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ABSTRACT

This paper describes a cross-protocol attack on all versions
of TLS; it can be seen as an extension of the Wagner and
Schneier attack on SSL 3.0. The attack presents valid ex-
plicit elliptic curve Diffie-Hellman parameters signed by a
server to a client that incorrectly interprets these parame-
ters as valid plain Diffie-Hellman parameters. Our attack
enables an adversary to successfully impersonate a server to
a random client after obtaining 240 signed elliptic curve keys
from the original server. While attacking a specific client is
improbable due to the high number of signed keys required
during the lifetime of one TLS handshake, it is not com-
pletely unrealistic for a setting where the server has high
computational power and the attacker contents itself with
recovering one out of many session keys. We remark that
popular open-source server implementations are not suscep-
tible to this attack, since they typically do not support the
explicit curve option. Finally we propose a fix that renders
the protocol immune to this family of cross-protocol attacks.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols; K.4.4 [Computers and Society]: Electronic
Commerce—Security

Keywords

SSL, TLS, man-in-the-middle, cross-protocol attack, server
impersonation attack

1. INTRODUCTION

The TLS protocol.
TLS is one of the major secure communications protocols on
the Internet, used by a variety of applications such as web
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browsers, electronic mail, voice over-IP and more. The pro-
tocol derives from Netscape’s SSL 3.0 [14], and is the joint
attempt, under the umbrella of IETF, to create a secure pro-
tocol for e-commerce. The first version of the protocol, TLS
1.0, fixed the known issues [4] in SSL 3.0 and introduced
HMAC [17]. TLS 1.1 followed to address known attacks in
CBC encryption mode [2, 26] and RSA [16]. Today the latest
version is TLS 1.2 [11] but since none of the known weak-
nesses are classified as major, older versions of the protocol
including SSL 3.0 are still in use.
The TLS protocol is an agile protocol that allows peers to
negotiate their highest supported protocol version, as well
as the combination of ciphers used in a session. That com-
bination is called a ciphersuite; it typically determines the
symmetric encryption cipher with its operational mode, the
key exchange method and the message authentication al-
gorithm. The various versions of the protocol added new
ciphersuites, deprecated old ones, or kept the same set of
the previous version.
Not all available ciphersuites in TLS are equally strong: the
most prominent example were the ones marked as export ci-
phersuites. When strong cryptography was not allowed to be
exported from USA, major TLS-enabled web browsers that
originated in USA included ciphersuites known to be weak.
These supported the RSA-EXPORT key exchange method,
which used 512-bit RSA keys, and was combined with 40-
bit or 56-bit symmetric encryption. Fortunately they were
deprecated since TLS 1.1 in 2006 [10].
As a result of the various ciphersuites available in the pro-
tocol, a typical implementation includes several algorithms
offering similar functionality. For example an implemen-
tation may support the Diffie-Hellman (DH) key exchange
algorithm, as well as elliptic curve Diffie-Hellman (ECDH).
This fact is exploited in our attack by taking advantage of
interactions between the different ciphersuites. In particu-
lar we exploit the possibility that a client interprets signed
ECDH key exchange parameters as plain DH parameters.

The Wagner and Schneier attack.
Wagner and Schneier describe in [27] a server impersonation
attack on the SSL 3.0 [14] protocol. Although this attack
turned out to be impossible in practice due to an incorrect
interpretation of the protocol, the underlying idea is still
worth recalling. The attack transforms a server into an or-



acle that signs messages submitted by the adversary. In
particular the server is used by the adversary to sign DH
parameters, which are presented to the client as RSA pa-
rameters. This allows the recovery of the client’s secret by
the adversary and eventually to the establishment of a secure
session between the adversary and the client. In that session
the client is convinced that the adversary is the server he in-
tended to connect to. We will use the term cross-protocol
attack to describe this attack, as well as the family of at-
tacks that rely on interactions between distinct key exchange
methods. The term multi-protocol attack is also used in the
literature to describe this family of attacks [7].
Even if the Wagner and Schneier attack turned out to be
impossible to implement, it demonstrates that the TLS pro-
tocol violates the following principle set forth by Anderson
and Needham in [1].

Principle 3: Be careful when signing or decrypt-
ing data that you never let yourself be used as an
oracle by your opponent.

This weakness was ignored, possibly, because the only pub-
lished attack could not be implemented, and required the
client to request the deliberately weakened RSA-EXPORT
key exchange method.

