

Cisco Expo 2009

November 25-26, Bratislava, Slovakia

Understanding High Speed 802.11n Wireless Networks in Depth

Michal Remper, CCIE #8151 CSE/AM mremper@cisco.com

Agenda

- The Role of IEEE and WFA
- 802.11n Technology Prerequisites
- MIMO
- 40MHz Channels
- Packet Aggregation
- Backward Compatibility
- Cisco and Intel Collaboration

The Role of the IEEE and the WFA

- 802.11n was a 7-years endeavor at the IEEE
- The High Throughput Study Group Sept 11, 2002
- 802.11n Task Group Sept 11, 2003
- WFA first began certifying the interop of draft 2.0 802.11n devices in June 2007
- IEEE 802.11n ratification on Sept 11 2009

802.11n Technology

Goal:

To dramatically increased the effective throughput of 802.11 devices available to end-user apps, not to simply build a radio capable of higher bit rates.

- Every aspect of 802.11 introducing overhead needs to be minimized as far as possible ...
- Not only faster PHY layer, but also more efficient MAC layer

Reliability and bit rate are increased by MIMO

The bit rate increased by 40-MHz operation

Frame aggregation – higher throughput for apps

Robust backward compatibility

802.11n Advantages

Increased Bandwidth for emerging and existing applications Reduced Retries permitting low latency and delay sensitive applications such as voice Reduced dead spots permitting consistent connectivity for every application

Technical Elements of 802.11n

MIMO 40Mhz Channels	Packet Aggregation	Backward Compatibility	
---------------------	-----------------------	---------------------------	--

MIMO	40Mhz	Packet	Backward
	Channels	Aggregation	Compatibility

MIMO (Multiple Inputs Multiple Outputs)

- MIMO is heart of 802.11n
- 802.11n it is mandatory requirement to have at least two receivers and one transmit per band

Optional to support up to four TXs and four RXs

- Ability to use multiple transmit antennas to improve SNR of the signal at the receiver
- Ability to use multiple receive antennas to improve SNR of the signal at the receiver – MIMO Equalization
- Ability to send two or more signals spatial streams → spatial division multiplexing
- MRC—Maximum ratio combining (MIMO Equalizer for a single spatial stream)

*

Comparing SISO and MIMO Signal Reception

- One radio chain
- Switches between antennas
 Either A or B
- Multipath degrades

- Three radio chains
- Aggregates all antennas A and B and C
- Multipath improves
- Better immunity to noise
- Better SNR than SISO

MIMO Radio Terminology

TxR:S

Transmit Antennas x Receive Antennas : Spatial Streams

- T Transmit Antennas
- R Receive Antennas
- S Spatial Streams (1 = 150Mbps, 2 = 300Mbps)
- The 1250 and 1140 are 2x3:2

Two Transmit, Three Receive, Two Spatial Streams

NOTE: Beware the taxonomy... vendors claiming 3x3 and 4x4 MIMO systems still only do 2 spatial streams!

Maximum Ratio Combining (MIMO Equalizer)

Maximum Ratio Combining

- Performed at receiver (either AP or client, complement to transmit beamforming)
- Combines multiple received signals
- Increases receive sensitivity
- Works with both 11n and non-11n clients
- MRC is like having multiple ears to receive the signal

Illustration of Three Multipath Reflections to SISO AP

Illustration of Three Multipath Reflections to MIMO AP with MRC

Radio Radio Radio Radio

> The DSP Adjusts the Received Signal Phase So They Can Be Added Together

1 0.2 0.4 0.6 -1 -2

2

[]=

The Resulting Signal Is Addition of Adjusted Receive Signals

Multipath Reflections of Original Signal

Spatial Multiplexing

Participate

Same Channel

SISO Data Transmission

Time Period 2

MIMO Spatial Multiplexing Data Transmission

More Efficient Spectrum Utilization with MIMO Spatial Multiplexing

 The data is broken into two streams transmitted by two transmitters at the same frequency

I Can Recognize the Two Streams Transmitted at the Same Frequency Since the Transmitters Have Spatial Separation Using My Three RX Antennas with My Multipath and Math Skills

Technical Elements of 802.11n

MIMO	40Mhz Channels	Packet Aggregation	Backward Compatibility	
------	----------------	-----------------------	---------------------------	--

MIMO	40Mhz	Packet	Backward
	Channels	Aggregation	Compatibility

40-MHz Channels

MIMO	40Mhz Channels	Packet Aggregation	Backward Compatibility
	40Mhz C	hannels	

Moving from 2 to 4 Lanes

40-MHz = 2 aggregated 20-MHz channels—takes advantage of the reserved channel space through bonding to gain more than double the data rate of 2 20-MHz channels

802.11n supports 20 or 40 MHz wide channels

40 MHz wide channels recommended only for 5 GHz

 Consists of a primary channel and a secondary channel also referred to as extension channel

