
QUUX: a QUIC un-multiplexing of
the Tor relay transport

Ali Clark

supervised by
Dr. Steven J. Murdoch

September 1, 2016

�is report is submi�ed as part requirement for the MSc in Information Secu-
rity at University College London. It is substantially the result of my own work
except where explicitly indicated in the text.

�e report may be freely copied and distributed provided the source is ex-
plicitly acknowledged.

Abstract

�e Tor network currently multiplexes data for its circuits over a TCP connec-
tion for each relay pair. �is work investigates the use of QUIC streams as an
alternative transport design.

Acknowledgements

I would like to thank:
Steven for his exceptional patience as I frequently switched between disser-

tation topics, without which I might not have reached this one; and for his expert
and thoughtful guidance throughout this project.

My sisters, Sophia for teaching me the invaluable tool of mindfulness-based
stress reduction, and Venetia for her empathy and encouragement drawn from
her own experience.

My parents for their love and support.
�emany projects and their contributors without which this work would not

be possible, in particular Chromium, libquic, Tor, Shadow, and Chutney.
Rob Jansen for his responsive and detailed help on Shadow issues.

Contents

1 Introduction 1
1.1 Usability and security . 2

2 Background 3
2.1 �e Internet . 3

2.1.1 IPSec . 4
2.2 Transport Protocols . 4

2.2.1 UDP . 4
2.2.2 TCP . 4
2.2.3 TLS . 6
2.2.4 DTLS . 6
2.2.5 SCTP . 6
2.2.6 QUIC . 7
2.2.7 µTP . 7

2.3 Tor . 8
2.3.1 libevent . 9
2.3.2 Relay data path . 9

3 Related work 12
3.1 Initiator-to-exit . 13
3.2 End-to-end . 13
3.3 Hop-by-hop . 13
3.4 Conclusions . 14

3.4.1 Network design . 15
3.4.2 Transport protocols . 15

i

CONTENTS ii

4 Methodology 18
4.1 QUIC . 18
4.2 QUUX . 19

4.2.1 Linking . 19
4.2.2 Channels . 20

4.3 Chutney experiment . 21
4.4 Shadow experiment . 23

5 Results 24
5.1 Chutney experiment . 24

5.1.1 Bandwidth overhead . 25
5.1.2 Conclusions . 25

5.2 Shadow experiment . 27
5.2.1 Conclusions . 29

6 Conclusion 30
6.1 Backpressure . 30
6.2 Security . 31

6.2.1 So�ware . 31
6.2.2 Usability . 32

Appendix A quux.h 40

Appendix B Chutney experiment 45

Appendix C Shadow experiment 47

List of Figures

2.2 �eues in the Tor data path . 10

4.1 Overview of the Chutney experiment 22

iii

Chapter 1

Introduction

With the growing prominence of information technology in society, including
private information as much as any other, privacy has become a de�ning issue
of our time.

As a rule, people expect to have privacy in their a�airs. Even for those who
are accepting of information systems that have unexpectedly stored or processed
their private data, o�en the logic isn’t that they don’t care about their privacy;
instead it is that the storage or processing is in fact condoned within their view
of privacy — either the data was not really private, or the other party wouldn’t
care to look at it anyway.

Since privacy is an issue of consent and autonomy over one’s private infor-
mation, we must not rely on these forms of retroactive and obligatory consent,
lest they not be granted. For example, we can reasonably assumemany victims of
LOVEINT [Gor13] do not consent to the way their data was stored and processed,
and have indeed been denied of their privacy.

As engineers, we must build information systems that allow the possibility
of a person to retain control over their private information, and allow them the
ability to give meaningful consent in privacy questions.

�e internet as used for web browsing is an example where choice is needed.
With each request a web server is made aware of its client’s IP address, which
will o�en identify the client to a �ne-grained level that reveals their approximate
location and provides an identi�er that enables tracking across the web.

1

CHAPTER 1. INTRODUCTION 2

At the same time, it’s near implausible to suggest someone refrain from using
the web if they disagreed with this collection and processing of their private data.
�e Tor [DMS04] web browser provides a viable alternative. It implements an
overlay network on top of the internet, so the �nal IP address accessing a web
service is not the same as the client’s IP address.

Tor reports over a million daily users [Met] and is the de facto research plat-
form for academics of anonymous web browsing systems.

1.1 Usability and security

Among Tor’s users are civil and human rights activists in despotic regimes. For
these people, Tor’s anonymity is a critical security property that protects them
from surveillance. 1

�ere are three distinct levels at which Tor must to be usable in order to be
e�ective:

1. Its usability must uphold the primary task, web browsing — a web browser
should be usable for web browsing.

2. Its usability must uphold the secondary task, secure anonymity [WT99] —
it should be hard to incorrectly use in a way that defeats the user’s security.

3. It must have usability that encourages an increased user base — anonymity
loves company [DM06].

It is the �rst and third of these points that this thesis seeks to improve. �eTor
browser gives a relatively slow and therefore less usable web browsing experi-
ence, which is likely harming its uptake, and by extension the security provided.

1It is not an unfounded concern — today Martin Luther King Jr. is universally celebrated, but
in his lifetime he was the target of surveillance [Com76]:

From December 1963 until his death in 1968, Martin Luther King Jr. was the target
of an intensive campaign by the Federal Bureau of Investigation to ’neutralize’ him
as an e�ective civil rights leader.

�e NSA also surveilled King, under Operation Minaret — but later concluded the operation
had been “disreputable if not outright illegal” [Pil13]

Chapter 2

Background

Tor’s network transport and �ow control has changed li�le since its inception,
and over time it has become clear that a new transport subsystem could yield
improvements to Tor browser performance.

For be�er understanding, this chapter details some background technical in-
formation relating to transport and �ow control in general and as implemented
in Tor.

2.1 �e Internet

�e following assumptions of the internet are made
throughout this thesis and in the experiments conducted:

• �ere are two commonly deployed versions of inter-
net protocol, IPv4 and IPv6 — the more prevalent IPv4
[Pos81a] is assumed.

• �e more prevalent physical layer Ethernet V2 (with-
out jumbo frames) is assumed, resulting in an IP max-
imum transmission unit (MTU) of 1500 bytes.

• All packets are assumed to �t within the MTU, so
there is no need for IP fragmentation.

3

CHAPTER 2. BACKGROUND 4

Recall that in IP, packets are transmi�ed by a sender and routed towards
the receiver on a best e�ort basis, meaning that at any point the packet may be
dropped with no noti�cation to either party.

2.1.1 IPSec

IPSec is a protocol suite that allows for secure encapsulation of encrypted IP
packets on top of IPSec IP packets [KS05]. It can be used as an encrypted tunnel
for transporting IP packets between two hosts. It may also be used in a VPN ar-
rangement, with an IPSec host forwarding a packet potentially through another
IPSec tunnel.

IPSec is implemented in the Linux operating system kernel.

2.2 Transport Protocols

�e major protocols used for transport over the internet are TCP [Pos81b] and
UDP [Pos80].

2.2.1 UDP

For UDP, the data communicated is consisting of datagrams. �ese are individual
messages containing 0–1500 bytes of data sent as a single IP packet. �e protocol
is described unreliable because there is no mechanism to notify either party or
guarantee delivery of the message if the packet is dropped.

�e minimalist semantics of UDP and its wide support on the internet make
it a good substrate for other network protocols.

2.2.2 TCP

TCP by contrast is a connection-oriented protocol. Once a connection has been
established between two parties, the connectionmay be viewed as a bidirectional
data stream by an application.

�e operating system (assumed throughout to be the Linux Kernel or simply
kernel), is responsible for reliable delivery of data that is “sent” by an application

CHAPTER 2. BACKGROUND 5

using TCP.
TCP packets contain a seq number and an ack number. �e seq number of

a packet identi�es the o�set into the data stream (in that direction) of the data
contained in the packet, while the ack number is used to communicate the seq
number (in the other direction) that is needed next from the other host. �e ack
number implies that data for all previous bytes sent by the other host has been
correctly received.

It is common for empty packets not containing any data to be sent, purely
for the purpose of communicating a higher ack number to the other host. Addi-
tionally, it is common for hosts to re-send the same acknowledgement for each
packet they receive with TCP data that is beyond the next byte expected.

In this way, a host can become aware of probable packet loss in a packet it
has sent if: no acknowledgement arrives within a reasonable time; or, if multiple
acknowledgements arrive containing the same earlier seq number [APB09].

TCP uses a sliding-window mechanism for �ow-control. A sender may only
transmit a window of data up to a certain size to the other host, and at that point
must not send more data until the window size increases, or some of the earlier
data is acknowledged. �e receiving host speci�es the window size in packets
returned to the sender.

TCP implements congestion control [APB09] so that connections on the same
link canmake e�cient use of available capacity without causing over-congestion
or congestion collapse. �is works �rstly by congestion avoidance — hosts will
enter a “slow-start” mode and build up transmission rates until loss is detected.
Once loss is detected, a TCP host will greatly reduce the transmission rate, and
return to slow growth from there. �ese transmission rates are implemented
using a congestion window determined by the sender. At any time a TCP host
may only send data if both the �ow control window and the congestion window
allow.

An aim of TCP congestion control is for competing streams to achieve max-
min fairness. �is is a state where no connection could use more bandwidth
without another of the same or less bandwidth having their share reduced fur-
ther. �is round-about de�nition does allow for imbalances, so long as the im-
balance is not to the detriment of any connection that has a lower share.

CHAPTER 2. BACKGROUND 6

CUBIC [HRX08] is a widely deployed congestion control algorithm that is
used in the experiments of this thesis. CUBIC increases the congestion window
in three phases. At a congestion event, CUBIC reduces the congestion window
by a factor. From here, absent a congestion event, it increases the congestion
window rapidly up to the previouswindow size, then enters a steady state period,
and then if a congestion event has still not occurred, will rapidly increase the
congestion window until it �nds a window size at which a congestion event does
occur. At this point the congestion window is reduced and the process starts
anew.

�e term RTT, for round-trip time has special relevance in TCP, where it is cal-
culated as a function of recently observed acknowledgment times for outbound
packets, and is used to detect loss events.

