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Abstract. A continuously-observable steganographic file system allows
to remotely store user files on a raw storage device; the security goal is to
offer plausible deniability even when the raw storage device is continu-
ously monitored by an attacker. Zhou, Pang and Tan have proposed such
a system in [7] with a claim of provable security against traffic analysis. In
this paper, we disprove their claims by presenting traffic analysis attacks
on the file update algorithm of Zhou et al. Our attacks are highly effective
in detecting file updates and revealing the existence and location of files.
For multi-block files, we show that two updates are sufficient to discover
the file. One-block files accessed a sufficient number of times can also be
revealed. Our results suggest that simple randomization techniques are
not sufficient to protect steganographic file systems from traffic analysis
attacks.

1 Introduction

The goal of a steganographic file system is to protect the user from compulsion
attacks, where the user is forced to hand over file decryption keys under the
threat of legal sanctions or physical intimidation. In order to achieve this goal,
the steganographic file system must conceal the files it stores, so that the user
can plausibly deny their very existence.

Several proposals in the literature provide plausible deniability to the user
against attackers that take one or more snapshots of the raw storage. To the
best of our knowledge, the proposal by Zhou et al. [7] is the only one that claims
to resist attackers who can continuously monitor accesses to the storage. It relies
on dummy updates and relocations of data that are supposed to conceal accesses
to the hidden files.

Zhou et al. [7] present two separate mechanisms for reading and updating
files; we present traffic analysis attacks which are effective against the file update
mechanism. Our attacks succeed in revealing the existence and location of hidden
files, depriving the user of plausible deniability. We describe the theory behind
the attacks, and the impact of the system’s parameters on their effectiveness.
We have also simulated the attacks, and obtained empirical results that confirm
our theoretical analysis.
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The rest of this paper is organized as follows: in Sect. 2, we summarize previous
work on steganographic file systems. Section 3 describes the update algorithm
of [7]. Section 4 explains theoretically how to attack the system. The empirical
results of our implementation are presented in Sect. 5. We present our conclusions
in Sect. 6, where we also suggest lines for future research. Finally, Appendix A
shows the attack algorithms that have been used in our implementation.

2 Related Work

The concept of a steganographic file system was first proposed by Anderson,
Needham and Shamir in [1] together with two implementations. The first ap-
proach consists of hiding the information in cover files such that it can be re-
trieved by XOR-ing a subset of them. In the second approach, the file system is
filled with random data and the real files are hidden by writing the encrypted
blocks in pseudo-random locations derived from the name of the file and a pass-
word.

Kuhn and McDonald proposed StegFS in [5]. They use a block allocation table
(BAT) to have control over the file system contents. In this table, each entry is
encrypted with the same key as the block it corresponds to. The file system is
organized in levels in such a way that opening a level (decrypting all the entries
in the BAT) opens also all the lower levels.

There is another proposal called StegFS by Zhou, Pang and Tan in [6]. This
scheme tracks for each block of the file system whether it is free or it has been
allocated. Each hidden file has a header placed in a pseudo-random free location
derived from its name and a secret key. This header suffices to locate all the
blocks of the file, as it contains links to their locations.

All of the previous systems are intended to run on a single machine on top
of a standard file system. There are, in addition, two approaches for distributed
steganographic file systems, Mnemosyne and Mojitos. The former has been pro-
posed by Hand and Roscoe in [4]. In order to hide a file, they write it to a
location chosen pseudo-randomly by hashing the file name, the block number
and a secret key. The latter was proposed by Giefer and Letchner in [2], and it
combines ideas from Mnemosyne and StegFS (by Kuhn and McDonald [5]).

3 Hiding Data Accesses in StegFS

The steganographic file systems presented in the previous section are secure to-
wards an attacker who is able to get snapshots of the state of the file system
(sufficiently spaced in time so it cannot be considered to be continuous surveil-
lance). They are vulnerable, however, towards attackers who can continuously
monitor the system.

