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ABSTRACT
Debugging support for highly optimized execution environ-
ments is notoriously difficult to implement. The Truffle/-
Graal platform for implementing dynamic languages offers
an opportunity to resolve the apparent trade-off between
debugging and high performance.

Truffle/Graal-implemented languages are expressed as ab-
stract syntax tree (AST) interpreters. They enjoy competi-
tive performance through platform support for type special-
ization, partial evaluation, and dynamic optimization/deop-
timization. A prototype debugger for Ruby, implemented
on this platform, demonstrates that basic debugging services
can be implemented with modest effort and without signifi-
cant impact on program performance. Prototyped function-
ality includes breakpoints, both simple and conditional, at
lines and at local variable assignments.

The debugger interacts with running programs by insert-
ing additional nodes at strategic AST locations; these are
semantically transparent by default, but when activated can
observe and interrupt execution. By becoming in effect part
of the executing program, these “wrapper” nodes are subject
to full runtime optimization, and they incur zero runtime
overhead when debugging actions are not activated. Condi-
tions carry no overhead beyond evaluation of the expression,
which is optimized in the same way as user code, greatly im-
proving the prospects for capturing rarely manifested bugs.
When a breakpoint interrupts program execution, the plat-
form automatically restores the full execution state of the
program (expressed as Java data structures), as if running
in the unoptimized AST interpreter. This then allows full
introspection of the execution data structures such as the
AST and method activation frames when in the interactive
debugger console.

Our initial evaluation indicates that such support could
be permanently enabled in production environments.
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1. INTRODUCTION
Although debugging and code optimization are both es-

sential to software development, their underlying technolo-
gies typically conflict. Deploying them together usually de-
mands compromise in one or more of the following areas:

• Performance: Static compilers usually support debug-
ging only at low optimization levels, and dynamic com-
pilation may also be limited.

• Functionality : Years of research on the topic have most
often given priority to optimization, resulting in de-
bugging services that are incomplete and/or unreli-
able.

• Complexity : Debuggers usually require compiler sup-
port, in particular the generation of additional infor-
mation the debugger might need when deciphering ex-
ecution state. This strategy can strongly couple their
respective implementations.

• Inconvenience: Putting a system under observation by
a debugger requires some form of “debug mode”, for
example using the -Xdebug option when starting the
Java1 Virtual Machine.

As a consequence, debugging is seldom enabled in produc-
tion environments. Defects that arise must be investigated
in a separate development environment that differs enough
from production that reproducing the issue may be hard.

The VM Research Group at Oracle Labs proposes to elim-
inate this conflict in optimized dynamic runtimes by making
production-quality code debug-aware without adding over-
head. The basis for this proposal is Truffle [29], a newly
developed platform for constructing high performance im-
plementations of dynamic languages. A Truffle-based lan-
guage implementation is expressed as an abstract syntax tree
1Oracle and Java are registered trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective
owners.
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(AST) interpreter, to which the framework applies aggres-
sive dynamic optimizations including type specialization, in-
lining, and many other techniques.

The group’s recently developed implementation of Ruby [5]
has already shown promising results [28] and is now being
integrated with the existing implementation of Ruby on the
JVM, JRuby [18]. As part of a larger inquiry into techniques
for adding developer tool support to Truffle, the Ruby AST
was experimentally extended to include support for a sim-
ple yet useful debugger, as well as for Ruby’s built-in trac-
ing facility. Both extensions exhibit essentially zero runtime
overhead until enabled, at which time the debugging/tracing
logic accrues overhead proportional to the specific function-
ality needed.

This strategy was first explored for the Self debugger [9],
where debugging support is tightly integrated with execu-
tion machinery. A significant consequence of this strategy
is that the representation of logic implementing debugging
functionality becomes indiscernible from the representation
of ordinary application code and thus subject to all the op-
timization capabilities the VM offers for application code.

The paper is structured as follows. The next section
describes the background for this experiment in more de-
tail: the underlying Truffle platform, the Truffle-based im-
plementation of Ruby (Ruby Truffle), the combination of
Ruby Truffle and JRuby (JRuby+Truffle), and the proto-
type Ruby debugger. In section 3, we introduce our use
of AST “wrapper” nodes in the debugger. Section 4 gives
details about the implementation in the Truffle framework,
and about the mechanisms of the underlying VM—including
the Graal compiler—that it uses. In section 5, we discuss
our implementation in comparison to alternatives, in terms
of impact on peak performance. Sections 6 and 7 discuss
related work and conclude the paper.

2. BACKGROUND
The context for the experiment presented here is a project

at the VM Research Group at Oracle Labs to develop a
Truffle-based implementation of the Ruby programming lan-
guage. An initial implementation produced in less than six
months demonstrated extremely high peak performance [28].

During this period the group was also evaluating tech-
niques for extending the Truffle platform with support for
developer tools. A goal for these extensions was to exhibit
zero peak temporal performance overhead when when de-
bugging is enabled but not in use, and minimal overhead
when debugging is in use. We would like to make it possi-
ble to debug long running and production processes to catch
problems that may only occur infrequently or only in pro-
duction environments. We would also like to be able to to
diagnose problems without restarting long running or pro-
duction processes in a debug configuration, and we would
like to be able to do all of this without reducing the per-
formance of the system until the event we want to debug is
actually encountered.

The experimental debugger described here provided a test
case for these techniques.

2.1 Truffle and Graal
The Truffle framework [29] supports building program-

ming language run-time environments expressed originally
as interpreted ASTs. Each Truffle AST node carries the
logic required to enact the associated programming language

semantics. Based on type information obtained at run-time,
AST nodes speculatively replace themselves in the AST with
type-specialized variants [30]. Should the speculation be
wrong, they replace themselves again with other specializa-
tions, or with generic nodes that subsume the functionality
required for all possible types.