�e bandwidth-delay product of a link is its bandwidth rate multiplied by its
RTT. �e resulting value is the amount of data that must be in-�ight at any time
to fully utilise the link. Consequently, TCP window sizes should be at least this
large, to allow enough bu�er-time to acknowledge received data and move the
�ow control window forward.

2.2.3 TLS

TLS (currently Version 1.2 [DR08]) is the standard for cryptographically protect-
ing the con�dentiality, integrity and authenticity of data transferred over a TCP
connection.

2.2.4 DTLS

DTLS (currently Version 1.2 [RM12]) is a variation on TLS designed for trans-
portation over datagram protocols, particularly UDP.

2.2.5 SCTP

SCTP [Ste07] is a transport protocol that is quite similar to TCP in allowing a
reliable congestion-controlled channel. An additional feature of SCTP is that
data is tagged with a stream identi�er and a stream sequence number. As a result,

CHAPTER 2. BACKGROUND 7

a lost packet for one stream need not prevent SCTP from delivering stream data
destined for another stream that wasn’t impacted by the packet loss.

Of note, SCTP streams do not have independent �ow or congestion control.
�is means an SCTP connection behaves similarly to a single TCP connection in
terms of max-min fairness, regardless of the number of streams transported.

It alsomeans that a receiving application should not discontinue reading from
any stream if it still has interest in reading from any another — due to the reliable
semantics of SCTP it must retain data it has acknowledged, and eventually the
unwanted stream bu�er may grow full so that SCTP is unable to acknowledge
any further data for the connection.

Since SCTP is not as widely deployed on the internet as TCP and UDP, it is
o�en encapsulated using UDP packets [TS13] instead of plain IP packets.

2.2.6 QUIC

QUIC [HIS+16] is similar to the combination of DTLS-SCTP-UDP.
In contrast to SCTP, streams in QUIC have independent �ow and congestion

in addition to QUIC’s per-connection �ow and congestion control.
A signature feature of QUIC is to allow for 0-RTT connection establishment,

which is possible when the connection initiator has cached key information for
the other host from a previous successful connection [LC16]. If so, the initiator
will use initial encryption mode with that key information to send data, until it
has received ephemeral key information from the server in response.

A non 0-RTT connection will send an inchoate hello to elicit the ephemeral
key information in response. Once the initiator has received ephemeral key in-
formation, it moves into forward secure mode for the rest of the connection.

�e QUIC protocol includes potential improvements over TCP such as NACK
ranges [ISG15]. Other improvements being considered include packet pacing,
speculative retransmission and Forward Error Correction of lost packets.

2.2.7 µTP

µTP is a UDP-based transport providing reliable data transmission similar to TCP.
Of note, µTP uses a delay-based congestion control, that will tend to cede to other

CHAPTER 2. BACKGROUND 8

tra�c such as TCP connections when other tra�c appears to be using the link.

2.3 Tor

All discussions of Tor will in fact refer to the Tor version 0.2.7.6. �is is a rela-
tively recent stable version of Tor that was used in the experiments conducted.
A signi�cant majority of Tor relays run on Linux, so for ease of discussion that
operating system is assumed.

�eTor network consists of several thousand volunteer-operated relays. When
a user installs the Tor client so�ware on their computer, it selects a small number
of these relays as semi-permanent guard relays, meaning those relays will be the
�rst point of contact for the client’s future connections over the Tor network.

�e standard unit of transfer in Tor is called a cell, which is typically 512 or
514 bytes in size [DMS04] (a uniform length aids tra�c analysis resistance). �e
unit of data transfer is the relay data cell, containing up to 498 bytes of application
data.

In the background, the Tor client so�ware constructs a small number of paths
through the Tor network that are ready to be used when a user wishes to create a
TCP connection through Tor. �e paths are 3 hops long, with a guard relay as the
�rst hop. �e other relays, named middle and exit relays are selected at random,
weighting towards higher bandwidth relays as published in a consensus �le.

�ere is typically one TCP connection between each pair of relays that trans-
fers cells with each other (accidental duplicate connections are disregarded).

A client establishes successive encryption layers with each of the relays, such
that the guard relay may only decrypt the outermost part of a relay cell, the
middle only the outermost of that, and �nally, only the exit is able to decrypt the
remainder. �is arrangement is termed onion-encryption due to the successive
layers of encryption.

�e path as used for transport of the client’s TCP connection is called a circuit.
Tor network relays will typically have many active circuits at any one time, and
many circuits may be using the same relay–relay pair at any time, all of their
cells being transferred over the same TCP connection.

Tor cannot rely on TCP’s �ow control to regulate tra�c on a circuit — as to

CHAPTER 2. BACKGROUND 9

do so would a�ect all other circuits using the same TCP connection too. Instead,
clients and exit relays observe a packaging window limit in data they send to one
another. �e packaging window is decremented by one for each cell transmi�ed,
and once it has reached zero the sendermust stop transmi�ing data. On receipt of
a certain number of cells, the receiving end returns a SENDME cell to the sender,
which allows the sender to increase its packaging window.

2.3.1 libevent

Tor uses the libevent library to learn in an operating system agnostic way that an
input/output event on a TCP connection has become possible.

2.3.2 Relay data path

Awhistle-stop tour of a Tor relay’s data queues is called for. A relatively complete
picture is provided, with the intention of demystifying the process and describing
the relevant components inside a larger map of which they are a part.

Figure 2.2 outlines the queues along Tor’s network data transfer path for a
typical Linux host. rxqueue receives packets from the network interface, and the
kernel will then process the packets as fast as possible. If packets arrive too fast
for this, they will simply be dropped by the network interface.

In processing, the kernel will place the packet data in the appropriate Re-
ceive Bu�er for a TCP connection, which should typically be sized to match the
bandwidth-delay product of the connection. By default Linux will auto-tune the
bu�er size as needed.

�e application uses the read syscall or similar to remove data from the bu�er.
If it does this too slowly and the receive bu�er becomes full, Linux will advertise
a window size of 0 in TCP packets it sends back along that connection. When
this happens, it is termed backpressure, because it causes the sender’s send bu�er
to start accumulating data until itself becoming full, allowing the condition to
propagate backwards further.

A connection inbuf is an unbounded data bu�er inside Tor. Tor typically
reads data into the inbuf as fast as possible, but will however stop reading from
a connection when: the internal circuit queue for an edge connection reaches a

CHAPTER 2. BACKGROUND 10

Figure 2.2: �eues in the Tor data path

CHAPTER 2. BACKGROUND 11

certain size; when the packaging window for an edge stream using that connec-
tion reaches 0; and when the connection read rate limit or global read rate limit
is exhausted. �e data is immediately processed into cells by Tor and passed
onwards.

Incoming�eue is typically not used, but its existence is noted here for com-
pleteness.

Aside from the case of an edge connection noted above, the internal circuit
queue is unbounded in length, relying instead on Tor’s packaging window to
enforce a sensible upper bound.

Cells rest on the circuit queue until they can be scheduled for writing. �e
cells are wri�en onwards from the circuit queue as fast as the EWMA scheduler
[TG10] will allow for the circuit, provided the outgoing connection appears to
be writeable and not blocked.

Outgoing�eue is typically not used, but its existence is noted here for com-
pleteness.

outbuf is a data bu�er for serialised data ready to be wri�en to the connec-
tion. Data rests here until processed by the libevent connection write callback.
�e scheduler will stop appending data to this bu�er once it exceeds a certain
length, leaving the cells on their circuit queues instead.

�e libevent write callback will �re once its Send Bu�er has space to accept
more data. �e data will be removed from outbuf and passed into the bu�er using
the write syscall or similar. If the send bu�er becomes full, no further writes are
allowed for the application on that socket until it is no longer full.

As permi�ed by �ow and congestion control, the kernel will split the data
into TCP segments and pass the resulting packets onto the qdisc queue. �e qdisc
queue is a space for queueing discipline algorithms to be implemented. Of rele-
vance is the netem queueing discipline, which allows various network conditions
to be emulated using the queue, such as varying latency delays, and increased
probability of packet loss.

Lastly, packets are passed onto the device txqueue for transmission onto the
network.

Chapter 3

Related work

Various alternative schemes have been proposed over the years to replace the
single TCP connection per relay-pair that Tor currently uses for transport. It is
helpful to group them in categories based on the reliability properties of their
network design [Mur11]:

• Hop-by-hop — relays are only responsible for reliability of data in the net-
work until it is acknowledged by the next hop. �e next hop is then fully
responsible for successfully sending the data onwards, and so on. Tor’s
transport currently follows this design.

• End-to-end — packets communicated to and from the client have a close
correspondence to the IP packets sent and received by the the end server.
As such, the client and server are responsible for retransmission of data if
any IP packets or their equivalents are lost.

• Initiator-to-exit — similar to end-to-end reliability, but only up to the exit
relay. From there, the exit relay is responsible for reliable transmission to
and from the server. �ere may be some value in distinguishing the hosts
running Tor so�ware from those outside of the Tor network.

12

CHAPTER 3. RELATED WORK 13

3.1 Initiator-to-exit

Viecco investigated a network design using unreliable transmission between the
client and the exit relay, named UDP-OR [Vie08], with fairness being one of the
main goals. A later work investigated this topic in detail [TS11] and appears to
corroborate that UDP-OR is a fair approach, if not an easily deployable one. �e
UDP-OR design is not compatible with Tor’s current design so deployment would
be di�cult in practice [RG09].

Regarding performance, more testing of the design would be need to be able
to say how it fares in practice in comparison to Tor.

3.2 End-to-end

Kiraly et al. used a nested “telescope” of IPSec tunnels in place of Tor’s TLS
and onion encryption. �ey tested their design and achieved good results. �ey
did not test their design under a high latency se�ing with additional packet loss
however [Cla16b] (see below for why this is important).

3.3 Hop-by-hop

An obvious design alternative would be to modify Tor to open one TCP connec-
tion per circuit. �ere are two disadvantages to this [DM09]: Firstly, there is a
reduced degree of mixing of cells, since it becomes clear that all cells on a given
TCP connection are for the same circuit, as opposed to potentially any of the
circuits sharing that hop.

