

1 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MS-SMBD]:
SMB2 Remote Direct Memory Access (RDMA) Transport
Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

12/16/2011 1.0 New Released new document.

03/30/2012 1.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 2.0 Major Significantly changed the technical content.

10/25/2012 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 3.0 Major Significantly changed the technical content.

08/08/2013 4.0 Major Significantly changed the technical content.

3 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Contents

1 Introduction ... 5
1.1 Glossary ... 5
1.2 References .. 5

1.2.1 Normative References ... 6
1.2.2 Informative References ... 6

1.3 Overview .. 7
1.4 Relationship to Other Protocols .. 7
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 9
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields ... 10
1.9 Standards Assignments .. 10

2 Messages.. 11
2.1 Transport .. 11
2.2 Message Syntax .. 11

2.2.1 Negotiate Request Message ... 11
2.2.2 Negotiate Response Message ... 12
2.2.3 Data Transfer Message .. 13

2.2.3.1 Buffer Descriptor V1 Structure ... 15

3 Protocol Details .. 16
3.1 Common Details .. 16

3.1.1 Abstract Data Model ... 16
3.1.1.1 Per RDMA Transport Connection ... 16

3.1.2 Timers .. 17
3.1.2.1 Negotiation Timer ... 17
3.1.2.2 Idle Connection Timer ... 17
3.1.2.3 Send Credit Grant Timer .. 17

3.1.3 Initialization .. 17
3.1.4 Higher-Layer Triggered Events ... 17

3.1.4.1 Connecting to the Peer .. 18
3.1.4.2 Send Message .. 18
3.1.4.3 Register Buffer ... 19
3.1.4.4 Deregister Buffer .. 19
3.1.4.5 RDMA Write to Peer Buffer ... 19
3.1.4.6 RDMA Read from Peer Buffer .. 20
3.1.4.7 Query Connection Parameters .. 20

3.1.5 Message Processing Events and Sequencing Rules .. 21
3.1.5.1 Sending Upper Layer Messages .. 21
3.1.5.2 Sending a Negotiate Request Message .. 22
3.1.5.3 Sending a Negotiate Response Message .. 22
3.1.5.4 Sending a Data Transfer Message ... 23
3.1.5.5 Receiving Any Message ... 24
3.1.5.6 Receiving a Negotiate Request Message .. 24
3.1.5.7 Receiving a Negotiate Response Message .. 25
3.1.5.8 Receiving a Data Transfer Message ... 26
3.1.5.9 Managing Credits Prior to Sending .. 27

3.1.6 Timer Events ... 28
3.1.6.1 Negotiation Timer ... 28

4 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.6.2 Idle Connection Timer ... 28
3.1.6.3 Send Credit Grant Timer .. 28

3.1.7 Other Local Events ... 28
3.1.7.1 Connection Loss ... 28
3.1.7.2 Connection Arrival .. 28

4 Protocol Examples .. 30
4.1 Establishing a Connection ... 30
4.2 Peer Transmits 500 Bytes of Data .. 31
4.3 Peer Transmits 64 KiB of Data ... 32
4.4 Peer Transmits 1 MiB of Data Via Upper Layer ... 33
4.5 Peer Receives 1 MiB of Data Via Upper Layer .. 34

5 Security .. 35
5.1 Security Considerations for Implementers ... 35
5.2 Index of Security Parameters .. 35

6 Appendix A: RDMA Provider IRD/ORD Negotiation .. 36
6.1 IRD/ORD Negotiate Header ... 36
6.2 IRD/ORD Negotiate Header Processing ... 36

7 Appendix B: Product Behavior .. 37

8 Change Tracking... 38

9 Index ... 42

5 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1 Introduction

The SMB2 Remote Direct Memory Access (RDMA) Transport Protocol allows upper-layer packets to
be delivered over RDMA-capable transports such as iWARP [RFC5040] and [RFC5041], Infiniband
[IBARCH] or RoCE [ROCE], while utilizing the Direct Data Placement (DDP) capabilities of these
transports. One upper layer that optionally uses the SMB2 Remote Direct Memory Access (RDMA)
Transport Protocol is the Server Message Block (SMB) Protocol Versions 2 and 3 [MS-SMB2].

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also

normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

little-endian

peer
Transmission Control Protocol (TCP)

The following terms are specific to this document:

Direct Data Placement (DDP): For more information, see [RFC5040] section 2.1.

iWARP: For more information, see [RFC5040] section 2.1.

RDMA Network Interface Controller (RNIC): For more information, see [RFC5040] section

2.1.

RDMA Read: For more information, see [RFC5040] section 2.1.

RDMA Write: For more information, see [RFC5040] section 2.1.

Remote Direct Memory Access (RDMA): For more information, see [RFC5040] section 2.1.

Send: For more information see [RFC5040] section 2.4.

Steering Tag (STag): For more information, see [RFC5040] section 2.1.

Verbs: For more information, see [RFC5040] section 2.1.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

http://go.microsoft.com/fwlink/?LinkId=230446
http://go.microsoft.com/fwlink/?LinkId=230447
http://go.microsoft.com/fwlink/?LinkId=230464
http://go.microsoft.com/fwlink/?LinkId=230465
%5bMS-SMB2%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx

6 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We

will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[IANAPORT] IANA, "Port Numbers", November 2006, http://www.iana.org/assignments/port-
numbers

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[DRAFT-RDMA-VERBS] Hilland, J., Culley, P., Pinkerton, J., and Recio, R.,"RDMA Protocol Verbs
Specification (Version 1.0)", April 2003, http://www.rdmaconsortium.org/home/draft-hilland-iwarp-

verbs-v1.0-RDMAC.pdf

If you have any trouble finding [DRAFT-RDMA-VERBS], please check here.

[IBARCH] Infiniband Trade Association, "Infiniband Architecture Specification, Volume 1", Release
1.2.1, January 2008, https://cw.infinibandta.org/document/dl/7143

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[RFC4296] Bailey, S., and Talpey, T., "The Architecture of Direct Data Placement (DDP) and Remote
Direct Memory Access (RDMA) on Internet Protocols", RFC 4296, December 2005,

http://www.ietf.org/rfc/rfc4296.txt

[RFC5040] Recio. R., Metzler, B., Culley, P., Hilland, J., et. al., "A Remote Direct Memory Access
Protocol Specification", RFC 5040, October 2007, http://www.ietf.org/rfc/rfc5040.txt

[RFC5041] Shah, H., Pinkerton, J., Recio, R., and Culley, P., "Direct Data Placement over Reliable
Transports", RFC 5041, October 2007, http://www.ietf.org/rfc/rfc5041.txt

[RFC5042] Pinkerton, J., and Deleganes, E., "Direct Data Placement Protocol (DDP) / Remote Direct
Memory Access Protocol (RDMAP) Security", RFC 5042, October 2007,

http://www.ietf.org/rfc/rfc5042.txt

[RFC6581] Kanevsky, A., Ed., Bestler, C., Ed., Sharp, R., and Wise, S., "Enhanced Remote Direct
Memory Access (RDMA) Connection Establishment", RFC 6581, April 2012, http://www.rfc-
editor.org/rfc/rfc6581.txt

[ROCE] Infiniband Trade Association, "Annex A16: RDMA over Converged Ethernet (RoCE)", April

2010, https://cw.infinibandta.org/document/dl/7143

[SDP-Portmap] RDMA Consortium, Sockets Direct Protocol (SDP) for iWARP over TCP," Section 7
Port Mapper Specification, October 2003, http://www.rdmaconsortium.org/home/draft-pinkerton-
iwarp-sdp-v1.0.pdf

If you have any trouble finding [SDP-Portmap], please check here.

mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89888
http://go.microsoft.com/fwlink/?LinkId=89888
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=230467
http://go.microsoft.com/fwlink/?LinkId=230467
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=230464
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-SMB2%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=231182
http://go.microsoft.com/fwlink/?LinkId=230446
http://go.microsoft.com/fwlink/?LinkId=230447
http://go.microsoft.com/fwlink/?LinkId=230448
http://go.microsoft.com/fwlink/?LinkId=301388
http://go.microsoft.com/fwlink/?LinkId=301388
http://go.microsoft.com/fwlink/?LinkId=230465
http://go.microsoft.com/fwlink/?LinkId=253142
http://go.microsoft.com/fwlink/?LinkId=253142
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624

7 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1.3 Overview

The SMB2 RDMA Transport Protocol defines a framing for the exchange of arbitrary upper-layer data
over RDMA-capable networks in a peer-to-peer fashion. The protocol allows for bidirectional traffic of

variable size and does not require any particular upper-layer communication pattern, such as client-
server. Accordingly, the protocol is well-suited to support SMB2 exchanges, which exhibit a mix of
client and server requests and responses, asynchronous unsolicited messages from server to client,
unacknowledged requests such as cancellation, and an extremely wide range of sizes.