Continuous attackers are able to continuously scan the contents of the file
system and detect block updates. They can also observe the I/O operations
on the storage, and perform traffic analysis on the accessed (read and written)
block locations. Zhou, Pang and Tan proposed in [7] mechanisms to hide the
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data accesses in their StegFS [6] against this attack model. In the system model
(Fig. 1) of [7], users send the file requests to a trusted agent over a secure
channel. The agent translates these requests into I/O operations on the storage,
and returns the results to the user. Whenever there is no user activity, the agent
performs dummy I/O operations. The terminology used to distinguish the block
types and update operations (also called “accesses”) is:

– Data blocks are all the storage blocks that contain the user’s data. We refer
as file blocks to the data blocks of a particular file that is being updated
by the user.

– Dummy blocks are empty (free) blocks that contain random data.
– When the user requests a file update, this triggers data updates on all

the blocks that belong to the file.
– The system performs dummy updates (i.e., change the appearance of the

block without changing its actual content) on both dummy and data blocks,
in order to hide the data updates.

Fig. 1. System model in [7]

The authors of [7] give the following definition of security for hiding data
accesses in a steganographic file system:

“Let X denote the sequence of accesses the agent performs on the raw
storage. Its probability distribution is PX . Y denotes the set of access
requests users submit to the agent, and when there is no request, Y = ∅.
PX|Y is the conditional probability distribution of X given a particular
Y . (Thus, PX|∅ is the probability distribution of dummy accesses.) A
system is secure if and only if, whatever Y is, PX|Y and PX|∅ are so
similar that it is computationally infeasible for an attacker to distin-
guish between them from a sufficiently large set of samples. A system is
perfectly secure if and only if PX|Y and PX|∅ are exactly the same.”

The mechanism proposed in [7] to hide data updates works as follows. When-
ever there is no user activity, the user agent issues dummy updates on blocks
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selected uniformly at random in the storage volume. For a dummy update, the
agent reads the selected block, decrypts it, changes the initialization vector (IV)
which serves as initial value for the CBC mode, encrypts the block and writes it
back in the same location of the file system.

When the user agent receives a request to update a file, it updates all its
blocks. The update algorithm relocates file blocks each time they are updated,
so that subsequent operations on the file do not result in accesses to the same
storage locations. In order to update file block B1, the agent first chooses a block
B2 uniformly at random from the storage space. If the selected block B2 is the
same as the requested one (B1), the data update is performed in the same way
as a dummy update. If B2 is a dummy block, the agent swaps it with the file
block B1 and updates their contents. Finally, if B2 is a data block, the agent
performs a dummy update on it and re-starts the selection process. Alg. 1 shows
the update algorithm provided in [7].

Algorithm 1. Update algorithm of [7]
1: if there is a request to update block B1 then
2: Re: randomly pick a block B2 from the storage space
3: if B2=B1 then
4: read in B1, decrypt it
5: update B1 IV’s and data field
6: encrypt B1, write it back
7: else if B2 is a dummy block then
8: read in B1,
9: substitute B2 for B1

10: update B2 IV’s and data field
11: encrypt B2, write it back
12: else
13: read in B2,
14: decrypt it, update B2’s IV
15: encrypt B2, write it back
16: go to Re:
17: else {dummy update}
18: randomly pick up a block B3 from the storage space;
19: read in B3,
20: decrypt it, update B3’s IV,
21: encrypt B3, write it back;

The authors of [7] claim that the update algorithm is perfectly secure on the
basis of the following proof:

“For a data update, each block in the storage space has the same prob-
ability of being selected to hold the new data. Hence the data updates
produce random block I/Os, and follow exactly the same pattern as the
dummy updates. Therefore, whether there is any data update or not, the
updates on the raw storage follow the same probability distribution as
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that of dummy updates. According to the previous definition of security,
the scheme is perfectly secure. Without knowing the agent’s encryption
key, attackers can get no information on the hidden data no matter how
long they monitor the raw storage.”