Truffle interpreters perform best when running atop the
Graal VM [26]: a modified HotSpot Java VM that hosts
the Graal dynamic compiler. The Graal VM supports par-
tial evaluation of Truffle ASTs and generates efficient ma-
chine code from them. Tree rewriting—e. g., in case of fail-
ing speculations—is possible for trees compiled into machine
code by means of dynamic deoptimization [9], which tran-
sitions control from a compiled machine code method back
into the original AST interpreter and restores the source-
level execution state.

2.2 Ruby Truffle
Ruby [5] is a dynamically typed object-oriented language

with features inspired by Smalltalk and Perl. It is best
known in combination with the Rails web framework for
quick development of database-backed web applications, but
it is also applied in fields as diverse as bioinformatics [7]
and graphics processing [16]. Although generally considered
a relatively slow language with little support from tradi-
tional large enterprise, it has powered significant parts of
extremely large scale applications, for example Twitter [14]
and GitHub [11].

The Truffle implementation of Ruby began as a new code
base, reusing only the JRuby parser. Truffle allows for rapid
implementation: after five months of development Ruby
Truffle ran the RubySpec test suite [25], passing about 50 %
of the language tests, and ran unmodified micro benchmarks
and small kernels from real applications. Ruby Truffle’s im-
plementation comprised about 19,000 lines of Java in 155
classes. The prototype debugger was also implemented dur-
ing this period, allowing it to be used to support Ruby Truf-
fle’s development.

2.3 JRuby+Truffle
The Truffle-based implementation of Ruby has been li-

censed for open source and merged into JRuby: an existing
Java-based implementation [18]. The original JRuby began
as a straightforward port of the standard Ruby interpreter
from C to Java. It has since become arguably the most so-
phisticated implementation of a dynamic language on the
JVM.

JRuby’s first tier of execution is an AST interpreter, but
it then compiles methods to JVM bytecode. The JRuby
project was also an early adopter and key contributor to
the design of the invokedynamic JVM instruction [23], and
the wider JSR 292 framework for supporting dynamic lan-
guages [22], so it was already structured around multiple
compilation options and backends.

We refer to JRuby running with the Ruby Truffle backend
as JRuby+Truffle. This combination is the subject of the
performance evaluations presented in section 5.

2.4 The Prototype Debugger
Debugging was added to Ruby Truffle by extending Ruby’s

core library with built-in debugging methods, so that in-
teractive debugging could be conducted via sessions with
Ruby’s shell. Debugging operations include:



1""""while"x"<"y"
2""""""x"+="1"
3""""""y"*="1"
4""""end(

1""""set_trace_func"proc"{"|event,"file,"line,"
2""""""""id,"binding,"classname|"
3""""""puts""We're"at"line"number"#{line}""
4""""}"

Figure 1: Example Ruby code

• Set a line breakpoint that halts execution.

• Set a line breakpoint with an associated action: a frag-
ment of Ruby code that might be guarded by a con-
ditional expression and which might halt execution or
anything else.

• Set a data breakpoint on a local variable in some method
that halts execution immediately after an assignment.

• Set a data breakpoint with an associated action, as
with a line breakpoint.

• Continue execution.

• Basic introspection of the program structure and cur-
rent state such as examining the value of variables and
reporting the halted position.

The goal for the prototype was to test whether the goals
described earlier could be achieved through techniques that
leverage Truffle’s AST node abstraction, combined with the
partial evaluation, dynamic optimization, and dynamic de-
optimization capabilities of Graal. The key strategy is to im-
plement debugging actions as dedicated AST nodes that are
inserted into the AST, and thus into the flow of program exe-
cution. To Truffle’s optimization machinery these nodes ap-
pear no different than ordinary “language-level” AST nodes.

3. DEBUG NODES
Debugging in the prototype is implemented by strategi-

cally modifying the AST under interpretation by Truffle.

3.1 Wrappers
The central construct in the Ruby Truffle debugger is the

wrapper node or simply wrapper. This is a Truffle AST node
with one child that:

• is transparent to execution semantics,

• by default just propagates the flow of program execu-
tion from parent to child and back, and

• performs debugging actions when needed.

Starting with an AST produced by a conventional parser, we
insert a wrapper as the parent of the first node corresponding
to each location where we may want to install some debug
action.

Figure 1 shows Ruby code that increments a local vari-
able x and decrements a local variable y while x < y. This
code has three locations where we might want to set a break-
point, and two locations where we might want to break on
assignment of a local variable.

Figure 2 shows the AST of this code as produced by the
parser. Figure 3 shows the same AST with wrappers inserted
wherever the Ruby parser tells us that the line number has
changed, to implement line breakpoints. Each wraps a single
child node.

WriteLocal ‘x’ 

Call ‘+’ 

ReadLocal ‘x’ 

FixnumLiteral 1 

WriteLocal ‘y’ 

Call ‘-’ 

ReadLocal ‘y’ 

FixnumLiteral 1 

Sequence Call ‘<’ 

ReadLocal ‘x’ 

ReadLocal ‘y’ 

While 

Figure 2: AST of Figure 1 without wrappers

LineBreakpoint 

Call ‘+’ 

ReadLocal ‘x’ 

FixnumLiteral 1 

LineBreakpoint 

Call ‘-’ 

ReadLocal ‘y’ 

FixnumLiteral 1 

Sequence LineBreakpoint 

While 

Call ‘<’ 

ReadLocal ‘x’ 

ReadLocal ‘y’ 

WriteLocal ‘x’ 

WriteLocal ‘y’ 

Figure 3: AST of Figure 1 with wrappers to imple-
ment line breakpoints



3.2 Debug Operations
Potential debugging operations are implemented in the

form of wrappers at every location where the user might
want to request a debug action. The wrappers are always
added, whether or not a debug action is initially installed,
and whether or not a debugging tool is currently attached.
When added, the wrappers are initially in an inactive state.
An inactive wrapper is simple: during each execution it only
checks to see if it should be enabled, and if not propagates
the flow of program execution to the wrapped node. The
debug operation at a particular location can be enabled by
replacing just the relevant inactive wrappers with active ver-
sions. The action that the active wrapper performs depends
on the functionality it implements, and we describe several
active wrapper nodes in section 3.4. When no longer needed,
an active wrapper replaces itself again with an inactive ver-
sion.