Our attack.
As the protocol evolved and various other key exchange
methods such as SRP, PSK or ECDH [3, 13, 25] were added,
the fact that the server can be used as an oracle becomes
relevant again. In this paper we re-examine the Wagner and
Schneier attack in the context of the latest TLS protocol
version [11] and describe a new cross-protocol attack. The
attack uses the interactions between DH and ECDH key
exchanges. It is based both on the ability to transform a
TLS server into an oracle that provides signed parameters,
and on TLS implementations blindly trusting those signed
parameters.
Our contributions in this paper are as follows.

• To our knowledge, our attack is the first server imper-
sonation attack on the TLS protocol with complexity
much lower than a cryptanalytic attack on the crypto-
graphic primitives used;

• Our attack highlights a much larger family of cross-
protocol attacks that the TLS protocol is vulnerable
to, which was previously ignored;

• We show that although basic checks on DH protocol
parameters help to mitigate simple attacks, they are
not sufficient to completely protect the protocol.

The adversary.
The adversary in both attacks is a Dolev-Yao adversary [12],
that has full control over the network communications.

Paper organization.
In Section 2 we present the Wagner and Schneier attack
on SSL 3.0 and the incorrect assumption that renders the
attack impossible. Then in Section 3 we present our attack
on the protocol, and in Section 4 we discuss the impact of
the attack on several implementations. Section 5 provides
a simulation of the attack in a real world scenario, and in
Section 6 we propose a fix that makes TLS immune to this
family of attacks. Finally Section 7 concludes the paper.

Terminology.
This document assumes familiarity with the TLS proto-
col [11] and adopts its terminology. Furthermore, when we
refer to Diffie-Hellman key exchange we denote with g the
generator of the multiplicative group modulo p, and with
Ys and Yc the public values of the server and the client.
The explicit elliptic curves supported by TLS are given by
a Weierstrass equation of the form

y2 = x3 + ax + b mod q .

Note that we use q to denote the ECDH prime to distinguish
it from the plain DH prime p. The coefficients a and b
are the curve parameters represented as integers modulo q.
The protocol works in a group generated by a base point
P (simply called base in the remainder of the paper). The
cofactor is defined as the order of the curve (i.e. the number
of points on the curve) divided by the order of the base point.
A public ECDH share is of the form Q = [k]P = (X, Y ),
with k the private key, Q the elliptic curve point obtained
by scalar multiplication of P by k and X (resp. Y ) the x
(resp. y) coordinate of Q.

2. THEWAGNERANDSCHNEIERATTACK
Wagner and Schneier in [27] describe a cross-protocol attack
(the authors refer to it as “key exchange algorithm rollback
attack”) based on the observation that the digital signature
in a DH key exchange does not cover any identifier of the ne-
gotiated ciphersuite. According to the SSL 3.0 protocol [14]
when a DH key exchange has been negotiated, the group
parameters and key exchange data are sent by the server
in the ‘ServerKeyExchange’ message as shown in Fig. 1a.
The signature on that message is calculated on the algo-
rithm parameters, and the nonces exchanged by both peers.
The crucial observation is that the negotiated key exchange
method is not part of this signature.
This omission allows an adversary to re-use a signed ‘Server-
KeyExchange’ packet in another session, with another key
exchange method, by initiating a parallel connection to the
server. The attack deceives a client who advertises a ‘TLS -
RSA EXPORT’ ciphersuite and expects temporary RSA pa-
rameters in the ‘ServerKeyExchange’ message, into receiving
DH parameters from a ‘TLS DHE RSA’ ciphersuite. Note
that, the RSA-EXPORT key exchange requires the server to
generate a temporary 512-bit long RSA key pair and include
it in the ‘ServerKeyExchange’ message. In both DH and
RSA-EXPORT the parameters are signed using the RSA
algorithm.
The attack assumes that the client reads and verifies the
signature, and then reads the RSA parameters (see Fig. 1b)
one by one, yielding the following scenario. The client ver-
ifies the signature, reads the RSA modulus m, which corre-
sponds to the prime of the DH group p, and then reads the
RSA exponent e field which corresponds to the group gener-
ator g. Therefore, the client encrypts the pre-master secret
k as kg mod p and includes it in its ‘ClientKeyExchange’
message. Since p is a prime number and g is known, it
is very easy to compute the g-th root of kg to recover k,
which allows the adversary to impersonate the server. Note
that the ‘Finished’ messages that provide handshake mes-
sage modification detection using message hashes encrypted
and authenticated with the session keys, cannot detect this
attack since the adversary recovers the pre-master secret.
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Figure 1: The contents of the ServerKeyExchange message in Diffie-Hellman and RSA-EXPORT key exchange meth-
ods. Each row represents a 2-byte (16-bit) field, unless the length is explicitly given. All indicated lengths are in
bytes.