In this paper we show that, although all blocks have the same probability of
being selected to hold the updated data, I/Os produced by file updates follow
different patterns than dummy updates. Thus, the probability distributions of
updates in the raw storage are different depending on whether there is user
activity or not. Consequently, file updates can be distinguished by an adversary
performing traffic analysis on the system.

For a data update, we note that there are two possible interpretations of the
algorithm:

1. If we only look at the pseudo-code, when B2 is a dummy block, the updated
content of B1 is stored in B2, but the original block location, B1, keeps its
old value.

2. If we take in account the text of the paper, when B2 is a dummy block, B1
and B2 are swapped ; i.e., the agent reads B1 and overwrites it with random
data. Then, it reads B2 and overwrites it with the updated content of B1.

Implementing the update algorithm as in the first interpretation implies that
the updated content of the file block B1 is transferred to B2, while B1 remains
intact. This approach has an obvious problem: the information contained in B1
remains there until it is overwritten (when the block is chosen as B2 in a future
data update), meaning that deleted file contents and old versions could still be
recovered from the storage.

Moreover, from a traffic analysis perspective, dummy and data updates pro-
duce easily distinguishable access patterns: in dummy updates, the same block
location is read and written; while in data updates, the read and written block
locations are different. We present an example in Fig. 2, where a file located in
blocks 1, 2 and 3 is updated and transferred to positions 34, 345 and 127. We
can easily see where the file blocks were and where they have been transferred,
eliminating the user’s plausible deniability on the existence and location of the
“hidden” file. Note that a series of data updates made very close to each other
indicate that, with very high probability those blocks are part of the same file.
Therefore, the dummy updates performed in between file block updates (blocks
479, 290 and 47 in the example) must have been on data blocks. This reveals
the existence and location of additional data blocks, besides the ones that have
been updated by the user.

In the next section, we show that the security proof given by Zhou, Pang and
Tan is wrong even for what seems to be a more clever implementation. Assuming
that users do not update their files simultaneously, a continuous attacker can
distinguish between data and dummy updates and learn, as a result, the existence
and location of hidden files.
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Fig. 2. Update of a three-block file (locations 1,2,3) according to the first interpretation
of the update algorithm of [7]

4 Traffic Analysis Attacks on StegFS

We recall the notation presented in the pseudo-code of Algorithm 3 of Sect. 3:

– B1 is the file block to be updated.
– B2 is the candidate block (selected uniformly at random) to hold the updated

information of B1. B2 may be a data block or a dummy block. If B2 is a
data block, a dummy update is performed on it, and a new B2 is selected.
This process is repeated until B2 is a dummy block. Then, B1 is overwritten
with random data and the updated content of B1 is stored in B2.

– B3 is the block selected uniformly at random for a dummy update while
there are no user requests.

We have developed two attack strategies. The first one applies to multi-block
files, and is based on exploiting file block correlations, as explained in Sect. 4.1.
The second strategy, explained in Sect. 4.2, applies to one-block files, and is
based on the assumption that a file block is updated with higher frequency than
a dummy block.

4.1 Attack on Multi-block Files

Identifying file update patterns. Each of the data updates follows a pattern
with: first, as many dummy updates on data blocks as data data blocks B2 are
chosen in the updating algorithm; second, an update on the file block (B1); and
finally, an update on the dummy block B2 to which the data is transferred.
In Fig. 3 we can see the same example as in the previous section, where a file
located in blocks 1, 2 and 3 is updated and moved to blocks 34, 345 and 127.

The updates on blocks belonging to the same file are separated by a number
of dummy updates on data blocks B2. As there are more empty blocks in the
storage, it is easier to randomly pick a free block, and therefore file blocks B1
are accessed closer in time to each other (together with their updated locations
B2).
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Fig. 3. Update of a three-block file (locations 1,2,3) according to the second interpre-
tation of the update algorithm of [7]

Let R be the occupation rate of the file system. The maximum number of
block updates (including data and dummy updates) a file update is expected to
need is given by a negative binomial distribution, where the size b of the file is the
number of successes and 1 − R the success probability. With probability greater
than 1 − ε, a file of b blocks will be updated in at most A = b + k blocks, where
k can be derived from the probability mass function of the negative binomial:(
k+b−1

k

)
· Rk · (1 − R)r < ε. For example, for an occupation rate R = 0.5, a

complete update on a file of b = 4 blocks will be contained in a maximum of
A = 29 updates with probability greater than 1 − ε = 1 − 10−5.