3.3 Assumptions
Many wrappers follow this pattern: a debugging node re-

places itself with an alternate version when some presumably
rare condition occurs. Truffle aggressively optimizes code
when given hints about what conditions should be treated
as the normal case; instances of the Assumption class are
one way to do this.

An Assumption is implemented as a boolean that is ini-
tially true until invalidated, at which time it becomes per-
manently false. For example, debugging code might create
an instance to represent the fact that there is no breakpoint
at a particular line of source code, and will only invalidate
that assumption should a breakpoint be created.

Truffle applies important optimizations speculating that
Assumption.isValid() always returns true. When an in-
stance is invalidated (i. e., its value is set to false), Truf-
fle deoptimizes any method code that depends on that as-
sumption (i. e., any code that calls Assumption.isValid()

on the instance). Typically the program then replaces the
node associated with the invalid Assumption and creates a
new (valid) instance of Assumption. Section 4 discusses how
the Assumption class is optimized and how it makes possible
very low cost validity checks.

3.4 Wrapper Roles
Our implementation of a Ruby debugger uses wrapper

nodes to implement debug and metaprogramming function-
ality that is similar to that provided by other implementa-
tions.

3.4.1 set_trace_func

Ruby’s core library method Kernel#set_trace_func reg-
isters a method to be called each time the interpreter en-
counters certain events, such as moving to a new line of
code, entering or leaving a method, or raising an exception
(Figure 4 shows an example). This method is used to imple-
ment other Ruby debuggers (such as the debugger library,
detailed in section 5), profilers, coverage tools and so on.
The trace method receives a Binding object that represents
the current environment (local variables in lexical scope) as
well as other basic information about where the trace was
triggered. One trace method at a time can be installed, and
it may be removed by calling set_trace_func with nil.

The Ruby Truffle debugger implements set_trace_func

as an (initially inactive) trace wrapper at the location of each

1""""while"x"<"y"
2""""""x"+="1"
3""""""y"*="1"
4""""end(

1""""set_trace_func"proc"{"|event,"file,"line,"
2""""""""id,"binding,"classname|"
3""""""puts""We're"at"line"number"#{line}""
4""""}"

Figure 4: Example usage of set_trace_func

1""""while"x"<"y"
2""""""x"+="1"
3""""""y"*="1"
4""""end(

1""""set_trace_func"proc"{"|event,"file,"line,"
2""""""""id,"binding,"classname|"
3""""""puts""We're"at"line"number"#{line}""
4""""}"

1""""Debug.break("test.rb","14)"do(
2"""""puts""The"program"has"reached"line"14""
3""""end(

Figure 5: Example command to install a line break-
point

line. Each time it is executed, the inactive node checks the
assumption that there is no trace method installed before
propagating the flow of program execution. When the check
fails, the node replaces itself with an active trace wrapper.

The active wrapper correspondingly checks the assump-
tion that there is a trace method before first invoking the
method and then propagating the flow of program execu-
tion. When the trace method has been removed, the check
fails and an inactive wrapper is swapped back in. Using an
Assumption object ensures that in the most common case
the only overhead is the (inactive) wrappers performing the
check.

3.4.2 Line Breakpoints
The line breakpoint and set_trace_func implementations

are similar. However, instead of a single trace method, line
breakpoint wrappers check if a method has been installed for
their associated line of source code. The debugger maintains
a map that relates source locations to Assumption objects.
A newly constructed line breakpoint wrapper is given access
to the Assumption that the current method for that line has
not changed.

A triggered breakpoint halts program execution and starts
an interactive session similar to the standard interactive
Ruby shell known as “irb”. This debugging session runs in
the execution environment of the parent scope at the break-
point, so that local variables are visible in the debugger.
Additional Ruby methods available in the shell include De-

bug.where (displays the source location where the program
is halted) and Debug.continue (throws an exception that
exits the shell and allows program execution to continue).
We have not yet implemented debug operations such as next,
but believe these can be implemented with combinations of
these techniques.

The action taken by an active line breakpoint node could
be anything that can be expressed in Java (Truffle’s host
language) or, as with set_trace_func, a method written
in Ruby. Figure 5 shows an example command to install a
line breakpoint. This could have been written as part of the
program, or typed into an interactive shell. The example
prints a message to the log, but it could contain arbitrary
Ruby code, including entry into the debugger.

3.4.3 Conditional Line Breakpoints
Conditional line breakpoints are a simple extension to line

breakpoints. Since the breakpoint wrapper is a legitimate
Truffle AST node, an if statement can be wrapped around
the action that invokes the debugger. To support conditions



LineBreakpoint 

Call ‘+’ 

ReadLocal ‘x’ 

FixnumLiteral 1 

LineBreakpoint 

Call ‘-’ 

ReadLocal ‘y’ 

FixnumLiteral 1 

Sequence LineBreakpoint 

While 

Call ‘<’ 

ReadLocal ‘x’ 

ReadLocal ‘y’ 

WriteLocal ‘x’ 

WriteLocal ‘y’ 

Call ‘==’ 

ReadLocal ‘y’ 

FixnumLiteral 6 

If 

Figure 6: AST of Figure 1 with a line breakpoint
with condition y == 6

written in Ruby, we can call a user-defined method to test
the condition, in exactly the same way as we call a user-
defined method in set_trace_func. Again, it is also possible
to inline this method, so the condition becomes part of the
compiled and optimized method.

Figure 6 shows the AST of Figure 1 with a line breakpoint
installed on line 3 that contains the condition y == 6. The
condition forms a first-class part of the AST, alongside the
original program, with no distinction between debug code
and user code that might inhibit optimization.

3.4.4 Local Variable Watchpoints
Breakpoints on the modification of local variables, as well

as the conditional version of the same, are implemented al-
most exactly as are line breakpoints. A local breakpoint
wrapper is inserted at each local assignment node, and the
debugging action happens after the child has executed, i. e.,
when the local holds the newly assigned value.

