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(http://maia.usno.navy.mil/conv2000.html), interpreted here

under the sole responsibility of the author.

Abstract: At its 2000 General Assembly, the International As-

tronomical Union has adopted a set of Resolutions that provide a

consistent framework for defining the barycentric and geocentric

celestial reference systems at the first post-Newtonian level. This

extends and completes the IAU’1991 framework defined in Resolution

A4 at the 1991 General Assembly. This paper describes in some

detail the two Resolutions that define time coordinates and allow to

realize time transformations. The application of the IAU’1991 and

IAU’2000 framework to several fields of space geodesy and astrometry

is discussed.

1 Introduction

At its 1991 General Assembly the International Astronomical Union (IAU) ex-
plicitly adopted the general theory of relativity as the theoretical framework
for the definition and realization of space-time reference frames (IAU, 1991).
Barycentric and geocentric coordinate time scales and the relativistic transfor-
mations between them were defined, together with procedures for their realiza-
tion. In section 2, we recall the content of the IAU 1991 resolution A4 dealing
with the definition of reference systems, time coordinates and time transfor-
mations, and we expose some of the limitations of this framework. For many
applications in space geodesy, it is sufficient to discuss within the IAU’1991
framework, with the IAU’2000 framework providing an extension which is nec-
essary for a few applications. It is therefore important to have in mind the
basis of the IAU’1991 framework.

The IAU Working Group on Relativity in Celestial Mechanics and Astrometry
(RCMA), since 1994, and the BIPM/IAU Joint Committee on relativity for
space-time reference systems and metrology (JCR), from 1997 to 2001, have
worked to provide an extension of the IAU’1991 framework at the first post-
Newtonian level (Soffel, 2000; Petit, 2000). This work resulted in a set of
Resolutions passed at the IAU 2000 General Assembly. The complete text of
the Resolutions may be found in IAU publications
(http://danof.obspm.fr/IAU-resolutions/Resol-UAI.htm) and a complete
explanatory supplement may be found in (Soffel et al., 2002). The new IAU’2000
framework is precisely specified in Resolutions B1.3(2000) ”Definition of barycen-
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tric celestial reference system and geocentric celestial reference system” and
B1.4(2000) ”Post-Newtonian potential coefficients”.

In Section 3 of this paper, we briefly present the two Resolutions which deal
with time transformations and the definition of coordinate times, namely Res-
olutions B1.5(2000) ”Extended relativistic framework for time transformations
and realization of coordinate times in the solar system” in section 3.1 and
B1.9(2000) ”Re-definition of Terrestrial Time TT” in section 3.2, and discuss
at which level time transformations and coordinate times are affected by the
IAU’2000 framework.

Finally section 4 discusses the application of the IAU’1991 and IAU’2000 frame-
work to several fields of space geodesy and astrometry which are based on time
and frequency measurements.

2 The IAU’1991 framework and its limitations

The IAU resolution A4 (1991) contains nine recommendations, the first five of
which are directly relevant to our discussion.

In the first recommendation, the metric tensor for space-time coordinate sys-
tems (t,x) centered at the barycenter of an ensemble of masses is recommended
in the form

g00 = −1 +
2U(t,x)

c2
+O(c−4),

g0i = O(c−3), (1)

gij = δij

(
1 + 2U(t,x)

c2

)
+O(c−4).

where c is the speed of light in vacuum (c = 299792458 m/s), U is the sum of
the gravitational potentials of the ensemble of masses and of a tidal potential
generated by bodies external to the ensemble, the latter potential vanishing at
the barycenter. The algebraic sign of U is taken to be positive. This recommen-
dation recognizes that space-time cannot be described by a single coordinate
system. The recommended form of the metric tensor can be used not only
to describe the barycentric reference system (BRS) of the whole solar system
(which is called BCRS where C stands for Celestial since the IAU’2000 Reso-
lutions), but also to define the geocentric reference system (GRS) centered in
the center of mass of the Earth, which is now called GCRS. In analogy to the
GRS, a corresponding reference system may be defined for any other body of
the Solar system.

In the second recommendation, the origin and orientation of the space coor-
dinate grids for the solar system (BRS) and for the Earth (GRS) are defined.
Notably it is specified that the space coordinate grids of these systems should
show no global rotation with respect to a set of distant extragalactic objects.
It also specifies that the SI (International System of units) second and the SI
meter should be the physical units of proper time and proper length in all
coordinate systems. It states in addition that the time coordinates should be
derived from an Earth atomic time scale.

The third recommendation defines TCB (Barycentric Coordinate Time) and
TCG (Geocentric Coordinate Time) – the time coordinates of the BRS and
GRS, respectively. The recommendation also defines the origin of the times
scales (their reading on 1977 January 1, 0h 0m 0s TAI (JD = 2443144.5 TAI)
must be 1977 January 1, 0h 0m 32.184s) and declares that the units of measure-
ments of the coordinate times of all reference systems must be coincide with
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the SI second and SI meter. The relationship between TCB and TCG is given
by a full 4-dimensional transformation

TCB−TCG = c−2

[∫ t

t0

(
v2

E

2
+ Uext(t,xE(t))

)
dt + vi

Eri
E

]
+O(c−4), (2)

where xi
E and vi

E are the barycentric coordinate position and velocity of the
geocenter, ri

E = xi − xi
E with xi the barycentric position of the observer, and

Uext(t,xE(t)) is the Newtonian potential of all solar system bodies apart from
the Earth evaluated at the geocenter.