Client Adversary Server

ClientHello
TLS RSA EXPORT. . . , CRAND

ClientHello
TLS DHE RSA. . . , CRAND

ServerHello
TLS DHE RSA. . . , SRAND

ServerHello
TLS RSA EXPORT. . . , SRAND

Certif icateCertif icate

ServerKeyExchange
{p, g, Ys},
sig(CRAND, SRAND, p, g, Ys)ServerKeyExchange

Verify signature;
read p as RSA m and g as
exponent

ServerHelloDone

ClientKeyExchange kg mod p

Recover k

ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

Application Data

The Wagner and Schneier attack

Figure 2: A message sequence chart describing the Wagner and Schneier attack on SSL 3.0. The dashed lines indicate
a forwarded message.



The authors noticed that the SSLRef 3.0b1 implementa-
tion was immune to the attack and attributed the failure
to a paranoid sanity check of this particular implementa-
tion. However, tests we performed on other implementations
which did not include such sanity checks also failed. Careful
examination of the TLS packet parsing reveals that the fail-
ure of the attack is due to the serialized way TLS packets
need to be parsed. The variable length vectors [14] used in
the structure definition in Fig. 1 require an implementation
to read the vector length before reading data, hence an im-
plementation can only start parsing the packet serially, i.e.,
from start to end without being able to read a field before
reading the previous one. In the RSA case, a client would
need to read the modulus length, then the modulus, and
the same for the exponent and signature fields. If the DH
‘ServerKeyExchange’ packet, which contains one additional
field, is substituted, that field will be read instead of the
signature and verification fails.
Even though the Wagner and Schneier attack fails, it demon-
strates the idea of a cross-protocol attack utilizing two of the
SSL 3.0 key exchange methods, the DH key exchange and
the RSA-EXPORT key exchange.

3. A NEW CROSS-PROTOCOL ATTACK
Since version 1.0 [9] the TLS protocol has been augmented
with various other key exchange methods such as SRP, PSK
or ECDH [3, 13, 25]. In this section we present a server
impersonation attack on clients that support the DH key
exchange and wish to connect to a server that supports,
among others, the ECDH method.
In order to support the ECDH key exchange method, the
‘ServerKeyExchange’ message was augmented in [3] to al-
low for several elliptic curve ciphersuites supporting multi-
ple sub-options. The sub-option relevant to this paper is
the representation of the elliptic curve used. It allows for
explicit prime curves, explicit curves of characteristic 2, or
named curves. Depending on the negotiated ciphersuite the
structure containing the selected curve parameters is signed
by the server using an RSA or ECDSA key. The attack
we present requires the server to support the explicit prime
curve option, and the client to support the plain DH method.
Because the only common signature algorithm in the ECDH
and DH key exchanges is RSA, the server is also required to
possess an RSA signing key.

3.1 Summary of the attack
In the explicit prime curve option, the server includes in its
signed ‘ServerKeyExchange’ message the parameters of its
elliptic curve and an ephemeral public key to be used for
this session (see Fig. 3a). The randomness of the public key
contributes to the feasibility of achieving a cross-protocol
attack.
In the attack the adversary, after receiving the client’s Hello
message, initiates multiple connections to the server, until an
ECDH ‘ServerKeyExchange’ is presented that satisfies two
properties. The first is that the message can be interpreted
as a valid DH ‘ServerKeyExchange’ message, and secondly,
the adversary can recover the exchanged DH key. After a
suitable message is received, the adversary forwards it to the
client, who verifies the (valid) signature and proceeds with
the handshake. Assuming the adversary can recover the
exchanged DH key, the handshake with the client completes

and thus the server impersonation is successful. The attack
is sketched in Fig. 4.
We first estimate the probability with which a valid ECDH
key exchange message can be interpreted as a valid DH key
exchange message. Then we investigate how the adversary
can recover the session key, either by explicitly computing a
discrete logarithm or forcing the session key to take a value
in a limited set. Finally, we compute the number of server
connections required by the simplest version of our attack.

