
Hot Cold Optimization of Large Windows/NT Applications

Robert Cohn (rc@vssad.hlo.dec.com)
P. Geoffrey Lowney (lowney@vssad.hlo.dec.com)

Digital Equipment Corporation
Hudson, Massachusetts

Abstract
A dynamic instruction trace often contains many
unnecessary instructions that are required only by the
unexecuted portion of the program. Hot-cold
optimization (HCO) is a technique that realizes this
peeormance opportunity. HCO uses profile information
to partition each routine into frequently executed (hot)
and infrequently executed (cold) parts. Unnecessary
operations in the hot portion are removed, and
compensation code is added on transitions from hot to
cold as needed. We evaluate HCO on a collection of
large Windows NT applications. HCO is most effective on
the programs that are call intensive and have flat profiles,
providing a 3-896 reduction in path length beyond
conventional optimization.

1. Introduction

Typically, compiler writers study code listings to look
for optimization opportunities. However, we have found
that a dynamic view, studying instruction traces, gives a
very different perspective on code quality[Sites95]. High
quality code often looks unoptimized when viewed as a
dynamic instruction trace.

Below, we list an instruction trace fragment from the
Windows NT kernel running on a Digital Alpha
[Sites95]. The register ra is used to hold the return ad-
dress when a call is made, sp is the stack pointer, a0 is
an argument register, v0 is
scratch register (caller saved),
registers (callee saved).

bsr ra, 8009e3fO ;
Ida w-3O(SP) ;
stq SO,O(SP) ;
stq sl,8(sp) ;
stq S2,lO(SP) ;
stq ra, 18Cs.p) ;
bis zero,aO,sO ;
Id1 to, 9b8 (gp) ;
cmpult to, #13,vO ;
bne vO,8009e42 ;
bis zero,zero,vO ;

the return value, t0 is a
and so-s2 are preserved

call
grow the stack
save the old value

of some preserved
registers

copy a0 to SO
load,..
compare, . . .
branch
clear v0

br zero,8009e4f4 ; branch

107%4451/96$5.00@1996IEEE

1% SO,O(SP) ; restore the old
1% sl,8(sp) ; value of some
1% S2,lO(SP) ;preserved registers
1% ra,l8(s~) ; load ret address
Ida SP,3O(SP) ; shrink the stack
ret zero, (ra) ; return

The trace appears to execute many unnecessary in-
structions. However, looking at the full function listing,
they all are necessary. The return address (ra) is saved
and restored but never modified. This function contains a
call, but this code path does not execute it. The preserved
registers sl and s2 are also saved and restored but never
used. Somewhere in the function, sl and s2 are
modified, but the trace does not go there. The function
does modify the preserved register SO with a copy, but the
value stored in SO is never read in the instruction trace so
the copy and the save/restore of SO are unnecessary. The
only truly necessary instructions is the load, compare,
branch, copy sequence, which form an excellent inline
candidate.

An insight into how an optimizer can take advantage
of this type of situation came from a tool called NT OM,
that arranges code for instruction cache performance+.
Using profile information, NT OM lays out code so that
the fall-through path is the common path and also splits
routines into a frequently executed (hot) part and
infrequently executed (cold) part [Pettis90, Calder94,
Hwu89, McFarling891. If there is only one path through a
routine, the instruction trace and the hot part are identical.
Usually, there are several common paths through the
routine, and the hot part is the collection of these paths.

If we could optimize the hot part of the routine, ignor-
ing the cold part, we could eliminate all the unnecessary
instructions. We create a “hot” routine by copying the fre-
quently executed basic blocks of a function. All calls to
the original routine are redirected to the hot routine. Flow
paths in the hot routine that target basic blocks that were
not copied are redirected to the appropriate basic block in

’ NT OM is Digital’s executable optimization technology
[Srivastava94,Wilson96] written for NT

80

the original “cold’ routine; that is, they jump into the
middle of the original routine. We then optimize the hot
routine, possibly at the expense of the flows that pass
through the cold path. The process is called Hot Cold
Optimization (HCO).

2. Overview of HCO optimization

We describe HCO in detail later; in this section we
work through an example, a simplified version of the
function associated with the above trace.