As shown in Fig. 4, we can find similar patterns each time the file is updated
(i.e., a set of locations updated closely together at two different points in time).
By identifying these patterns, we can tell when a file has been updated and
where exactly the file blocks are in the storage space. Once we find the most
recent pattern, we know that the file will be in the location updated just after
the repeated locations that have created the pattern. In the example shown in
Fig. 4, the file will be in the positions 12, 60 and 125 of the storage space.

Probability of false positives. We must not forget that these patterns could
have been produced by dummy updates (the attacker would think he has found
a file update, but actually the access pattern has been randomly generated). We
call the probability of this event as probability of false positive, and denote it
Pf+. We now explain how Pf+ can be computed.

Lemma 1. Let B be the number of blocks in the storage, let b be the file size
and A the expected length of the windows we analyze (i.e., we expect a file of b
blocks to be updated in A updates). Let PA be the probability that in A random
accesses all the b blocks of the file are accessed. Then

PA ≤
[

e
B
A

]B−A
A · bA

B

≈
(

eA

B

)b

.
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Fig. 4. Three updates on a three-block file according to the second interpretation of
the algorithm of [7]

Proof. Let Ii (i = 1, . . . , b) be an indicator variable whether block i of the file
has been accessed. It is easy to see that Pr[Ii] = 1 − (1 − 1

B )A ≤ A
B . We note

that the set of events {Ii} is not independent, but as these events are negatively
correlated and as we are interested in an upper bound, by assuming that they
are independent we obtain a bound which is not tight.

Denote X =
∑b

i=1 Ii, then there all the blocks of the file are accessed if X = b.
If we treat the events as independent, we can apply the Chernoff inequality
which states that Pr[X > (δ + 1)μ] ≤ ( e

δ+1 )δμ, where μ = E[X ]. As E[X ] =
∑b

i=1 E[Ii] =
∑b

i=1 Pr[Ii] ≤ bA
B , we obtain that

PA = Pr[X = b] = Pr[X > (δ + 1)
bA

B︸ ︷︷ ︸
b

] ≤
[

e
B
A

]B−A
A · bA

B

≈
(

eA

B

)b

.

Lemma 2. Let T be the number of dummy accesses, and let C = T/A be the
number of subsets of A consecutive accesses each. Under the assumption that
these subsets are independent of each other.1 The probability Pf+ of having a
false positive in at least one of the C subsets is: Pf+ ≤ 1 − (1 − PA)C .

Proof. The probability that a false positive happens for one of the subsets is
PA. Thus, the probability that a false positive have not occurred for a given
A accesses is 1 − PA. All C subsets do not produce any false positive with
probability (1 − PA)C , and the result follows from that immediately.

The probability Pf+ of having a false positive decreases both with the size b
of the file and the number B of blocks in the storage. Pf+ increases with the
number T of dummy updates taken into account, and the occupation rate R.
1 This is an approximation supported by our experimental results. The adaptive algo-

rithm used in our implementation (see Appendix A) deals with accesses straddling
two subsets of length A.
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We denote Pf+(i) as the probability of false positive, given i + 1. Figure 5(a)
shows the probability, Pf+(1), of false positive (logarithmic scale) for two file
updates. We can see that, as the file size increases (from five blocks on), the
probability of false positive becomes negligible even when there are only two
updates on the file. Pf+(i) also decreases with i (see Fig. 5(b)), as it becomes
less likely that more repetitions of patterns happen just by coincidence. Note
that we have considered in the figures up to two million accesses, meaning that
on average each block in the storage is read 200 times. We can see that even
with these large numbers of accesses, real operations are detected with low false
positive rate. This is because our detection algorithm takes into account the
correlations between accessed locations, and not the amount of times they have
been selected.