Secondly, the larger number of connections increases the number of open
sockets that must be maintained by the host, potentially harming scalability or
allowing a socket exhaustion a�ack as later corroborated by Geddes, Jansen and
Hopper [JGH14].

Motivated by TCP’s head-of-line blocking, Reardon and Goldberg [RG09] im-
plemented an alternative transport named TCP-over-DTLS. Using a user-space
TCP stack, pseudo-TCP packets are transported between relays over UDP with

CHAPTER 3. RELATED WORK 14

DTLS. �is gave positive initial results, though a suitable TCP stack for live de-
ployment remains elusive.

AlSabah and Goldberg implemented an analogous approach named PCTCP
[AG13] with an IPSec tunnel in place of DTLS over UDP, allowing use of the
host TCP stack. �ey extensively tested the design and showed signi�cant per-
formance improvements for web clients in large scale simulations. Under normal
operation AlSabah and Goldberg expect PCTCP relays to use less than 10,000 �le
descriptors, but note the possibility of a scheme to fall back to multiplexing if
such a high number is reached.

Geddes, Jansen and Hopper [JGH14] showed that how an adversary might
cause aforementioned socket exhaustion in PCTCP, and proposed a scheme named
IMUX to dynamically scale the number of connections. �eir large scale simula-
tion did not show a signi�cant performance improvement of PCTCP over vanilla
Tor, and showed a slight improvement for web clients under IMUX.

However, although solving the socket exhaustion problem, its use of normal
TLS connections retains the previously voiced concerns over reduced cell mixing
[DM09], and this issue is not addressed by the work. Further discussion would
be needed to consider if this is an acceptable design trade-o�.

Jansen et al. [JGW+14] investigated delays of data in the Tor network, and
found signi�cant amount of time being spent in kernel bu�ers. �is is unsatis-
factory because once data leaves control of the Tor application, Tor can no longer
schedule the tra�c for best fairness and e�ciency. �ey modi�ed Tor to give it
an awareness of the likely levels of congestion in kernel bu�ers, allowing data
to remain in Tor until the last moment so it can be scheduled more optimally.

It was found that not only does Tor with KIST outperform Tor without KIST
for web tra�c [JGW+14], but in fact vanilla Tor outperforms both PCTCP and
IMUX for web tra�c, when KIST is in use [JGH14].

3.4 Conclusions

Despite nearly a decade of academic work showing performance improvements,
Tor’s transport has changed very li�le. �e 2009 report Performance Improve-
ments on Tor [DM09], points to a number of possible reasons why this is the

CHAPTER 3. RELATED WORK 15

case: integration and deployment e�ort is high, o�en the components are not
mature enough yet, and the solutions are complex, leading to a high risk of is-
sues in real-world use. It is therefore advisable to hold these factors in mind
while developing new proposals for Tor’s transport.

3.4.1 Network design

As Reardon and Goldberg noted in concluding remarks, approaches other than
hop-by-hop will incur an extra cost for retransmissions, since these must be
rerouted through a larger part of the network [RG09].

As Tschorsch and Scheuermann discuss [TS12], due to the longer RTT of TCP
connections, end-to-end approaches will also take longer to “ramp up” through
slow start and up to a steady state.

Both of these factors (not to mention increased security risk of information
leakage [DM09]) suggest that hop-by-hop designs are likely to yield be�er re-
sults. In fact, the hop-by-hop approach may be viewed as an instance of the Split
TCP Performance-Enhancing Proxy design, whereby arbitrary TCP connections
are split in two to negate the issues noted above.

3.4.2 Transport protocols

�e load balancing algorithm of the Tor network is reasonably straightforward —
each client selects middle and exit relays randomly, weighting to historical band-
width statistics. �is means that a relay which �uctuates signi�cantly greatly in
bandwidth is likely to be either over or under-subscribed at times.

Circuits should therefore be competitive in claiming their bandwidth, so that
�uctuations in background tra�c have a reduced impact. Absent from discussion
[Cla16b] by Tschorsch and Scheuermann [TS12], Tor allows a global limit to be
set on its bandwidth usage. In the context of Tor’s load balancing algorithm, it is
therefore be�er for an operator to set a low bandwidth limit that Torwill compete
e�ectively for, than to set a high limit that Tormight cede almost entirely to other
applications using the same link.

As such, µTP, SCTP streams, and a single-TCP connection as currently used
by Tor should be considered less favourable choices for transport. µTP will cede

CHAPTER 3. RELATED WORK 16

to competing tra�c by design, and the la�er two will compete with other tra�c
at the connection level instead of the circuit level, making them more prone to
cede to other tra�c.

Remaining good choices are multiple TCP connections over an encrypted
tunnel (such as TCP-over-DTLS and PCTCP) and QUIC streams. Single-stream
SCTP connections may also su�ce as an alternative to TCP connections. An-
other potential advantage of these schemes is that their independent congestion
control could in future allow backpressure along individual circuits, without af-
fecting other circuits on the same tunnel.

While there are pros and cons of the approaches, user-space-transport-over-
encrypted-UDP options are a�ractive compared to IPSec-based approaches for
the following reasons:

• Deployment — unlike in-kernel IPSec, no administrator privileges are re-
quired to install or run user-space so�ware [RG09].

• Sockets — user-space transport implementations don’t require sockets for
each connection, minimising the potential for socket exhaustion [DM09].

�e maturity of user-space TCP stacks still appears to be a limiting factor
[Mur11], since these stacks are typically developed for research purposes and do
not appear to have not gained signi�cant traction (and consequently support) in
industry.

SCTP and QUIC appear to be mature options, with SCTP being widely de-
ployed in Firefox and QUIC widely deployed in Chromium.

Tunneling single-stream SCTP connections over DTLS seems a more unusual
design choice than to use QUIC directly, and as a more recently designed pro-
tocol, the QUIC protocol includes improvements such as NACK ranges. QUIC’s
0-RTT (re)connection ability between hosts doesn’t �gure strongly in decision-
making, since relay–relay connections in Tor tend to be very long-lived, and so
their setup latency is less likely to have a major impact on performance.

In conclusion, a�er review of transport technologies and related work, a hop-
by-hop QUIC transport appears to be a promising alternative transport design
for Tor. It is be�er able to utilize Tor’s global bandwidth limits, or the link ca-
pacity otherwise, doesn’t su�er from head-of-line blocking, and could allow for

CHAPTER 3. RELATED WORK 17

per-circuit backpressure in future. Additionally, its user-space implementation
allows Tor to make use of its advanced transport protocol features regardless of
the operating system kernel version it is running on [RG09].

While there is no existing peer reviewed literature evaluating use of this ap-
proach, it is not a new idea — two separate groups [KL16] [AEOAE16] have re-
searched this approach in parallel, and had begun to do so before this thesis topic
was chosen.

Nonetheless, this thesis uses a distinct bo�om-up reasoning process for its
motivation. As a result, QUIC’s 0-RTT connection ability doesn’t constitute part
of the motivation for this proposal. �e use of 0-RTT initial encryption mode
brings a potentially complex design trade-o� between performance and security.

Additionally, backpressure is explicitly noted as part of motivation for this
proposal, as contrastedwith the lack of backpressure capability in SCTP’s streams,
since fairness [TS11] and �ow control [DM09] [TS12] are still open problems
in the Tor literature. �e QUIC proposal, in conjunction with Tor’s existing
bandwidth limiting mechanisms, allows a straightforward design solution to this
problem.

Chapter 4

Methodology

4.1 QUIC

A ground-up so�ware implementation of the QUIC protocol would have been
prohibitively expensive. �e de-facto public implementation of the QUIC proto-
col exists in the Chromium web browser source tree. Since this isn’t convenient
for developers wishing to use QUIC, third party developers have created a fork of
the source code named libquic, allowing the QUIC implementation to be built as
a standalone library and linked into other programs. More recently, the QUIC de-
velopers have started maintaining an uno�cial fork of Chromium’s QUIC source
code, named proto-quic.

libquic has been modi�ed to minimise its code footprint and dependencies to
the essentials, which made it a convenient starting point for building on, since
this reduces the potential for complications in dependencies. However it is ex-
pected that with a small amount of additional work, proto-quic could be used
instead with similar results.

Since the ChromiumQUIC implementation is wri�en in the same language as
the Chromium browser, C++, only C++ programs may link with and use libquic.
�is is problematic since Tor is wri�en in the C language. To work around this,
a C++ library was needed to expose QUIC functionality through a C API.

�e only library known that provided this functionality was a library named
quicsock hosted in a repository on github.com named simple-quic [Li16], created

18

CHAPTER 4. METHODOLOGY 19

by students investigating the same topic. However, the library is not freely avail-
able, having since been removed from github. Additionally it has a multithreaded
design that could result in a false negative performance result, and would likely
not scale to the size of the live Tor network.

A C++ library (unoriginally) named libquux was therefore developed to pro-
vide a C API to libquic’s functionality.

4.2 QUUX

�e libquux library is designed to be used asynchronously by allowing callbacks
to be set, which the library then “calls back” in an edge-triggered fashion when
a condition is met, such as libquux being able to write more data to a stream.

�ere was insu�cient time to implement certi�cate veri�cation, since this
would require integration with Tor’s veri�cation mechanisms, however due to
the long-lived nature of most relay-to-relay connections this is unlikely to a�ect
applicability of test results to Tor.

An array of coding techniques was utilised to reduce the possibility of a false
negative due to the experiment code, including: use of the mmsg family of IO
functions, caching of time values, whole-program compilation, and constness.
Where found to have been premature optimisations, these can be reverted in
future. �ere are likely to be cases where a faster implementation was used than
could be used in a real deployment. It is believed there aren’t any cases where
this would have had a signi�cant impact to the experimental results, if at all.

Notwithstanding the last hurdle of certi�cate veri�cation, libquux [Cla16a] is
the only freely available and open source QUIC C API library known to exist at
the time of writing. An abridged header �le for libquux is a�ached in appendix
A.1.

4.2.1 Linking

Having developed a QUIC library with functions of C linkage, the library was
linked into the Tor executable along with libquic, statically built dependencies
libprotobuf and BoringSSL’s libcrypto, and the stdc++ dynamic runtime library.