4. IMPLEMENTATION
This section describes the properties of the underlying

Truffle/Graal platform that make this approach to debug-
ging effective.

4.1 The Truffle Compilation Model
The Truffle-based implementation of Ruby is expressed as

an AST interpreter [30]. Unlike all other modern implemen-
tations of Ruby, we do not generate bytecode and do not
explicitly generate machine code. Instead, when running on
a JVM with the Graal compiler, Truffle will profile AST exe-
cution. When it discovers a frequently executed tree, it takes
the compiler intermediate representation of all the methods
involved in executing the AST—primarily, all the execute

methods on the AST nodes—and inlines them into a single
method. The powerful intra-method optimizations that the
JVM normally applies within methods are applied across all
the methods, and Truffle produces a single machine code
function for the AST. In our case this is a single machine

code function for a single Ruby method. This by-default
inlining of AST interpreter methods removes the overhead
introduced by inactive wrappers.

4.2 Overview
Figure 7 summarizes the transitions of an AST with de-

bug nodes under the Truffle compilation model. It shows an
AST with an inactive wrapper node illustrated as a double
circle. After enough executions of this AST to trigger com-
pilation, a single machine code method is produced from all
nodes in the AST, including the inactive wrapper. When a
line breakpoint (illustrated as a filled circle) is installed in
place of the inactive wrapper node, we trigger deoptimiza-
tion (explained in the following subsection) by invalidating
the assumption on which the compiled code is produced.
The machine code restores interpreter frames and jumps
back into interpreted code. In the interpreter we replace
the inactive wrapper node with an active line breakpoint
node. Execution continues, and after a period to allow the
AST to re-stabilize (for example we have to determine the
type of operations and fill inline caches in the modified AST)
we again reach the threshold of executions for the AST to
be compiled. Graal caches parts of the compilation of the
AST so compilation with the replaced node does not have
to take as long [26].

Figure 8 illustrates how a simplified inactive debug node
is compiled to leave zero overhead. The semantic action
method of the node, execute, checks the assumption that
the node should still be inactive. If the assumption is no
longer valid the node is replaced. Under compilation, the
check is constant and valid. The compiler sees that no ex-
ception is thrown and removes the entire catch block. The
only remaining action is to directly execute the child of the
wrapper (the node that is being wrapped). Truffle inlines
by default, so there is no method call overhead to execute
the child. If the assumption was no longer valid, for ex-
ample because the user is installing a breakpoint, execution
will transition to the interpreter. There the check on the as-
sumption is always performed. Then the exception will be
thrown and caught, a new active node will be created and
will replace this current inactive node. Execution will then
continue with the new active node. At some point Truffle
will decide to compile the method again, with the new node
in place.

Inactive wrapper nodes play several important roles in
ASTs being debugged, even though they compile to nothing
most of the time. They make it possible to map signifi-
cant AST locations, for example the beginning of lines, that
could othewise be reached only by tree navigation. They
can be relied upon to persist, even when nodes around them
are replaced during Truffle AST optimization. Finally, they
can be activated and deactivated by self-replacement, which
is Truffle’s fundamental (and safe) mechanism for runtime
AST modification.

4.3 Deoptimization
Truffle provides two implementations of the Assumption

class. When Graal is unavailable or the method is being in-
terpreted, Assumption is implemented with a Boolean flag
and explicit checks as described in section 3.3. Since As-

sumption objects are checked often but invalidated rarely,
a strategy that treats them as constant and valid during
compilation, but ensures that invalidation of the assumption



inactive 

active 

Compile: produces 
partially evaluated 

machine code 
from specialized 

AST. 

Deoptimize: 
transfers control 

from the machine 
code back to the 
AST interpreter. 

Replace: the 
inactive node with 
an active node to 
install the debug 

action 

Compile: produces 
new machine code 
from the modified 

AST and the installed 
debug action. 

Debug action 
installed by user Inactive assumption 

check completely elided 
in compiled code 

Figure 7: Overview of the Truffle compilation model as it applies to debug nodes

!!!!public!Object'execute(…)!{!

!!!!!!!!try!{!

!!!!!!!!!!!!inactiveAssumption.check(…);!

!!!!!!!!}!catch!(InvalidAssumptionException!e)!{!

!!!!!!!!!!!!final!ActiveDebugNode!activeNode!=!createActive();!

!!!!!!!!!!!!replace(activeNode);!

!!!!!!!!!!!!activeNode.execute(…);!

!!!!!!!!}'

''''''''return'child.execute(…);!

!!!!}!

1)#Inac(ve#assump(on#assumed#
to#be#constant#and#valid#in#
compiled#code#

2)#check()##therefore#
never#throws#an#
excep(on#and#the#en(re#
try>catch#block#can#
be#elided#

3)#The#only#ac(on#remaining#is#to#
directly#execute#the#child#of#the#
wrapper,#which#is#inlined,#leaving#no#
overhead#from#the#wrapper#

Figure 8: Explanation of how code in an inactive
debug node (simplified) is compiled to leave zero-
overhead

occurs correctly, can bring large performance benefits. The
Graal implementation of Assumption on top of the HotSpot
JVM provides the mechanism to do this efficiently.

OpenJDK JIT compilers such as server [19] and client [13]
emit machine code at runtime after sufficient invocations of
a method, and will then call the machine code version of
the method instead of interpreting it. The transition from
the initial interpreter into this compiled machine code does
not have to be one-way. The transition in the other direc-
tion, from machine code to interpreter is called dynamic de-
optimization [9]. Part of the complexity of deoptimization
is that invalidated machine code may be already running
and on the stack, potentially with more than one activation,
and potentially on more than one thread. Multiple activa-
tions in a single thread are deoptimized by examining the
entire stack when deoptimizing and transitioning all activa-
tions of affected methods. Activations in other threads are
deoptimized by cooperatively halting them at a safepoint
where threads test a page that has its permissions changed
to cause a segfault and stop the thread. Safepoints are
already emitted by the JVM to support systems such as the
garbage collector, so they add no overhead in our system to
support debugging multi-threaded applications.