3.2 Probability of valid key exchange message

Length requirements on key exchange parameters.
The attack success depends on whether the signed ECDH
parameters can be interpreted as DH parameters. In Fig. 3
we contrast the contents of the ‘ServerKeyExchange’ pack-
ets in both cases. The ECDH parameters consist of the
constant curve parameters followed by the randomly gen-
erated ECDH public key. For our attack to succeed, we
require that the p field in the DH parameters extends past
the constant curve parameters1, which results in p having its
least significant bytes and g and Ys fully positioned in the
space of the ephemeral elliptic curve public key and there-
fore have random contents. This means that multiple queries
to such server would provide ‘ServerKeyExchange’ messages
with ECDH parameters that if interpreted as DH parame-
ters will have variable lengths for g and Ys and there is a
non-zero probability for these lengths to have valid values
(i.e. add up to the remaining message length).
Before calculating this probability, we need to clarify when
these length fields are positioned in the ephemeral pub-
lic key space. As already mentioned, this depends on the
length of p, which is interpreted based on the contents of
the curve type and elliptic curve prime length (Lq) as shown
in Fig. 3a. Since in the explicit curves TLS option the
curve type byte contains the identifier 1, the length in bytes
of p (Lp) would be interpreted as:

Lp = 1 || Lq = 256 + Lq , (1)

where || denotes concatenation. For the message to be parsed
correctly and the g and Ys lengths to be placed accordingly,
Lp must be larger than the length of all the fixed parameters
and less than the total length of the ECDH parameters (mi-
nus the minimum length of the Lg, g,LYs , Ys fields being 6
bytes). The fixed parameters are the prime q and the fields
marked as C in the ECDH message as shown in Fig. 3a.
Then:

C = La + Lb + Lbase + Lorder + Lcofactor + 7 (2)

and we require:

Lq + C ≤ Lp ≤ C + 3Lq − 6

Note that in the above equation, 3Lq represents the sum of
the lengths of the prime q, and the X and Y -coordinates
of the ephemeral elliptic curve public key. Combined with
Eqn. (1) we conclude that C should satisfy:

262 − 2Lq ≤ C ≤ 256 . (3)

The constraints for C are not unrealistic, and if we consider
randomly generated curves (i.e. with random a and b) the
1If this requirement is not satisfied an attack may be possible
on servers with constant curve parameters of certain form.
We do not consider this attack in this paper.
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Figure 3: Contrasting the ‘ServerKeyExchange’ message contents with Diffie-Hellman and explicit elliptic curve Diffie-
Hellman parameters, side-by-side. Each row represents a 2-byte (16-bit) field, unless the length is explicitly given. All
the indicated lengths are in bytes and the numbers in brackets denote a constant value field.
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TLS DHE RSA. . . , CRAND ClientHello

TLS ECDHE RSA. . . , CRAND
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Figure 4: A message sequence chart describing our attack. The dashed lines indicate a forwarded message, and the
consequent lines indicate multiple trials.

Table 1: The sizes (in bytes) of the parameters in various named curves. The curve marked with gray fulfills the
requirements for the attack: 262 − 2Lq ≤ C ≤ 256.

Curve
name

Lq La Lb Lbase Lorder Lcofactor C 262− 2Lq

secp192k1 24 1 1 2Lq + 1 Lq 1 83 214
secp192r1 24 Lq Lq 2Lq + 1 Lq 1 129 214
secp224k1 28 1 1 2Lq + 1 Lq 1 95 206
secp224r1 28 Lq Lq 2Lq + 1 Lq 1 149 206
secp256k1 32 1 1 2Lq + 1 Lq 1 107 198
secp256r1 32 Lq Lq 2Lq + 1 Lq 1 169 198
secp384r1 48 Lq Lq 2Lq + 1 Lq 1 249 166
secp521r1 66 Lq Lq 2Lq + 1 Lq 1 339 130



attack will work for any elliptic curve over a prime finite
field of characteristic roughly between 300 and 400 bits. For
instance, if we test the prime curves listed in [6] we see that
they are fulfilled for the secp384r1 curve (although this is a
named curve), as shown in Table 1.