CHAPTER 4. METHODOLOGY 20

BoringSSL is a fork of OpenSSL used by the Chromiumweb browser, however
it still uses the same symbol names as OpenSSL. Since Tor already has OpenSSL
as a dependency, linking both libraries into an executable would result either in
a failure due to duplicate symbols, or in only one of the libraries being used for
its version of the duplicate symbol throughout the program, potentially leading
to a change in semantics.

To avoid this problem, a small program was created to rename all of Bor-
ingSSL’s symbols to have a bssl pre�x, and libquic was compiled with original
symbol references automatically replaced with their bssl variant.

4.2.2 Channels

In previous experiments, Google found that QUIC connectivity would fail for
approximately 5-10% of users [Ros12]. In those situations the Chromium browser
will silently fall back to using TCP. It’s likely the connectivity of Tor relays hosted
in data centres is be�er, however similar behaviour would likely be desirable at
least for Tor clients.

While it should be possible to develop a variant of Tor that creates a QUIC
connection in parallel with a TCP connection as Chromium does, the change
would likely be complex and may require duplication of some of Tor’s protocol
handshake logic.

An alternative approach used previously in a similar experiment [LMJ13] is to
allow the Tor handshake to complete over TCP and only then a�empt to use par-
allel connections. �is method requires smaller and more orthogonal changes,
with most of the code being additions rather than changes to the existing code.
Additionally, it would be relatively straightforward to use QUIC for the chan-
nel only if it successfully connected before any cells were ready to be sent, and
otherwise continue using TCP for the remainder of the connection.

Once the Tor handshake is complete, the connection initiator starts sending
the cell(s) for the circuit which caused a connection to be created in the �rst
place. A straightforward implementation needn’t hook into any circuit creation
logic for this; instead when asked to send a cell for a circuit that hasn’t previously
been used, a new QUIC stream is created, and the cell immediately sent on that

CHAPTER 4. METHODOLOGY 21

stream.
Since Tor currently doesn’t have a concept of circuits having their own con-

nection, there isn’t a mechanism to block writes for one circuit on a channel
without blocking other circuits on the channel. �is is relevant to the exper-
iment at hand, because channel-level blocking could re-introduce head-of-line
blocking internally. It proved too di�cult to apply per-circuit blocking inside of
Tor; instead writes on the channel were made to always succeed by placing data
into per-circuit bu�ers if the corresponding stream had become blocked. As a
compromise, a branch of Tor named 0.2.7.6-patched was modi�ed with a similar
change, to verify that this change alone was not the cause of any performance
di�erences.

4.3 Chutney experiment

An experiment was designed to test whether QUUX showed an improvement as
predicted by head-of-line theory. �e experiment involved two hosts either side
of the Atlantic to ensure natural latency in connection paths between the two.
As outlined in �gure 4.1, the experiment consisted of a minimal Tor path with
the Guard and Middle being on one host, and tra�c source, a varying number of
Tor clients (1–8), exit relay and tra�c destination being on the other. A varying
amount of loss (in exponentially scaled quantities) was emulated for the middle–
exit link using netem on the eth0 device.

In each scenario, all clients sent 32MiB to the verify server over the test net-
work in parallel with each other. �e time taken for the slowest client to �nish
sending was recorded, to �nd the rate of its goodput.

Test runs were performed in the order of: tor-0.2.7.6, QUUX, tor-0.2.7.6-
patched for all test variations. �e proximity of test time ensured that each
branch was likely to experience similar network and host conditions to the oth-
ers. While some experiments may have had slightly favourable network and
host conditions to one branch over the other, due the very large number of ex-
periments conducted this e�ect is expected to cancel out in aggregate.

For each experiment run the experiment.2.sh (appendix B.1) script calls con�gure-
hosts.sh, which completely resets the host states by killing any Tor processes,

CHAPTER 4. METHODOLOGY 22

Figure 4.1: Overview of the Chutney experiment

removing any loss emulation still in place, and re-con�guring the Chutney net-
work for the next experiment being tested.

�e London host had 8 CPUs and the New Jersey host had 4 CPUs, so with
the exception of the 7 and 8 client tests, there was at least one CPU available for
each process on the system.

Each line in �gure 4.1 corresponds to a TCP or QUIC connection, with arrows
pointing in the direction of data �ow. In the case of a QUIC connection, there is
one QUIC stream for each client circuit carried along the connection.

CUBIC was used as the TCP congestion control algorithm for the TCP stack
of both hosts, which matches the algorithm used by QUIC.

Chutney allows a CHUTNEY CONNECTIONS variable to be set, however to
be sure that individual circuits and therefore independent QUIC streams were
created, separate client processes were used instead.

It was found that each host used TCP Segmentation O�oad and therefore
allowed creation of much larger segments than the MTU at the kernel level.
Since this doesn’t occur for UDP, segmentation o�oading was disabled on the
loss-varying host to ensure a fair comparison with similarly sized packets being
dropped.

Logging can have a large impact on the performance of applications. Since
the QUUX and Tor branches exercise di�erent code paths with potentially dif-
ferent amount of logs generated, logging was disabled entirely during test runs

CHAPTER 4. METHODOLOGY 23

for a fairer comparison.

4.4 Shadow experiment

�e tor-0.2.7.6, tor-0.2.7.6-patched, and QUUX branches were tested under the
built-in Shadow con�g shadow-toy-con�g. �is con�guration contains 100 web
servers, 3 authority relays, 66 middle relays, 14 relays �agged Guard, 10 re-
lays �agged Exit, 5 relays �agged Guard and Exit, 360 web clients, and 40 bulk-
download clients.

Web clients fetched 320KiB �les from the web servers at dispersed intervals,
whilst bulk clients downloaded 5MiB �les as background tra�c in the network.
�e �rst 30 minutes of the 60 minute simulation are ignored, since during this
period the network is still bootstrapping itself.

Although this experiment doesn’t simulate an accurate representation of the
live Tor network, it should be su�cient to observe relative performance di�er-
ences between branches. Default provision of the test con�guration with the
Shadow so�ware also reduces the barrier for comparison with other branches in
future.

It’s important for scienti�c experiments to be repeatable. �e Shadow ex-
periment was conducted from within a Docker container, and the Docker�le for
se�ing up the QUUX experiment is provided in appendix C.1, making repeata-
bility much easier for the experiment. About 35GiB of memory is needed to run
the experiment for the full 60 minutes, however 24GiB is enough memory to run
the experiment for about 50 minutes, which should be su�cient to achieve some
initial results.

Chapter 5

Results

5.1 Chutney experiment

�e following graphs show how goodput varies by the number of clients at dif-
ferent levels of background loss, for each branch.

Due to the large number of tests and tra�c transferred in each test, each sce-
nario was only tested once. �erefore exact position of individual points should
be taken with a slight pinch of salt, however when taken together the points
support each other within a clear trend.

24

CHAPTER 5. RESULTS 25

5.1.1 Bandwidth overhead

Bandwidth overhead was measured on the London host for all tra�c emi�ed by
the Chutney process, the clients, and the exit relay.

�e largest overhead seen was for egress bandwidth for 8 clients at 0.001%
loss, which resulted in up to 25% bandwidth overhead. �e smallest egress band-
width overhead observed was 5.72%, which occurred for 2 clients at 1.832% added
loss.

Unfortunately, since the data value was taken from an aggregate counter in
the kernel using the nstat command, it also includes non-relay tra�c to and from
the Chutney process, which has now been conservatively (in tor-0.2.7.6’s favour)
subtracted.

In future, a be�er approach would be to direct client eth0 tra�c and/or exit
eth0 tra�c through an empty iptables chain, allowing tra�c counts to be queried
using iptables -L -v, and reset a�er each experiment run.

5.1.2 Conclusions

�e Chutney goodput results seem unbelievably good, but the experiment has
been checked and re-checked — UDP packets are being dropped at the same rate,

CHAPTER 5. RESULTS 26

and QUUXmakes no e�ort to learn about local send failures. Tor’s highly averse
reaction to packet loss — and QUUX’s relative resilience — is reproducible using
a straightforward basic-min Chutney test on a single localhost.

From the graphs looking at varying clients and 0.001% loss, we can see that
QUUX goodput is much more a function of the number of clients than for Tor.
Both branches showed a fairly straightforward nearly linear relationship be-
tween the number of clients and throughput at all loss levels.

Separately, the results do not show a signi�cant client-speci�c performance
degradation of multiplexing under a shared lossy link for Tor, and therefore
QUUX did not show an improvement in relation to loss with multiple clients.
�is result is contrary to the theory that head-of-line blocking is a signi�cant
performance issue for Tor.

A possible explanation for this surprising result may be that the middle–exit
connection was not the bo�leneck in the experiment. In that case the head-of-
line issue may indeed be a cause for slowness on that link, but the slowness is
being masked by an even slower section of the path.

Since netem would also drop a percentage of the ack packets returned from
the New Jersey host for client-to-guard tra�c, this might be slowing the client–
guard connection until it becomes the bo�leneck.

Otherwise, it may be that compared to the performance impacts from conges-
tion control, the head-of-line cost is not as great by comparison. A good next-step
for investigation would be to compare Tor’s performance when using one TCP
connection per circuit. Such a design may not be desirable for live deployment,
but might be helpful for understanding the performance impact of head-of-line
blocking.

�e fact that there is such amarked improvement at 0% packet loss for a single
client is indicative of either an integration improvement in the Tor application,
or a network protocol improvement.

�at QUUX performance degrades signi�cantly more slowly under loss than
Tor indicates that QUIC protocol improvements are the likely source of perfor-
mance gain. A hypothesis is that its improved ability to signal loss with NACK
ranges is the source of credit, however further investigation would be needed to
determine if this is the case.

CHAPTER 5. RESULTS 27

5.2 Shadow experiment

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

time to download first byte, all clients

0.2.7.6
0.2.7.6-patched
QUUX

�emost important of the Shadow
results are ones relating to small
downloads, since they are in-
dicative of web tra�c perfor-
mance. �e 320KiB size approxi-
mately relates to the average web
page size from a study in 2010
[JBHD12]. �e 5MiB background
tra�c is intended to represent
large �le transfers such as BitTor-
rent tra�c across the network,
and as such its performance is not our primary concernwhen considering anony-
mous web browsing performance.