The efficient implementation of Assumption is made pos-
sible by this mechanism, which Graal exploits by maintain-
ing a list for each Assumption object of all machine code
that depends on the Assumption being valid. The invalidate
method on an Assumption object instructs the underlying
JVM to invalidate all dependent machine code, which trig-
gers OpenJDK JVM deoptimization.

The Graal VM is specifically designed to enable aggres-
sive speculative optimizations [3]. It uses dynamic deopti-
mization internally, and employing the same techniques for
debugging introduces no additional runtime overhead.

4.4 Expectation
The inlining of AST interpreter methods and the use of

dynamic deoptimization via Assumption objects instead of



explicit checks to enable debug operations means that our
debugger implementation will have no peak temporal perfor-
mance overhead at all when debugging is enabled but not in
use. After optimization, a tree with an inactive line break-
point wrapper becomes no different in terms of the JVM JIT
compiler IR than if the wrapper had not been added, as it
had no body after the assumption check was removed, and
we remove method boundaries.

It is also possible to inline a trace method or breakpoint
condition, rather than making a method call. A copy of the
trace method’s AST can be inserted as a child node of the
active wrapper. In this position it is optimized in exactly
the same way as user code, as if inserted at that point in
the source code. Part of the reason that set_trace_func is
expensive in existing implementations (see section 5) is that
the trace method is passed the current environment (the
binding parameter in Figure 4). When our debugger inlines
a trace method, Graal observes through escape analysis [12]
that the environment argument can be optimized.

5. EVALUATION
We evaluated the temporal performance of JRuby+Truf-

fle against other implementations of Ruby interpreters and
debuggers.

We focused on peak temporal performance—that is, per-
formance after all compilation has finished and performance
has reached a steady state—because we are interested in
debugging long running programs such as servers, where en-
abling a debugger is usually prohibitively expensive. We do
not consider the temporal performance of hitting a break-
point and entering the debugger to display a user interaction
prompt, as we consider this to be an offline operation and
not relevant to peak performance.

All of the code used in this evaluation is open source. Our
experimental artifact contains scripts to download and build
all the relevant software including our patches, to run the
experiments and to produce the results.2

5.1 Compared Implementations
The reference implementation of Ruby is often referred to

as MRI (Matz’s Ruby Interpreter) or CRuby [17]. Prior to
version 1.9 it was an AST interpreter written in C, but it
now also has a simple bytecode interpreter [24]. We used
version 2.1.0.

Rubinius [20] is Ruby ‘built using Ruby’ with stated
goals of high temporal performance and concurrency, as well
as being more accessible for Ruby developers. It has a sub-
stantial VM core implemented in C++, but most of the
Ruby specific behavior is implemented in Ruby with an in-
terface to the VM. Rubinius uses LLVM [15] to implement
a JIT compiler and also implements its own debugger. We
used version 2.2.4.

We evaluated JRuby [18] separately, without the Ruby
Truffle backend enabled. We ran with invokedynamic en-
abled when possible, and used a development build at revi-
sion 59185437ae86.

Based on the PyPy project [21], Topaz [6] is Ruby im-
plemented in RPython, a subset of Python that can be stat-
ically translated to C for native compilation. At runtime
Topaz can also apply the RPython tracing JIT to the inter-

2
http://lafo.ssw.uni-linz.ac.at/truffle/debugging/

dyla14-debugging-artifact-0557a4f756d4.tar.gz

preter. Topaz is comparable in completeness to JRuby+Truf-
fle, but includes no support for debugging yet. We used a de-
velopment build at revision 4cdaa84fb99c, built with PyPy
at revision 8d9c30585d33.

The Ruby standard library includes a simple debugger
that is implemented using set_trace_func. The name of
the library is debug, but for clarity we will refer to it as
stdlib-debug. As part of the standard library, it is not
separately versioned.

Providing a superset of the functionality of stdlib-debug,
ruby-debug (also referred to as rdebug) is implemented as
a C extension to MRI to reduce overheads. This library
is the foundation for most debugging tools commonly used
with Ruby, e. g., in RubyMine. We used version 1.6.5.

As JRuby has limited support for C extensions, ruby-
debug has been ported to Java as jruby-debug. We used
version 0.10.4. jruby-debug is not compatible with the devel-
opment version of JRuby, so we ran experiments using jruby-
debug with the latest compatible version, JRuby 1.7.10.

5.2 Experimental Setup
All experiments were run on a system with 2 Intel Xeon

E5345 processors with 4 cores each at 2.33 GHz and 64 GB
of RAM. We used 64bit Ubuntu Linux 13.04, using system
default compilers. Where an unmodified Java VM was re-
quired, we used the system default 64bit OpenJDK 1.7.0 51.
For implementations using Graal we used version 0.1.

Each configuration evaluated was sampled 30 times. We
found that 10 runs was at least sufficient to reach steady
state with subsequent runs being statistically independently
and identically distributed. We informally verified this us-
ing lag plots [10]. We disregarded these first 10 runs to
obtain sample measures of peak temporal performance. An
arithmetic mean of the samples gives us the reported time.
Reported errors are the standard error. When summarizing
across multiple benchmarks we report a geometric mean.

We used common simple benchmarks from the Computer
Language Benchmarks Game (née Shootout)—fannkuch and
mandelbrot [2]. These are small synthetic benchmarks with
well-understood limitations when used for comparing per-
formance. For our experiments, they are only used as a
base on which to install breakpoints (with the exception of
section 5.3) so we do not believe their simplicity poses any
threat to the validity of our results.