RDMA networks provide high-bandwidth and low-latency data services, and adapters supporting
RDMA typically provide a local control interface offering extremely low processing overhead for
sending and receiving messages. Additionally, the RDMA functions of the network provide for further

reduction of overhead by moving bulk data directly between memory buffers on each peer, under
the control and protection of upper layers such as SMB2. The results can radically reduce network
overhead on a cycles per byte transferred basis.

The SMB2 RDMA Transport Protocol also defines interfaces and peer-visible descriptors for
registering buffers which enable RDMA access, advertised to the peer for read or write on a specific

connection. These buffer descriptors allow the upper layer to steer direct placement traffic, without

requiring the upper layer to interface with the RDMA lower layer directly.

The following figure depicts an initial exchange of traffic beneath a typical SMB2 Protocol stack.

Figure 1: Data transfer

1.4 Relationship to Other Protocols

RDMA Transports

%5bMS-GLOS%5d.pdf

8 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The SMB2 RDMA Transport Protocol is transport-independent. It requires only an RDMA lower layer
as described in section 2.1, for sending and receiving the messages that are specified in this

document.

The RDMA transports most commonly used by the SMB2 RDMA Transport Protocol include:

iWARP, as specified in [RFC5040] and [RFC5041].

Infiniband Reliable Connected mode, as specified in [IBARCH].

RDMA over Converged Ethernet (RoCE), as specified in [ROCE].

Each of the preceding transports may require the presence of additional member protocols to
support fabric management and configuration, naming, and connection establishment. Any such

protocols are described in the relevant specifications.

Protocols Transported

The following protocol uses the SMB2 RDMA Transport Protocol as a transport and provides access
to enhanced data transfer functionality:

The SMB2 Protocol [MS-SMB2], when SMB2 version 3.0 or 3.02 is negotiated by both client and

server and when an RDMA-capable transport is available for connection among the peers.

Additional Related Protocols

The functionality provided by the SMB2 RDMA Transport Protocol, when accompanied by an

RDMA transport, provides similar transport service to that of standard TCP/IP. Protocols such as
SMB2 which define an existing layer over TCP can employ either or both to implement
communications between peers.

The following block diagram represents the preceding relationships, with optional protocol

relationships represented by dashed outlines, subject to appropriate standards to define a mapping.

http://go.microsoft.com/fwlink/?LinkId=230446
http://go.microsoft.com/fwlink/?LinkId=230447
http://go.microsoft.com/fwlink/?LinkId=230464
http://go.microsoft.com/fwlink/?LinkId=230465
%5bMS-SMB2%5d.pdf
%5bMS-GLOS%5d.pdf

9 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 2: Protocol relationships

1.5 Prerequisites/Preconditions

The protocol functions only in conjunction with the availability of RDMA provider resources on the

local machine, including RDMA Network Interface Controller (RNIC) hardware, and a local
facility, as described in [RFC4296], to interface with it. These requirements are not discussed in the
specification.

The RDMA lower layer provides reliable in-order delivery of sent and received messages, and offers
consistency semantics for directly placed data in send/receive message completion, as required by
the relevant standards.

1.6 Applicability Statement

The protocol is applicable for scenarios that require SMB2 for transferring files between client and
server and for inter-process communication between client and server that are using named pipes,

when an RDMA fabric is additionally present. Typically, such fabrics are deployed at a data center
diameter, but can also be deployed in wide-area topologies. The SMB2 Protocol is applicable at a
similar scale.

The protocol can have other applicability, subject to further specification by other upper- layer
protocols.

1.7 Versioning and Capability Negotiation

This document describes a single protocol version, as defined in the following table.

http://go.microsoft.com/fwlink/?LinkId=231182

10 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Value Meaning

0x0100 SMBDirect Protocol 1.0 version number

The protocol provides for version negotiation by range at connection establishment, and is designed

to support potential future revision in an upwardly compatible fashion. Currently, no such versions
are defined.

The protocol also supports initial negotiation of certain message size and message credit count
values to be used on a per-connection basis. After a connection is established and the values
negotiated, the protocol operates under these values for the duration of the underlying connection.

While oriented toward carrying SMB2 Protocol upper-layer traffic, other upper layers can use the

protocol to achieve similar capabilities. Such issues are a matter for any such protocols.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

The protocol does not define any standards assignments; however, when used as a transport for an

upper layer, it uses the standards assignments of that layer, as defined by that layer. For example,
when serving as a transport for SMB2, the following port assignment is used, as defined in [MS-
SMB2] section 1.9.

Parameter TCP Port Value Reference

Microsoft-DS 445 (0x01BD) [IANAPORT]

RDMA lower layers may optionally remap these ports to allow for reuse of port values when sharing
a network with TCP protocol traffic, or provide a service mapping facility when the network does not

natively support IANA-style ports. These transport-dependent facilities are documented in the
specifications relevant to each lower-layer RDMA standard.

When transporting SMB traffic on iWARP, to permit coexistence of TCP and iWARP SMB listeners, a
mapping is standardized for the SMB Direct protocol, as follows:

Parameter TCP Port Value Reference

smbdirect 5445 [IANAPORT]

This mapping is provided dynamically to network peers by the SDP Port Mapper protocol [SDP-
Portmap], when an iWARP adapter is available on the local system, in response to a portmapper
query for the mapped port corresponding to Microsoft-DS (445).

%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89888
http://go.microsoft.com/fwlink/?LinkId=89888
http://go.microsoft.com/fwlink/?LinkId=253142
http://go.microsoft.com/fwlink/?LinkId=253142

11 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2 Messages

2.1 Transport

The following sections specify how messages are represented on the wire and specify the protocol
data types.

The protocol operates over an RDMA transport which MUST support reliable in-order message
delivery, and MUST support remote direct data placement via RDMA Write and RDMA Read
requests. Examples of such transports are iWARP, Infiniband and RoCE, as described in section 1.4.

A local interface supporting the Verbs semantic is typically provided by the local operating system,
specified in [DRAFT-RDMA-VERBS] and [IBARCH].

2.2 Message Syntax

The protocol is composed of, and driven by, message exchanges between peers in the following
categories:

Connection negotiation: request, response

Data transfer

The two connection negotiation messages are exchanged exactly once as the first two messages on
a connection. Following that successful exchange, data transfer messages are exchanged in an
arbitrary peer-to-peer fashion, under control of an upper layer. Contained in each data transfer
message body is optional upper-layer data. A message is therefore of variable length, with the total
length depending on the type of message and any upper-layer payload.

Unless otherwise specified, multiple-byte fields (16-bit, 32-bit, and 64-bit fields) in any message
MUST be transmitted in little-endian order (least-significant byte first).

Unless otherwise specified, numeric fields in any message are unsigned integers of the specified
byte length.

Unless otherwise specified, fields marked as "Reserved" in any message SHOULD be set to 0 when
being sent and MUST be ignored when received. These fields MUST NOT be used for

implementation-specific functionality.

When it is necessary to insert padding bytes in after any message for data alignment purposes, such
bytes SHOULD be set to 0 when being sent and MUST be ignored when received.

2.2.1 Negotiate Request Message

The Negotiate Request message is the first message sent by the initiator of a new connection, used
to begin establishing a connection with the peer.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MinVersion MaxVersion

Reserved CreditsRequested

http://go.microsoft.com/fwlink/?LinkId=230467
http://go.microsoft.com/fwlink/?LinkId=230464
%5bMS-GLOS%5d.pdf

12 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

PreferredSendSize

MaxReceiveSize

MaxFragmentedSize

MinVersion (2 bytes): The minimum protocol version supported by the sender. The value MUST
be set to one of the values listed in section 1.7.

MaxVersion (2 bytes): The maximum protocol version supported by the sender. The value
MUST be greater than or equal to the MinVersion field and MUST be set to one of the values
listed in section 1.7. The sender MUST support all protocol versions that fall in the range
inclusively specified by the MinVersion and MaxVersion fields.

Reserved (2 bytes): The sender SHOULD set this field to 0 and the receiver MUST ignore it on
receipt.

CreditsRequested (2 bytes): The number of Send Credits requested of the receiver.

PreferredSendSize (4 bytes): The maximum number of bytes that the sender requests to
transmit in a single message.

MaxReceiveSize (4 bytes): The maximum number of bytes that the sender can receive in a
single message.

MaxFragmentedSize (4 bytes): The maximum number of upper-layer bytes that the sender
can receive as the result of a sequence of fragmented Send operations.

2.2.2 Negotiate Response Message

The Negotiate Response message is the second message sent on a new connection, in response to
the Negotiate Request message, to complete the establishment of a connection.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

MinVersion MaxVersion

NegotiatedVersion Reserved

CreditsRequested CreditsGranted

Status

MaxReadWriteSize

PreferredSendSize

MaxReceiveSize

13 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

MaxFragmentedSize

MinVersion (2 bytes): The minimum protocol version supported by the sender. The value MUST
be set to one of the values listed in section 1.7.