In practice, loading a web page is not as simple as downloading one 320KiB
�le — a smaller HTML �le is �rst downloaded, and will typically reference a large
number of resources from potentially many other web hosts.

�e page wouldn’t be recognisable as a usable web page until at least the
most important style resources have been downloaded. At that point however,
the page may be largely usable, regardless of how many outstanding resources
may still be loading.

All of this is to say that the time-to-�rst-byte metric is very important in
its own right, since it represents the minimum amount of time before new re-
sources such as style-sheets can start to be downloaded. Experimentally [JH12],
the 320KiB download format has also been found to result in a representative
model of real network performance.

�e next-most important metrics are the time to download 320KiB for all
downloads, and the median time to download 320KiB for each client, as these
represent typical web browsing performance.

�e max time to download 320KiB (and by extension, the mean) may not be
as important to performance as it �rst appears, because at a certain point, users
have the option to restart the connection, albeit a very annoying task.

0 5 10 15 20 25 30
Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

time to download 327680 bytes, all downloads

0.2.7.6
0.2.7.6-patched
QUUX

0 10 20 30 40 50 60
Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

time to download 5242880 bytes, all downloads

0.2.7.6
0.2.7.6-patched
QUUX

0.5 1.0 1.5 2.0 2.5 3.0
Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

median time to download 327680 bytes, each client

0.2.7.6
0.2.7.6-patched
QUUX

10 15 20 25 30 35
Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
Fr

ac
tio

n
median time to download 5242880 bytes, each client

0.2.7.6
0.2.7.6-patched
QUUX

0 1 2 3 4 5 6 7 8 9
Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

mean time to download 327680 bytes, each client

0.2.7.6
0.2.7.6-patched
QUUX

15 20 25 30 35 40
Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

mean time to download 5242880 bytes, each client

0.2.7.6
0.2.7.6-patched
QUUX

CHAPTER 5. RESULTS 29

0 10 20 30 40 50 60
Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

max time to download 327680 bytes, each client

0.2.7.6
0.2.7.6-patched
QUUX

30 35 40 45 50 55 60 65
Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

max time to download 5242880 bytes, each client

0.2.7.6
0.2.7.6-patched
QUUX

5.2.1 Conclusions

�e results are unequivocal: �e Tor network is substantially faster under QUUX,
both in terms of throughput and time-to-�rst-byte.

From the time to download 320KiB for all downloads, we can see that for
the slowest 25% of downloads, QUUX starts showing signi�cant improvements
over Tor. Particularly for the slowest 5% of downloads, QUUX retains reasonable
performance while Tor performance becomes unacceptably slow or would need
the request to be restarted.

QUUX shows approximately 20% improvement for the median download of
the median client. �e graph of median 320KiB download times for each client is
indicative that all clients can expect to see performance improvements for typical
web requests using QUUX, and not just the fastest or slowest.

To state these results to any greater precision would be misleading of the
accuracy of simulation compared to real-world Tor performance. Instead, an
e�ort has been made to make QUUX easily testable in future experiments.

Chapter 6

Conclusion

6.1 Backpressure

A key bene�t of the QUIC protocol for Tor is to make circuit-level backpressure
possible.

A fully QUIC relay path (with slight modi�cation to �x a limit on internal
bu�er sizes) would allow end-to-end backpressure to be used from the client
application TCP stream up to the exit TCP stream. Leaving aside Tor’s inbound
rate limit mechanism but retaining the global outbound limit 1, this design would
allow max-min fairness to be achieved in the network, as outlined by Tschorsch
and Scheuermann [TS11].

A last hurdle remains, which is that as with any whole-network change, mi-
gration path anonymity set concerns [Mur11] would apply to this change. Hav-
ing upgraded a su�ciently large amount of the core network, consensus could
switch so that only backpressure-enabled relays be accepted in circuits. �ere
seems to be a graceful fallback for Tor clients that remain on the older versions
— since a Tor client typically multiplexes tra�c for a single user, it seems a rea-
sonable upgrade path to apply backpressure on the whole client–guard TCP con-
nection for clients still on older versions.

It remains for discussion if it would be reasonable for guards to be able to
identify their older clients in this way. One option might be for newer clients to

1�e rate of incoming tra�c would follow from this, due to backpressure on the read bu�er.

30

CHAPTER 6. CONCLUSION 31

probabilistically use old TCP connections to interfere with a potential analysis.
Once implemented however, backpressure would allow Tor to adopt a sig-

ni�cantly improved internal design. In such a design, a Tor relay could read a
single cell from one QUIC stream’s read bu�er, onion crypt it, and immediately
place it onto the write bu�er of the next stream in the circuit. �is process would
be able to operate at the granularity of a single cell because the read and write
operations for QUIC are very cheap user-space function calls and not syscalls as
for host TCP 2.

�e schedule of this action would be governed by the existing EWMA sched-
uler for circuits that have both a readable stream and a writeable stream (and as
allowed by a global outgoing token bucket), allowing optimal quality of service
for circuits.

It’s expected that backpressure implemented in this way will yield signi�cant
performance and fairness gains on top of the performance improvement found
in this thesis.

6.2 Security

6.2.1 So�ware

So�ware changes inevitably carry with them a risk of bugs, some of which have
the potential to reduce security. Particularly relevant to Tor are any issues that
could (partially) de-anonymise users, that risk denial of service in the network,
or both.

�e so�ware change for the QUUX branch and libquux was relatively small
— about one thousand lines of code in Tor and four thousand lines of code in
libquux. Each of these changes would need to be thoroughly reviewed, and per-
haps partially re-implemented for improved code clarity.

One of the motivations for using QUIC in this project was to depend on
a mature so�ware implementation already in use by millions of people in the
Chromiumweb browser. Although much of the code is indeed reused, the client-
side Chromium code uses its own subclasses of some core classes that were not

2Related to this, the location of bu�ers in user-space also allows for cheap KIST-style analysis

CHAPTER 6. CONCLUSION 32

re-usable by libquux. �erefore careful review of the equivalent subclasses would
be needed, to ensure libquic is used correctly in all cases.

An even larger di�erence between QUIC as used by Chromium-Google exists
on the server-side. Since the Google server code is not open source, libquux must
build on server code that was open sourced for demonstration purposes. �is
so�ware would need an even more thorough review to ensure it is correct.

Finally, considerationwould be needed towards trust of the dependency projects.
To what extent can patches from upstream be trusted? Should Tor stick to a rela-
tively static QUIC version, performing very costly code review and update infre-
quently? �ese are some questions that would need to be considered in adopting
this proposal.

6.2.2 Usability

At the start of this thesis an assertion was made: the relative slowness of the
Tor browser is likely harming its uptake. To what extent is this actually true?
Results from e-commerce [For09] suggest an almost linear relationship between
user engagement and latency that becomes measurable from as li�le as 100ms.

It may be the case that Tor users are less sensitive to latency however, under-
standing or even valuing it as a side-e�ect of the privacy technology [Mur07].
Further experimental work might be helpful to understand the impact of latency
in the privacy se�ing on both user adoption and the primary task.

Dingledine and Murdoch formally analysed this relationship between per-
formance and the number of users in the Tor network using supply and demand
theory from Economics [DM09], building on an earlier analysis by Murdoch
[Mur07].

Dingledine and Murdoch’s point to a trade-o� that shows relevance to this
thesis, which is the trade-o� between number of users and performance of web
browsing. When translated to the derived security bene�t from each, there ap-
pears to be a trade-o� between the security of Tor as a usable privacy tool, and
security of Tor as a web browser used by a large anonymity set.

But this needn’t be the case: there is another option, which is to keep shi�ing
the supply-side of Tor web browsing performance so it becomes highly usable

CHAPTER 6. CONCLUSION 33

for any number of people who wish to use it, and stays highly usable for any
number of people who wish to use it. It’s an ambitious goal, but not impossible.

Bibliography

[AEOAE16] Raik Aissaoui, Ochirkhand Erdene-Ochir, Mashael AlSabah, and
Aiman Erbad. Poster: �tor: �ic-based transport architec-
ture for anonymous communication overlay networks. March
2016. https://www.researchgate.net/profile/
Raik Aissaoui/publication/292392094 QUTor
QUIC-based Transport Architecture for
Anonymous Communication Overlay Networks/
links/56ae170008ae43a3980e6890.pdf.

[AG13] Mashael AlSabah and Ian Goldberg. PCTCP: Per-Circuit TCP-
over-IPsec Transport for Anonymous CommunicationOverlay Net-
works. In Proceedings of the 20th ACM conference on Computer and
Communications Security (CCS 2013), November 2013.

[APB09] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control.
RFC 5681 (Dra� Standard), September 2009.

[Cla16a] Ali Clark. �e libquux branch of libquic, 2016. https://
github.com/aliclark/libquic.

[Cla16b] Ali Clark. Tor network performance — transport and �ow control.
Technical report, University College London, April 2016.

[Com76] Church Commi�e. Dr. martin luther king jr., case study. In Book
III: Supplementary Detailed Sta� Reports on Intelligence Activities and
the Rights of Americans, page 81. April 1976.

34

https://www.researchgate.net/profile/Raik_Aissaoui/publication/292392094_QUTor_QUIC-based_Transport_Architecture_for_Anonymous_Communication_Overlay_Networks/links/56ae170008ae43a3980e6890.pdf
https://www.researchgate.net/profile/Raik_Aissaoui/publication/292392094_QUTor_QUIC-based_Transport_Architecture_for_Anonymous_Communication_Overlay_Networks/links/56ae170008ae43a3980e6890.pdf
https://www.researchgate.net/profile/Raik_Aissaoui/publication/292392094_QUTor_QUIC-based_Transport_Architecture_for_Anonymous_Communication_Overlay_Networks/links/56ae170008ae43a3980e6890.pdf
https://www.researchgate.net/profile/Raik_Aissaoui/publication/292392094_QUTor_QUIC-based_Transport_Architecture_for_Anonymous_Communication_Overlay_Networks/links/56ae170008ae43a3980e6890.pdf
https://www.researchgate.net/profile/Raik_Aissaoui/publication/292392094_QUTor_QUIC-based_Transport_Architecture_for_Anonymous_Communication_Overlay_Networks/links/56ae170008ae43a3980e6890.pdf
https://github.com/aliclark/libquic
https://github.com/aliclark/libquic

BIBLIOGRAPHY 35

[DM06] Roger Dingledine and Nick Mathewson. Anonymity loves com-
pany: Usability and the network e�ect. In Ross Anderson, editor,
Proceedings of the Fi�h Workshop on the Economics of Information
Security (WEIS 2006), June 2006.