5.3 Relative Default Performance
Keeping in mind the limitations of these simple bench-

marks, we first present an overview of the relative default
performance of the implementations under evaluation. It is
important to understand the orders of magnitude involved
here, as providing low overhead debugging is only impor-
tant in a fast system. Figure 9 shows the performance of
the different implementations in their default configuration,
relative to the performance of MRI. As the different imple-
mentations offer different default functionality (for example,
JRuby does not support set_trace_func by default, where
we support both set_trace_func and full debugging) the
comparison is not fair, but it is indicative of the temporal
performance perceived by users during normal operation.

5.4 Overhead of set_trace_func

We looked at the temporal overhead of using set_tra-

ce_func to understand the ability of each implementation to

http://lafo.ssw.uni-linz.ac.at/truffle/debugging/dyla14-debugging-artifact-0557a4f756d4.tar.gz
http://lafo.ssw.uni-linz.ac.at/truffle/debugging/dyla14-debugging-artifact-0557a4f756d4.tar.gz
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fault configuration, relative to MRI (taller is linearly
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efficiently attach user code to a running program. First we
looked at the overhead of being able to use set_trace_func

but not actually doing so, by comparing with it disabled
and with it enabled. Then we looked at the overhead of
running with a trace method actually installed, and finally
after it has been removed. The trace method we used simply
counted the number of times it was called.

As MRI and Topaz have no option to turn off set_tra-

ce_func, we patched them to remove support. JRuby re-
quires the --debug flag to turn on support for set_tra-

ce_func and requires compilation to JVM bytecode to be
disabled. Rubinius does not support set_trace_func, so
it is not mentioned in this subsection. For JRuby+Truffle,
we added an option to not create trace nodes so we could
evaluate performance with tracing not enabled.

Table 1 shows benchmark run times when set_trace_func

is disabled with standard deviation and standard error (dis-
abled). We then show the percentage overhead relative to
the disabled time when set_trace_func is enabled but no
method is installed (before), when the simple method is in-
stalled (during) and after it has been removed (after).

MRI shows low overhead because one extra memory read
per line is a tiny proportion of the work done in executing
the rest of line under their execution model. The overhead
when a trace method is installed is high but not unreason-
able given it has no mechanism to elide the allocation of a
Binding object and so must actually allocate it on the heap
for each trace event.

JRuby’s initial overhead results from having to disable
compilation to JVM bytecode, which is required in order to
use the feature. The overhead of calling the trace method is
limited by having to allocate the Binding object.

Topaz has low but statistically significant overhead for
enabling tracing. However the implementation does not ap-
pear to be optimized for having a trace method actually
installed, showing a pathological overhead as large as three
orders of magnitude.

JRuby+Truffle shows very low overhead for enabling trac-
ing, and a reasonable overhead of 4–5x to install a trace
method. Our implementation inlines the trace method, al-

lowing the binding (the object representing the current en-
vironment) to be elided if not actually used. If the trace
method is used, and if escape analysis determines that the
binding cannot be referenced outside the method, then the
frame can be allocated on the stack for better performance
than via default heap allocation.

5.5 Overhead of a Breakpoint on a Line Never
Taken

We examined the overhead of setting a breakpoint on a
line that is never taken during execution, compared to run-
ning with debugging disabled, and to running with debug-
ging enabled but without any breakpoints. This represents
the cost of setting a line breakpoint on some rarely taken
erroneous path. The question we are asking is this: If such
an erroneous state is only observed intermittently, such as
once a week, what is the cost of having the breakpoint set
during the whole run of the program to catch the one time
when it is? The breakpoint was set on a line in the inner
loop of the benchmarks. The condition we used to guard the
line was not statically determinable to be always false by
any of the implementations. We also looked at the overhead
after the breakpoint has been removed.

As with set_trace_func, JRuby requires the --debug flag
which disables compilation. We found that the Rubinius
debugger silently failed to work in combination with JIT
compilation3 so like JRuby we were forced to disable com-
pilation. However, Rubinius runs methods with breakpoints
in a special interpreter anyway, so disabling the JIT should
not affect the reported overhead. Topaz does not support
any debuggers, so it is not mentioned in experiments from
this point on. We added an option to JRuby+Truffle to not
create debug nodes to test performance when debugging is
not enabled.

For this and the following experiments, we considered mul-
tiple combinations of implementation and debugger where
possible. For example, we show JRuby with both stdlib-
debug and jruby-debug. In later summaries, we show only
the best performing combination. Normally, JRuby+Truffle
would detect that the branch is never taken during interpre-
tation and speculatively elide it for compilation, but we dis-
abled conditional branch profiling for all these experiments.

Table 2 shows time taken for the benchmark when the
debugger is disabled with standard deviation and standard
error (disabled). We then show the percentage overhead
relative to that disabled time of running with the debugger
enabled and attached, but no breakpoint set (before), then
with a breakpoint set on a line never taken (during), and
finally after the breakpoint has been removed (after).

The overhead of using stdlib in either MRI or JRuby is
extremely high as it is based on the already inefficient imple-
mentations of set_trace_func. The native extension vari-
ants ruby-debug and jruby-debug show two orders of mag-
nitude less overhead, bringing it down to around a reason-
able 5x. Rubinius also has a reasonable overhead of 1.2–
6.8x. JRuby+Truffle shows very low overhead for all states.
Overhead is negative in some cases due to normal varia-
tion in produced machine code (the Graal compiler is non-
deterministic). The overhead appears to be negative for the

3We reported this issue along with test cases to demon-
strate the problem (https://github.com/rubinius/rubinius/
issues/2942) but have not received a response at the time of
writing.

https://github.com/rubinius/rubinius/issues/2942
https://github.com/rubinius/rubinius/issues/2942


Fannkuch

Disabled (s (sd) se) Before During After

MRI 0.995 (0.006) ±0.142% 0.1x 24.6x 0.1x
JRuby 0.358 (0.008) ±0.514% 3.9x 199.4x 3.7x
Topaz 0.154 (0.001) ±0.204% 0.0x 661.1x 0.0x

JRuby+Truffle 0.091 (0.003) ±0.692% 0.0x 4.0x 0.0x

Mandelbrot

Disabled (s (sd) se) Before During After

MRI 2.015 (0.001) ±0.014% 0.0x 30.7x 0.0x
JRuby 0.992 (0.013) ±0.304% 2.8x 153.5x 2.8x
Topaz 0.073 (0.000) ±0.054% 0.2x 5680.4x 0.0x

JRuby+Truffle 0.060 (0.000) ±0.179% 0.0x 5.0x 0.0x

Table 1: Overhead of set_trace_func (lower is better)

mandelbrot benchmark due to normal non-determinism in
the Graal compiler caused by profiling.