In the fourth recommendation another time coordinate, Terrestrial Time (TT ),
is defined for the GRS. It differs from TCG by a constant rate only

TCG−TT = LG×(JD−2443144.5)×86400, LG ≈ 6.969291×10−10, (3)

so that the unit of measurement of TT agrees with the SI second on the geoid.
TT represents an ideal form of TAI, the divergence between them being a
consequence of the physical defects of atomic clocks.

The fifth recommendation states that the former dynamical barycentric time
TDB may still be used where discontinuity with previous work is deemed to
be undesirable.

Limitations to the IAU’1991 framework

Because of the form of the metric (1) in the IAU’1991 framework, time trans-
formations and the realization of coordinate times in the barycentric system
are not specified at the c−4 level, i.e. at a level of a few parts in 1016 in rate.
The new IAU’2000 framework allows to remove this limitation. Nevertheless,
within the IAU’1991 approximation, constants LB and LC were introduced in
notes to the Recommendation 3 (1991) to express the mean rates between time
scales as

TCB − TDB = LB × (JD − 2443144.5)× 86400,

LB ≈ 1.550505× 10−8, and
TCB − TCG = LC × (JD − 2443144.5)× 86400 + vi

Eri
E/c2 + P,

LC ≈ 1.480813× 10−8, (4)

where P represents periodic terms. Since JD is not specified to be a particular
time scale, these constants were not properly defined so that confusion appeared
in their usage. This point was adressed in Resolution B1.5(2000) by defining
< TCG/TCB >= 1 − LC and < TT/TCB >= 1 − LB , where <> means a
sufficiently long term average taken at the geocenter. The actual computation
of LC and LB requires the integration of solar system ephemerides and the
specification of an averaging duration, and this process may be applied to the
utmost accuracy, after a choice of ephemerides and averaging duration. For
example Irwin and Fukushima (1999) determined LC = 1.48082686741×10−8±
2 × 10−17. However, no completely unambiguous definition may be provided
for LB and LC because they always depend on the ephemerides and time span
used for their computation. Therefore the use of these constants is not advised
to formulate time transformations when it would require knowing their value
with an uncertainty of order 1× 10−16 or less.

Another problem arising from the situation before IAU’1991 is that the bary-
centric dynamical time TDB did not have a good definition. This could have
been corrected by turning a specific value of LB into a defining constant thus
providing in retrospect a definition of TDB. It was not felt necessary to ad-
dress explicitly this point in a recommendation. Prior to IAU’1991, authors
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had developped analytical formulas to transform TT (known as TDT prior to
1991) to TDB (e.g. Fairhead and Bretagnon, 1990). Such formulas may be
used along with a further linear transformation to obtain TCB from TDB, i.e.
dTDB/dTCB = 1− LB , under the same provisions as above for possible am-
biguities in the definitions, and therefore in the applicability of the formulas.
See more details in section 4.5 and see (Irwin and Fukushima, 1999) for a com-
parison of some transformation formulas and the level of uncertainty that may
be associated with them.

3 Time Coordinates in the IAU’2000 framework

For practical applications concerning time and frequency measurements in the
solar system, it is necessary to consider a conventional model for the realization
of time coordinates and time transformations. This model should be chosen
so that i) its accuracy is significantly better than the expected performance
of clocks and time transfer techniques, ii) it is consistent with the general
framework of IAU Resolutions B1.3 and B1.4 (2000) and may readily be used
with existing astrometric quantities, e.g. solar systems ephemeris.

For the first condition, it was determined that time coordinates and time trans-
formations should be realized with an uncertainty not larger than 5 × 10−18

in rate or, for quasi-periodic terms, not larger than 5 × 10−18 in rate ampli-
tude and 0.2 ps in phase amplitude. For the spatial domain of validity, the
formulations in the barycentic system are valid up to a few solar radii from
the Sun and, in the geocentric system, locations from the Earth’s surface up
to geostationary orbits (|X| < 50000 km) have been considered.