[DM09] Roger Dingeldine and Steven J. Murdoch. Performance improve-
ments on tor or, why tor is slow and what we’re going to do about
it. Technical report, �e Tor Project, March 2009.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: �e
second-generation onion router. In Proceedings of the 13th USENIX
Security Symposium, August 2004.

[DR08] T. Dierks and E. Rescorla. �e Transport Layer Security (TLS) Pro-
tocol Version 1.2. RFC 5246 (Proposed Standard), August 2008. Up-
dated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905,
7919.

[For09] Brady Forrest. Bing and google agree: Slow pages lose users,
June 2009. http://radar.oreilly.com/2009/06/
bing-and-google-agree-slow-pag.html.

[Gor13] Siobhan Gorman. Nsa o�cers spy on love interests, August 2013.
http://blogs.wsj.com/washwire/2013/08/23/
nsa-officers-sometimes-spy-on-love-interests/.

[HIS+16] R. Hamilton, J. Iyengar, I. Swe�, A. Wilk, and Google.
�ic: A udp-based secure and reliable transport for
h�p/2, 2016. https://tools.ietf.org/html/
draft-tsvwg-quic-protocol-02.

[HRX08] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly
high-speed tcp variant. ACM SIGOPS Operating Systems Review,
42(5):64–74, July 2008.

http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://blogs.wsj.com/washwire/2013/08/23/nsa-officers-sometimes-spy-on-love-interests/
http://blogs.wsj.com/washwire/2013/08/23/nsa-officers-sometimes-spy-on-love-interests/
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02

BIBLIOGRAPHY 36

[ISG15] J. Iyengar, I. Swe�, and Google. �ic loss recovery and con-
gestion control, 2015. https://tools.ietf.org/html/
draft-tsvwg-quic-loss-recovery-01.

[JBHD12] Rob Jansen, Kevin S. Bauer, Nicholas Hopper, and Roger Dingledine.
Methodically modeling the tor network. In Presented as part of the
5th Workshop on Cyber Security Experimentation and Test, Berkeley,
CA, August 2012. USENIX.

[JGH14] Rob Jansen John Geddes and Nicholas Hopper. Tor IMUX: Manag-
ing connections from two to in�nity, and beyond. In Proceedings
of the 12th Workshop on Privacy in the Electronic Society (WPES),
November 2014.

[JGW+14] Rob Jansen, John Geddes, Chris Wacek, Micah Sherr, and Paul
Syverson. Never been kist: Tor’s congestion management blos-
soms with kernel-informed socket transport. In Proceedings of 23rd
USENIX Security Symposium (USENIX Security 14), San Diego, CA,
August 2014. USENIX Association.

[JH12] Rob Jansen and Nicholas Hopper. Shadow: Running Tor in a Box
for Accurate and E�cient Experimentation. In Proceedings of the
Network and Distributed System Security Symposium - NDSS’12. In-
ternet Society, February 2012.

[KL16] Kevin Ku and Xiaofan Li. 15744 �nal project proposal: Im-
proving tor performance with google’s quic, February 2016.
http://archives.seul.org/tor/dev/Feb-2016/
pdfLhhNT1x1Nw.pdf.

[KS05] S. Kent and K. Seo. Security Architecture for the Internet Protocol.
RFC 4301 (Proposed Standard), December 2005. Updated by RFCs
6040, 7619.

[LC16] Adam Langley and Wan-Teh Chang. �ic crypto. Techni-
cal report, Google, May 2016. https://docs.google.

https://tools.ietf.org/html/draft-tsvwg-quic-loss-recovery-01
https://tools.ietf.org/html/draft-tsvwg-quic-loss-recovery-01
http://archives.seul.org/tor/dev/Feb-2016/pdfLhhNT1x1Nw.pdf
http://archives.seul.org/tor/dev/Feb-2016/pdfLhhNT1x1Nw.pdf
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit

BIBLIOGRAPHY 37

com/document/d/1g5nIXAIkN Y-7XJW5K45IblHd
L2f5LTaDUDwvZ5L6g/edit.

[Li16] Xiaofan Li. [tor+quic] progress update. email to tor-dev mail-
ing list, April 2016. http://archives.seul.org/tor/
dev/Apr-2016/msg00042.html.

[LMJ13] Karsten Loesing, Steven J. Murdoch, and Rob Jansen. Evaluation of
a libutp-based tor datagram implementation. Technical report, �e
Tor Project, October 2013.

[Met] Tor Metrics. Direct users by country. https://metrics.
torproject.org/userstats-relay-country.
html.

[Mur07] Steven J. Murdoch. Economics of tor performance, July
2007. https://www.lightbluetouchpaper.org/
2007/07/18/economics-of-tor-performance/.

[Mur11] Steven J. Murdoch. Comparison of tor datagram designs. Technical
report, �e Tor Project, November 2011.

[Pil13] Ed Pilkington. Declassi�ed nsa �les show agency spied
on muhammad ali and mlk, September 2013. https:
//www.theguardian.com/world/2013/sep/26/
nsa-surveillance-anti-vietnam-muhammad-ali-mlk.

[Pos80] J. Postel. User Datagram Protocol. RFC 768 (INTERNET STAN-
DARD), August 1980.

[Pos81a] J. Postel. Internet Protocol. RFC 791 (INTERNET STANDARD),
September 1981. Updated by RFCs 1349, 2474, 6864.

[Pos81b] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET
STANDARD), September 1981. Updated by RFCs 1122, 3168, 6093,
6528.

https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
http://archives.seul.org/tor/dev/Apr-2016/msg00042.html
http://archives.seul.org/tor/dev/Apr-2016/msg00042.html
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html
https://www.lightbluetouchpaper.org/2007/07/18/economics-of-tor-performance/
https://www.lightbluetouchpaper.org/2007/07/18/economics-of-tor-performance/
https://www.theguardian.com/world/2013/sep/26/nsa-surveillance-anti-vietnam-muhammad-ali-mlk
https://www.theguardian.com/world/2013/sep/26/nsa-surveillance-anti-vietnam-muhammad-ali-mlk
https://www.theguardian.com/world/2013/sep/26/nsa-surveillance-anti-vietnam-muhammad-ali-mlk

BIBLIOGRAPHY 38

[RG09] Joel Reardon and Ian Goldberg. Improving Tor using a TCP-over-
DTLS tunnel. In Proceedings of 18th USENIX Security Symposium
(USENIX Security 09). USENIX Association, August 2009.

[RM12] E. Rescorla and N. Modadugu. Datagram Transport Layer Security
Version 1.2. RFC 6347 (Proposed Standard), January 2012. Updated
by RFCs 7507, 7905.

[Ros12] Jim Roskind. �ic: Design document and speci�ca-
tion rationale. Technical report, Google, April 2012.
https://docs.google.com/document/d/1RNHkx
VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit.

[Ste07] R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Pro-
posed Standard), September 2007. Updated by RFCs 6096, 6335,
7053.

[TG10] Can Tang and Ian Goldberg. An improved algorithm for Tor circuit
scheduling. In Angelos D. Keromytis and Vitaly Shmatikov, editors,
Proceedings of the 2010 ACM Conference on Computer and Commu-
nications Security (CCS 2010). ACM, October 2010.

[TS11] Florian Tschorsch and Björn Scheuermann. Tor is unfair - and what
to do about it. In LCN ’11: 36th IEEE Conference on Local Computer
Networks. IEEE, October 2011.

[TS12] Florian Tschorsch and Björn Scheuermann. How (not) to build a
transport layer for anonymity overlays. In Proceedings of the ACM
Sigmetrics/Performance Workshop on Privacy and Anonymity for the
Digital Economy, June 2012.

[TS13] M. Tuexen and R. Stewart. UDP Encapsulation of Stream Control
Transmission Protocol (SCTP) Packets for End-Host to End-Host
Communication. RFC 6951 (Proposed Standard), May 2013.

https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit

BIBLIOGRAPHY 39

[Vie08] Camilo Viecco. Udp-or: A fair onion transport design. Techni-
cal report, July 2008. https://www.petsymposium.org/
2008/hotpets/udp-tor.pdf.

[WT99] AlmaWhi�en and J. D. Tygar. Why johnny can’t encrypt: A usabil-
ity evaluation of pgp 5.0. In Proceedings of the 8th USENIX Security
Symposium, August 1999.

https://www.petsymposium.org/2008/hotpets/udp-tor.pdf
https://www.petsymposium.org/2008/hotpets/udp-tor.pdf

Appendix A

quux.h

Listing A.1: quux.h
ifndef QUUX API H
#define QUUX API H

i fde f c p l u s p l u s
c l a s s q u u x l i s t e n e r s ;
c l a s s quux pee r s ;
c l a s s quux s t r e am s ;
typedef c l a s s q u u x l i s t e n e r s ∗ q u u x l i s t e n e r ;
typedef c l a s s quux pee r s ∗ quux peer ;
typedef c l a s s quux s t r e am s ∗ quux s t ream ;
extern ”C” {

e l se
typedef s t ruc t q u u x l i s t e n e r s ∗ q u u x l i s t e n e r ;
typedef s t ruc t quux pee r s ∗ quux peer ;
typedef s t ruc t quux s t r e am s ∗ quux s t ream ;
#endif / ∗ c p l u s p l u s ∗ /

typedef void (∗ quux connec ted) (quux peer) ;
typedef void (∗ quux cb) (quux s t ream) ;

