
Bypassing clang’s SafeStack
for Fun and Profit

Enes Göktaş, Angelos Economopoulos, Robert Gawlik, Benjamin
Kollenda, Elias Athanasopoulos, Georgios Portokalidis, Cristiano

Giuffrida, Herbert Bos

Outline

• SafeStack

• Neglected Pointers

• Thread Spraying

• Allocation Oracles

• Conclusion

2

SafeStack

• New security feature in LLVM

• Protect against stack based control-flow hijacks

• In research proposals:
• Code-Pointer Integrity (Kuznetsov et al., 2014) (origin SafeStack)

• ASLR-Guard (Lu et al., 2015)

• Also proposed for integrating in GCC
• https://gcc.gnu.org/ml/gcc/2016-04/msg00083.html

3

VAR
RET

BUF

VAR
VAR
RET
BUF
VAR
RET

Original stack
4

VAR
RET

BUF

VAR
VAR
RET
BUF
VAR
RET

VAR
RET
VAR
RET
VAR
RET

BUF
VAR

BUF

Original stack Safe stack Unsafe stack
5

VAR
RET

BUF

VAR
VAR
RET
BUF
VAR
RET

VAR
RET
VAR
RET
VAR
RET

BUF
VAR

BUF

Original stack Safe stack Unsafe stack

What is it
good against?

6

What is it
good against?

VAR
RET

BUF A

VAR
VAR
RET
BUF
VAR
RET

VAR
RET
VAR
RET
VAR
RET

BUF A
VAR

BUF

Original stack Safe stack Unsafe stack
7

What is it
good against?

VAR
RET

BUF A

VAR
VAR
RET
BUF
VAR
RET

VAR
RET
VAR
RET
VAR
RET

BUF A
VAR

BUF

Original stack Safe stack Unsafe stack
8

What is it
good against?

VAR
RET

BUF A

VAR
VAR
RET
BUF
VAR
RET

VAR
RET
VAR
RET
VAR
RET

BUF A
VAR

BUF

Original stack Safe stack Unsafe stack
9

What is it
good against?

VAR
RET

BUF A

VAR
VAR
RET
BUF
VAR
RET

VAR
RET
VAR
RET
VAR
RET

BUF A
VAR

BUF

Original stack Safe stack Unsafe stack
10

VAR
RET

BUF A

VAR
VAR
RET
BUF
VAR
RET

VAR
RET
VAR
RET
VAR
RET

BUF A
VAR

BUF

Original stack Safe stack Unsafe stack

Stack buffer overflows

What is it
good against?

11

What is it
good against?

VAR
RET

BUF A

VAR
VAR
RET
BUF
VAR
RET

VAR
RET
VAR
RET
VAR
RET

BUF A
VAR

BUF

Original stack Safe stack Unsafe stack

Stack buffer overflows

BUF_A_ptr

HEAP

12

What is it
good against?

VAR
RET

BUF A

VAR
VAR
RET
BUF
VAR
RET

VAR
RET
VAR
RET
VAR
RET

BUF A
VAR

BUF

Original stack Safe stack Unsafe stack

Stack buffer overflows

BUF_A_ptr

HEAP
Info. disclosure => stack loc.

13

What is it
good against?

VAR
RET

BUF A

VAR
VAR
RET
BUF
VAR
RET

VAR
RET
VAR
RET
VAR
RET

BUF A
VAR

BUF

Original stack Safe stack Unsafe stack

Stack buffer overflows

BUF_A_ptr

HEAP
Info. disclosure => stack loc.

14

VAR
RET

BUF A

VAR
VAR
RET
BUF
VAR
RET

VAR
RET
VAR
RET
VAR
RET

BUF A
VAR

BUF

Original stack Safe stack Unsafe stack

What is it
good against?

Stack buffer overflows

BUF_A_ptr

HEAP
Info. disclosure => stack loc.

Leaking stack location

15

Stack

Heap

Data

Code

mmap

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr. High addr.

Low addr. Low addr.

Normal Compiled with SafeStack

PIE compiled program in Linux

16

Stack

Heap

Data

Code

mmap

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr. High addr.

