it resolves several do-
main names at once. All other modules can scan at least
98% of all Tor exit relays under 40 seconds.

either timed out or were torn down by the respective exit
relay using a DESTROY cell.

4.2 Malicious Relays
Table 1 contains the 25 malicious and misconfigured exit
relays we found. We discovered the first two relays
“manually” before we had developed exitmap. All the
data illustrated in the table was gathered on the day we
found the respective attack. The columns are, from left
to right:

Fingerprint The first 4 bytes of the relay’s unique 20-
byte SHA-1 fingerprint.

IP addresses All IPv4 addresses or netblocks, the relay
was found to have used over its life time.

Country The country in which the relay resided. The
country was determined with the help of Max-
Mind’s GeoIP lite database.

Bandwidth The advertised bandwidth, the relay was
willing to contribute to the network.

Attack The attack, the relay was running or its configu-
ration problem.

Sampling rate The sampling rate of the attack, i.e., how
many connections were affected.

First active The day, the relay was set up.

Discovery The day, we discovered the relay.

Apart from all the conspicuous HTTPS MitM attacks
which we will discuss later, we exposed two relays run-
ning sslstrip for a short time. The relay 5A2A51D4 in-
jected custom HTML code into HTTP traffic (see Ap-
pendix B). While the injected code seemed harmless

6



Table 1: All 25 malicious and misconfigured exit relays we discovered over a period of 4 months. The data was
collected right after a relay was discovered. We have reason to believe that all relays whose fingerprint ends with a †
were run by the same attacker.

Fingerprint IP addresses Country Bandwidth Attack Sampling rate First active Discovery

F8FD29D0† 176.99.12.246 Russia 7.16 MB/s HTTPS MitM unknown 2013-06-24 2013-07-13

8F9121BF† 64.22.111.168/29 U.S. 7.16 MB/s HTTPS MitM unknown 2013-06-11 2013-07-13

93213A1F† 176.99.9.114 Russia 290 KB/s HTTPS MitM 50% 2013-07-23 2013-09-19

05AD06E2† 92.63.102.68 Russia 5.55 MB/s HTTPS MitM 33% 2013-08-01 2013-09-19

45C55E46† 46.254.19.140 Russia 1.54 MB/s SSH & HTTPS MitM 12% 2013-08-09 2013-09-23

CA1BA219† 176.99.9.111 Russia 334 KB/s HTTPS MitM 37.5% 2013-09-26 2013-10-01

1D70CDED† 46.38.50.54 Russia 929 KB/s HTTPS MitM 50% 2013-09-27 2013-10-14

EE215500† 31.41.45.235 Russia 2.96 MB/s HTTPS MitM 50% 2013-09-26 2013-10-15

12459837† 195.2.252.117 Russia 3.45 MB/s HTTPS MitM 26.9% 2013-09-26 2013-10-16

B5906553† 83.172.8.4 Russia 850.9 KB/s HTTPS MitM 68% 2013-08-12 2013-10-16

EFF1D805† 188.120.228.103 Russia 287.6 KB/s HTTPS MitM 61.2% 2013-10-23 2013-10-23

229C3722 121.54.175.51 Hong Kong 106.4 KB/s sslstrip unsampled 2013-06-05 2013-10-31

4E8401D7† 176.99.11.182 Russia 1.54 MB/s HTTPS MitM 79.6% 2013-11-08 2013-11-09

27FB6BB0† 195.2.253.159 Russia 721 KB/s HTTPS MitM 43.8% 2013-11-08 2013-11-09

0ABB31BD† 195.88.208.137 Russia 2.3 MB/s SSH & HTTPS MitM 85.7% 2013-10-31 2013-11-21

CADA00B9† 5.63.154.230 Russia 187.62 KB/s HTTPS MitM unsampled 2013-11-26 2013-11-26

C1C0EDAD† 93.170.130.194 Russia 838.54 KB/s HTTPS MitM unsampled 2013-11-26 2013-11-27

5A2A51D4 111.240.0.0/12 Taiwan 192.54 KB/s HTML Injection unsampled 2013-11-23 2013-11-27

EBF7172E† 37.143.11.220 Russia 4.34 MB/s SSH MitM unsampled 2013-11-15 2013-11-27

68E682DF† 46.17.46.108 Russia 60.21 KB/s SSH & HTTPS MitM unsampled 2013-12-02 2013-12-02

533FDE2F† 62.109.22.20 Russia 896.42 KB/s SSH & HTTPS MitM 42.1% 2013-12-06 2013-12-08