Probability estimate.
If a server uses explicit elliptic curve parameters in the ap-
propriate range, the attack is straightforward, even though it
requires quite some effort from the adversary and the server.
The adversary intercepts a client connection; upon receipt of
the ‘ClientHello’, initiates multiple connections to the server.
His goal is to obtain signed ECDH parameters that contain
valid lengths for g and Ys.
From Fig. 3a we see that the maximum valid length of g is
given by

2Lq − (256 − C) − 2 − 2 − 1 ,

where the consecutive terms in the above sum correspond to:
the size of X and Y -coordinate, the part taken up by p, the
length field of g, the length field of Ys and the minimal length
of Ys. If we define this upper bound as L := 2Lq − 261 + C,
then we conclude that the valid lengths of g satisfy

0 < Lg ≤ L . (4)

For each valid Lg there is precisely one possible length of
Ys, namely

LYs = L + 1 − Lg . (5)

Since the lengths of g and Ys are 16-bit values and assuming
a uniform distribution of the bytes on the elliptic curve pub-
lic key, the probability of the ECDH message being parsed
successfully as DH parameters is:

P (valid message) =
L

216
·

1

216
=

L

232
. (6)

Since the lengths of g and Ys are assumed random, the prob-
abilities that these attain any given fixed value are indepen-
dent. The uniform distribution assumption for the values
read as the g and Ys lengths may appear questionable. Even
though a random X-value has probability close to 1/2 of
being a valid X-coordinate and its uniformity assumption is
plausible, this is not the case with the Y -coordinate. To con-
firm this assumption we calculated using [21] the estimated
PDF, shown in Fig. 5, for the two lengths (of g and Ys) on
the secp384r1 curve. The plots strengthen the assumption
of uniformity. Furthermore, by simulating the attack on the
secp384r1 curve, we calculated the empirical probability for
a valid message and compared it with the theoretical prob-
ability computed by Eqn. (6), in Table 2. The theoretical
values do not significantly deviate from the empirical ones.

Table 2: The theoretical and empirical probabilities of
finding a valid Diffie-Hellman key exchange message us-
ing the explicit parameters of the secp384r1 curve.

Probability Theoretical Empirical

valid message 1.9 · 10−8 2.0 · 10−8

3.3 Recovering the session key
So far, we have explained how the adversary can use the
server as an oracle to receive, with a certain probability,
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a signed message containing a triplet of random numbers,
which the client interprets as the DH parameters (p, g, Ys).
To prevent confusion with the role implied by these symbols
(e.g. p may not be a prime) we will use the symbols (n, α, β)
instead.
Upon receipt, the client calculates his DH share as Yc ≡ gx ≡
αx mod n, and the pre-master secret as Y x

s ≡ βx mod n.
Recall from Eqn. (1) that the size of n is larger than 256
bytes or 2048 bits. To compute the session key, the adversary
can either recover x from Yc exploiting the fact that n is not
necessarily prime or he can force specific values for the pre-
master secret βx by judiciously selecting the triplet (n, α, β)
he forwards to the client. We now analyze both cases in
detail.

Computing x.
Recovering x from αx mod n corresponds to computing a
discrete logarithm in Zn. If the factorization of n =

Qs
i=1 pei

i

is known or can be computed, this problem can be easily
reduced (using the Chinese Remainder Theorem) to a num-
ber of discrete logarithm problems in Fpi . Unfortunately,
computing the factorization of n using the Number Field
Sieve [19] (NFS) has similar complexity to computing dis-
crete logarithms in Fp with p the same size as n. On the
other hand, the complexity of the Elliptic Curve factoring
method [20] (ECM) depends on the size of the smallest prime
factor of n, so if the pi are much smaller than n, ECM
would outperform NFS easily. To analyze the applicability
of ECM, recall that a number n has prime factors pi all
smaller than n1/u with probability asymptotically equal to
u−u [8].
Two different attack scenarios now arise, namely online vs.
offline. In the online scenario, the attacker has to compute
x during the lifetime of the handshake. Since the typical
handshake timeout is less than a minute, the attacker can
only succeed if n is really smooth. Since n has more than
2048 bits, we would require u > 20 for the prime factors to
be small enough for the attack to succeed within the timeout.