Low addr. Low addr.

Normal Compiled with SafeStack

PIE compiled program in Linux

17

Stack

Heap

Data

Code

mmap

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr. High addr.

Low addr. Low addr.

Normal Compiled with SafeStack

PIE compiled program in Linux

18

Stack

Heap

Data

Code

mmap

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr. High addr.

Low addr. Low addr.

Normal Compiled with SafeStack

PIE compiled program in Linux

19

Pointers to Safe Stack may not
appear in reachable memory

to keep Safe Stack hidden

0x414625 : mov 0x2099bc(%rip),%r14
0x41462c : mov %fs:(%r14),%r15
0x414630 : lea -0x20(%r15),%rbx
0x414634 : mov %rbx,%fs:(%r14)
0x414638 : mov (%rsi),%rsi
0x41463b : mov %rbx,%rdi
0x41463e : callq 0x400f20 <strcpy@plt>

0x400561 : sub $0x20,%rsp
0x400565 : mov (%rsi),%rsi
0x400568 : lea (%rsp),%rbx
0x40056c : mov %rbx,%rdi
0x40056f : callq 0x400430 <strcpy@plt>

int main(int argc, char *argv[]){
 char buf[32];
 strcpy(buf, argv[1]);
 ...
}

t
e
s
t
.
c

n
o
r
m
a
l

s
a
f
e
s
t
a
c
k

...

fs:
Thread
Control (TCB)
Block

Thread
Local (TLS)
Storage

Unsafe Stack Ptr fs:(-0x30)

Allocate address taken
local variable on stack

20

0x414625 : mov 0x2099bc(%rip),%r14
0x41462c : mov %fs:(%r14),%r15
0x414630 : lea -0x20(%r15),%rbx
0x414634 : mov %rbx,%fs:(%r14)
0x414638 : mov (%rsi),%rsi
0x41463b : mov %rbx,%rdi
0x41463e : callq 0x400f20 <strcpy@plt>

0x400561 : sub $0x20,%rsp
0x400565 : mov (%rsi),%rsi
0x400568 : lea (%rsp),%rbx
0x40056c : mov %rbx,%rdi
0x40056f : callq 0x400430 <strcpy@plt>

int main(int argc, char *argv[]){
 char buf[32];
 strcpy(buf, argv[1]);
 ...
}

t
e
s
t
.
c

n
o
r
m
a
l

s
a
f
e
s
t
a
c
k

...

fs:
Thread
Control (TCB)
Block

Thread
Local (TLS)
Storage

Unsafe Stack Ptr fs:(-0x30)

Allocate address taken
local variable on stack

Address of variable
provided to strcpy

21

SafeStack

• Compile time instrumentation pass
• Flag: -fsanitize=safe-stack

• Ensure stack access is “safe”
• Address taken objects moved to alternative stack

• Prevent leaking stack location

• Relies on ASLR

22

SafeStack

• Compile time instrumentation pass
• Flag: -fsanitize=safe-stack

• Ensure stack access is “safe”
• Address taken objects moved to alternative stack

• Prevent leaking stack location

• Relies on ASLR

How safe is the SafeStack?

23

SafeStack

• Compile time instrumentation pass
• Flag: -fsanitize=safe-stack

• Ensure stack access is “safe”
• Address taken objects moved to alternative stack

• Prevent leaking stack location

• Relies on ASLR

How safe is the SafeStack?