(a) Probability of false positive with two
updates per file (logarithmic scale)

(b) Probability of false positive with more
than two updates per file (logarithmic
scale)

Fig. 5. Probability of false positive for multi-block files (B = 10000; R = 0.5; ε =
5 · 10−4)

4.2 Attack on One-Block Files

Now, we assume that the user updates one-block files with a higher frequency
than dummy updates occur on random blocks. Instead of searching for a file
update pattern, we analyze the distance between two accesses to the same block
(note that each time the file is updated it is transferred to a different location).
In the example of Fig. 6 we show three updates on file F1. The distance between
the first and second updates (file in block 479) is three, and the distance between
the second and third updates (file in block 231) is seven.

Let B be the total number of blocks in the file system. When there are only
dummy updates, the probability PD(i) of having a distance i in between two
updates of the same block, follows a geometric distribution:

PD(i) =
(

1 − 1
B

)i−1

·
(

1
B

)
. (1)
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Fig. 6. Example of 3 updates on a one-block file

This equation provides a lower bound on the distance between dummy updates
on the same block. The distance between random block updates increases as the
user requests data updates more frequently, because the user requests particular
data blocks, therefore reducing the frequency with which random blocks are
selected.

Let f (0 < f < 1) be the access frequency to a one-block file. The probability
PF (i) of having a distance i between two updates of the file is given by:

PF (i) = (1 − f)i−1 · f . (2)

As long as the file update frequency f is significantly higher than 1/B, distance
analysis can be used to distinguish user updates on one-block files from dummy
updates on random blocks.

Although the distance between accesses is, on average, much smaller for the
file blocks than for the dummy blocks, it is also possible that two dummy updates
on a block happen to be close to each other. If we look just for two accesses (as
we do in the multi-block case), we have a high probability of false positive.
Therefore, we need to find more than one near access in order to statistically
prove that a block really contains a file. Near means that two data updates could
be separated this distance with non-negligible probability.

Let DC , such that PF (DC) < εC (see (2)), denote the maximum distance we
consider near. The probability of false positive (i.e., consider random updates as
produced by user requests) for one near access is given by Pf+(1) =

∑DC

i=0 PD(i)
(see (1)). As the number h of hops (consecutive near accesses) increases, the
probability of a false positive decreases: Pf+(h) = Pf+(1)h. On the other hand,
the probability of a false negative (i.e., considering that a file update has been
a dummy update) in one near access happens when a file update occurs further
than expected: Pf−(1) =

∑∞
i=DC

PF (i). If we consider h near accesses as bound
to consider a chain caused by user actions, we will miss a file if any of the h
hops happens further than expected: Pf−(h) =

∑h
i=1

(
h
i

)
Pf−(1). We show in
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Fig. 7(a) the probability of having a false positive with respect to the number
of hops, for different access frequencies and values of εC .

In Fig. 7(b), we show the number of hops needed to ensure that a series of
near updates belongs to a file, as a function of the access frequency. We note that
a small number of hops is sufficient, even for relatively low access frequencies (in
the figure we show a maximum frequency of 10−3).

(a) Probability of false positives vs num-
ber of hops

(b) Required number of hops depending
on access frequency

Fig. 7. Analysis of the number of hops (B = 100 000)

5 Results

In order to test the effectiveness of the attacks, we have implemented a simu-
lation of the update algorithms and the attacks in Python.2 In this section, we
summarize the empirical results.

5.1 Implementation of the Attack on Multi-block Files

We have tested the attack using favorable parameters for the user, with few files,
a very low update frequency and only two updates per file. The parameters of
the simulation can be seen in Table 1. As the attack becomes more efficient for
larger files, we present results for two sets of files. The first set of files have sizes
between 2 and 3 blocks, and the second considers files of sizes between 4 and 10.