5.6 Overhead of a Breakpoint With a Con-
stant Condition

We looked at the overhead of setting a line breakpoint
with a constant condition that is statically determinable to
always evaluate to false. This tests the overhead of a con-
ditional breakpoint where the condition itself should have
no overhead. Again the breakpoint was set on a line in the
inner loop of the benchmarks.

We could not find any support in stdlib-debug for condi-
tional breakpoints, so it is not mentioned further.

Table 3 shows the overheads in the same format as be-
fore. Results for MRI, Rubinius and JRuby are broadly the
same as before, except with a significant additional overhead
caused by evaluating the condition. JRuby+Truffle now
shows a significant overhead when the conditional break-
point is installed. Although the condition is constant, we
are not yet able to inline the condition in the line where the
breakpoint is installed, so this overhead represents a call to
the condition method.

5.7 Overhead of a Breakpoint With a Simple
Condition

Finally, we looked at the overhead of setting a line break-
point with a simple condition, comparing a local variable
against a value it never holds. This tests the normal use of
conditional breakpoints, such as breaking when some invari-
ant fails. Again the breakpoint was set on a line in the inner
loop of the benchmarks.

Table 4 shows the overheads in the same format as be-
fore. The overhead when there is a simple condition to test
compared to a constant condition is not great in MRI. The
overhead in JRuby+Truffle when the breakpoint is installed
is increased but is still reasonable at up to 10x.

5.8 Summary
Table 5 summarizes the results across both benchmarks,

using the highest performing debugger implementation for
each implementation of Ruby. We show the overhead for dif-
ferent debug tasks, in each case compared to when set_tra-

ce_func or debugging is disabled. Figure 10 shows self-
relative performance on a logarithmic scale, with relative
performance of 1 being no-overhead and one vertical grid

line being an extra order of magnitude of overhead.
JRuby+Truffle has on average 0.0x overhead for enabling

tracing, debugging and setting a breakpoint on a line never
reached. For constant and simple conditional breakpoints on
lines in the inner loop of the benchmarks which we cannot
optimize away entirely JRuby+Truffle has a very reasonable
overhead in the range 5–9x: about an order of magnitude
less than other implementations.

When interpreting these results we should also keep in
mind the extreme performance variation among language
implementations (see Figure 9). These overheads are on top
of those differences. In terms of absolute wall-clock perfor-
mance, JRuby+Truffle is over two orders of magnitude faster
than the next fastest debugger, MRI with ruby-debug, when
running with a breakpoint on a line never taken.

5.9 Other Implementations of Ruby
Serious implementations of Ruby are suprisingly numer-

ous, relative to similar languages such as Python, PHP or
Perl. We did not consider implementations that have been
unsupported for years, such as Ruby Enterprise Edition (an
older version of MRI with performance patches, most of
which are now in MRI) and IronRuby (Ruby implemented
on the Dynamic Language Runtime). We also did not con-
sider some variants of Ruby that are platform specific or dif-
fer significantly from standard Ruby such as MacRuby (us-
ing OS X system libraries), RubyMotion (on iOS) or MRuby
(for embedded environments). We did review MagLev [4],
the implementation of Ruby on a commercial Smalltalk VM:
performance was not competitive with JRuby, it only sup-
ports legacy versions of the Ruby language, it does not sup-
port set_trace_func at all, and it does not compile methods
with breakpoints.

6. RELATED WORK

6.1 Self
Debugging support was one of the primary motivations

behind the development of dynamic deoptimization in Self,
which was claimed to be “the first practical system provid-
ing full expected [debugging] behavior with globally opti-
mized code” [9]. Along with other seminal innovations in
Self, this derived from its creators’ firm commitment that
the experience of using a language is fully as important as
performance [27].



Fannkuch

Disabled (s (sd) se) Before During After

MRI/stdlib-debug 1.043 (0.006) ±0.124% 154.2x 182.9x 196.3x
MRI/ruby-debug 1.043 (0.006) ±0.124% 4.3x 4.7x 4.3x

Rubinius 1.459 (0.011) ±0.174% 4.5x 6.8x 3.6x
JRuby/stdlib-debug 0.562 (0.010) ±0.402% 1375.2x 1609.2x 1573.3x
JRuby/jruby-debug 0.562 (0.010) ±0.402% 4.5x 43.3x 41.9x

JRuby+Truffle 0.091 (0.003) ±0.692% 0.0x 0.0x 0.0x

Mandelbrot

Disabled (s (sd) se) Before During After

MRI/stdlib-debug 2.046 (0.001) ±0.009% 139.6x 179.0x 166.8x
MRI/ruby-debug 2.046 (0.001) ±0.009% 5.5x 5.6x 5.5x

Rubinius 1.151 (0.002) ±0.031% 4.6x 11.7x 3.8x
JRuby/stdlib-debug 1.096 (0.008) ±0.170% 1698.3x 1971.4x 1884.1x
JRuby/jruby-debug 1.096 (0.008) ±0.170% 4.6x 49.8x 48.3x

JRuby+Truffle 0.060 (0.000) ±0.179% 0.0x 0.0x 0.0x

Table 2: Overhead of setting a breakpoint on a line never taken (lower is better)

Fannkuch

Disabled (s (sd) se) Before During After

MRI/ruby-debug 1.043 (0.006) ±0.124% 4.3x 25.8x 4.2x
Rubinius 1.459 (0.011) ±0.174% 3.7x 187.4x 3.7x