MaxVersion (2 bytes): The maximum protocol version supported by the sender. The value
MUST be greater than or equal to the MinVersion field and MUST be set to one of the values
listed in section 1.7. The sender MUST support all protocol versions that fall in the range
inclusively specified by the MinVersion and MaxVersion fields.

NegotiatedVersion (2 bytes): The protocol version that has been selected for this connection.
This value MUST be one of the values from the range specified by the Negotiate Request
message.

Reserved (2 bytes): The sender SHOULD set this field to 0 and the receiver MUST ignore it on
receipt.

CreditsRequested (2 bytes): The number of Send Credits requested of the receiver.

CreditsGranted (2 bytes): The number of Send Credits granted by the sender.

Status (4 bytes): Indicates whether the Negotiate Request message succeeded. The value
MUST be set to STATUS_SUCCESS (0x0000) if the Negotiate Request message succeeds.

MaxReadWriteSize (4 bytes): The maximum number of bytes that the sender will transfer via
RDMA Write or RDMA Read request to satisfy a single upper-layer read or write request.

PreferredSendSize (4 bytes): The maximum number of bytes that the sender will transmit in a
single message. This value MUST be less than or equal to the MaxReceiveSize value of the

Negotiate Request message.

MaxReceiveSize (4 bytes): The maximum number of bytes that the sender can receive in a
single message.

MaxFragmentedSize (4 bytes): The maximum number of upper-layer bytes that the sender
can receive as the result of a sequence of fragmented Send operations.

2.2.3 Data Transfer Message

The Data Transfer message is sent to transfer upper-layer data, manage credits, or perform other
functions. This request optionally contains upper-layer data to transfer as the message’s data
payload. The sender can send a Data Transfer Request message with no data payload to grant
credits, request credits, or perform other functions.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

CreditsRequested CreditsGranted

Flags Reserved

RemainingDataLength

14 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

DataOffset

DataLength

Padding (variable)

...

Buffer (variable)

...

CreditsRequested (2 bytes): The total number of Send Credits requested of the receiver,
including any Send Credits already granted.

CreditsGranted (2 bytes): The incremental number of Send Credits granted by the sender.

Flags (2 bytes): The flags indicating how the operation is to be processed. This field MUST be
constructed by using any or none of the following values:

Value Meaning

SMB_DIRECT_RESPONSE_REQUESTED

(0x0001)

The peer is requested to promptly send a message in

response. This value is used for keep alives.

The Flags field MUST be set to zero if no flag values are specified.

Reserved (2 bytes): The sender SHOULD set this field to 0 and the receiver MUST ignore it on
receipt.

RemainingDataLength (4 bytes): The amount of data, in bytes, remaining in a sequence of
fragmented messages. If this value is 0x00000000, this message is the final message in the
sequence.

DataOffset (4 bytes): The offset, in bytes, from the beginning of the header to the first byte of
the message’s data payload. If no data payload is associated with this message, this value
MUST be 0. This offset MUST be 8-byte aligned from the beginning of the message.

DataLength (4 bytes): The length, in bytes, of the message’s data payload. If no data payload
is associated with this message, this value MUST be 0.

Padding (4 bytes, optional): Additional bytes optionally inserted into the message in order to

align the data payload, if present, as defined by the DataOffset and DataLength fields.
These bytes SHOULD be set to zero (0x00) by the sender and MUST be ignored by the
receiver. Note that because the DataLength field ends on a non-8-byte aligned offset, four
bytes of padding are typically present when a data payload is also present.

Buffer (variable): A buffer that contains the data payload as defined by the DataOffset and
DataLength fields.

15 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.2.3.1 Buffer Descriptor V1 Structure

The SMB_DIRECT_BUFFER_DESCRIPTOR_1 structure represents a registered RDMA buffer and is
used to Advertise the source and destination of RDMA Read and RDMA Write operations,

respectively. The upper layer optionally embeds one or more of these structures in its payload when
requesting RDMA direct placement of peer data via the protocol.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Offset

...

Token

Length

Offset (8 bytes): The RDMA provider-specific offset, in bytes, identifying the first byte of data
to be transferred to or from the registered buffer.

Token (4 bytes): An RDMA provider-assigned Steering Tag for accessing the registered buffer.

Length (4 bytes): The size, in bytes, of the data to be transferred to or from the registered
buffer.

16 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with what is described in this
document.

3.1.1.1 Per RDMA Transport Connection

Connection.Endpoint: The implementation-dependent representation used to access the RDMA
connection.

Connection.Protocol: The protocol version negotiated with the remote peer for this connection.

Connection.Role: A value indicating whether the peer connection was initiated or accepted, and
what message type is therefore expected. The value MUST be one of "ACTIVE", "PASSIVE", or
"ESTABLISHED".

Connection.MaxSendSize: The maximum single-message size which can be sent by the local peer
for this connection.

Connection.MaxReceiveSize: The maximum single-message size which can be received from the
remote peer for this connection.

Connection.MaxFragmentedSize: The maximum fragmented upper-layer payload receive size
supported by the remote peer for this connection.

Connection.MaxReadWriteSize: The maximum size of any RDMA transfer available for this

connection.

Connection.SendCreditTarget: The local peer’s current Send Credit target to be requested of the
remote peer.

Connection.SendCredits: The local peer’s current Send Credit limit, as granted by the remote
peer.

Connection.ReceiveCreditMax: The local peer’s current maximum number of credits to grant to
the remote peer.

Connection.ReceiveCreditTarget: The remote peer’s most recent credits requested of the local
peer.

Connection.ReceiveCredits: The local peer’s current outstanding receive count.

Connection.SendQueue: A list of outstanding messages awaiting transmission, with one optional
remote memory token to be invalidated with the send. The list MUST be maintained in strict First-In
First-Out (FIFO) order.

Connection.FragmentReassemblyBuffer: A buffer used to reassemble the upper-layer data
payload of received fragmented messages.

17 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Connection.FragmentReassemblyRemaining: A count of bytes of data remaining to be
reassembled into the Connection.FragmentReassemblyBuffer.

Connection.InvalidatedToken: A local memory token, if any, which was invalidated by the RDMA
provider in the process of receiving one or more message segments.

Connection.KeepaliveInterval: The timeout to initiate send of a keepalive message on an idle
RDMA connection.

Connection.KeepaliveRequested: A value indicating whether a send with the
SMB_DIRECT_RESPONSE_REQUESTED flag is outstanding. The value MUST be one of "NONE",
"PENDING", or "SENT".

Connection.SendImmediate: A Boolean value that, if set, indicates a data packet is to be sent
immediately.

3.1.2 Timers

3.1.2.1 Negotiation Timer

This per-connection timer regulates the amount of time to establish a connection and to deliver or
obtain a negotiation response from the peer, before failing the request and disconnecting the

connection.

3.1.2.2 Idle Connection Timer

This per-connection timer regulates the amount of time to allow the connection to be idle without
receiving a message from the remote peer. When the Idle Connection Timer<1> expires, a message
is sent to the peer with the SMB_DIRECT_RESPONSE_REQUESTED flag set. If a message is not
received from the peer in response, the local peer can disconnect the connection.

3.1.2.3 Send Credit Grant Timer

This per-connection timer regulates the amount of time that passes with zero available Send Credits
before disconnecting the connection.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

The protocol is initiated and subsequently driven by a series of higher-layer triggered events in the
following categories:

Initiating a connection to a remote peer

Sending an outgoing upper-layer message

Registering a local buffer for peer RDMA access

Deregistering a previously registered local buffer

Performing an RDMA Write to a remote peer buffer

Performing an RDMA Read from a remote peer buffer

18 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Querying the negotiated parameters of a connection

The following sections provide details on these events.

3.1.4.1 Connecting to the Peer

When the upper layer requests that the protocol initiate a connection to a remote peer, it passes the
address of the remote peer to connect to, and the initiator MUST:

Create a new Connection.

Set Connection.Role to "ACTIVE".

Use implementation-specific means to create a new Connection.Endpoint.

Determine an initial value for Connection.ReceiveCreditMax, Connection.SendCreditTarget,

Connection.MaxSendSize, Connection.MaxFragmentedSize, Connection.MaxReceiveSize
and Connection.KeepaliveInterval.<2>

Set Connection.MaxReadWriteSize to 0.

Set Connection.KeepaliveRequested to "NONE".

Set Connection.Protocol, Connection.SendCredits, Connection.ReceiveCredits, and

Connection.FragmentReassemblyRemaining to 0.

Set Connection.SendQueue, Connection.FragmentReassemblyBuffer, and

Connection.InvalidatedToken to empty.

Set Connection.SendImmediate to FALSE.

Start a Negotiation Timer of 120 seconds.

Post one receive buffer of at least 512 bytes.