E455A115 89.128.56.73 Spain 54.27 KB/s sslstrip unsampled 2013-12-17 2013-12-18

02013F48 117.18.118.136 Hong Kong 538.45 KB/s DNS censorship unsampled 2013-12-22 2014-01-01

2F5B07B2 178.211.39 Turkey 204.8 KB/s DNS censorship unsampled 2013-12-28 2014-01-06

4E2692FE 24.84.118.132 Canada 52.22 KB/s OpenDNS unsampled 2013-12-21 2014-01-06
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1 C=US

2 ST=Nevada

3 L=Newbury

4 O=Main Authority

5 OU=Certificate Management

6 CN=main.authority.com

7 EMAIL=cert@authority.com

Figure 6: X.509 information which is part of the ma-
licious certificates used for the MitM attacks. The full
certificate is shown in Appendix A.

during our tests, we cannot rule out malicious intent.
Two more relays—02013F48 and 2F5B07B2—were sub-
ject to their country’s DNS censorship. The Turkish relay
blocked many pornography web sites and redirected the
user to a government-run web server which explained the
reason for the redirection. The second relay seemed to
have fallen prey to the Great Firewall of China’s DNS
poisoning; perhaps, the relay made use of a DNS re-
solver in China. Several domains such as torproject.org,
facebook.com and youtube.com returned invalid IP ad-
dresses which were also found in previous work [18]. Fi-
nally, 4E2692FE was misconfigured because it used an
OpenDNS policy which would censor web sites in the
category “pornography”.

All the remaining relays engaged in HTTPS and/or
SSH MitM attacks. Upon establishing a connection to
the decoy destination, these relays exchanged the desti-
nation’s certificate with their own, self-signed version.
Since these certificates were not issued by a trusted au-
thority contained in TorBrowser’s certificate store, a user
falling prey to such a MitM attack would be redirected to
the about:certerror warning page.

Interestingly, we have reason to believe that all re-
lays whose fingerprint ends with a † were run by the
same person or group of people. This becomes evident
when analysing the self-signed certificates which were
injected for the MitM attacks. In every case, the certifi-
cate chain consisted of only two nodes which both be-
longed to a “Main Authority” and the root certificate—
partially shown in Figure 6—of all chains was identical.
This means that these attacks can be traced back to a
common origin even though it is not clear where or what
this origin is as we will discuss later.

Apart from the identical root certificate, these relays
had other properties in common. First, with the excep-
tion of 8F9121BF which was located in the U.S., they
were all located in Russia. Upon investigating their IP
addresses, we discovered that most of the Russian re-
lays were run in the network of a virtual private sys-
tem (VPS) provider. Several IP addresses were also
located in the same netblock, namely 176.99.12.246,
176.99.9.114, 176.99.9.111, and 176.99.11.182. All

these IP addresses are part of the netblock GlobaTel-net
which spans 176.99.0.0/20. Furthermore, the malicious
exit relays all used Tor version 0.2.2.375. Given its age,
this is a rather uncommon version number amongst re-
lays. In fact, we found only two benign exit relays—in
Switzerland and the U.S.—which are running the same
version. We suspect that the attackers might have a pre-
compiled version of Tor which they simply copy to newly
purchased systems to spawn new exit relays. Unfortu-
nately, we have no data which would allow us to verify
when this series of attacks began. However, the full root
certificate shown in Appendix A indicates that it was cre-
ated on February 12, 2013.

4.3 Connection Sampling
Whenever our hunt for malicious relays yielded another
result, we strived to confirm the attack by rerunning the
scan on the newly discovered relay. However, in the case
of the Russian relays, this did not always result in the
expected HTTPS MitM attack. Instead, we found that
only every nth connection seemed to have been attacked.
We estimated the exact sampling rate by establishing 50
HTTPS connections over every relay. We used randomly
determined sleep periods in between the scans in order
to disguise our activity. The estimated sampling rate for
every relay is shown in Table 1 in the column “Sampling
rate”. For all Russian relays, it varies between 12% and
68%. We do not have an explanation for the attacker’s
motivation to sample connections. One theory is that
sampling makes it less likely for a malicious exit relay to
be discovered; but at the cost of collecting fewer MitM
victims.

Interestingly, the sampling technique was imple-
mented ineffectively. This is due to the way how Fire-
fox (and as a result TorBrowser) reacts to self-signed
certificates. When facing a self-signed X.509 certificate,
Firefox displays its about:certerror page which warns the
user about the security risk. If a user then decides to pro-
ceed, the certificate is fetched again. We observed that
the malicious exit relays treat the certificate re-fetching
as a separate connection whose success depends on the
relay’s sampling rate. As a result, a sampling rate of n
means that a MitM attack will only be successfully with
a probability of n2.