/ ∗
∗ C a l l b a c k s a r e t r i g g e r e d onc e when IO becomes a c t i o n a b l e ,
∗ a t which p o i n t no c a l l b a c k w i l l be t r i g g e r e d u n t i l
∗ t h e r e ad / w r i t e o p e r a t i o n on t h a t s t r e am has r e t u r n e d 0 .
∗
∗ A quux s t r eam b e g i n s i n t r i g g e r e d s t a t e f o r bo th r ead / w r i t e ,
∗ s o no f u r t h e r c a l l b a c k s w i l l be made .
∗ However IO can s t i l l be a t t emp t e d (a l b e i t may r e t u r n 0) .
∗ /

40

APPENDIX A. QUUX.H 41

s t ruc t e v en t b a s e ;

/ ∗ ∗
∗ I n i t i a l i s e t h e module , w i th your own l i b e v e n t l o o p b e i n g u s ed .
∗
∗ EVLOOP ONCE ∗ must ∗ be u s ed i n t h e e v e n t b a s e l o o p c a l l ,
∗ o t h e r w i s e quux ’ s i n t e r n a l t ime ca ch e w i l l s t a r t t o go s t a l e .
∗ /

void q u u x e v e n t b a s e l o o p i n i t (s t ruc t e v en t b a s e ∗) ;

void q u u x s e t p e e r c o n t e x t (quux peer , void ∗ c t x) ;
void ∗ q u u x g e t p e e r c o n t e x t (quux peer) ;

void quu x s e t s t r e am c on t e x t (quux stream , void ∗ c t x) ;
void ∗ q uux g e t s t r e am con t e x t (quux s t ream) ;

/ ∗ ∗
∗ S t a r t a l i s t e n e r f o r new s t r e am s on I P v 4 addr .
∗
∗ q uux c o nn e c t e d cb i s c a l l e d wi th t h e p e e r when a f r e s h c l i e n t c o n n e c t s .
∗
∗
∗ TODO : e r r o r i f t h e r e i s a l r e a d y a s e r v e r l i s t e n i n g on i p : p o r t
∗
∗ TODO : q u u x s e t c o n n e c t e d c b i n s t e a d
∗ /

q u u x l i s t e n e r q u u x l i s t e n (const s t ruc t sockaddr ∗ addr , quux connec ted cb) ;

/ ∗ ∗
∗ R e t u r n s a hand l e r e p r e s e n t i n g an I P v 4 c o n n e c t i o n t o t h e p e e r .
∗
∗ Th i s w i l l a l s o s t a r t t h e c r y p t o handshake i n t h e background .
∗
∗ WARNING : I n c omp l e t e :
∗ TODO : FIXME : f a i l t o c o n n e c t i f c e r t d o e sn ’ t match hos tname UTF8 .
∗ /

quux peer quux open (const char ∗ hostname , const s t ruc t sockaddr ∗ addr) ;

/ ∗ ∗
∗ C r e a t e a new s t r e am ov e r t h e c o n n e c t i o n .
∗ /

quux s t ream quux connec t (quux peer peer) ;

/ ∗ ∗
∗ Nb . I f t h e a c c e p t c a l l b a c k i s no t i n s t a l l e d th en incoming s t r e am s w i l l be r e j e c t e d .
∗ /

void q uu x s e t a c c e p t c b (quux peer , quux cb quux ac cep t) ;

void q u u x s e t r e a d a b l e c b (quux stream , quux cb quux r e adab l e) ;

APPENDIX A. QUUX.H 42

void q u u x s e t w r i t e a b l e c b (quux stream , quux cb quux wr i t e a b l e) ;

/ ∗ ∗
∗ When e i t h e r s i d e has d e c i d e d t o bo th s t o p r e a d i n g and s t o p w r i t i n g data ,
∗ t h i s f u n c t i o n w i l l be c a l l e d .
∗
∗ The s t r e am hand l e i s s t i l l v a l i d a t t h i s p o i n t .
∗
∗ q u u x f r e e s t r e am sh ou l d be c a l l e d t o f r e e t h e memory .
∗ /

void q u u x s e t c l o s e d c b (quux stream , quux cb quux c l o s ed) ;

quux peer quux ge t p e e r (quux s t ream) ;

/ ∗ ∗
∗ 1 i f t h e s t r e am i s f u l l y c l o s e d , 0 o t h e r w i s e .
∗ /

in t quux s t r e am s t a t u s (quux s t ream st ream) ;

/ ∗ ∗
∗ P a s s up t o ’ c oun t ’ o c t e t s from ’ bu f ’ t o t h e s t r e am f o r s end .
∗
∗ R e t u r n e d amount t e l l s us how much da ta was t r a n s f e r e d .
∗ 0 i n d i c a t e s t h a t no da ta c o u l d be w r i t t e n a t t h i s t ime , bu t t h e c a l l b a c k has been re−r e g i s t e r e d .
∗ C a l l ’ q u u x w r i t e s t r e am s t a t u s ’ t o f i n d ou t i f t h e s t r e am i s no l o n g e r w r i t e a b l e .
∗
∗ The i n i t i a l b e h a v i o u r w i l l be t h a t on c e q u u x r e a d c l o s e () ; q u u x w r i t e c l o s e () ; have been c a l l e d ,
∗ i t ’ s a t t h e d i s c r e t i o n o f t h e impl t o wa i t a s l o ng
∗ a s n e c e s s a r y t o r e c e i v e a c k s f o r da ta b e f o r e t e a r i n g down .
∗
∗ At some p o i n t more f u n c t i o n s c o u l d be added t o que ry
∗ t h e s t a t u s o f b u f f e r e d da ta and f o r c e remove i f n e ed ed .
∗ /

s i z e t quux wr i t e (quux s t ream stream , const u i n t 8 t ∗ buf , s i z e t count) ;

/ ∗ ∗
∗ I n d i c a t e t h a t we don ’ t want t o w r i t e any a d d i t i o n a l da ta t o t h e s t r e am .
∗ /

void quu x w r i t e c l o s e (quux s t ream st ream) ;

/ ∗ ∗
∗ 1 i f t h e s t r e am i s f u l l y c l o s e d , 0 o t h e r w i s e .
∗ /

in t q uu x w r i t e s t r e am s t a t u s (quux s t ream st ream) ;

/ ∗ ∗
∗ Read up t o ’ c oun t ’ o c t e t s from th e s t r e am i n t o ’ bu f ’
∗
∗ Un l i k e quux read , t h i s w i l l n o t consume t h e da ta from th e s t r eam ,
∗ s o a s u b s e q u e n t pe ek o r r e ad w i l l r e t u r n t h e same da ta .

APPENDIX A. QUUX.H 43

∗
∗ R e t u r n e d amount t e l l s us how much da ta was t r a n s f e r e d .
∗ 0 i n d i c a t e s t h a t no da ta c o u l d be r e ad a t t h i s t ime , bu t t h e c a l l b a c k has been re−r e g i s t e r e d .
∗ C a l l ’ q u u x r e a d s t r e am s t a t u s ’ t o f i n d ou t i f t h e s t r e am i s no l o n g e r r e a d a b l e .
∗ /

s i z e t quux peek (quux s t ream stream , u i n t 8 t ∗ buf , s i z e t count) ;

/ ∗ ∗
∗ Read up t o ’ c oun t ’ o c t e t s from th e s t r e am i n t o ’ bu f ’
∗
∗ R e t u r n e d amount t e l l s us how much da ta was t r a n s f e r e d .
∗ 0 i n d i c a t e s t h a t no da ta c o u l d be r e ad a t t h i s t ime , bu t t h e c a l l b a c k has been re−r e g i s t e r e d .
∗ C a l l ’ q u u x r e a d s t r e am s t a t u s ’ t o f i n d ou t i f t h e s t r e am i s no l o n g e r r e a d a b l e .
∗ /

s i z e t quux read (quux s t ream stream , u i n t 8 t ∗ buf , s i z e t count) ;

/ ∗ ∗
∗ I f ’ c oun t ’ o c t e t s a r e c o n t i g u o u s l y r e a d a b l e from th e s t r eam ,
∗ r e t u r n a p o i n t e r t o t h o s e o c t e t s .
∗
∗ The p o i n t e r ∗ must ∗ be u s ed b e f o r e any f u r t h e r QUIC o p e r a t i o n s
∗ and b e f o r e t h e f u n c t i o n r e t u r n s , o r i t can become i n v a l i d .
∗
∗ Th i s f u n c t i o n s h ou l d on l y be u s ed where t h e p e r f o rman c e
∗ o v e r h ead o f memcpy might ma t t e r .
∗
∗ NULL i n d i c a t e s t h a t t h e r e q u e s t e d amount i s no t a v a i l a b l e a t t h e moment .
∗ Th i s f u n c t i o n w i l l n o t r e s u l t i n c a l l b a c k s b e i n g r e r e g i s t e r e d i n t h a t c a s e .
∗
∗ quux peek o r quux r ead s h ou l d be u s ed i n s t e a d i f NULL i s r e t u r n e d ,
∗ s i n c e t h e da ta may be a v a i l a b l e , j u s t n o t i n a c o n t i g u o u s b u f f e r .
∗
∗ C a l l quux r ead con sume a f t e r w a r d s t o remove t h e da ta from i n pu t .
∗ /

u i n t 8 t ∗ quux p e ek r e f e r en c e (quux s t ream stream , s i z e t count) ;

/ ∗ ∗
∗ Consume up t o ’ c oun t ’ b y t e s from th e s t r e am inpu t ,
∗ o r t h e e n t i r e t y i f t h e r e was l e s s than t h a t amount a v a i l a b l e t o r e ad .
∗ /

void quux read consume (quux s t ream stream , s i z e t count) ;

/ ∗ ∗
∗ I n d i c a t e t h a t we don ’ t want t o r e ad any a d d i t i o n a l da ta from th e s t r e am .
∗ /

void quux r e a d c l o s e (quux s t ream st ream) ;

/ ∗ ∗
∗ 1 i f t h e s t r e am i s f u l l y c l o s e d , 0 o t h e r w i s e .
∗ /

APPENDIX A. QUUX.H 44

in t quu x r e a d s t r e am s t a t u s (quux s t ream st ream) ;

/ ∗ ∗
∗ F u l l y c l o s e t h e s t r e am and f r e e i t s memory .
∗
∗ A f t e r t h i s p o i n t , t h e hand l e w i l l p o i n t t o i n v a l i d memory and must no t be u s ed .
∗ /

void quux f r e e s t r e am (quux s t ream st ream) ;