1. foo: Ida sp,l6(sp) ; grow stack
2. stq SO,O(SP) ; save SO
3. stq ra,8(sp) ; save ra
4. add1 aO,l,sO ; SO = aO+l
5. add1 aO,al,aO ; aO= aO+al
6. bne sO,L2 ;brnch if so!=0
7. Ll: bsr fl ; call fl
8. add1 sO,aO,tl ; tl=aO+sO
9. stl tl,40(gp) ; store tl
10. L2: ldq sO,O(sp) ; restore s0
11. 1% ra, 8 (sp) ; restore ra
12. Ida sp,-16(sp); pop stack
13. ret (x-a) ; return

Assume that the branch in line 6 is almost always
taken and that lines 7-9 are almost never executed. When
we copy the hot part of the routine we exclude lines 7-9 as
follows:

a) foo2: Ida sp,l6(sp)
b) SW SO,O(SP)
c) stq ra. 8 (sp)
d) add1 aO,l,sO
e) add1 a0, al, a0
f) beq sO,Ll
9) ldq sO,O(SP)
h) ldq ra, 8 (sp)
i) Ida sp,-16(sp)
j) ret (ra)

Note that the sense.of the branch was reversed and its
target was changed to Ll in the original routine. All calls
to foo are redirected to the hot routine foo2, including
indirect calls. If the branch in line f is taken, then control
transfers to line 7, which is in the middle of the original
routine. Once control passes to the original routine, it
never passes back to the hot routine. This feature of HCO
enables optimization; when optimizing the hot routine, we
can relax some of the constraints imposed by the cold
routine.

So far, we have set up the hot routine for optimization,
but have not made it any faster. Now we show how to op-
timize the routine. The hot routine no longer contains a
call; we can delete the save and restore of the return ad-
dress in lines c and h. If the branch transfers control to ~1
in the cold routine, we must arrange for ra to be saved on
the stack. In general, whenever we enter the original rou-

tine from the hot routine, we must fix up the state to
match the expected state. We call the fix-up operations
compensation code. To insert compensation code, we
create a stub, and redirect the branch in line f to branch to
the stub. The stub saves ra on the stack and branches to
Ll.

Next, we see that the instruction in line e writes a0,
but the value of a0 is never read in the hot routine.
However, it is not truly dead because it is still read if the
branch in line f is taken. We delete the instruction from
the hot routine and place a copy on the stub.

HCO tries to eliminate the uses of preserved registers
in a routine. Preserved registers can be more expensive
than scratch registers because they must be saved and re-
stored if they are used. Preserved registers are typically
used when the lifetime of the value crosses a call. In the
hot routine, no lifetime crosses a call and the use of a pre-
served register is unnecessary. We rename all uses of SO
in the hot routine to use a free scratch register t2. We
insert a copy on the stub from t2 to SO. We can now
eliminate the save and restore in lines b and g and place
the save on the stub.

We have eliminated all references to the stack in the
hot routine. The stack adjusts can be deleted from the hot
routine and the initial stack adjust placed in the stub. The
final code and the stub are listed below. The number of
instructions executed in the frequent path has been re-
duced from 10 to 3. If the stub is taken, then the full 10
instructions and an extra copy and branch are executed.

1. foo2: add1 aO,l,t2
2. beq t2,stubl
3. ret (ra)
4. stubl: Ida sp,l6(sp)
5. SW SO,O(SP)
6. stq ra, 8 (sp)
7. add1 aO,al,aO
8. mov t2, SO
9. br Ll

Finally, we would like to inline the hot function.
Copies of instructions 1 and 2 can be placed inline. For
the inlined branch, we must create a new stub that
materializes the return address into ra before transferring
control to stubl. Except for partial inlining, we have
implemented all of these optimizations in our system.

In the following section, we present the NT
applications we used to evaluate HCO and discuss the re-
sults. We then present the details of our method. We
close the paper with a discussion of related work, and our
conclusions.

81

3. Characteristics of NT Applications

For our experiments, we use programs that are repre-
sentative of the types of applications run on high perform-
ance personal computers (PC’s). We also include some
programs from SpecInt95 for comparison, although our
discussion in the paper focuses on the PC applications.
Table 1 identifies the programs and the workloads used to
exercise them. All programs are optimized versions of
Digital Alpha binaries and are compiled with the same
highly optimizing back end that is used on Unix and
VMS[Blickstein92].

For our profile-directed optimization, we use the same
input for training and timing so that we can know the
limits of our approach. Others have shown that a
reasonably chosen training input will give reliable
speedups for other input sets [Calder95]. Our experience
with program layout optimizations for our benchmark
programs confirms this result.