4.4 Who is the Attacker?
An important question is where on the path from the exit
relay to the destination the attacker is located. At first
glance, one might blame the exit relay operator. How-
ever, it is also possible that the actual attack happens after

5For comparison, as of January 2014, the current stable version is
0.2.4.20. Version 0.2.2.37 was declared stable on June 6th, 2012.
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the exit relay, e.g., by the relay’s ISP, the network back-
bone, or the destination ISP. In fact, such an incident was
documented in 2006 for a relay located in China [5].

With respect to our data, we cannot entirely rule out
that the HTTPS MitM attacks were actually run by an
upstream provider of the Russian exit relays. However,
we consider it unlikely for the following reasons: 1) the
relays were located in diverse IP address blocks and there
were numerous other relays in Russia which did not ex-
hibit this behaviour, 2) one of the relays was even located
in the U.S., 3) there are no other reported cases on the
Internet involving a certification authority called “Main
Authority”, and 4) the relays frequently disappeared after
they were assigned the BadExit flag.

The identity of the attacker is difficult to ascertain.
The relays did not publish any contact information, nick-
names, or revealed other hints which could enable edu-
cated guesses regarding the attacker’s origin.

4.5 Destination Targeting
While Tor’s nature as an anonymity tool renders target-
ing individuals difficult6, an attacker can target classes of
users based on their communication destination. For ex-
ample, an attacker could decide to only tamper with con-
nections going to the fictional www.insecure-bank.com.
Interestingly, we found evidence for exactly that be-
haviour; at some point the Russian relays began to tar-
get at least facebook.com. We tested the https version of
the Alexa top 10 web sites [1] but were unable to trig-
ger MitM attacks despite numerous connection attempts.
Popular Russian web sites such as the mail provider
mail.ru and the social network vk.com also remained un-
affected. Note that it is certainly possible that the relays
targeted additional web sites we did not test for. Answer-
ing this question comprehensively would mean probing
for thousands of different web sites.

We have no explanation for the targeting of destina-
tions. It might be another attempt to delay the discovery
by vigilant users. However, according to previous re-
search [13], social networking appears to be as popular
over Tor as it is on the clear Internet. As a result, limiting
the attack to facebook.com might not significantly delay
discovery.

5 Thwarting HTTPS MitM Attacks

The discovery of destination targeting made us recon-
sider defence mechanisms. Unfortunately, we cannot
rule out that there are additional, yet undiscovered exit
relays which target low-profile web sites. If we wanted

6We assume, of course, that users do not somehow reveal their real
identity when using Tor, e.g., by posting on Internet forums under their
real name.

to achieve high coverage, we would have to connect to
millions of web sites; and given the connection sampling
discussed in Section 4.3, this even has to be done repeat-
edly! After all, an attacker is able to arbitrarily reduce
the scope of the attack but we are unable to arbitrarily
scale our scanner. This observation motivated another
defence mechanism which is discussed in this section.

5.1 Threat Model
We consider an adversary who is controlling the up-
stream Internet connection of a small fraction of exit re-
lays7. The adversary’s goal is to run HTTPS-based MitM
attacks against Tor users. We further expect the adver-
sary to make an effort to stay under the radar in order to
delay discovery. The actual MitM attack is conducted by
injecting self-signed certificates in the hope that users are
not scared off by the certificate warning page.

Our threat model does not cover adversaries who con-
trol certificate authorities which would enable them to
issue valid certificates to avoid TorBrowser’s warning
page. This includes several countries as well as organ-
isations which are part of TorBrowser’s root certificate
store. Furthermore, we cannot defend against adversaries
who control a significant fraction of Tor exit bandwidth.

5.2 Multi Circuit Certificate Verification
As long as an attacker is unable to tamper with all con-
nections to a given destination8, MitM attacks can be de-
tected by fetching a public key over differing paths in
the network. This approach was picked up by several
projects including Perspectives [30], Convergence [16]
and Crossbear [4]. In this section, we discuss a patch for
TorBrowser which achieves the same goal but is adapted
to the Tor network.

Apart from NoScript and HTTPS-Everywhere, Tor-
Browser contains another important extension: Torbut-
ton. This extension provides the actual interface be-
tween TorBrowser and the local Tor process. It directs
TorBrowser’s traffic to Tor’s SOCKS port and exposes a
number of features such as the possibility to create a new
identity.