/ ∗ ∗
∗ C l o s e a c o n n e c t i o n u n g r a c e f u l l y and f r e e i t s memory .
∗
∗ TODO : FIXME : Beware , t h i s i s c u r r e n t l y i n c omp l e t e and s h ou l d no t be u s ed .
∗ /

void quux c l o s e (quux peer peer) ;

/ ∗ ∗
∗ S t o p a c c e p t i n g c o n n e c t i o n s
∗
∗ TODO : FIXME : Beware , t h i s i s c u r r e n t l y i n c omp l e t e and s h ou l d no t be u s ed .
∗ /

void quux shutdown (q u u x l i s t e n e r s e r v e r) ;

/ ∗ ∗
∗ Run t h i s j u s t a f t e r l i b e v e n t wa i t wakes up .
∗
∗ I t u p d a t e s t h e app r ox ima t e t ime i n t e r n a l t o QUIC .
∗ /

void quu x e v e n t b a s e l o o p b e f o r e (void) ;

/ ∗ ∗
∗ Run t h i s j u s t b e f o r e g o i ng i n t o l i b e v e n t wa i t .
∗
∗ I t s e n d s any p a c k e t s t h a t were g e n e r a t e d i n t h e p r e v i o u s e v e n t l o o p run .
∗ /

void q u u x e v e n t b a s e l o o p a f t e r (void) ;

i fde f c p l u s p l u s
}
#endif

endif / ∗ QUUX API H ∗ /

Appendix B

Chutney experiment

Listing B.1: experiment.2.sh
! / b i n / bash

se t −x
se t −e

branch=$1
network=$2
l o s s =$3
e x t r a =$4

NEWARK= 4 5 . 7 9 . 1 7 4 . 2 5

echo exper iment v e r s i o n : 3 branch : $branch network : $network l o s s : $ l o s s e x t r a : $ e x t r a

c l e a r ou t any ca ch ed s t a t e from p r e v i o u s run s
. / c on f i gu r e−ho s t s . sh $network

cd $HOME/ chutney

ssh root@$NEWARK ” cd chutney ; CHUTNEY TOR=/ r oo t / $branch / s r c / or / t o r . / chutney s t a r t networks / $network ”

t c q d i s c d e l dev e th0 r oo t netem | | true
CHUTNEY TOR=/ r oo t / $branch / s r c / or / t o r . / chutney s t a r t networks / $network

minimum s l e e p b e f o r e any th i ng u s e f u l c o u l d happen
s l e e p 45

j u s t one run t o s e t up a c i r c u i t
. / chutney v e r i f y networks / $network

45

APPENDIX B. CHUTNEY EXPERIMENT 46

p a c k e t l o s s
i f [[” $ l o s s ” && ” $ l o s s ” != ” 0 ” && ” $ l o s s ” != ” 0% ” && ” $ l o s s ” != ” 0 . 0% ” && ” $ l o s s ” != ” 0 . 000000% ”]] ;
then

s sh root@$NEWARK ” t c q d i s c add dev e th0 r oo t netem l o s s $ l o s s ”
f i

c l e a r ne twork s t a t s
n s t a t −r >/dev / n u l l

32 MiB
CHUTNEY DATA BYTES=33554432 . / chutney v e r i f y networks / $network

dump ne twork s t a t s d i f f e r e n c e
n s t a t

g e t a rough f e e l f o r how cpu i n t e n s i v e i t was
upt ime

TODO : pu t t h e s e i n a t r a p e x i t
s sh root@$NEWARK ” t c q d i s c d e l dev e th0 r oo t netem | | t r u e ; \

cd chutney ; . / chutney s t op networks / $network ; k i l l a l l −9 t o r | | t r u e ”
. / chutney s t op networks / $network
k i l l a l l −9 t o r | | true

echo f i n

Appendix C

Shadow experiment

Listing C.1: Docker�le
FROM fedo r a : 2 2

RUN dnf i n s t a l l −y g i t c l ang cmake make gcc−c++ xz igraph−deve l g l i b 2−deve l l lvm−deve l f i l e t a r \
automake go lang z l i b−deve l

RUN useradd shadow
USER shadow

WORKDIR / home / shadow
RUN g i t c l one h t t p s : / / g i t hub . com / a l i c l a r k / shadow . g i t

WORKDIR / home / shadow / shadow
RUN . / s e tup b u i l d
RUN . / s e tup i n s t a l l
ENV PATH $PATH : / home / shadow / . shadow / b in

WORKDIR / home / shadow
RUN g i t c l one h t t p s : / / g i t hub . com / a l i c l a r k / shadow−p lug in−t o r . g i t

RUN mkdir / home / shadow / shadow−p lug in−t o r / b u i l d
WORKDIR / home / shadow / shadow−p lug in−t o r / b u i l d

RUN c u r l −O h t t p s : / /www. op en s s l . org / source / opens s l −1 . 0 . 1 h . t a r . gz
RUN echo 9 d1c8a9836aa63e2c6adb684186cbd4371c9e9dc c01d6e3bb447ab f 2d4d3d093 opens s l −1 . 0 . 1 h . t a r . gz \

| sha256sum −c −− s t r i c t
RUN t a r xa f opens s l −1 . 0 . 1 h . t a r . gz
WORKDIR / home / shadow / shadow−p lug in−t o r / b u i l d / opens s l −1 . 0 . 1 h
RUN . / c o n f i g −−p r e f i x =/home / shadow / . shadow shared t h r e a d s enable−e c n i s t p 6 4 g c c 1 2 8 −fP IC
RUN make depend
RUN make − j $ (nproc)

47

APPENDIX C. SHADOW EXPERIMENT 48

RUN make i n s t a l l s w

WORKDIR / home / shadow / shadow−p lug in−t o r / b u i l d
RUN c u r l −O h t t p s : / / c l oud . g i t hub . com / downloads / l i b e v e n t / l i b e v e n t / l i b e v e n t −2.0.21− s t a b l e . t a r . gz
RUN echo 22 a 530 a8 a 5ba1 cb9 c 08 0 cb a033206b17da cd21437762155 c 6d30 e e 6469 f 5 7 4 f 5 \

l i b e v e n t −2.0.21− s t a b l e . t a r . gz | sha256sum −c −− s t r i c t
RUN t a r xa f l i b e v e n t −2.0.21− s t a b l e . t a r . gz
WORKDIR / home / shadow / shadow−p lug in−t o r / b u i l d / l i b e v e n t −2.0.21− s t a b l e
RUN . / c on f i g u r e −−p r e f i x =/home / shadow / . shadow
RUN make − j $ (nproc) i n s t a l l

WORKDIR / home / shadow / shadow−p lug in−t o r / b u i l d
RUN g i t c l one h t t p s : / / g i t hub . com / a l i c l a r k / l i b q u i c
RUN mkdir l i b q u i c / b u i l d
WORKDIR / home / shadow / shadow−p lug in−t o r / b u i l d / l i b q u i c / b u i l d
RUN cmake . . −DCMAKE BUILD TYPE=Re l e a s e
RUN make − j $ (nproc)

WORKDIR / home / shadow / shadow−p lug in−t o r / b u i l d
RUN g i t c l one h t t p s : / / g i t hub . com / a l i c l a r k / t o r
WORKDIR / home / shadow / shadow−p lug in−t o r / b u i l d / t o r
RUN . / autogen . sh
RUN . / c on f i g u r e −−d i s a b l e−t r a n s p a r e n t −−d i s a b l e−a s c i i d o c \

CFLAGS=”−fP IC −fno−i n l i n e −I . . / l i b q u i c / s r c / quux ” \
−−with−l i b e v e n t−d i r = ‘ r e a d l i n k −f ˜ ‘ / . shadow −−with−opens s l−d i r = ‘ r e a d l i n k −f ˜ ‘ / . shadow

RUN make − j $ (nproc) | | echo \
” w i l l f a i l t o l i n k quux due to hard−coded s t a t i c l i b path , but doesn ’ t ma t t e r here ”

RUN mkdir / home / shadow / shadow−p lug in−t o r / b u i l d / main
WORKDIR / home / shadow / shadow−p lug in−t o r / b u i l d / main
RUN CC=/ us r / b in / c l ang CXX=/ us r / b in / c l ang ++ cmake . . / . . \

−DTOR VERSION A=0 −DTOR VERSION B=2 −DTOR VERSION C=7 −DTOR VERSION D=6
RUN make − j $ (nproc) i n s t a l l

WORKDIR / home / shadow / shadow−p lug in−t o r / r e s ou r c e

Us e s o v e r 32G memory (abou t 3 5) f o r 60m s imu l a t i o n
RUN t a r −x f shadowtor−toy−c on f i g . t a r . xz
#
RUN t a r −x f shadowtor−minimal−c o n f i g . t a r . xz

WORKDIR / home / shadow / shadow−p lug in−t o r / r e s ou r c e / shadowtor−toy−c on f i g
WORKDIR / home / shadow / shadow−p lug in−t o r / r e s o u r c e / shadowtor−minimal−c o n f i g

TODO : D i s a b l e l o g g i n g i n t h e t o r r c f i l e s f i r s t ?

TODO : p a s s ou t shadow . da ta and shadow . l o g (a s a t a r . gz on s t d o u t ?)
Or copy on t o a volume ?
#
ENTRYPOINT shadow−t o r −y −w $ (e xp r $ (np r o c) − 1)

	Introduction
	Usability and security

	Background
	The Internet
	IPSec

	Transport Protocols
	UDP
	TCP
	TLS
	DTLS
	SCTP
	QUIC
	µTP

	Tor
	libevent
	Relay data path

	Related work
	Initiator-to-exit
	End-to-end
	Hop-by-hop
	Conclusions
	Network design
	Transport protocols

	Methodology
	QUIC
	QUUX
	Linking
	Channels

	Chutney experiment
	Shadow experiment

	Results
	Chutney experiment
	Bandwidth overhead
	Conclusions

	Shadow experiment
	Conclusions

	Conclusion
	Backpressure
	Security
	Software
	Usability

	Appendix quux.h
	Appendix Chutney experiment
	Appendix Shadow experiment