Table 2 lists some static and dynamic characteristics of
the single executable or dynamically linked library (DLL)
responsible for a majority of the execution time for each
application. The smallest PC application is three times
larger than the largest SpecInt95 program in our list, and
the largest PC application, ACAD, is twenty times larger.
All of them have thousands of functions. Call overhead is
high and ranges born 7%-16%, except for the more loop
intensive TEXIM and MAXFDA. We approximate call
overhead by measuring time spent in procedure prologs
and epilogs, which is mostly stack adjusts and saving and
restoring of preserved registers. The time spent in leaf
routines-is low, with the exception of WINWORD.

1 Texim 2.0
MAXEDA 1 OrCad electronic cad] BAPCO

Table 1: Benchmark programs and their workloads

In Table 2, we list the percent of execution time spent
in the top 5 routines for each routine. VC, SQLSERVR,
ACAD, and EXCEL tend to have flat profiles, while the
other PC applications have a single routine responsible for
a large portion of the execution time.

The focus of our work is programs that have flat
profiles and are more call intensive than loot, intensive. In

Program

A 1

Text Size Routines Call Leaf % thne spent in the 5 most frequently executed
MB overhead routines routines

2.08 1 2139 I 11% 5.5 5.5 1

1.13 , lo”, , A,” , 7,” , J.L ,

VORTEX 1 .47 1 820 1 23% 1 2% 16.2 12.3 8.6 8.5 5.2
GO .29 462 5% 30% 19.8 14.4 9.5 5.9 4
M88KSIM .17 382 12% 43% 27.5 12.8 11.3 7.7 5.9
r, I? APO 7AoA lfw% l?A l?? 97 8.8 8.7
COMPRESS] .06 122 1% Lll% 1 L3.I L3.Y 1 17-J , 9.4 6.4
IJPEG I .18 408 2% 56% 1 14.5 14.3 1 13.4 1 11.6 10.7

Table 2: Static and dynamic characteristics of benchmark programs

82

Optimization Coverage Reduction in Path Length

100%

SO-A

SO*/.
70%

so%
50%

40%

30%

20%
10%
0%

Figure 1: HCO coverage by execution time

these programs, loops typically include function calls and
span multiple procedures. The most frequently executed
basic block in a function is often the entry point and call
overhead tends to be high. Our experience with these
programs has shown that optimizations that do not
preserve the locality of the instruction stream can
adversely affect performance. They all speed up from 5%
to 15% when we apply code layout techniques [PettisBO,
Calder94, Wilson961.

In this paper, all statistics based on execution time and
speedups use path lengths (number of instructions
executed) for the dominant executable or DLL. Path
lengths are calculated by multiplying the number of
instructions in a basic block by the number of times the
block is executed. Using path lengths rather than
measured times allows us to provide more detailed
information about the contribution of each type of
optimization. Since it is possible to reduce the path length
at the expense of more cache misses, we used simulation
and other techniques to verify that instruction cache
misses were not affected for LI, VC, ACAD, and
SQLSERVR. For the full set of HCO optimizations
together, we verified that path length reductions resulted
in equivalent run-time speedups for LI, VC, and ACAD.
For SQLSERVR, the run-time speedup is less than the
path length reduction (8%), and we continue to
investigate this discrepancy.

4. Results

We present the results for the full suite of HCO
optimizations, except for partial inlining, which has not
yet been implemented. The optimizations are partial
dead code elimination, which is the removal of code dead
in the hot routine; stack pointer adjust elimination, which

q save/restore

Figure 2: Reduction in path length

is the removal of the stack adjusts in the hot routine;
preserved register elimination, which is the removal of the
save and restore of preserved registers in the hot routine;
and peephole optimization, which is the removal in the
hot routine of self-assignments and conditional branches
with an always-false condition. The optimizations were
implemented in NT OM, an optimizer that operates on
Alpha NT executables.