Torbutton already contains rudimentary code to talk
to Tor over the local control port. The control port—
typically bound to 127.0.0.1:9151—provides local appli-
cations with an interface to control Tor. For example,
Torbutton’s “New Identity” feature works by sending the
NEWNYM signal which instructs Tor to switch to clean cir-
cuits so that new application requests do not share cir-
cuits with old requests. Torbutton already implements

7By “fraction”, we mean a relay’s bandwidth as it determines how
likely a client is to select the relay as part of its circuit.

8This would be the case if an attacker controls the destination.
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Figure 7: A user stumbles across a self-signed certificate
Ê which could be an indication for a HTTPS MitM at-
tack ran by a malicious exit relay. To verify if the certifi-
cate is genuine, the client re-fetches it over an indepen-
dent exit relay Ë and checks if the certificate matches or
not.

a useful code base for us which made us decide to im-
plement our extension as a set of patches for Torbutton
rather than build an independent extension.

5.3 Extension Design

Our patch set hooks into the browser event
DOMContentLoaded which is triggered whenever a
document (but not necessarily stylesheets and images)
is loaded and parsed by the browser. We then check
if the URI of the page contains “about:certerror”
because whenever TorBrowser encounters a self-signed
certificate, it displays this page. However, it is not clear
whether the certificate is genuinely self-signed or part of
an attack.

In order to be able to distinguish between these two
cases, our patch now attempts to re-fetch the certificate
over at least one additional and distinct Tor circuit as il-
lustrated in Figure 7. We create a fresh circuit by sending
SIGNAL NEWNYM to Tor’s control port. Afterwards, we re-
fetch the certificate by issuing an XMLHttpRequest. If the
SHA-1 fingerprints of both certificates match, the cer-
tificate is probably9 genuine. Otherwise, the user might
have fallen prey to a MitM attack. False positives are
possible, though: large sites could have different cer-
tificates for different geographical regions. Note that
we are not very likely to witness many such false pos-
itives as our code only gets active upon observing self-
signed certificates or certificates which somehow trigger
the about:certerror warning page.

Our extension also informs the user about a potential
MitM attack: In case of differing certificates, we open a
browser dialogue which informs the user about the situ-

9Note that powerful adversaries might be able to control multiple
exit relays, network backbones, or even the destination.

Figure 8: The popup window in TorBrowser which in-
forms the user about the potential HTTPS MitM attack.
The user can agree to submitting the gathered informa-
tion to the Tor Project for further inspection.

ation. A screenshot of our design prototype is shown in
Figure 8. We point out that this is likely an attack and
we ask the user for permission to send the data to the
Tor Project for further inspection. The submitted data
contains the exit relays used for certificate fetching as
well as the observed certificates. We transmit no other
data which could be used to identify users; as a result,
certificate submission is anonymous. While it would be
technically possible to transmit the data silently, we be-
lieve that users would not appreciate it and consider it as
“phoning home”. As a result, we seek to obtain informed
consent.

5.4 Limitations
In our threat model, we mentioned that our design does
not protect against adversaries with the ability to issue
valid certificates. While our extension could easily be ex-
tended to conduct certificate comparison for all observed
certificates, it would flood the Tor network with certifi-
cate re-fetches. To make matters worse, the overwhelm-
ing majority of these re-fetches would not even expose
attacks. There exist other techniques to foil CA-capable
adversaries such as certificate pinning [17].

By default, our patch re-fetches a self-signed X.509
certificate only once. An attacker who is controlling a
significant fraction of exit relays might be able to conduct
a MitM attack for the first as well as for the second fetch.
Nevertheless, we would eventually catch the adversary;
it would simply be a matter of time until a user selects
two independent exit relays.

6 Conclusions

In this paper, we revisited the trustworthiness of Tor exit
relays. After developing a scanner, we closely moni-
tored all ∼1,000 exit relays over a period of four months.
We discovered 25 relays which were either outright ma-
licious or simply misconfigured. Interestingly, the ma-
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jority of the attacks were coordinated instead of being
isolated actions of independent individuals. Our results
further suggest that the attackers make an active effort to
remain under the radar and delay detection.

To make the Tor network safer, we first developed ex-
itmap; an easily extensible scanner which is able to probe
exit relays for a variety of MitM attacks. Furthermore,
we developed a set of patches for the Tor Browser Bun-
dle which is capable of fetching self-signed X.509 certifi-
cates over different network paths to evaluate their trust-
worthiness. We believe that by being armed with these
two tools, the security of the Tor network can be greatly
increased. Finally, all our source code is freely available:
http://www.cs.kau.se/philwint/spoiled_onions.
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A Malicious X.509 Root Certificate

Below, the root certificate which was shared by all Rus-
sian and the single U.S. exit relay is shown. While the
domain authority.com does exist, it seems unrelated to
the CA “Main Authority”, the issuer.