Even though we are in a bad case as attackers, the attack has a high success
probability. We summarize the results in Table 2. In both tests we found more
than 99% of the files hidden in the system, although the guessed file size differs
from the real one in some cases (2% for files of 2-3 blocks, and 1% for files of 4
blocks or bigger). Found files may appear slightly larger than they are because
sometimes we assign “extra blocks” to the file (when there is a dummy update
that fits the pattern next to the end or the beginning of the real file blocks). With

2 The code is available upon request to the authors.
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Table 1. Parameters of attack on multi-block files

Size of files Number of files File update Size of
(blocks) per size frequency storage space

2-3 10 3% 10000
4-10 10 3% 10000

probability ε, the separation between file block updates is larger than expected.
This results in either some block of the file being lost (when the block with extra
separation is the one accessed at the beginning or the end of the file update);
or in a file being found split and considered as two smaller files (when the extra
separation happens in the middle of a file). While searching for 2 and 3 block
files, we find some false positives, as this occurs with non-negligible probability
for very small file sizes (see Fig. 5(a)).

Table 2. Results of the attack on multi-block files

Size of files Files found Wrong size False positives
2-3 > 99% < 2% < 2%
4-10 > 99% < 1% 0%

5.2 Implementation of the Attack on One-Block Files

We have considered a file system with B = 100 000 blocks, where 10 one-block
files are accessed 12 times each. We have tested the efficiency of the attack for
several access frequencies. In the implementation of the attack, we consider we
have found a file when we find a chain of 10 or more near accesses. We have set
the probability of false negatives by fixing εC = 10−12.

Fig. 8. False positives vs. 1/f (B = 100 000; εC = 10−12)
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As expected, the performance of the attack heavily depends on the access
frequency f to one-block files. We show this dependence in Fig. 8, where we
represent the number of false positives as a function of the access frequency. For
frequencies greater than 4 · 10−4 (in Fig. 8 this corresponds to 1/f = 2500), we
can find all one-block files without obtaining any false positives. As the access
frequency decreases, the performance of the attack degrades, and more false
positives appear. We note that the number of false positives depends on the
access frequency, but not on the number of files in the system.

6 Conclusions and Future Work

In this paper we have analyzed the update algorithm proposed by Zhou, Pang
and Tan in [7], and found that it is vulnerable to traffic analysis attacks. We
have described the theory behind the attacks, explained how the system’s pa-
rameters influence their performance, and presented empirical results on their
effectiveness.

Our results show that the security claims in [7] are unsubstantiated. Their
algorithms do not produce the same patterns for file and dummy updates, there-
fore, the probability distribution of updated locations in the storage is different
whether there is user activity in the system or not. Our attacks exploit these
changes and successfully distinguish file and dummy updates, finding the loca-
tions of hidden files. Multi-block files are very easy to find (two updates are suffi-
cient to reveal their existence and location), while several file updates are needed
in order to find one-block files. Our (non-optimized) implementation successfully
finds most of the files hidden in the storage, and more efficient implementations
could further increase the accuracy of the attacks.

The two key weaknesses in the update algorithm proposed in [7] are:

– Blocks are rarely relocated, and when they are, their new location appears
next to the old one in the history of accessed locations. This greatly reduces
the uncertainty on the possible locations to which block contents may have
been moved.

– While the “dummy updates” select block locations uniformly at random,
multi-block file updates generate correlations between accessed locations that
could not have been plausibly generated at random.

The traffic analysis strategies presented in this paper show that introducing
“a bit of randomness” is not sufficient to effectively conceal user accesses to files
in a steganographic file system. More sophisticated mechanisms are required in
order to design a traffic analysis resistant steganographic file system; developing
such mechanisms is left as an open problem.