Hence, the probability that n satisfies these requirements is
< 2−80.
In the offline scenario, the attacker has a much higher proba-
bility of succeeding. Indeed, now n can have one large prime
factor (e.g. around 530 bits, the current DLP record [15])
and all other prime factors much smaller (e.g. around 240
bits, the current ECM record [5]). Since the size of n is never
larger than 2500 bits, the probability that the attacker suc-
ceeds given a valid message is larger than 8−8 = 2−24. This
probability then needs to be multiplied with Eqn. (6) which
is around 2−25. The overall success probability therefore is
around 2−49.
The fact that the key can be recovered offline does not pose
any threat to the TLS protocol since in the normal execu-
tion of the protocol, the application data are only trans-
mitted after the verification of ‘Finished’ messages by both
peers. However, extensions to the protocol such as the“False
start” [18] that try to reduce protocol round-trips by send-
ing the client’s application data before the peer’s finished
message is verified, are at risk. This attack may be used to
obtain the encrypted client’s data and decrypt it by calcu-
lating the shared key offline.

Computing pre-master secret.
Recall that the ephemeral key Ys is given by part of the X
and/or Y coordinate of the ephemeral public key generated
by the server. It is thus possible and in fact not unlikely (see
the next section), that Ys = 0,±1. As observed in [22], if
the client accepts any of these values, the pre-master secret
is very easy to compute since it will be equal to 0,±1.
Such values for Ys can be generalized slightly when there
are other roots of unity of small order or roots of nullity
if n is composite, since then it becomes likely that the pre-
master secret again equals 1 or 0. The main obstacle for this
generalisation is the fact that the available length for Ys is
rather small compared to the total length of n. We require
roots of unity and/or nullity with compact representation
modulo n. For roots of nullity it is easy to see that this
is very unlikely: indeed, let n =

Qs
i=1 pei

i , then the root of
nullity with most compact representation modulo n is given
by r =

Qs
i=1 pi. This shows that a small root of nullity is

extremely unlikely. For roots of unity of order k > 2, the
condition is that n | Φk(r), with Φk(x), the k-th cyclotomic
polynomial, so for random n this is again unlikely. Hence,
we will mainly focus on the case Ys = 1.

3.4 Attack success probability
In this section, we provide a lower bound on the adversary’s
probability of success for the simplest attack where the ad-
versary expects to find the value 1 in Ys.
To compute the probability that Ys = 1 for a valid message,
we again refer to Fig. 3. For every fixed valid length Lg = k
with 0 < k ≤ L we can compute the probability that the
message is valid and Ys = 1. Recall that for Lg = k, we
have LYs = L + 1 − k. If we set Vk to be the event that
Lg = k and LYs = L + 1 − k, then the probability that Vk

and Ys = 1 (all bytes of Ys equal to zero, except the least
significant byte equal to 1) is therefore given by

P (Vk ∧ Ys = 1) = P (Vk)P (Ys = 1 | Vk)

=
1

232
·

1

28(L+1−k)
.

Summing over all 0 < k ≤ L we thus obtain

P (valid message ∧ Ys = 1) =
1

232

L
X

i=1

1

28i
≈ 2−40 . (7)

This shows that an adversary needs roughly 240 signed el-
liptic curve public keys from the server to obtain a message
that satisfies the attack requirements. For the attack to pro-
ceed, we note that this message needs to be received during
the lifetime of the TLS handshake with a client (this could
be a random client).

4. ATTACK ASSUMPTIONS
The described attack relies on the following two assump-
tions.

1. The client software supports one of the ‘TLS DHE -
RSA’ ciphersuites and a DH public key (Ys) with value 1
is accepted;

2. The server software supports one of the ‘TLS ECDHE -
RSA’ ciphersuites, with the ‘arbitrary explicit prime -
curve’ [3] option, has selected a curve of size between
300 and 400 bits and uses RSA as the signing algo-
rithm.

First assumption.
The first assumption turns out to be true for several imple-
mentations. We tested TLS implementations that support
the ‘TLS DHE RSA’ ciphersuites, and concluded that not
all of them include sanity checks on the received DH param-
eters. We tested the invalid values 0,±1 and summarized
the obtained results in Table 3.

Table 3: The behavior of implementations when receiv-
ing various values as a Diffie-Hellman public key (Ys).