Request a connection to the specified remote peer.

If the connection request fails, the resulting error MUST be returned to the upper layer. If the
connection request succeeds, the initiator MUST send a Negotiate Request message as specified in

section 3.1.5.2.

If the negotiation is successful, an implementation-defined representation of the Connection is
returned to the upper layer as specified in section 3.1.5.4. If unsuccessful, an implementation-
specific local error is returned.

3.1.4.2 Send Message

When the upper layer requests that the protocol sends a message, it passes:

The implementation-defined representation of the Connection.

A buffer containing the message.

An optional remote memory token to be invalidated on the receiving peer.

The sender MUST determine if the buffer contains a message that is of a length less than or equal to
Connection.MaxFragmentedSize. If not, the message cannot be sent and an implementation-

specific local error MUST be returned.

19 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The sender MUST prepare and Send each fragment as Data Transfer messages sequentially and in
strict order on the connection, as described in section 3.1.5.4. If any of the Send messages result in

failure, the RDMA layer will have initiated termination of the connection. The result of the operation
from the RDMA provider MUST be provided to the upper layer.

3.1.4.3 Register Buffer

When the upper layer prepares a local buffer as the source or destination of a peer RDMA Read or
RDMA Write operation, it passes:

The implementation-defined representation of the Connection.

The buffer to be registered

A flag indicating whether the buffer is to be registered for RDMA Read and/or RDMA Write

operations.

The registration MUST use implementation-specific means to register the memory locations

indicated by the buffer with the underlying RDMA provider, enabling only the permissions
appropriate for the RDMA Read or RDMA Write indication provided, on the specified Connection. If
the local implementation requires multiple registrations--for example if the memory locations

indicated by buffer are discontiguous or if the size exceeds provider-supported limits-- multiple such
registrations can be performed. If the RDMA provider indicates an error for any registration, the
error result MUST be provided to the upper layer and the memory locations indicated by the buffer
SHOULD NOT remain enabled for remote access.

If all registration succeeds, an array of one or more Buffer Descriptor V1 structures MUST be built,
where each element contains the RDMA provider-specific Offset, Token, and Length fields of each
registered segment in sequential order, and where the entire array describes remote access to each

memory location in the provided buffer.

3.1.4.4 Deregister Buffer

When the upper layer has completed operations which require remote access to a previously
registered local buffer as the source or destination of a peer RDMA Read or RDMA Write operation, it
passes:

The implementation-defined representation of the Connection.

One or more Buffer Descriptor V1 structures as returned from prior calls to Register Buffer.

The registration MUST use implementation-specific means to deregister each memory region
indicated by each Buffer Descriptor V1 structure with the underlying RDMA provider. If the RDMA
provider indicates an error for any deregistration, the error result MUST be provided to the upper
layer. Otherwise, it MUST be ensured, in an implementation-specific manner via the RDMA lower

layer provider, that all remote access to the specified buffers is complete and that no further remote
access is possible.

3.1.4.5 RDMA Write to Peer Buffer

When the upper layer modifies a remote peer buffer, it passes:

The implementation-defined representation of the Connection.

The local buffer whose contents are to be written to the peer.

20 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

An array of one or more Buffer Descriptor V1 structures describing the remote peer buffer as

obtained from the peer in an upper-layer operation on the Connection.

An Offset into the remote peer buffer indicating the first byte of the target subsegment to be

written.

The operation MUST use the provided Offset to index into the provided array of Buffer Descriptor V1
structure elements by consuming the elements’ Length fields to identify the first Buffer Descriptor
V1 structure to use. It MUST then use the length of the provided buffer to determine how many
Buffer Descriptor V1 structure elements describe the targeted remote peer buffer locations. It MUST
adjust the Offset and Length fields of the first element to indicate the trailing subsegment of the
first peer buffer segment, and MUST adjust the Length field of the last element to indicate the

leading subsegment of the last peer buffer segment.

The operation MUST use implementation-specific means to request that the RDMA provider perform
one or more RDMA Write operations to transfer data from the memory locations indicated by the
buffer, to the remote peer memory locations described by the Buffer Descriptor V1 structure
elements calculated in the previous step, on the specified Connection. The result of the operation

from the RDMA provider MUST be provided to the upper layer.

3.1.4.6 RDMA Read from Peer Buffer

When the upper layer is required to retrieve the contents of a remote peer buffer, it passes:

The implementation-defined representation of the Connection.

The local buffer whose contents are to receive the data from the peer.

An array of one or more Buffer Descriptor V1 structures describing the remote peer buffer as

obtained from the peer in an upper-layer operation on the Connection,

An Offset into the remote peer buffer indicating the first byte of the target subsegment to be

read.

The provided Offset MUST be used to index into the provided array of Buffer Descriptor V1 structure
elements by consuming the elements’ Length fields to identify the first Buffer Descriptor V1
structure to use. It MUST then use the length of the provided buffer to determine how many Buffer

Descriptor V1 structure elements describe the targeted remote peer buffer locations. It MUST adjust
the Offset and Length fields of the first element to indicate the trailing subsegment of the first peer
buffer segment, and MUST adjust the Length field of the last element to indicate the leading
subsegment of the last peer buffer segment.

Implementation-specific means MUST be used to request that the RDMA provider perform one or
more RDMA Read operations to transfer data from the remote peer memory locations described by

the Buffer Descriptor V1 structure elements calculated in the previous step, to the memory locations
described by the buffer, on the specified Connection. The result of the operation from the RDMA
provider MUST be provided to the upper layer.

3.1.4.7 Query Connection Parameters

When the upper layer is required to retrieve the properties of the connection, it passes:

The implementation-defined representation of the Connection.

21 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The Connection.MaxSendSize, Connection.MaxFragmentedSize,
Connection.MaxReceiveSize, Connection.MaxReadWriteSize, and

Connection.KeepaliveInterval for this connection MUST be returned.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Sending Upper Layer Messages

The processing specified in this section is to be used only when Connection.Role is
"ESTABLISHED", to start or restart sending one or more new or previously deferred Data Transfer
messages. The caller passes the Connection to use for the Send message, and zero or more new
messages to be sent.

The new messages to be sent, if any, MUST be appended to the list of messages in the
Connection.SendQueue. If there are no messages to be sent and Connection.SendImmediate
is TRUE, a newly constructed Data Transfer Message MUST be added to Connection.SendQueue.

The credit processing specified in section 3.1.5.9 MUST be performed, and the CreditsGranted field
of the first message in Connection.SendQueue MUST be incremented by the number of new
credits returned.

For each message in Connection.SendQueue:

If Connection.SendCredits is 0, stop processing messages, and break the loop.

If Connection.SendCredits is 1 and the CreditsGranted field of the message is 0, then at least

one credit MUST be granted to the peer to prevent deadlock. If the processing specified in section
3.1.5.9 returns zero, stop processing Sends, and break the loop. Otherwise, increment the
CreditsGranted field of the current first message in Connection.SendQueue by the number of

new credits returned.

The first message MUST be removed from Connection.SendQueue.

The value of Connection.SendCredits MUST be decremented by one.

The value of the CreditsRequested field of the message MUST be set to

Connection.SendCreditTarget.

If Connection.KeepaliveRequested is "PENDING", the Flags field of the message MUST be set

to SMB_DIRECT_RESPONSE_REQUESTED, Connection.KeepaliveRequested MUST be set to
"SENT", and the Idle Connection Timer MUST be reset to 5 seconds. Otherwise, the Flags field of
the message MUST be set to 0x0000.

If the message to be sent was provided with an optional remote memory token to be invalidated

on the receiving peer, the token SHOULD be provided in an implementation-specific manner to

the RDMA provider when sending. If sending of remote invalidation is not supported by the RDMA
provider, the token MAY be ignored.

The message MUST be sent on the connection in an implementation-specific manner, and any

error MUST be returned to the caller.

If, after processing, the Connection.SendQueue is not empty, the Send Credit Grant Timer MUST
be started with a value of 5 seconds and a result MUST be returned to the caller indicating that

sends remain in progress.

If Connection.SendQueue is empty, Connection.SendImmediate MUST be set to FALSE and
success MUST be returned to the caller.

22 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.5.2 Sending a Negotiate Request Message

After a successful connection as described in section 3.1.4.1, the first message sent on the
connection is the Negotiation Request as defined in section 2.2.1. The caller passes the Connection

to use for the Send message. The message fields are set as follows:

MinVersion MUST be set to 0x0100.

MaxVersion MUST be set to 0x0100.

Reserved MUST be set to 0x0000.

CreditsRequested SHOULD be set to Connection.SendCreditTarget.

PreferredSendSize MUST be set to Connection.MaxSendSize.

MaxReceiveSize MUST be set to Connection.MaxReceiveSize.

MaxFragmentedSize MUST be set to Connection.MaxFragmentedSize.