In Figure 1, we show coverage statistics for the HCO
optimization. Coverage represents the percentage of
execution time spent in each category. To compute
coverage, we first assign each function to a category, and
then for each category sum the execution time of its
functions. The category “optimized” is the portion of the
execution time that is in functions optimized by HCO.
Optimization coverage is typically 60%, but is often
higher. The category “too small” is the set of functions
where the execution time is so small (< .l% of total time)
it did not appear worthwhile to optimize them. Ignoring
functions with small execution time allows us to optimize
less than 5% of the program text, a significant reduction
in optimizer time. The category “no split” represents the
functions that we could not split into a hot and cold part
because all basic blocks had similar execution counts. The
category “sp modified” is for functions where the stack
pointer is modified after the initial stack adjust in the
prolog. We decided not to optimize these functions, but it
is possible to do so with extra analysis. It was infrequent
except for VC, where it is 7% of the program and occurs
in 2 functions. Finally, the category “no advantage” is for
the functions that were split but the optimizer wasn’t able
to make any faster.

In Figure 2, we show the overall reduction in path
length for HCO, broken down by optimization. Most of
the reduction in path length comes equally from removal
of unnecessary save/restores and partial dead code.

a3

Time Spent In Lea1 RoUtlneS

Figure 3: Time spent in leaf routines before and after HCO

Removing stack pointer adjusts and peephole
optimizations are a smaller additional gain. When the
peephole category is large it is usually because there is a
save and restore of a preserved register that is made
unnecessary by HCO, and the restore is converted to a self
assignment by copy propagation, which is then removed
by peephole optimization.

HCO is most effective on call intensive programs such
as VC, SQLSERVR, and ACAD, where we eliminate calls
when creating the hot routines. For WINWORD, the
speedup is small because coverage is low; we could not
find a way to split the routines. For EXCEL, HCO was
able to split the routines, but there is often a call in the hot
path. Inlining may help here, but frequently the call is to a
shared library.

HCO is less effective on loop intensive programs such
as USTATION, MAXEDA, and TEXIM. HCO provides a
framework for optimizing loops, and Chang has shown
that eliminating the infrequent paths in loops enables
additional optimizations such as loop invariant removal
[Chang91]. However, our current implementation has
almost no information about the aliasing of memory
operations and it can only optimize operations to local
stack locations, such as spills of registers.

4.1 Leaf routines

Figure 3 compares the amount of time spent in leaf
routines before and after HCO is applied. By eliminating
infrequent code, HCO is able to eliminate all calls in
functions that represent lo-20% of the execution time in
VC, ACAD, SQLSERVR, and MAXEDA. The change in
time spent in leaf routines for the other PC applications is
very small. Most of the PC applications spend much less
than half of the time in leaf routines. Since so much time

Figure 4: Overall increase in text size

is spent in code with calls in the frequent path, it is
important to optimize well in the presence of calls.

4.2 Code size

Code size and its effect on cache behavior is a major
concern for us. In large applications, locality for
instructions is present but not high. If an optimization
decreases path length but also decreases locality as a side
effect, the net result can be a loss in performance.

Figure 4 shows the total increase in text size from
optimization. “Hot+cold” is the part of increase that
comes from replacing a single routine with the original
routine plus a copy of the hot part. “Stub” is the increase
attributed to stub routines. Overall the increase in size is
small. The maximum increase is 7.1% for VC. Sqlservr
has the best speedup and is only 2.6% bigger. Looking at
the increase in total text size is misleading, however.
HCO is not applied to routines that are executed
infrequently, which typically accounts for more than 95%

Size of Optimized Routines

Figure 5: Size of optimized routines

84

ecs ..

mm

E -”
F fi-.

of the program text, so tripling the size of optimized
routines would only result in a modest increase in text
size. However, tripling the size of the active part of an
application will usually have a disastrous effect on
performance.

For this reason, we also measure size increases based
on the routines that are optimized. In Figure 5, we
compare the total size of all the hot routines to the total
size of the original routines they were derived from. By
copying just the frequently executed part of the routine,
we exclude about 50% of the original routine. Next, we
eliminate code that is frequently executed, but is only
reachable through an infrequently executed path and is
therefore unreachable in the hot routine. This is usually
only 1%. Finally, we optimize the hot routine, reducing
the remaining code size by about 10% (5% of the size of
the original routine). The final size of the hot routines as a
percentage of the size of the original routines is shown in
the line labeled “hot.” By making the most frequently
executed part of the program 50-80% smaller one would
expect a big improvement in instruction cache behavior. It
does; however, it would be misleading to attribute this
improvement to HCO since a simpler optimization in NT
OM already achieves the same result. As part of the
optimization for instruction cache behavior, NT OM splits

Figure 6: Distribution of routine size and execution time

routines into two parts, one for the frequently executed
code and another for infrequently executed code. The
frequently executed parts are packed together so that they
are less likely to conflict in a direct mapped cache. When
HCO is turned on, the cache layout optimizations are run
after HCO. The baseline we compare against also has
cache optimizations turned on, so improvements
attributed to HCO are improvements beyond what the
other optimizations can do. HCO does make the
frequently executed parts 10% smaller, but we did not see
better instruction cache behavior when we ran programs
with a cache simulator.