Ys = 1 Ys = 0 Ys = −1

NSS 3.12.6 Accept Accept Accept
OpenSSL 1.0.1 Reject Reject Reject
GnuTLS 3.0.18 Accept Accept Accept

We can see that there are implementations that blindly trust
the signed parameters received by the server and do not
check for invalid parameters2. Note that the value of 0 in
NSS was rejected if it had minimal encoding but accepted
otherwise.
It can be argued that these are individual implementation
bugs because the TLS protocol [11] includes recommenda-
tions for checking DH parameters. However the simple checks
for public values of ±1 and 0 are not explicitly mentioned
and the implementer is directed to other documents instead.
Although there is merit in testing for obvious invalid param-
eters, the protocol should not rely on these tests. Such tests
will rule out corner cases like the one our attack is using,
but no matter how thorough they cannot detect values like
roots of unity or nullity that can be used to mount a vari-
ant of our attack, nor ensure the proper generation of the
parameters. It can be argued that the former values could
be ruled-out by forcing the client to perform a primality
check on the group modulus and to calculate the order of
the generator. However, even if that was an acceptable time

2Note that the authors of these implementations have been
contacted and the described vulnerabilities have been fixed.



to security trade-off, the latter cannot be performed with
the information provided in a TLS handshake. It is crucial
that the trust in the peer’s signature needs to extend to a
trust in the parameters, and that can only be achieved with
a protocol fix.

Second assumption.
Although almost all servers on the Internet have an RSA
public key, at the moment this paper was written, pub-
lic data available about Internet servers such as the ‘Inter-
net SSL Survey’ [24] did not include the required informa-
tion to assess whether servers supporting arbitrary elliptic
curves exist. Our belief is that because popular open source
TLS protocol implementations such as NSS, OpenSSL and
GnuTLS currently do not support arbitrary elliptic curves,
the majority of Internet servers are unaffected by our attack.

5. FEASIBILITY OF THE ATTACK
Given the large number (240) of signed messages the adver-
sary requires from the server while the client’s handshake
is on hold, we need to evaluate the feasibility of the attack
in a real world scenario. For that we performed a simula-
tion of the part of the attack involving the server and the
adversary. However, since open-source implementations of
TLS do not support explicit elliptic curves, in the simula-
tion we use the named curve TLS option, which limits our
choice of curves. In our simulation, the server is a web-server
that supports TLS with the secp384r1 curve and holds a
1024-bit RSA key. The adversary performs multiple partial
handshakes with the server, that are terminated once the
signed ‘ServerKeyExchange’ message is received. The simu-
lation was performed using two 24-CPU Intel Xeon (X5670)
systems interconnected using Gigabit Ethernet. One was
used as an HTTPS server using the nxweb3 software with
GnuTLS 3.0.20, and the other was used to initiate the ad-
versary’s connections to the server. The software used to
simulate the adversary is a modified version of the httpress4

tool, that measures the number of requests per second of the
partial TLS handshake used in the attack. Both nxweb and
and httpress operate in a multi-threaded manner and were
assigned all the available CPUs in each system.
We now consider two variants of the attack. The first targets
a specific client, following closely our attack as in Fig. 4, and
the second is an attack that targets any client.

5.1 Attacking a specific client
In this attack the adversary’s goal is to impersonate the
server to a specific client of his choice. The adversary would
then be required to perform 240 connections to the server
before the client times out. In our test setup the adversary
was able to perform 3770 connections per second on aver-
age, resulting in an expected time of approximately 9 years
to attempt all the 240 connections. This is quite a long time
given the TLS handshake timeout values in browsers (see
Table 4), and human patience. However, typical high-load
Internet servers operate in clusters and may support hard-
ware acceleration of RSA signing operations. On such a
combination that improves performance by a factor of 1000
the estimated time is 3 days. That is still a long time for a
single interactive session, indicating that the described at-

3https://bitbucket.org/yarosla/nxweb/wiki/Home
4https://bitbucket.org/yarosla/httpress/wiki/Home

Table 4: TLS handshake timeout values in various
browsers.

Browser Handshake
timeout

Chrome 20 20 secs
Firefox 10 30 secs
Internet Explorer 8 40 secs
Opera 12 40 secs

tack may not be practical today in attacking a specific tar-
geted client. The attack simulation results are summarized
in Table 5.

Table 5: The resources required by the web server during
the attack simulation.

Web server

Transmitted data 4.7 MB/sec
Received data 1.8 MB/sec
Requests handled 3770 req/sec

5.2 Attacking a random client
On the other hand, there are cases where the adversary is
not particularly interested in a specific client and imperson-
ating the server to a random client is sufficient. In that
scenario, the adversary hijacks every (distinct) client con-
nection attempt and uses the interval before the connection
times out to initiate multiple connections to the server. On
every failed attempt he gives up on that client who sees
a connection timeout in his browser. Using the numbers
from the simulation, and assuming a 40 second connection
timeout value, the adversary would expect to impersonate
the server after 223 distinct client connection attempts. For
high-load servers this is a rather low number. For example,
Google currently has 700 million unique visitors per day, so
it would only take on average 17 minutes for the attack to
succeed (if the increase in load can be absorbed).