The message MUST be posted to the RDMA provider in an implementation-specific manner, and the
returned result MUST be returned to the caller.

3.1.5.3 Sending a Negotiate Response Message

In response to a Negotiate Request message as specified in section 3.1.5.6, the second message
sent on the connection is the Negotiation Response message as specified in section 2.2.2. The caller
passes the Connection to use for the Send message, and the Status field to return to the peer.
The message fields are set as follows:

MinVersion MUST be set to 0x0100.

MaxVersion MUST be set to 0x0100.

Reserved MUST be set to 0x0000.

Status MUST be set to the passed-in Status parameter.

If the Status field is not equal to 0x0000, all fields in the message not set above MUST be set to

0x0000. The message MUST be posted to the RDMA provider in an implementation-specific manner,
and a graceful termination of the connection SHOULD be performed.

Otherwise, a successful Negotiate Response is built with fields set as follows:

NegotiatedVersion MUST be set to Connection.ProtocolVersion.

CreditsRequested SHOULD be set to Connection.SendCreditTarget.

CreditsGranted MUST be set to Connection.ReceiveCredits.

MaxReadWriteSize MUST be set to Connection.MaxReadWriteSize.

PreferredSendSize MUST be set to Connection.MaxSendSize.

MaxReceiveSize MUST be set to Connection.MaxReceiveSize.

MaxFragmentedSize MUST be set to Connection.MaxFragmentedSize.

23 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The sender MUST post the message to the RDMA provider in an implementation-specific manner,
and the returned result MUST be returned to the caller.

3.1.5.4 Sending a Data Transfer Message

After a successful negotiation as described in section 3.1.5.7, all further messages sent on the
connection MUST be Data Transfer messages as defined in section 2.2.3. The caller passes:

The Connection to use for the Send message.

A buffer containing the message.

An optional remote memory token to be invalidated on the receiving peer.

It MUST be determined if the buffer contains a message that is of a length greater than
Connection.MaxFragmentedSize. If so, the message cannot be sent and an implementation-
specific local error MUST be returned.

If the buffer is empty, no upper-layer payload is present and the following message fields are set:

Reserved MUST be set to 0x0000.

RemainingDataLength MUST be set to 0x00000000.

DataOffset MUST be set to 0x00000000.

DataLength MUST be set to 0x00000000.

Padding and Buffer are not present.

The empty message is sent as specified in section 3.1.5.1.

Otherwise, the buffer MUST be sent in one or more segments.

For each such segment, the DataOffset and DataLength fields MUST be determined to send the

segment, as required.

The DataOffset MUST be 8-byte aligned in the message.

DataLength MUST have a maximum value such that DataOffset plus DataLength does not

exceed Connection.MaxSendSize.

The value of DataOffset SHOULD be 24, and DataLength SHOULD be the smaller of the size of

the passed in buffer, or Connection.MaxSendSize - 24, and both MAY be set to any other valid
values.

The following message fields are set in the segment:

If no bytes of the buffer remain to be sent after the current segment, the

RemainingDataLength field MUST be set to 0x00000000, otherwise the

RemainingDataLength field MUST be set to the total size of the buffer not yet sent.

The DataOffset and DataLength fields MUST be set to the values determined.

Padding MUST be set to 0x00000000 for the length indicated by DataOffset - 20.

Buffer MUST contain the DataLength bytes to transmit.

24 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the caller provided an optional memory token to be invalidated on the remote peer, the token
MUST be requested to be included by the RDMA provider with exactly one segment. Additional

segments, if any, are prepared until the RemainingDataLength field is zero.

The resulting sequence of one or more messages MUST be sent in strict sequential order on the

Connection via the interface specified in section 3.1.5.1. If any Send messages result in failure, the
RDMA layer will have initiated termination of the connection. The result of the operation from the
RDMA provider MUST be returned to the caller.

3.1.5.5 Receiving Any Message

If Connection.Role is "PASSIVE", the Connection and received buffer MUST be handled as
specified in section 3.1.5.6 Receiving a Negotiate Request Message.

Else if Connection.Role is "ACTIVE", the Connection and received buffer MUST be handled as
specified in section 3.1.5.7 Receiving a Negotiate Response Message.

Else the Connection.Role is "ESTABLISHED". The Idle Connection Timer MUST be retriggered to

the value of Connection.KeepaliveInterval and Connection.KeepaliveRequested MUST be set
to "NONE". The Connection and received buffer MUST be handled as specified in section 3.1.5.8
Receiving a Data Transfer Message.

3.1.5.6 Receiving a Negotiate Request Message

The first message received by the listening side of the connection is a Negotiate Request Message.

The receiver of the message MUST verify:

The length of the received message is at least 20 bytes.

If the preceding condition is not satisfied, the receiver MUST terminate the connection and stop
processing the message.

The receiver of the message MUST further verify:

The range of values between MinVersion and MaxVersion inclusive MUST include 0x0100.

If the preceding condition is not satisfied, the receiver MUST generate a Negotiate Response failure
message by invoking the processing specified in section 3.1.5.3 and passing a Status argument set
to STATUS_NOT_SUPPORTED.

Otherwise, both MinVersion and MaxVersion SHOULD<3> be ignored.

The receiver of the message MUST further verify:

The CreditsRequested field is greater than 0.

The MaxReceiveSize field is at least 128 bytes.

The MaxFragmentedSize field is at least 131,072 bytes.

If any of the preceding conditions are not satisfied, the receiver MUST terminate the connection and

stop processing the message.

The receiver MUST:

Set the Connection.Protocol to 0x0100.

25 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set the Connection.ReceiveCreditTarget to the value of the received CreditsRequested field.

Set Connection.MaxReceiveSize to the smaller of Connection.MaxReceiveSize and the

value of the received PreferredSendSize field. If the result is less than 128, then

Connection.MaxReceiveSize MUST be set to 128.

Set Connection.MaxSendSize to the smaller of Connection.MaxSendSize and the value of

the received MaxReceiveSize field.

The receive operations and credits MUST be initialized as specified in section 3.1.5.9. If the resulting
Connection.ReceiveCredits is zero, the receiver MUST generate a Negotiate Response failure
message by invoking the processing specified in section 3.1.5.3 and passing a Status argument set

to any of those defined in [MS-ERREF] section 2.3 with a Severity of STATUS_SEVERITY_ERROR.

Otherwise, a Negotiate Response MUST be sent as specified in section 3.1.5.3, passing a Status of
0x0000, and the new Connection MUST be indicated to the upper layer as specified in section
3.1.7.2, after which the Negotiation Timer MUST be canceled.

The idle Connection Timer MUST be set to a value of Connection.KeepaliveInterval seconds, and
Connection.Role MUST be set to "ESTABLISHED".

3.1.5.7 Receiving a Negotiate Response Message

The first message received by the initiating side of the connection is a Negotiate Response message.

The receiver of the message MUST verify:

The length of the received message is at least 32 bytes.

The NegotiatedVersion field is 0x0100.

The MaxReceiveSize field is at least 128 bytes.

The MaxFragmentedSize field is at least 131,072 bytes.

The CreditsGranted field is greater than 0.

The CreditsRequested field is greater than 0.

The PreferredSendSize field is less than or equal to Connection.MaxReceiveSize.

The Status field is 0.

If any of the preceding conditions are not satisfied, the receiver MUST terminate the connection and
return a failure status to the caller of section 3.1.4.1.

Otherwise, the receiver MUST:

Set the Connection.Protocol to 0x0100.

Set the Connection.ReceiveCreditTarget to the value of the received the CreditsRequested

field.

Set Connection.MaxReceiveSize to the smaller of Connection.MaxReceiveSize and the

value of the received the PreferredSendSize field. If the result is less than 128, then
Connection.MaxReceiveSize MUST be set to 128.

%5bMS-ERREF%5d.pdf

26 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set Connection.MaxSendSize to the smaller of Connection.MaxSendSize and the value of

the received MaxReceiveSize field.

Set Connection.MaxReadWriteSize to the smaller of 1048576 and the value of the received

MaxReceiveSize field.

Set Connection.SendCredits to the value of the received the CreditsGranted field.

The receive operations and credits MUST be initialized as specified in section 3.1.5.9. If the resulting
Connection.ReceiveCredits is zero, the receiver MUST terminate the connection and return a
failure status to the caller of section 3.1.4.1.

The Negotiation Timer MUST be canceled, the idle Connection Timer MUST be set to a value of

Connection.KeepaliveInterval seconds, and Connection.Role MUST be set to "ESTABLISHED".

A success status MUST be returned to the caller of section 3.1.4.1.

3.1.5.8 Receiving a Data Transfer Message

All other messages received by either side of the connection are Data Transfer Messages.

The receiver of the message MUST verify:

The length of the received message is at least 20 bytes.

The received CreditsRequested field is at least 1.

The received DataOffset field is 8-byte aligned.