If we were to do partial inlining, only the hot routine
would be copied. Since the hot routine is less than half
the size of the original routine, this would greatly reduce
the growth in code size due to inlining.

The line labeled “cold’ in Figure 5 shows how the size
of the cold routine is affected by HCO. When we redirect
all calls to the hot routine, some of the code in the original
routine becomes unreachable. This is usually less than
lo%, which is much smaller than the 50% of the code we
copied to create the hot routine. Apparently, the
infrequent paths in a routine often rejoin the frequent
paths, which makes it necessary to have a copy of both in
the original routine.

85

The line labeled “stub” is the code size of the stubs,
which is very small. We also implemented a variation of
HCO that avoided stubs by re-executing the procedure
from the beginning instead of trying to use a stub to fix up
the state and jump into the middle. It usually isn’t possible
to re-execute the procedure because arguments had
already been overwritten. Given the small cost of stubs,
we did not pursue this method.

The line labeled “total” shows that HCO makes the
total ccde(hot+cold+stub) 20-50% bigger. A routine is
partitioned so that there is less than a 1% chance that the
stub and cold part are executed so their size shouldn’t
have a significant effect on cache behavior as long as the
profile is representative.

Figure 6 shows how splitting affects the distribution of
time spent among different routine sizes for two programs
where HCO is effective (VC and SQLSERVR), and two
programs where it is not (MAXEDA and WINWORD).
For each graph, the horizontal axis is the routine size in
number of instructions and the vertical axis is the
percentage of execution time spent in routines of the
maximum size or smaller. The farther apart the two lines,
the better HCO was at shifting the distribution from large
routines to smaller routines. It is interesting to note that
most of the programs spend a large percentage of the time
in large functions, which suggests that compilers need to
handle complex control flow well, even if profile infor-
mation is used to eliminate infrequent paths.

5. Optimization

In this section, we describe in more detail how NT OM
constructs the hot routine and how it is optimized. HCO
was implemented as part of NT OM, a tool for optimizing
executables and dynamically loaded libraries (DLLs) for
Alpha Windows/NT [Srivastava94, Wilson96, Larus95].
NT OM reads in an executable, identifies the code and
data, optimizes the code, and writes out a new executable.
Because NT OM can examine the entire executable, it is
able to do optimizations that a compiler cannot easily do.
For example, NT OM can see the entire call graph, which
makes it possible to lay out code to minimize instruction
cache misses. However, NT OM does not have some
information that is available to a compiler. Currently, NT
OM derives the dataflow from the code itself; it does not
use extra information from the compiler. The biggest
limitation is the lack of memory alias information, which
restricts the type of optimizations that can be done on
instructions that touch memory.

NT OM can instrument executables to collect profile
information in a manner similar to ATOM[Srivastava94b,

Wilson961, and uses profile information when optimizing
a program, as is done for code layout and HCO.

5.1 Partitioning a routine into hot and cold

Deciding what code to include in the hot routine is a
tradeoff between two factors. When we exclude code from
the hot routine (especially calls) we create opportunities
for optimizations that decrease path length. However, the
more code we exclude from the hot routine, the higher the
probability that we enter the original routine. The
transition from hot to cold is expensive because it is likely
to cause cache misses.

We use the probability of exiting the hot routine
through a stub to decide how much code to include in the
hot routine. The exit probability is the number of times
the program exits a hot routine through a stub for each
time the routine is called. It is calculated from profile
information.

Our experiments showed that path length reductions
are not that sensitive to exit probability, but that cache
misses and real performance are very sensitive. Doubling
the exit probability results in a small improvement in
cycles eliminated because of path length reduction but a
large increase in additional cycles spent in cache misses.
For this reason we tuned HCO to get the biggest reduction
in path length that doesn’t cause a significant increase in
cache misses. We found that using a very low probability
of 1% works best for most programs.