6. A POSSIBLE FIX
Currently the signature on the ‘ServerKeyExchange’ mes-
sage covering the key exchange parameters, ensures only the
freshness of the message, but not whether it was intended
for this particular key exchange. A simple fix may be to
include the negotiated ciphersuite into the signature. How-
ever, the TLS protocol is complex and negotiates extensions
that modify the key exchange in several ways. For example,
in this particular attack we used the explicit curves option
of TLS, which is negotiated using an extension. Such exten-
sions should also be covered by the signature, to prevent any
attack that uses the sub-options allowed by a key exchange
algorithm.
For that we propose to modify the signature of the ‘Server-
KeyExchange’ to include, in addition to explicit identifiers
of the algorithms, all the previously exchanged messages.
Our proposed signature for a ‘ServerKeyExchange’ message
is shown in Fig. 6. It includes explicit indicators of the
entity (server), the key exchange algorithm used, the hand-
shake messages exchanged, and the parameters of the key
exchange. This modification may be negotiated either with
an upgraded TLS version number, or by defining a new TLS

https://bitbucket.org/yarosla/nxweb/wiki/Home
https://bitbucket.org/yarosla/httpress/wiki/Home


extension similarly to the approach in [23], allowing back-
wards compatibility.

enum { server (0), client (1) } ConnectionEnd;

enum { dhe_dss (0), dhe_rsa (1),

ec_diffie_hellman (2)

} KeyExchangeAlgorithm;

struct {

select (KeyExchangeAlgorithm) {

case dhe_dss:

case dhe_rsa:

ServerDHParams params;

case ec_diffie_hellman:

ServerECDHParams params;

}

} Parameters;

struct {

Parameters params;

digitally-signed struct {

ConnectionEnd entity;

opaque handshake_messages<1..2^24-1>;

KeyExchangeAlgorithm kx_algorithm;

Parameters params;

}

} ServerKeyExchange;

Figure 6: The proposed format for the ServerKeyEx-
change message signature. Note that we follow the TLS
protocol message description. In particular, the type
opaque is used to indicate bytes containing uninterpreted
data and arrays of variable length, specified with the
<floor..ceiling> notation, are preceded by a number of
bytes containing the length of the array.

A drawback of this change is that it requires caching of
the previously exchanged messages until the ‘ServerKey-
Exchange’ message is sent. This however, should be an in-
significant cost for today’s servers.

7. CONCLUSIONS
In this paper we presented a new attack on the TLS proto-
col that exploits the fact that a client can interpret signed
explicit elliptic curve Diffie-Hellman (DH) key exchange pa-
rameters as valid plain DH parameters. It is a cross-protocol
attack similar in nature to the attack introduced by Wag-
ner and Schneier. The attack enables impersonation of the
server and is much more efficient than breaking any of the
involved cryptographic primitives.
Nonetheless, the presented attack depends on the server sup-
porting the explicit elliptic curves option. This option is not
supported in the tested open-source implementations mak-
ing them resistant to this attack. This fact suggests that for
now the implementation of the explicit elliptic curves proto-
col option should be avoided unless a counter-measure like
our proposed fix is in place.
A limiting factor of the attack in servers that support the
explicit elliptic curve option is that it requires the initiation
of 240 sessions within the timeframe of the client session. We
show that this may be prohibitive for attacking a specific

client, but if the target is attacking any random client, the
attack should be feasible on a cluster of servers.
Moreover, we show that extensions of the TLS protocol such
as the “False start” [18] that reduces protocol round-trips by
sending the encrypted client’s application data before the
full handshake is complete, are at risk. The attack may be
used by an adversary to recover the encryption key offline
and access the encrypted data.
The described attack can be countered by verifying the server’s
DH public key for known invalid values. The TLS protocol,
however, should not over-rely on these tests. There could
be other values that can be used to mount variants of our
attack but cannot be easily detected. We believe that the
trust in the peer’s signature needs to extend to a trust in
the signed parameters.
It is also worth noting that our attack may not be the only
possible cross-protocol attack on the TLS protocol. Due to
the fact that the protocol in its current form allows a server
to be used as an oracle by an adversary, other attacks that
explore different algorithm interactions may also be possi-
ble. For that we proposed a fix to the protocol that defends
against this family of attacks.
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