The authors of [7] also propose a method to conceal read accesses to files,
based on a multi-level oblivious RAM [3]. A line of future research could analyze
whether or not this mechanism resists traffic analysis attacks.
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A.1 Multi-block Files

Worst Case Scenario. We checked the effectiveness of the algorithm in a worst
case scenario. We made two simulations with a file system of B = 10000 blocks,
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updates per file.
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The algorithm (Alg. 2). The algorithm used to find multi-block files works
as follows. For b-block files we first calculate the expected number A of blocks
its update is expected to occupy. Denote by GF (A) the most recent chunk of
A consecutive accesses. We compare GF (A) (as shown in Fig. 9(a)) with the
previous chunk of A accesses GM (A). If there is more than one element in the
intersection (i.e., locations that have been accessed in both chunks), we increase
the size of the chunks and compare them again, in order to detect file updates
that do not fit exactly inside the chunks. Finally, if the intersection contains b (or
more) elements, we conclude these are due to a file update. If not, we take a new
GM (A) and compare it again with the GF (A). Once GF (A) has been compared
with all prior GM (A)’s, we choose a new GF (A) and restart the process.

Fig 9(a) shows an example of this algorithm, where a 3-block file (1, 2 and
3) is detected in positions 34, 345 and 127. In Step 1, we define a first chunk
GF (A), and a first chunk GM (A), we can easily see that the intersection of the
fixed chunk with the rest of the accesses is void. Then, in Step 2, new GF (A)
and GM (A) are chosen. We can see that, after a couple of comparisons (Step
3), GF (A)

⋂
GM (A) > 1. Then, in Step 4, we increase their sizes to check if the

intersection grows. From this result we can derive that a 3-block file is located
in positions 34, 345 and 127.

A.2 One-Block Files

Worst case scenario. For one-block files, the simulation was made with a file
system of B = 100000 blocks, only 10 one-block files accessed 12 times each, and
frequencies higher than 10−4. We consider we have found a file when at least
h = 10 near accesses are chained.

The algorithm (Alg. 4). In order to find one-block files, we start with the
most recent access and search near repetitions of it, if there are not, we move to
the next position and so on. Once we find a first near access, we build a tree of
near accesses (given that there can be more than one near access to a position)
and, if one of its branches has more than h elements, we conclude that we have
found a one-block file.

We illustrate in Fig 9(b) how a one-block file is found. Assuming that 123 has
been the latest access to the storage and that we are looking for chains of h = 5
hops, the first candidate we find is 479, which has two possible newCandidates,
231 and 431. Following the algorithm, we arrive at the tree showed in the figure,
and can conclude that there is a file in location 1, that comes from position 222
after having passed by locations 278, 347, 231 and 479.
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Algorithm 2. Algorithm to search multi-block files patterns
1: FixPointer = last access to the system
2: while there are accesses to make a new fixed chunk do
3: we choose GF (A), a chunk of A accesses from FixPointer to FixPointer − A
4: MovPointer = FixPointer − A + 1
5: while there are accesses to compare with GF (A) do
6: we choose GM (A), a chunk of A accesses from MovPointer to MovPointer−A

7: MovPointer = MovPointer − A − 1
8: if Int = GF (A)

�
GM (A) > 1 then

9: repeat
10: IntOld = Int
11: we increase the size of the chunk in x blocks A = A + x
12: Int = GF (A)

�
GM (A)

13: until size(IntOld) = size(Int)
14: if size(Int) >= b then
15: there is a file in the locations belonging to the intersection
16: else
17: false alarm, continue searching
18: MovPointer+ = A
19: FixPointer+ = A

Algorithm 3. searchCandidates(Location, Tree) (near accesses to a given lo-
cation)
1: candidates = list of “near” repeated accesses to Location
2: if size(candidates) >= 1 then
3: for candidate in candidates do
4: newCandidate = location accessed immediately before candidate
5: append newCandidate to Tree
6: Tree = searchCandidates(newCandidate,T ree)

RETURN: Tree

Algorithm 4. Search one-block pattern Algorithm
1: Location = last access to the system
2: tree = NULL
3: while there are accesses in the list do
4: treeCandidates = searchCandidates(Location, tree)
5: if there is a branch with more than h elements then
6: the block right before the root of the tree has a file
7: else
8: tree = NULL
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(a) Finding a multi-block file pattern (b) Finding a one-block
file pattern

Fig. 9. Algorithms used to detect patterns in the accessed locations
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