We tuned HCO to avoid cache misses by adjusting the
exit probability for maximum measured speedup, rather
than path length reduction. For the programs with short
execution times, we confirmed that extra cache misses are
not a problem through simulation.

5.2 Partially Dead Code

Sometimes, instructions are live on one path and dead
on others. This is called partially dead code[Knoop94].
When an operation in the hot part computes a value that is
only consumed in the cold part, we optimize this by
moving the instruction from the hot routine to some or all
of the stubs, which are less frequently executed.

The candidates for partially dead code are found by
ignoring the branches to stubs when computing liveness.
We do not eliminate dead stores or loads because we only
have limited information on aliasing of memory
operations.

Next, we find the set of stubs where the definition
generated by the dead candidate may reach the stub, and

86

Dead Coda Removal

Figure 7: Potential improvements for dead code removal

the register holding the value is live at the stub. If the
definition does not reach any stub where the register is
live, then it is truly dead and we can eliminate it without
any further work.

For all the stubs that the definition may reach, we
check if the inputs or output of the dead candidate are
possibly redefined on any path from the dead candidate to
the stub. If this happens, the dead candidate cannot be
removed. If not, then we eliminate the dead candidate in
the hot routine and place a copy on every stub that the
definition reaches.

With register reallocation, we could weaken the
condition that requires that the inputs and output of the
dead candidate not be overwritten in the path from the
operation to the stub. To gauge how much better we could
be doing, we estimated the path length reduction possible
by assuming that all dead candidates could be eliminated.
The results are in Figure 7. The bottom bar is what is
actually achieved, and the top bar represents the results of
this optimistic assumption. Our results slightly
underestimate the gain, because we do not consider the
effect of this optimization enabling other optimizations.
The potential gain appears to be fairly small and we
decided it was not worthwhile trying to remove these extra
instructions. From looking at programs, the dead
operations that cannot be eliminated are often copies of
the argument registers into preserved registers.
Inter-procedural register allocation or inlining is probably
the best way to attack this problem.

5.3 Lifetime Splitting

Often, a lifetime will start in the frequent part of the
code and cross into the infrequent part. If the lifetime
crosses a call, then it is typically assigned a preserved
register, which requires a save and restore. If the call is
only in the infrequent part, then it would be better to keep

the value in a scratch register in the frequent part, then
transfer it to a preserved register in the infrequent part.
Then, the save and restore are not executed if the code
stays in the frequent part.

5.4 Copy propagation

When we only copy the hot part of a routine, we
eliminate some flow paths, making copy propagation legal
where it was not before. For example, an argument
register may be copied to a preserved register so that its
value will be live across a call (e.g. mov aO,sO). However,
if the call is eliminated because it is in the infrequent
path, then applying copy propagation replaces uses of the
preserved register with the original argument registers
(e.g. add1 SO, 1 ,tO becomes add1 aO,l ,tO). Copy propagation
often eliminates all uses of a preserved register, which
leads to further optimization.

5.5 Eliminating unnecessary preserved registers

Often HCO eliminates all uses of a preserved register
by partitioning or by the optimizations described above. If
the save and restore is made unnecessary, then it is
eliminated in the hot routine and a copy of the save is
placed on every stub.

5.6 Eliminating unnecessary stack adjusts

If all references to the stack pointer are removed from a
routine, then the stack adjusts on entrance and exit can be
removed. For compensation code, a stack adjust to grow
the stack is placed on every stub.

5.7 Phase ordering

The order that the optimizations are applied is
important for the final result. A sequence of copy
propagation, dead code removal, and peephole
optimizations is run repeatedly until no further progress is
made. Each of these optimizations create opportunities for
the others and themselves, and we have found that one to
three passes is usually sufficient. Note that profile
information allows us to apply optimization to less than
5% of the program text, so optimizer time is not large.

Next, lifetime splitting is applied once. Lifetime
splitting uses an extra scratch register and introduces a
copy on the stub, so it is better to eliminate the use of a
preserved register with one of the previous optimizations
than to split the lifetime.

87

Running the previous optimizations often eliminates
all uses of a preserved register, and now the unnecessary
saves and restores of preserved registers are eliminated.
Finally, if all references to the stack pointer have been
removed, we remove the stack adjusts.