24

Locating SafeStack

• Neglected pointers

• Thread Spraying

• Allocation Oracles

25

Threat Model

• Memory corruption

• Arbitrary read/write primitive

• Heap and module data disclosed

• Goal: Locate SafeStack

26

Neglected Pointers

• SafeStack ensures pointer to data on stack wont be stored
outside the stack

• Analyze programs compiled with SafeStack for unexpected
pointers

• GDB + python

• Report pointers common among apps

27

Neglected Pointers

• Found pointers:
• In heap

• In libraries

• Thread IDs

28

Neglected Pointers: Heap

• Dynamic Thread Vector (DTV)
• Points to Thread Local Storage (TLS) blocks

• Static TLS blocks attached to TCB

• TCB of secondary stacks located on stack

Stack (secondary thread)
Heap

counter DTV

TLS ptr
TLS ptr
TLS ptr
TLS ptr

TCB

Static TLS

Static TLS

DTV ptr Dynamic TLS

Dynamic TLS

https://www.uclibc.org/docs/tls.pdf
 29

https://www.uclibc.org/docs/tls.pdf
https://www.uclibc.org/docs/tls.pdf

Neglected Pointers: Libraries

• pthread.so (linked lists):
• stack_used ̶ __stack_user

• libc.so
• program_invocation_name

• program_invocation_short_name

• libgcc.so
• __libc_argv ̶ __dlfcn_argv

30

Neglected Pointers: Libraries

• ld.so
• rtld_global_ro ̶ _dl_argv

• environ ̶ __libc_stack_end

• Pointer that can lead to TCB in ld.so
• alloc_end

• If app overloads malloc, e.g. Chrome and Firefox

31

Neglected Pointers: Thread IDs

• Surprisingly thread API uses base of TCB as thread IDs
• int pthread_create(pthread_t *thr, ..)
• int pthread_join(pthread_t thr, ..)
• pthread_t pthread_self()
• …

• Apps that do thread bookkeeping store thread IDs in the heap
or modules in their data section

• E.g. libxml2.so:
• .bss: mainthread = pthread_self()

32

• Let’s assume these implementation issues are fixed

• The attacker cannot leak safestack through pointers anymore

• The attacker could try to randomly hit safestack

• What could he do to increase the chance to hit a safestack?

33

• Let’s assume these implementation issues are fixed

• The attacker cannot leak safestack through pointers anymore

• The attacker could try to randomly hit safestack

• What could he do to increase the chance to hit a safestack?

34

Reduce the entropy through Thread Spraying

Entropy

• Degree of randomness

• Given in bits

• Example:

• 3 bit address space

• 8 blocks of 1 byte

• Hide data

35

Entropy:

Worst case
#probes

2 bits

:

Hit chance:
22

1
=

4

1

2 bytes Sens. data:

22 = 4

(21)

000

001

010

011

100

101

110

111

Entropy

• Degree of randomness

• Given in bits

• Example:

• 3 bit address space

• 8 blocks of 1 byte

• Hide data

36

Entropy:

Worst case
#probes

2 bits 1 bit

:

Hit chance:
22

1
=

4

1

21

1
=

2

1

2 bytes 4 bytes Sens. data:

22 = 4 21 = 2

(21) (22)