The sum of the received DataOffset and DataLength fields are less than or equal to the length

of the received message.

The sum of the received DataLength and RemainingDataLength of the message is less than

or equal to Connection.MaxFragmentSize.

If any of the preceding conditions are not satisfied, the receiver MUST terminate the connection and
cease further processing.

The value of Connection.ReceiveCredits MUST be decremented by one.

If Connection.SendQueue is empty, the receiver MUST set Connection.SendImmediate to TRUE
and MUST promptly send a Data Transfer message on the Connection, as specified in section

3.1.5.1.

The value of Connection.ReceiveCreditTarget MUST be set to the value of the received
CreditsRequested field.

If the SMB_DIRECT_RESPONSE_REQUESTED flag is set in the received Flags field, then
Connection.KeepaliveRequested MUST be set to "PENDING". If the Connection.SendQueue is
empty, then the receiver MUST promptly send a Data Transfer message passing an empty buffer on

the Connection, as specified in section 3.1.5.1.

If the received CreditsGranted field is greater than zero, the receiver:

MUST increment Connection.SendCredits by the value of the received CreditsGranted field.

MUST clear the Send Credit Grant timer.

27 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the Connection.SendQueue is not empty, attempt to restart the send of any such messages

as specified in section 3.1.5.1.

The contents of the incoming buffer, at the offset defined by DataOffset and the length defined by

DataLength, MUST be appended to Connection.FragmentReassemblyBuffer.

If Connection.FragmentReassemblyRemaining is zero,
Connection.FragmentReassemblyRemaining MUST be set to RemainingDataLength.
Otherwise, Connection.FragmentReassemblyRemaining MUST be reduced by the received
DataLength.

If the RDMA provider indicates that a local memory token was invalidated in the process of receiving
the current segment, the receiver MUST set Connection.InvalidatedToken to the value of the

token indicated by the RDMA provider, overwriting any previous value, if present.

If the received RemainingDataLength field of the message is zero, then:

If Connection.FragmentReassemblyRemaining is greater than zero, then the receiver MUST

terminate the connection and cease further processing.

If the Connection.InvalidatedToken is not empty, it MUST be passed to the upper layer, and

its contents MUST be cleared.

The Connection.FragmentReassemblyBuffer contents MUST be passed to the upper layer,

and the Connection.FragmentReassemblyBuffer MUST be cleared.

3.1.5.9 Managing Credits Prior to Sending

After a successful negotiation, and prior to sending a message to the peer, the following credit
management is performed for both send and receive limits on the specified Connection.

If Connection.ReceiveCredits is nonzero and greater than or equal to
Connection.ReceiveCreditTarget, then sufficient credits are already present and a value of zero
SHOULD be returned. The value of Connection.ReceiveCreditTarget MAY be reduced.

If Connection.ReceiveCredits is zero, or if Connection.SendCredits is one and the
Connection.SendQueue is not empty, the sender MUST allocate and post at least one receive of
size Connection.MaxReceiveSize and MUST increment Connection.ReceiveCredits by the
number allocated and posted. If no receives are posted, the processing MUST return a value of zero

to indicate to the caller that no Send message can be currently performed.

If Connection.ReceiveCreditTarget is greater than Connection.ReceiveCredits and
Connection.ReceiveCredits is less than Connection.ReceiveCreditMax, the sender SHOULD
attempt to increase the credits available to the peer on the connection. In an implementation-
specific manner, post a number of receive operations to the Connection, each of size
Connection.MaxReceiveSize, and of count at least one and less than or equal to the smaller of

Connection.ReceiveCreditTarget or Connection.ReceiveCreditMax. For each such receive
successfully posted, the value of Connection.ReceiveCredits MUST be incremented by one.

The processing MUST return the number of receive credits successfully added to the connection.

28 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.1.6 Timer Events

3.1.6.1 Negotiation Timer

When the Negotiation Timer expires, the local peer SHOULD terminate the connection. Termination
of the connection will result in the RDMA provider signaling the Connection Loss event as specified in
section 3.1.7.1.

3.1.6.2 Idle Connection Timer

When the Idle Connection Timer expires, the local peer SHOULD check whether
Connection.KeepaliveRequested is set to "NONE", and if not, the local peer SHOULD terminate

the connection. Termination of the connection will result in the RDMA provider signaling the
Connection Loss event as specified in section 3.1.7.1.

Otherwise, Connection.KeepaliveRequested SHOULD be set to "PENDING", and a Send of a Data
Transfer message with the SMB_DIRECT_RESPONSE_REQUESTED flag set SHOULD be initiated. If

no upper layer message is currently pending to be sent, then a Data Transfer message with an
empty Buffer can be constructed.

3.1.6.3 Send Credit Grant Timer

When the Send Credit Grant Timer expires, the local peer SHOULD terminate the connection.
Termination of the connection will result in the RDMA provider signaling the Connection Loss event
as specified in section 3.1.7.1.

3.1.7 Other Local Events

The protocol handles and signals the following events to its upper layer on a per-connection basis in

the following categories:

3.1.7.1 Connection Loss

When the underlying RDMA transport indicates loss of a connection, whether initiated locally or by
the remote peer, the upper layer MUST be notified, passing an implementation-dependent
representation of the Connection as the argument, and subsequently terminate the lower-layer

endpoint represented by Connection.Endpoint, and the Connection itself.

3.1.7.2 Connection Arrival

When the underlying RDMA transport indicates arrival of a new remote peer connection to a
listening endpoint, the listener MUST:

Create a new Connection.

Set Connection.Role to "PASSIVE".

Start a Negotiation Timer interval of 5 seconds.

Assign a new Connection.Endpoint and accept the connection in an implementation-defined

manner

Post at least one receive buffer of at least 512 bytes, and terminate the connection if it fails,

else:

29 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Determine an initial value for Connection.ReceiveCreditMax,

Connection.SendCreditTarget, Connection.MaxSendSize,

Connection.MaxFragmentedSize, Connection.MaxReceiveSize,

Connection.MaxReadWriteSize and Connection.KeepaliveInterval.<4>

Set Connection.KeepaliveRequested to "NONE".

Set Connection.Protocol, Connection.SendCredits and Connection.ReceiveCredits to 0.

Set Connection.SendQueue and Connection.FragmentReassemblyBuffer to empty.

Notify the upper layer of the new Connection.

30 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4 Protocol Examples

The following sections describe common scenarios in order to illustrate the functionality of the SMB2
RDMA Transport Protocol.

4.1 Establishing a Connection

The following message exchanges show the steps taken by a system that is establishing a
connection to a peer.

1. The initiator (for example, an SMB2 client) sends a Negotiate message, indicating that it is

capable of the 1.0 version of the protocol, can send and receive up to 1 KiB of data per Send
operation, and can reassemble fragmented Sends up to 128 KiB.

The Negotiate request message fields are set to the following:

MinVersion: 0x0100

MaxVersion: 0x0100

Reserved: 0x0000

CreditsRequested: 0x000A (10)

PreferredSendSize: 0x00000400 (1 KiB)

MaxReceiveSize: 0x00000400 (1 KiB)

MaxFragmentedSize: 0x00020000 (128 KiB)

2. The peer receives the Negotiate request and selects version 1.0 as the version for the
connection. The negotiate response indicates that the peer can receive up to 1 KiB of data per
Send operation, and requests that the requestor permit the same. The negotiate response also
grants an initial batch of 10 Send Credits and requests 10 Send Credits to be used for future

messages.

The Negotiate response message fields are set to the following:

MinVersion: 0x0100

MaxVersion: 0x0100

NegotiatedVersion: 0x0100

Reserved: 0x0000

CreditsRequested: 0x000A (10)

CreditsGranted: 0x000A (10)

Status: 0x0000

MaxReadWriteSize: 0x00100000 (1MiB)

PreferredSendSize: 0x00000400 (1KiB)

MaxReceiveSize: 0x00000400 (1KiB)

31 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

MaxFragmentedSize: 0x00020000 (128KiB)

3. The peer sends the first data transfer, typically an upper-layer SMB2 Negotiate Request. The
message grants an initial credit limit of 10, and requests 10 credits to begin sending normal

traffic.

The Data Transfer message fields are set to the following:

CreditsRequested: 0x000A (10)

CreditsGranted: 0x000A (10)

Flags: 0x0000

Reserved: 0x0000

RemainingDataLength: 0x000000 (nonfragmented message)

DataOffset: 0x00000018 (24)

DataLength: 0x00000xxx (length of Buffer)

Padding: 0x00000000 (4 bytes of 0x00)

Buffer: (Upper layer message)

An SMB2 RDMA Transport Version 1.0 Protocol connection has now been established, and the initial
message is processed.

4.2 Peer Transmits 500 Bytes of Data

The following message sequence shows the steps taken to transmit a small amount of data (500

bytes).