Second channel must be adjacent

Can be above or below primary

Protection provided for 20 MHz wide client use

40 MHz-Wide Channel

 Spectrum Expert Trace for 40 MHz-wide channel channel 36 primary and channel 40 extension

Technical Elements of 802.11n

MIMO 40Mhz Channels	Packet Aggregation	Backward Compatibility	
---------------------	-----------------------	---------------------------	--

MIMO	40Mhz	Packet	Backward
	Channels	Aggregation	Compatibility

Aspects of 802.11n

MIMO	40Mhz Channels	Packet Aggregation	Backward Compatibility	
	Packet Ag	gregation		

Carpooling Is More Efficient Than Driving Alone

Packet Aggregation

- All 11n devices must support receiving of either packet aggregation method A-MPDU or A-MSDU
- A-MPDU packet aggregation is what 1250 and 1140 will use for packet aggregation with block acknowledge

Without packet aggregation

802.11n headers	Data	F C S K	802.11r header	า ร	Data	F C C K	802.11n headers	Data	F C S	ACK	802.11n headers	Data	F C S K		
V	Vith p	backe	et ago	gre	egati	on									В
802.11n headers	Data	Data	Data	F C S	802.11n headers	Data	Data	Data	F C S	802.11n headers	Data	Data	Data	F C S	A C K

Technical Elements of 802.11n

MIMO	40Mhz Channels	Packet Aggregation	Backward Compatibility	

MIMO	40Mhz	Packet	Backward
	Channels	Aggregation	Compatibility

Aspects of 802.11n

802.11ABG Clients Interoperate with 11n AND Experience Performance Improvements

802.11n HT-mix PHY

LRP = Legacy Radio Preamble LRH = Legacy Rapid Header RP = 11n Radio Preamble RH = 11n Radio Header

- To provide legacy co-existence all 11n transmissions today use a mixed mode PHY that encapsulates the HT PHY in the Legacy PHY when transmitting at HT rates
- Legacy devices degrade 11n device performance based on duty cycle they use in the spectrum

Backward Compatibility & Co-Existence

- Co-existence of ABG/N APs
- Benefits of 11n accrue to ABG clients (ClientLink)

MIMO benefits ABG clients on the AP receive side from MRC

Backward Compatibility & Co-Existence

- Mixed mode experiences slight performance impact due to ABG clients
- 11n clients still transmit at full performance
- Move 11n clients to 5GHz, keep legacy clients at 2.4GHz
 - Use Cisco BandSelect to automatically move dualband clients to 5GHz

802.11n Data Rates

MCS—Modulation and Coding Scheme

- 802.11a/b/g used data rates
- 802.11n defines MCS rates
- 77 MCS rates are defined by standard
- 1140 and 1250 support 16 (MCS 0-15)

Eight are mandatory

- Best MCS rate is chosen based on channel conditions
- MCS specifies variables such as

Number of spatial stream, modulation, coding rate, number of forward error correction encoders, number data subcarriers and pilot carriers, number of code bits per symbol, guard interval

MCS Chart

			80	2.11n l	Data Ra	ate
MCS Index	Modul- ation	Spatial Streams	20	MHz	40 1	MHz
			L-GI	S-GI	L-GI	S-GI
0	BPSK	1	6.5	7.2	13.5	15
1	QPSK	1	13	14.4	27	30
2	QPSK	1	19.5	21.7	40.5	45
3	16-QAM	1	26	28.9	54	60
4	16-QAM	1	39	43.3	81	90
5	64-QAM	1	52	57.8	108	120
6	64-QAM	1	58.5	65	122	135
7	64-QAM	1	65	72.2	135	150
8	BPSK	2	13	14.4	27	30
9	QPSK	2	26	28.9	54	60
10	QPSK	2	39	43.3	81	90
11	16-QAM	2	52	57.8	108	120
12	16-QAM	2	78	86.7	162	180
13	64-QAM	2	104	116	216	240
14	64-QAM	2	117	130	243	270
15	64-QAM	2	130	144	270	300

Maximum with 1 spatial stream

Maximum with 2 spatial streams

A Few More 802.11n Features Used to Increase Performance

- Beam forming
- Reduced inter-frame spacing
- Reduced guard interval
 - From 800ns to 400ns between 'symbols'

QAM 64

Cisco Next-Generation Wireless Portfolio

Cisco Aironet 1140 Series

Carpeted Indoor Environments

Easy to Deploy-Sleek design with integrated antennas

802.11n performance with efficient 802.3af power

Blends seamlessly into the environment

Cisco Aironet 1250 Series

Rugged Indoor Environments

Versatile RF coverage with external antennas

Flexible power options for optimal RF coverage

11a/g to 11n Access Point Migration

Indoor Environments

Integrated Antennas

Rugged Environments

Antenna Versatility

.ilisco

1140 vs 1250 Positioning

* 1250 runs on PoE with reduced performance

Cisco and Intel:

Collaborative 802.11n Leadership and Testing

Why Cisco/Intel is different

Dedicated office building for testing enterprise WLAN

Application level testing vs. standards compliance

Intel and Cisco engineers working together

Robots provide 24*7 testing, accurate results

Virtual Tour: http://ciscointelalliance.com/wireless_mobility/collab_mov.aspx

Line of Sight (LoS), Non-Line of Sight (NLoS) Tests

Customer Challenges:

- Reliable and predictable performance needed for enterprise apps to operate effectively on WLANs
- Applications require increasing amounts of bandwidth

Customer Impact:

 802.11n delivers 5X to 9X the level of application layer throughput in comparison to 802.11a/g

Test Methodology:

- Application layer testing with TCP traffic
- Multiple locations tested in an office environment

802.11n Offers Superior Throughput and Coverage

Non-Line of Sight (NLoS)—Test Results

Average of 9X throughput increase comparing 802.11n vs. 802.11a

802.11n Offers Superior Throughput and Coverage

Non-Line of Sight (NLoS)—Test Results

Average of 5X throughput increase comparing 802.11n vs. 802.11g

802.11n Offers Superior Throughput and Coverage

Client Density Testing – Test results

Customer Challenges

- Highly dense client environments exist in many organizations
- Have historically proved challenging with shared media like wireless.

High Density 802.11n Performance Test

- Customer Impact: 802.11n delivers a more predictable, reliable even in circumstances of high client density / contention.
- Can easily support difficult environments like carpeted enterprise, education, hospitality, etc.
- Peak throughput 195 Mbps, Average 182 Mbps

Constant Aggregate Throughput as Client Density Increases

Mixed Mode Testing

Customer Challenges

- Customers will not immediately be able to upgrade their client infrastructure to be 802.11n capable.
- An 802.11n infrastructure must be able to handle both "legacy" clients in addition to 802.11n clients.
- Customer Impact: Consistent client performance is offered across all test runs (~2Mbps per legacy client, ~25Mbps per 11n client).
- "Legacy" 802.11a/b/g clients will not impact your 802.11n network.

11n Performance is Not Impacted by Existing 11abg

Enterprise Client Roaming

Customer Challenges

- Applications require consistent, predictable network performance, even when the client is roaming.
- There is no "standard" client roaming algorithm.

- Throughput remains consistent across roaming resulting in a stable platform for enterprise applications.
- Customers using Cisco infrastructure with Intel clients will deliver the best throughput and roaming in the industry.

Enterprise Roaming Non-optimized, Inconsistent Results

Enterprise Roaming Optimized, Consistent Results

MIMO vs. SISO 'Dead Spot' Assessment

SISO vs. MIMO Dead Spot Comparison

1240 with Intel 3945ABG

82	77	39	83	80	83	88	78	71	65	64	80	25	64
38	52	54	48	71	85	85	52	70	69	89	66	91	68
67	89	71	81	48	80	69	56	72	45	45	86	91	89
70	75	70	49	85	55	56	88	62	78	69	75	73	93
58	67	80	62	70	90	69	65	91	69	55	69	70	61
57	69	67	71	90	70	21	71	69	68	53	68	92	67
70	89	74	66	67	69	58	68	88	65	68	87	90	91
28	90	31	90	57	69	90	75	64	71	89	89	88	83
44	72	75	82	69	28	41	34	42	41	52	68	67	71
43	81	39	54	69	92	42	90	67	74	92	61	61	70
69	90	72	61	41	89	<mark>5</mark> 3	88	56	46	69	71	67	69
74	96	59	87	67	90	68	75	62	38	69	64	59	100
56	56	85	25	32	50	50	62	87	67	47	67	74	68
63	68	85	86	82	33	84	88	83	72	59	43	87	49

1250 with Intel 5300AGN

92 91 95 91 97 92 96 89 92 93

- Each square represents a slight position change
- Number is percentage of maximum throughput
- 802.11n provides more predictability through MRC

Cisco 11n Access Point Comparison

 For 2.4GHz, both APs deliver
 100Mbps TCP throughput for each traffic direction.

 For a 5GHz (40MHz) channel, both APs deliver above 175Mbps TCP throughput and a peak of ~195Mbps.

Intel 11n Client Comparison

 The 5100 is a 1x2:2 radio chipset meaning it can receive at 300Mbps data rate but only send at a maximum of 150Mbps.

 The 5300 is a 3x3:3 radio chipset supporting a full 300Mbps in both upstream and downstream directions.

Additional Resources

For

Cisco/Intel Testing Whitepaper

http://www.cisco.com/en/US/solutions/collateral/ns340/ns394/ns 348/ns767/white_paper_c11-492743.pdf

Cisco/Intel Collaboration Video

http://www.youtube.com/watch?v=8WPBMBz9n7A

#