000

001

010

011

100

101

110

111

37

64 bit address space

Entropy: 64 bits

Hide: 1 byte

38

Linux user space only uses 47 bit

64 bit address space

Entropy: 47 bits

Hide: 1 byte

39

Linux user space only uses 47 bit

1 page: 4096 bytes = 212 bytes

64 bit address space

Entropy: 35 bits

Hide: 4096 bytes

40

Linux user space only uses 47 bit

1 page: 4096 bytes = 212 bytes

64 bit address space

Entropy: 24 bits

Hide: 223 bytes

Safe Stack of 8 MB = 223 bytes = 211 pages

41

Linux user space only uses 47 bit

1 page: 4096 bytes = 212 bytes

64 bit address space

Entropy: 24 bits

Hide: 223 bytes

Safe Stack of 8 MB = 223 bytes = 211 pages

Thread Spraying
Legitimately spawn as many threads as possible

42

Linux user space only uses 47 bit

1 page: 4096 bytes = 212 bytes

64 bit address space

Entropy: 23 bits

Hide: 224 bytes

Safe Stack of 8 MB = 223 bytes = 211 pages

Thread Spraying
Legitimately spawn as many threads as possible

Spawn a new thread

43

Linux user space only uses 47 bit

1 page: 4096 bytes = 212 bytes

64 bit address space

Entropy: 22 bits

Hide: 225 bytes

Safe Stack of 8 MB = 223 bytes = 211 pages

Thread Spraying
Legitimately spawn as many threads as possible

Spawn a new thread

Spawn 2 more threads

44

Linux user space only uses 47 bit

1 page: 4096 bytes = 212 bytes

64 bit address space

Entropy: 7 bits

Hide: 240 bytes

Safe Stack of 8 MB = 223 bytes = 211 pages

Thread Spraying
Legitimately spawn as many threads as possible

Spawn a new thread

Spawn 2 more threads

Spawn 128k threads = 217 stacks

45

Linux user space only uses 47 bit

1 page: 4096 bytes = 212 bytes

64 bit address space

Entropy: 7 bits

Hide: 240 bytes

Safe Stack of 8 MB = 223 bytes = 211 pages

Thread Spraying
Legitimately spawn as many threads as possible

Spawn a new thread

Spawn 2 more threads

Spawn 128k threads = 217 stacks
Drops worst case
#probes to 128

46

Linux user space only uses 47 bit

1 page: 4096 bytes = 212 bytes

64 bit address space

Entropy: 7 bits

Hide: 240 bytes

Safe Stack of 8 MB = 223 bytes = 211 pages

Thread Spraying
Legitimately spawn as many threads as possible

Spawn a new thread

Spawn 2 more threads

Spawn 128k threads = 217 stacks
Drops worst case
#probes to 128

Mmap entropy is 40 bit =>
worst case #probes is 1 (20)

Inspected apps

• Firefox

• MySQL

47

Thread Spraying: Firefox

• New thread per dedicated web worker in JS

• 20 web workers per domain

• Web worker thread stack size = 2MB ; entropy = 19 bits

• 20 Threads drops entropy to about 15 bits

Linux stack entropy = 40 bits
2MB occupies 21 bits in AS

40 - 21 bits = 19 bits of entropy
#probes = 524288

#probes = 32768

48

Thread Spraying: Firefox

• New thread per dedicated web worker in JS

• 20 web workers per domain

• Web worker thread stack size = 2MB ; entropy = 19 bits

• 20 Threads drops entropy to about 15 bits

• Load pages from different domains through iframes
• => Unlimited web worker threads

• 16.384 Web workers drop entropy to 5 bits
#probes = 32

Linux stack entropy = 40 bits
2MB occupies 21 bits in AS

40 - 21 bits = 19 bits of entropy
#probes = 524288

#probes = 32768

49

Thread Spraying: MySQL

• New thread per network connection

• Max connections 151

• Thread stack size = 256KB ; entropy = 22 bits

• 151 connections drops entropy to about 15 bits

50

Thread Spraying: MySQL

• New thread per network connection

• Max connections 151

• Thread stack size = 256KB ; entropy = 22 bits

• 151 connections drops entropy to about 15 bits

• 4096 connections drops entropy to 10 bits
• max_connections = 4096

• Stack size of 256 MB can drop entropy to 0 bits
• connection_attrib.stack_size = 0x10000000

51

Thread Spraying: MySQL

• New thread per network connection

• Max connections 151

• Thread stack size = 256KB ; entropy = 22 bits

• 151 connections drops entropy to about 15 bits

• 4096 connections drops entropy to 10 bits
• max_connections = 4096

• Stack size of 256 MB can drop entropy to 0 bits
• connection_attrib.stack_size = 0x10000000

Exhausted 0x7F.. address region.
Address 0x7F0000000000 has

safestack with a very high chance.

52

• By spraying lots of threads
• ASLR can be weakened

• Chance to hit safestack can be increased

• Spraying might not always be possible

• Another approach to find the safestack:

• Allocation Oracles

53

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr.

Low addr.

54

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr.

Low addr.

Holes

55

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr.

Low addr.

Holes

Size ??

56

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr.

Low addr.

Holes
Size Distributions

Hole Min. Max.

A 130TB 131TB

B 1GB 1TB

C 4KB 4GB A

B

C
Size ??