6. Related work

Dead code elimination in HCO is closely related to
partial dead code elimination[Knoop94], which uses code
motions to move an instruction later to avoid computing
it. When moving an instruction, partial dead code
elimination finds the optimal points in the flow graph to
minimize execution, while we take the simpler approach
of using profile information to decide if it is profitable to
move the instruction to a stub. There is a limited form of
partial dead code elimination for superblocks[Chang91],
but we have found that the scope of a superblock is too
small for effective optimization, even when using
techniques that expand their scope such as
predication[Mahlke92].

Partial dead code elimination does not alter the flow
graph when placing operations. This is done by HCO
when it copies the hot part of a routine, which allows us to
do better than the “optimal” method in some cases. For
example, in Figure 8, the value of b is computed outside
of a loop and is only used inside of the conditional inside
of the loop. Techniques that don’t alter the program
structure can either leave the computation of b outside of
the loop where it is always computed once, or put it inside
of the conditional, where it is computed once for every
time that p[i] is true. If the condition p[i] is rarely true,
then HCO moves the computation of b to the stub. If p[i]
is never true, b is never computed. The first time p[i] is
true, we jump to the stub, compute b and then jump into
the middle of the loop, so b is never computed again.

Much work has gone into profile directed
interprocedural register allocation [Wa1186,
Santhanam90, Kurlander961. We consider HCO to be a
framework for optimization, and a register allocator for
this framework is being implemented. Optimizations
such as shrink wrapping [Chow881 and ORA
[Goodwin961 have sought to reduce unnecessary spills and
reloads by placing them in the program where they are
executed less often. Many possible placements are not
permitted by the Alpha NT run-time model’. HCO

’ The Alpha NT software run-time model defines where in
a routine the stack adjusts and the saving of preserved
registers can be performed; this enables the exception
handler to unwind the stack efficiently[CALLSTD].

Original routine
b=e+c*d
for (i = 0; i < n; i++)

if (p[il)
output(b);

return;
After HCO

for (i = 0; i < n; i++)
if tp[il)

goto stub;
return;
stub:
b=e+c*d;
got0 inloop;

b=e+c*d;
for (i = 0; i < n; i++)

if (p[il)
inloop: output(b);
return;

Figure 8: Altering program structure gives HCO more
flexibility

considers a smaller set of permissible locations, the stul b
Like partial dead code elimination, these techniques do
not alter the flow graph, and the ability to alter the flow
graph can enable HCO to find opportunities that other
methods cannot.

Region-based compilation[Hank95] uses profile
information and aggressive inlining to expose more
optimization candidates to the compiler. It then
repartitions a program into regions to make compilation
of the much larger program tractable. Our approach is
similar in that we partition each routine into a hot and
cold region. However, the subject of our work is
optimizations that push work out of the hot region into the
cold region and transformations that make it possible. If
we were to add aggressive partial inlining to NT OM, we
could use Hank’s methods to partition the program into
multiple hot regions.

7. Conclusions and future work

Many commonly used Alpha NT applications spend
most of their time in non-leaf routines and in loops that
span multiple procedures. For these applications, the most
frequently executed basic block in a procedure is often the
first basic block. Knowing this, it is not surprising that
about 10% of the time is spent in procedure prologs and
epilogs, which is essentially procedure call overhead.

The optimization in this paper is effective in
eliminating path length from these types of programs. It
does this by optimizing the frequently executed parts of a
procedure at the expense of the less frequently executed
parts. Much of the gain is dependent upon optimizations
that eliminate partially dead code or change the register

88

assignment, splitting lifetimes and changing preserved
registers into scratch registers.

HCO is an attractive framework for profile-directed
optimization. In the future, we expect to add partial
inlining, interprocedural register allocation, speculative
scheduling, prefetching, and other optimizations. HCO
also provides a practical solution for applying advanced
compiler technology to large application programs. We
can look beyond the SPECmarks and address the
problems in real applications that are in day-to-day use.

Acknowledgments

The authors would like to thank David Goodwin for
implementing the interprocedural dataflow in NT OM and
to Mark Davis, Joel Emer, David Goodwin, Tryggve
Fossum and the reviewers for their comments on this
paper.

References

[Blickstein92] D. Bfickstein, et al, ‘The GEM optimizing
compiler system,” Digital Technical Journal, 4(4): 121-l 36.