1 Certificate:
2 Data:
3 Version: 3 (0x2)
4 Serial Number: 16517615612733694071 (0xe53a5be2bd702077)
5 Signature Algorithm: sha1WithRSAEncryption
6 Issuer: C=US, ST=Nevada, L=Newbury, O=Main Authority,
7 OU=Certificate Management,
8 CN=main.authority.com/emailAddress=cert@authority.com
9 Validity

10 Not Before: Feb 12 08:13:07 2013 GMT
11 Not After : Feb 10 08:13:07 2023 GMT
12 Subject: C=US, ST=Nevada, L=Newbury, O=Main Authority,
13 OU=Certificate Management,
14 CN=main.authority.com/emailAddress=cert@authority.com
15 Subject Public Key Info:
16 Public Key Algorithm: rsaEncryption
17 Public-Key: (1024 bit)
18 Modulus:
19 00:da:5d:5f:06:06:dc:8e:f1:8c:70:b1:58:12:0a:
20 41:0e:b9:23:cc:0e:6f:bc:22:5a:05:12:09:cf:ac:
21 85:9d:95:2c:3a:93:5d:c9:04:c9:4e:72:15:6a:10:
22 f1:b6:cd:e4:8e:ad:5a:7f:1e:d2:b5:a7:13:e9:87:
23 d8:aa:a0:24:15:24:84:37:d1:69:8e:31:8f:5c:2e:
24 92:e3:f4:9c:c3:bc:18:7d:cf:b7:ba:b2:5b:32:61:

25 64:05:cd:1f:c3:b5:28:e1:f5:a5:1c:35:db:0f:e8:
26 c3:1d:e3:e3:33:9c:95:61:6d:b7:a6:ad:de:2b:0d:
27 d2:88:07:5f:63:0d:9c:1e:cf
28 Exponent: 65537 (0x10001)
29 X509v3 extensions:
30 X509v3 Subject Key Identifier:
31 07:42:E0:52:A7:DC:A5:C5:0F:C5:
32 AF:03:56:CD:EB:42:8D:96:00:D6
33 X509v3 Authority Key Identifier:
34 keyid:07:42:E0:52:A7:DC:A5:C5:0F:C5:
35 AF:03:56:CD:EB:42:8D:96:00:D6
36 DirName:/C=US/ST=Nevada/L=Newbury/O=Main Authority
37 /OU=Certificate Management
38 /CN=main.authority.com/emailAddress=cert@authority.com
39 serial:E5:3A:5B:E2:BD:70:20:77
40
41 X509v3 Basic Constraints:
42 CA:TRUE
43 Signature Algorithm: sha1WithRSAEncryption
44 23:55:73:1b:5c:77:e4:4b:14:d7:71:b4:09:11:4c:ed:2d:08:
45 ae:7e:37:21:2e:a7:a0:49:6f:d1:9f:c8:21:77:76:55:71:f9:
46 8c:7b:2c:e8:a9:ea:7f:2f:98:f7:45:44:52:b5:46:a4:09:4b:
47 ce:88:90:bd:28:ed:05:8c:b6:14:79:a0:f3:d3:1f:30:d6:59:
48 5c:dd:e6:e6:cd:3a:a4:69:8f:2d:0c:49:e7:df:01:52:b3:34:
49 38:97:c5:9a:c3:fa:f3:61:b8:89:0f:d2:d9:a5:48:e6:7b:67:
50 48:4a:72:3f:da:28:3e:65:bf:7a:c2:96:27:dd:c0:1a:ea:51:
51 f5:09

B Injected HTML Code

The following HTML code was injected by the relay
5A2A51D4 (see Table 1). It was appended right in front
of the closing HTML tag.

1 <br>

2 <img src="http://111.251.157.184/pics.cgi"

3 width="1" height="1">

When requesting the image link inside the HTML
code, the server responds with another HTML document.
The full HTTP response is shown below.

1 HTTP/1.1 200 OK

2 Date: Tue, 14 Jan 2014 17:12:08 GMT

3 Server: Apache/2.2.22 (Ubuntu)

4 Vary: Accept-Encoding

5 Transfer-Encoding: chunked

6 Content-Type: text/html

7
8
9 <HTML>

10 <HEAD>

11 <TITLE>No Title</TITLE>

12 </HEAD>

13 <BODY>

14
15 </BODY>

16 </HTML>
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