JRuby/jruby-debug 0.562 (0.010) ±0.402% 4.6x 41.2x 41.4x
JRuby+Truffle 0.107 (0.003) ±0.528% 0.0x 1.7x 0.0x

Mandelbrot

Disabled (s (sd) se) Before During After

MRI/ruby-debug 2.046 (0.001) ±0.009% 5.5x 35.4x 5.5x
Rubinius 1.151 (0.002) ±0.031% 4.6x 662.8x 4.0x

JRuby/jruby-debug 1.096 (0.008) ±0.170% 4.3x 48.0x 47.4x
JRuby+Truffle 0.059 (0.001) ±0.188% 0.0x 8.1x 0.0x

Table 3: Overhead of setting breakpoint with a constant condition (lower is better)

Fannkuch

Disabled (s (sd) se) Before During After

MRI/ruby-debug 1.043 (0.006) ±0.124% 4.3x 31.6x 4.2x
Rubinius 1.459 (0.011) ±0.174% 3.7x 187.7x 4.5x

JRuby/jruby-debug 0.562 (0.010) ±0.402% 4.4x 86.2x 41.9x
JRuby+Truffle 0.107 (0.003) ±0.528% 0.1x 10.1x 0.1x

Mandelbrot

Disabled (s (sd) se) Before During After

MRI/ruby-debug 2.046 (0.001) ±0.009% 5.6x 50.7x 6.7x
Rubinius 1.151 (0.002) ±0.031% 4.7x 659.8x 4.5x

JRuby/jruby-debug 1.096 (0.008) ±0.170% 4.5x 105.3x 46.8x
JRuby+Truffle 0.059 (0.001) ±0.188% 0.0x 7.9x 0.0x

Table 4: Overhead of setting breakpoint with a simple condition (lower is better)



MRI Rubinius JRuby Topaz JRuby+Truffle

Enabling set trace func 0.0x n/a 2.3x 0.1x 0.0x
Using set trace func 26.6x n/a 39.9x 2714.2x 4.5x
Enabling debugging 4.9x 4.6x 4.6x n/a 0.0x
Breakpoint on a line never taken 5.1x 9.3x 46.5x n/a 0.0x
Breakpoint with constant condition 30.6x 425.1x 44.6x n/a 4.9x
Breakpoint with simple condition 41.2x 423.7x 95.8x n/a 9.0x

Table 5: Summary of overheads (lower is better)
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Figure 10: Summary of relative performance when using debug functionality (taller is exponentially worse)



Debugging in the original Self was primitive; setting a
breakpoint required manually inserting “a send of halt into
the source method”. It was also deeply entwined with the
language implementation. For example, the finish oper-
ation was implemented by “changing the return address of
the selected activation’s stack frame to a special routine ...”.

Two decades of progress in the underlying technologies
have led to the Truffle platform, which supports multiple
languages, and into which nearly transparent debugging code
can be inserted without the language specificity and fragility
of its original incarnation.

6.2 Debugging Optimized Code
Debugging statically compiled, optimized code has been

a problem worthy of many PhD dissertations. As the Self
creators pointed out, that work generally gave priority to
optimization, and results generally were complex and sup-
ported only limited debugging functionality [9]. The Ruby
debugger demonstrates that the compromise can be avoided.

6.3 Wrapper Nodes
The idea of wrapping nodes to transparently introduce

extra functionality was applied before in a machine model
for aspect-oriented programming languages [8]. The abstrac-
tions used there are generic enough to be used for debugging
as well, as this work shows.

6.4 Low Overhead for set_trace_func in Ruby
Topaz provides high peak temporal performance even with

set_trace_func enabled by default, using techniques com-
parable to ours. However, performance with a trace method
installed causes an extremely high performance overhead,
showing that only the inactive path is optimized. Topaz
implements set_trace_func by declaring the current trace
method to be a green variable [1]. A green variable is one
that should be the same every time a compiled method (ac-
tually a trace in the case of Topaz) is entered. Without
a trace method installed, the variable is nil upon entering
the trace and can be assumed to be nil throughout, mean-
ing that the check at each line if there is a trace method
installed is a constant. If a trace method is installed, the
compiled trace will be found to be invalid when the green
variables are checked, and will be recompiled. This is similar
to how checking our Assumption class becomes a constant
operation. However, to implement set_trace_func the de-
velopers of Topaz needed to define the trace method as a
green variable in their main JIT object and at each merge
point where the interpreter could enter a compiled trace.
We believe that our system where an Assumption is only
of concern to the subsystem that is using it, rather than a
‘global’ object, is more elegant.

7. CONCLUSIONS
Early experience with an experimental Ruby debugger

suggests that it is possible to build debuggers on the Truffle
platform without the compromises listed in the introduction.

• Performance: Runtime overhead is extremely low, and
is arguably minimal relative to optimization supported
by Truffle. Inactive AST node wrappers incur zero
overhead when dynamically optimized along with pro-
gram code. Activated debugging actions, whether ex-
pressed in Java or the implemented language, are sub-
ject to full optimization.

• Functionality : We have yet to see any limitations im-
posed by Truffle on the kind of debugging functionality
represented in the prototype.

• Complexity : There is almost no interaction between
the inserted debugging code and Truffle’s mechanisms
for compilation, dynamic optimization, and dynamic
deoptimization. Debugging code need only follow stan-
dard Truffle techniques for AST construction and use
the Assumption class correctly. The “wrapper” AST
nodes that implement debugging actions are almost
completely transparent to the flow of program execu-
tion around them.

• Inconvenience: We see no reason that such a debug-
ging infrastructure should not be present in any envi-
ronment, developmental or production.

This approach is applicable to the range of languages that
can be implemented on Truffle. Nothing reported here other
than the set_trace_func functionality is specific to Ruby.

Moreover, this approach places only modest demands on
other parts of a language implementation. We anticipate
language implementers adding debugging support incremen-
tally during development, with evident advantage to both
to themselves and early users. We also anticipate applying
this general approach to supporting development tools other
than debugging.
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