[Calder94] B. Calder and D. Grunwald, “Reducing branch costs
via branch alignment,” in ASPLOS VI Proc., San Jose, CA,
Nov. 1994

[Calder95] B. Calder, D. Grunwald, and A. Srivastava, “The
predictability of branches in libraries,” in Proc. ofthe 28th
Annual Intl. Sytnp. on Microarchitecture, pp. 24-34, Ann Arbor,
MI, Nov. 1995

[CALLST’D] Alpha NT Calling Standard.
http://www.partner.digital.com/www-swdev/pages/Home/
TECH/documents/alpha_cookbook/biblio.htm

[Changgl] P.P. Chang, S.A. Mahlke, and W.W. Hwu, “Using
profile information to assist classic code optimizations,”
Sofhvare Pruc. andfip., 21(12): 1301-1321, 1991

[Chow881 F.C. Chow, “Minimizing register usage penalty at
procedure calls,” in Proc. ACM SIGPLtw Conf: on
Programming Language Design and Implementation ‘88, ACM
pp. 85-94, Atlanta, GA, June 1988

pragon] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 1985.

[Goodwin961 D. Goodwin and K. Wilken, “Optimal and near-
optimal global register allocation using O-l integer
programming,” Software-Practice & Exp., To appear 1996.

[Hank951 R.E. Hank, W.W. Hwu, and B.R. Rau, “Region-based
compilation,” in Proc. of the 28th Annual Intl. Symp. on
Microarchitecture, pp. 158-168, Ann Arbor, MI, Nov. 1995

[Hwu89] W.W. Hwu and P.P. Chang, “Achieving high
instruction cache performance with an optimizing compiler,” in
Proc. 16th Annual Intl. Symp. on Computer Architecture,
Jerusalem, Israel, June 1989

[Knoop94] J. Knoop, 0. Riithing, B Steffen, “Partial dead code
elimination,” in Proc. ACM SIGPUN Conf: on Programming
Language Design and Implementation ‘94, pp. 147-158,
Orlando, FL, June 1994

[Kurlander96] S.M. Kurlander and C.N. Fischer, “Minimum
cost interprocedural register allocation,” in The 23rd ACM
SIGPLAN SIGACT Symp. on Principles of Programming
Languages, pp. 230-241, St. Petersburg, Florida, Jan., 1996.

[Larus95] J.R. Larus and E. Schnarr, “EEL: Machine-
independent executable editing,” in Proc. ACM SIGPLAN Con&
on Programming Language Design and Impl. ‘95, pp. 291-300,
La Jolla, CA, June 1995

[Mahlke92] S.A. Mahlke, et al., “Effective compiler support for
predicated execution using the hyperblock,” in Proc. ofthe 25th
Annual Intl. Symp. on Microarchitecture, pp. 45-54, Dec. 1992.

[McFarling89] S. McFarling, “Program optimization for
instruction caches,” in ASPLOS III Proc., pp. 183-193, Boston,
MA, April 1989.

[Pettis90] K. Pettis and R.C. Hansen, “Profile Guided Code
Positioning” in Proc. ACM SIGPLAN Conf: on Programming
Language Design and Implementation ‘90, pp. 16-27, White
Plains, NY, June 1990

[Santhanam90] V. Santhanam and D. Odnert, “Register
allocation across procedure and module boundaries” in Proc.
ACM SIGPLAN Conj: on Programming Language Design and
Implementation ‘90, White Plains, NY, June 1990

[Sites951 R. L. Sites and S. Perl, “PatchWrx -- A dynamic
execution tracing tool,” http://www.research.digital.com
/SRC/personal/Dick-Sites/patchwrx/PatchWrx.html.

[Srivastava94] A. Srivastava and D. Wall, “Link-time
optimization of address calculation on a 64-bit architecture,” in
Proc. ACM SIGPLAN Conf on Programming Language Design
and Implementation ‘94, pp. 49-60, Orlando, FL, June 1994

[Srivastava94b] A. Srivastava and A. Eustace. “ATOM: A
system for building customized program analysis tools,” in Proc.
SIGPLAN 94 Conf. on Programming Language Design and
Implementation, pp. 85-96, Orlando, Florida, June 1994

[Wall861 D.W. Wall, “Global register allocation at link time” in
Proc. SIGPUN 86 Symp. on Compiler Construction, pp. 264-
275, Palo Alto, CA, June 1986

[Wilson961 L.S. Wilson, C.A. Neth, M.J. Rickabaugh,
“Delivering binary object modification tools for program
analysis and optimization,” volume 8,l of Digital Technical
Journal, pp. 18-31, 1996

89