57

So look for the holes

• Intuition:
• repeatedly allocate large chunks of memory of size L until we find the

“right size”

Succeeds!
Sizeof(Hole) ≥ L

58

So look for the holes

• Intuition:
• repeatedly allocate large chunks of memory of size L until we find the

“right size”

Too large, alloc fails!
Sizeof(Hole) < L

59

So look for the holes

• Intuition:
• repeatedly allocate large chunks of memory of size L until we find the

“right size”

Succeeds!
Sizeof(Hole) ≥ L

60

So look for the holes

• Intuition:
• repeatedly allocate large chunks of memory of size L until we find the

“right size”

Too large, alloc fails!
Sizeof(Hole) < L

61

So look for the holes

• Intuition:
• repeatedly allocate large chunks of memory of size L until we find the

“right size”

Nailed it!

Binary search
62

Ephemeral Allocation Primitive (EAP)

• For each probe (i.e., server request):

• Strategy: allocation+deallocation, repeat

ptr = malloc(size);
...

free(ptr);

reply(result);

63

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr.

Low addr.

Holes
Size Distributions

Hole Min. Max.

A 130TB 131TB

B 1GB 1TB

C 4KB 4GB A

B

C

SIZE X

Size ??

EAP
64

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr.

Low addr.

Holes
Size Distributions

Hole Min. Max.

A 130TB 131TB

B 1GB 1TB

C 4KB 4GB A

B

C

SIZE X

Size ??

EAP

Looking for this

65

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr.

Low addr.

Holes
Size Distributions

Hole Min. Max.

A 130TB 131TB

B 1GB 1TB

C 4KB 4GB A

B

C

SIZE X

Size ??

EAP

Looking for this

66

deallocated

Persistent Allocation Primitive (PAP)
• For each request:

• Pure persistent primitives rare

• But we can often turn ephemeral into persistent
• Keep the connection open

• Do not complete the req-reply

ptr = malloc(size);
...

reply(result);

67

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr.

Low addr.

Holes
Size Distributions

Hole Min. Max.

A 130TB 131TB

B 1GB 1TB

C 4KB 4GB A

B

C

SIZE X

Size ??

PAP
68

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr.

Low addr.

Holes
Size Distributions

Hole Min. Max.

A 130TB 131TB

B 1GB 1TB

C 4KB 4GB A

B

C
SIZE Y

SIZE X

Size ??

PAP

EAP

69

Safe Stack

Heap

Data

Code

mmap

Unsafe Stack

High addr.

Low addr.

Holes
Size Distributions

Hole Min. Max.

A 130TB 131TB

B 1GB 1TB

C 4KB 4GB A

B

C
SIZE Y

SIZE X

Size ??

PAP

EAP

SS at Heap + Y

70

So we need
• A way to effect large allocations repeatedly

• A way to detect whether they failed

 Note: we want to attack info hiding
 Assume arbitrary read/write primitives

71

Here is what we do
• A way to effect large allocations repeatedly

• A way to detect whether they failed

• When server is in quiescent state
• Taint all memory
• See which bytes end up in allocation size

72

Here is what we do
• A way to effect large allocations repeatedly

• A way to detect whether they failed

Options

• Direct observation (most common)
• E.g., HTTP 200 vs. 500

• Fault side channels
• E.g., HTTP 200 vs. crash

• Timing side channels
• E.g., VMA cache hit vs. miss

73

Examples

• Nginx
• Failed allocation: Connection close.

• Lighttpd
• We crash both when

• allocation fails (too large) and

• succeeds (but allocation > than physical memory)

• But in former case: crash immediately

• In latter case, many page faults, takes a long time

74

Memory overcommit:

• OS should allow (virtual) allocations beyond available physical
memory

• Common in server settings

• Required by some applications:
• Reddis, Hadoop, virtualization, etc.

• However, even when disabled:
• Allocation oracles still possible

• But attacker has to bypass overcommit restrictions

Assumption

75

Conclusion

• Implementing safe stacks without pointers to it might not be
trivial

• ASLR can be weakened by using Thread Spraying and
Allocation Oracles

• Proper isolation can mitigate these attacks

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_goktas.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_oikonomopoulos.pdf

76

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_goktas.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_goktas.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_goktas.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_oikonomopoulos.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_oikonomopoulos.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_oikonomopoulos.pdf