The peer uses the Send operation to transmit the data because the upper layer request did not

provide an RDMA Buffer Descriptor. A Data Transfer message is sent that contains the 500 bytes
of data as the message’s payload. The message requests 10 Send Credits to maintain the current
credit limit and grants 1 Send Credit to replace the credit request used by the final message in
section 4.1.

The Data Transfer message fields are set to the following:

CreditsRequested: 0x000A (10)

CreditsGranted: 0x0001

Flags: 0x0000

Reserved: 0x0000

RemainingDataLength: 0x000000 (nonfragmented message)

DataOffset: 0x00000018 (24)

DataLength: 0x000001F4 (500 = size of the data payload)

Padding: 0x00000000 (4 bytes of 0x00)

Buffer: (Upper layer message)

32 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4.3 Peer Transmits 64 KiB of Data

The following message sequence shows the steps taken to transmit a moderate amount of data (64
KiB bytes).

The peer uses fragmented Send operations to transmit the data because the message exceeds

the remote peer’s negotiated MaxReceiveSize, but is within the MaxFragmentedSize. A
sequence of fragmented Sends of Data Transfer messages is prepared. The messages each
request 10 Send Credits and grant a Send Credit to maintain the credits offered to the peer for
expected responses. Because the fragmented sequence requires more credits (65) than are
currently available (10), several pauses can occur while waiting for credit replenishment.

The Data Transfer message fields are set to the following:

CreditsRequested: 0x000A (10)

CreditsGranted: 0x0001

Flags: 0x0000

Reserved: 0x0000

RemainingDataLength: 0x000000xxx (63KiB remaining)

DataOffset: 0x00000018 (24)

DataLength: 0x000003F8 (1000 = MaxReceiveSize – 24)

Padding: 0x00000000 (4 bytes of 0x00)

Buffer: (1000 bytes of the upper-layer message)

The Data Transfer message fields are set to the following:

CreditsRequested: 0x000A (10)

CreditsGranted: 0x0001

Flags: 0x0000

Reserved: 0x0000

RemainingDataLength: 0x000000xxx (62KiB remaining)

DataOffset: 0x00000018 (24)

DataLength: 0x000003F8 (1000 = MaxReceiveSize – 24)

Padding: 0x00000000 (4 bytes of 0x00)

Buffer: (1000 bytes of the upper-layer message)

(Additional intermediate fragments, and pauses, elided…)

The Data Transfer message fields are set to the following:

CreditsRequested: 0x000A (10)

CreditsGranted: 0x0001

33 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Flags: 0x0000

Reserved: 0x0000

RemainingDataLength: 0x000000000 (final message of fragmented sequence)

DataOffset: 0x00000018 (24)

DataLength: 0x00000218 (536 = last fragment)

Padding: 0x00000000 (4 bytes of 0x00)

Buffer: (536 final bytes of the upper-layer message)

4.4 Peer Transmits 1 MiB of Data Via Upper Layer

The following shows the steps taken to transmit a large amount of data (1 MiB).

1. The upper layer performs the transfer via RDMA. The buffer containing the data to be written is
registered, obtaining the following single-element Buffer Descriptor V1. The buffer descriptor will
be embedded in the upper-layer Write request.

The Buffer Descriptor V1 fields are set to the following:

Base: 0x00000000ABCDE012

Length: 0x0000000000100000 (1 MiB)

Token: 0x1A00BC56

2. The peer sends a Data Transfer message that contains an upper layer Write request, which
includes the Buffer Descriptor V1 describing the 1 MiB buffer. The upper layer message totals 500

bytes.

The Data Transfer message fields are set to the following:

CreditsRequested: 0x000A (10)

CreditsGranted: 0x0001 (1)

Flags: 0x0000

Reserved: 0x0000

RemainingDataLength: 0x000000 (nonfragmented message)

DataOffset: 0x00000018 (24)

DataLength: 0x000001F4 (500 = size of the data payload)

Padding: 0x00000000 (4 bytes of 0x00)

Buffer: (Upper-layer message)

3. The message is recognized by the upper layer as a Write request via RDMA, and the supplied
buffer descriptor is used to RDMA Read the data from the peer into a local buffer.

4. The RDMA device performs an RDMA Read operation.

34 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

5. The write processing is completed, and the upper layer later replies to the peer.

6. The peer deregisters the buffer and completes the operation.

4.5 Peer Receives 1 MiB of Data Via Upper Layer

The following shows the steps taken to request a large amount of data (1 MiB).

1. The upper layer performs the transfer via RDMA. The buffer containing the data to be read is
registered, and the following single-element SMB Buffer Descriptor V1 is obtained. The buffer
descriptor will be embedded in the upper-layer read request.

The Buffer Descriptor V1 fields are set to the following:

Base: 0x00000000DCBA024

Length: 0x0000000000100000 (1 MiB)

Token: 0x1A00BC57

2. The peer sends a Data Transfer message that contains an upper-layer Read request, which
includes the Buffer Descriptor describing the 1 MiB buffer. The upper-layer message totals 500
bytes.

The Data Transfer message fields are set to the following:

CreditsRequested: 0x000A (10)

CreditsGranted: 0x0001

Flags: 0x0000

Reserved: 0x0000

RemainingDataLength: 0x000000 (nonfragmented message)

DataOffset: 0x00000018 (24)

DataLength: 0x000001F4 (500 = size of the data payload)

Padding: 0x00000000 (4 bytes of 0x00)

Buffer: (Upper-layer message)

3. The message is recognized by the upper layer as a Read request via RDMA, and the 1MiB of data
is prepared.

4. The supplied Buffer Descriptor V1 is used by an RDMA Write request to write the data to the peer
from a local buffer.

(the RDMA device performs an RDMA Write operation)

5. The read processing is completed, and the reply is sent.

6. The peer deregisters the buffer and completes the operation.

35 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

5 Security

5.1 Security Considerations for Implementers

An implementation of the SMB2 RDMA Transport Protocol atop RDMA Verbs [DRAFT-RDMA-VERBS]
needs to conform to the security principles discussed in [RFC5042].

Implementers using upper layers should be aware of potential security issues when using the
Register Buffer interface defined in section 3.1.4.3. A thorough understanding of the potential issues
and their mitigations as described in [RFC5042] is required.

5.2 Index of Security Parameters

None.

http://go.microsoft.com/fwlink/?LinkId=230467
http://go.microsoft.com/fwlink/?LinkId=230448
http://go.microsoft.com/fwlink/?LinkId=230448

36 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

6 Appendix A: RDMA Provider IRD/ORD Negotiation

The SMB2 RDMA Transport Protocol requires that the underlying RDMA Providers support the mutual
dynamic establishment of Incoming RDMA Read Depth / Outgoing RDMA Read Depth (IRD/ORD)
values at connection time. This processing is described in the relevant standards for the applicable
RDMA lower layers, [RFC6581] and [IBARCH].

For iWARP providers that do not support [RFC6581] negotiation, the following exchange is
recommended.

6.1 IRD/ORD Negotiate Header

The iWARP provider sends the following as the first 8 bytes of the private data when establishing an
RDMA connection on port 5445 with its peer on behalf of the SMB2 RDMA Transport.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

IRD

ORD

IRD (4 bytes): The Incoming RDMA Read Depth currently in use by the sending peer on the
connection. This value MUST be greater than zero.

ORD (4 bytes): The Outgoing RDMA Read Depth currently in use by the sending peer on the
connection. This value MUST be greater than zero.

6.2 IRD/ORD Negotiate Header Processing

When a remote connection is established, the accepting peer SHOULD obtain the IRD and ORD

values from the IRD/ORD Negotiate Header at the beginning of any private data provided by the
transport, and if present, the accepting peer MUST include an IRD/ORD Negotiate Header in
private data with its transport connection reply. The fields SHOULD be set as follows:

IRD SHOULD be set to the smaller of the accepting peer's ORD value and the IRD value provided

by the peer in the connection request.

ORD SHOULD be set to the smaller of the accepting peer's IRD value and the ORD value

provided by the peer in the connection request.

If either the resulting IRD or ORD is zero, the connection MUST be rejected.

The accepting peer's RDMA provider connection IRD and ORD MUST be set to the values transmitted

in the transport connection acceptance, prior to accepting the connection and indicating the
connection arrival to the SMB2 RDMA Transport upper layer as specified in section 3.1.7.2.

The connecting peer's RDMA provider connection IRD and ORD MUST be set to the same values as
transmitted by the accepting peer, prior to completing the connection request as specified in section
3.1.4.1.

http://go.microsoft.com/fwlink/?LinkId=301388
http://go.microsoft.com/fwlink/?LinkId=230464
http://go.microsoft.com/fwlink/?LinkId=301388

37 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows Server 2012 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior

also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product

does not follow the prescription.

<1> Section 3.1.2.2: Windows Server 2012 and Windows Server 2012 R2 sets this timer to a

default value of 120 seconds.

<2> Section 3.1.4.1: Windows Server 2012 and Windows Server 2012 R2 initializes the following
values:

Connection.ReceiveCreditMax is set to 255.

Connection.SendCreditTarget is set to 255.

Connection.MaxSendSize is set to 1364.

Connection.MaxFragmentedSize is set to 1048576.

Connection.MaxReceiveSize is set to 8192.

Connection.KeepaliveInterval is set to 5 seconds.

<3> Section 3.1.5.6: Windows Server 2012 and Windows Server 2012 R2 fail the Negotiate

Request Message with STATUS_NOT_SUPPORTED if MinVersion or MaxVersion is not 0x0100.

<4> Section 3.1.7.2: Windows Server 2012 and Windows Server 2012 R2 initializes the following
values:

Connection.ReceiveCreditMax is set to 255.

Connection.SendCreditTarget is set to 255.

Connection.MaxSendSize is set to 1364.

Connection.MaxFragmentedSize is set to 1048576.

Connection.MaxReceiveSize is set to 8192.

Connection.MaxReadWriteSize is set to 1048576.

Connection.KeepaliveInterval is set to 5 seconds.

38 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

8 Change Tracking

This section identifies changes that were made to the [MS-SMBD] protocol document between the
January 2013 and August 2013 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

39 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N) Change type

1.3

Overview

67521

Inserted updated Figure 1.3 amended to remove

references to SMBDirect.

N Content

updated.

1.4

Relationship to

Other Protocols

Updated content for Windows Server 2012 R2. Y Content

updated.

3.1.1

Abstract Data

Model

67534

Added Connection.SendImmediate to the list of values

that must be implemented.

Y Content

updated.

3.1.1.1

Per RDMA

Transport

Connection

Updated content for Windows Server 2012 R2. Y Content

updated.

3.1.2.2

Idle Connection

Timer

67575

Added product behavior note on the default value of

the Idle Connection Timer.

Y New product

behavior note

added.

3.1.4.1

Connecting to the

Peer

67534

Added the specified setting for

Connection.SendImmediate to the list of instructions

for the initiator.

Y Content

updated.

3.1.4.1

Connecting to the

Peer

Updated content for Windows Server 2012 R2. Y Content

updated.

mailto:protocol@microsoft.com

40 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N) Change type

3.1.4.1

Connecting to the

Peer

67576

Updated product behavior note on initialization

settings.

N Product

behavior note

updated.

3.1.4.2

Send Message

Updated content for Windows Server 2012 R2. Y Content

updated.

3.1.5.1

Sending Upper

Layer Messages

67534

Added instructions for message transmission based on

the value of Connection.SendQueue.

Y Content

updated.

3.1.5.1

Sending Upper

Layer Messages

Updated content for Windows Server 2012 R2. Y Content

updated.

3.1.5.4

Sending a Data

Transfer Message

Updated content for Windows Server 2012 R2. Y Content

updated.

3.1.5.6

Receiving a

Negotiate Request

Message

67574

Clarified the use of the Negotiation Timer and the

Connection Timer in message handling.

Y Content

updated.

3.1.5.6

Receiving a

Negotiate Request

Message

67468

Updated the processing rules for the MinVersion and

MaxVersion fields.

Y Content

updated.

3.1.5.6

Receiving a

Negotiate Request

Message

Updated the processing rules for the MinVersion and

MaxVersion fields.

N Content

updated.

3.1.5.7

Receiving a

Negotiate

Response Message

67574

Clarified the use of the Connection Timer in message

handling.

Y Content

updated.

3.1.5.7

Receiving a

Negotiate

Response Message

Updated the processing rules for the MinVersion and

MaxVersion fields.

N Content

updated.

3.1.5.8

Receiving a Data

Transfer Message

67580

Updated the processing rules for fragmentation.

N Content

updated.

3.1.5.8

Receiving a Data

Transfer Message

67522

Updated the processing rules for

Connection.FragmentReassemblyBuffer.

Y Content

updated.

3.1.5.8

Receiving a Data

Transfer Message

Updated content for Windows Server 2012 R2. Y Content

updated.

41 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N) Change type

3.1.5.8

Receiving a Data

Transfer Message

67522

Updated the processing rules for the content of an

incoming buffer.

Y Content

updated.

3.1.5.9

Managing Credits

Prior to Sending

67533

Removed the conditional instruction that

Connection.SendCreditTarget may be set to the length

of Connection.SendQueue.

Y Content

updated.

3.1.7.2

Connection Arrival

67535

Updated the processing rules for the

Connection.ReceiveCredits ADM element.

N Content

updated.

3.1.7.2

Connection Arrival

67576

Updated product behavior note on initialization

settings.

Y Product

behavior note

updated.

6

Appendix A: RDMA

Provider IRD/ORD

Negotiation

Added section with content for Windows Server 2012

R2.

Y New content

added.

6.1

IRD/ORD

Negotiate Header

Added section with content for Windows Server 2012

R2.

Y New content

added.

6.2

IRD/ORD

Negotiate Header

Processing

Added section with content for Windows Server 2012

R2.

Y New content

added.

7

Appendix B:

Product Behavior

Modified this section to include references to Windows

Server 2012 R2.

Y Content

updated.

42 / 42

[MS-SMBD] — v20130722
 SMB2 Remote Direct Memory Access (RDMA) Transport Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

9 Index

A

Abstract data model 16
Applicability 9

C

Capability negotiation 9
Change tracking 38

D

Data model - abstract 16
Data Transfer Message message 13

E

Establishing connection example 30
Examples

establishing connection 30
overview 30
peer receiving 1 MiB of data via upper layer 34
peer transmitting 1 MiB of data via upper layer

33
peer transmitting 500 bytes of data 31
peer transmitting 64 KiB of data 32

F

Fields - vendor-extensible 10

G

Glossary 5

H

Higher-layer triggered events 17

I

Implementer - security considerations 35
Index of security parameters 35
Informative references 6
Initialization 17
Introduction 5

L

Local events 28

M

Message processing events 21
Messages

Data Transfer Message message 13
Negotiate Request Message message 11
Negotiate Response Message message 12

syntax 11
transport 11

N

Negotiate Request Message message 11
Negotiate Response Message message 12
Normative references 6

O

Overview (synopsis) 7

P

Parameters - security index 35
Peer receiving 1 MiB of data via upper layer

example 34
Peer transmitting 1 MiB of data via upper layer

example 33
Peer transmitting 500 bytes of data example 31
Peer transmitting 64 KiB of data example 32
Preconditions 9
Prerequisites 9
Product behavior 37

R

References

informative 6
normative 6

Relationship to other protocols 7

S

Security
implementer considerations 35
parameter index 35

Sequencing rules 21
Standards assignments 10
Syntax 11

T

Timer events 28
Timers 17
Tracking changes 38
Transport 11
Triggered events 17

V

Vendor-extensible fields 10
Versioning 9

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Negotiate Request Message
	2.2.2 Negotiate Response Message
	2.2.3 Data Transfer Message
	2.2.3.1 Buffer Descriptor V1 Structure

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Per RDMA Transport Connection

	3.1.2 Timers
	3.1.2.1 Negotiation Timer
	3.1.2.2 Idle Connection Timer
	3.1.2.3 Send Credit Grant Timer

	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Connecting to the Peer
	3.1.4.2 Send Message
	3.1.4.3 Register Buffer
	3.1.4.4 Deregister Buffer
	3.1.4.5 RDMA Write to Peer Buffer
	3.1.4.6 RDMA Read from Peer Buffer
	3.1.4.7 Query Connection Parameters

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 Sending Upper Layer Messages
	3.1.5.2 Sending a Negotiate Request Message
	3.1.5.3 Sending a Negotiate Response Message
	3.1.5.4 Sending a Data Transfer Message
	3.1.5.5 Receiving Any Message
	3.1.5.6 Receiving a Negotiate Request Message
	3.1.5.7 Receiving a Negotiate Response Message
	3.1.5.8 Receiving a Data Transfer Message
	3.1.5.9 Managing Credits Prior to Sending

	3.1.6 Timer Events
	3.1.6.1 Negotiation Timer
	3.1.6.2 Idle Connection Timer
	3.1.6.3 Send Credit Grant Timer

	3.1.7 Other Local Events
	3.1.7.1 Connection Loss
	3.1.7.2 Connection Arrival

	4 Protocol Examples
	4.1 Establishing a Connection
	4.2 Peer Transmits 500 Bytes of Data
	4.3 Peer Transmits 64 KiB of Data
	4.4 Peer Transmits 1 MiB of Data Via Upper Layer
	4.5 Peer Receives 1 MiB of Data Via Upper Layer

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: RDMA Provider IRD/ORD Negotiation
	6.1 IRD/ORD Negotiate Header
	6.2 IRD/ORD Negotiate Header Processing

	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