3.1 Resolution B1.5(2000): Extended relativistic framework for
time transformations and realization of coordinate times in
the solar system

Following Resolutions B1.3(2000) and B1.4(2000), the metric tensor in the
BCRS is expressed as

g00 = −(1− 2
c2 (w0(t,x) + wL(t,x)) + 2

c4 (w2
0(t,x) + ∆(t,x)))

g0i = − 4
c3 wi(t,x)

gij =
(
1 + 2w0(t,x)

c2

)
δij

(5)

where (t ≡ TCB,x) are the barycentric coordinates, w0 = G
∑

A MA/rA,
with the summation carried out over all solar system bodies A, rA = x − xA,
rA = |rA|, and where wL contains the expansion in terms of multipole moments,
as defined in Resolution B1.4(2000) and references therein, required for each
body. In many cases the mass-monopole approximation (wL = 0) may be
sufficient to reach the above mentioned uncertainties but this term should be
kept to ensure the consistency in all cases. The values of masses and multipole
moments to be used may be found in IAU or IERS documents (IERS, 1996), but
care must be taken that the values are in SI units (not in so-called TDB units
or TT units). The vector potential wi(t,x) =

∑
A wi

A(t,x) and the function
∆(t,x) =

∑
A ∆A(t,x) are given in the text of IAU Resolutions.

From (5) the transformation between proper time and TCB may be derived.
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It reads:

dτ/dTCB = 1− 1
c2

(
w0 + wL +

v2

2

)
+

1
c4

(
−1

8
v4 − 3

2
v2w0 + 4viwi +

1
2
w2

0 + ∆
)

(6)

Evaluation of the significance of the terms in wi(t,x) and ∆(t,x) may be found
in (Petit, 2001).

Similarly, the transformation between TCB and TCG may be written as

TCB − TCG = c−2

[∫ t

t0

(
v2

E

2
+ w0ext(xE)

)
dt + vi

Eri
E

]
−c−4[

∫ t

t0

(
−1

8
v4

E − 3
2
v2

Ew0ext(xE) + 4vi
Ewi

ext(xE) +
1
2
w2

0ext(xE)
)

dt

−(3w0ext(xE) + v2
E/2)vi

Eri
E ] (7)

where t is TCB and where the index ext refers to all bodies except the Earth.
This equation is composed of terms evaluated at the geocenter (the two inte-
grals) and of position dependent terms in rE , with position dependent terms in
higher powers of rE having been found to be negligible. The first integral may
be computed from existing planetary ephemeris (Fukushima, 1995; Irwin and
Fukushima, 1999). Since, in general, the planetary ephemeris are expressed in
terms of a time argument Teph which is close to TDB (see section 4.4), rather
than in terms of TCB, the first integral will be computed as∫ t

t0

(
v2

E

2
+ w0ext(xE)

)
dt =

[∫ teph

teph0

(
v2

E

2
+ w0ext(xE)

)
dteph

]
/(1−LB) (8)

where a rough value of LB = 1.5505..× 10−8 may be used.

Terms in the second integral of (7) are secular and quasi periodic. They amount
to ∼ 1.10× 10−16 in rate (dTCB/dTCG) and primarily a yearly term of ∼ 30
ps in amplitude (i.e. corresponding to periodic rate variations of amplitude ∼
6×10−18). Besides the position dependent terms in c−2 which may reach several
microseconds, position dependent terms in c−4 (the last two terms in (7)) may
reach, for example, an amplitude of 0.4 ps (corresponding to ∼ 3 × 10−17 in
rate) in geostationary orbit.

To summarize, the IAU’1991 framework is sufficient for applications with an
uncertainty not smaller than about 2 × 10−16 in rate or, for quasi-periodic
terms, not smaller than a few parts in 1017 in rate amplitude. For a smaller
uncertainty, Resolution B1.5(2000) provides all the necessary information to
perform time transformations in the domain of validity specified in the Resolu-
tion (typically 5×10−18 in rate). Applications considered are e.g. future space
missions carrying high accuracy cold atoms clocks, the frequency comparison
of two clocks in two different locations in the solar system or the realization
of TCB from an Earth atomic time scale. Finally, when the accuracy specified
in Resolution B1.5 will be deemed insufficient, formulas extending those given
above should be re-derived from resolutions B1.3 and B1.4.

3.2 Resolution B1.9(2000): Re-definition of Terrestrial Time TT

Evaluating the contributions of the higher order terms in the metric of the
geocentric reference system (Resolution B1.3), it is found that the IAU’1991
framework with the metric of the form (1) is sufficient for time and frequency

IERS Technical Note No. 29 23



Comparison of “Old” and “New” Concepts: Time Session 4.1

applications in the GCRS in the light of present and foreseeable future clock
accuracies. Although TCG is the time coordinate of the GCRS, presently, the
time scale of reference for all practical matters on Earth is Terrestrial Time
TT or one of the scales realizing it and differing by some time offset (e.g.,
TAI, UTC, GPS-time). TT was defined in IAU Resolution A4 (1991) as: ”a
time scale differing from the Geocentric Coordinate Time TCG by a constant
rate, the unit of measurement of TT being chosen so that it agrees with the
SI second on the geoid”. According to the transformation between proper and
coordinate time, this constant rate is given by d(TT )/d(TCG) = 1− Ug/c2 =
1 − LG, where Ug is the gravity (gravitational + rotational) potential on the
geoid.

Some shortcomings appeared in this definition of TT when considering accu-
racies below 10−17. First, the uncertainty in determination of Ug is of order
1 m2 s−2 or slightly better (Groten, 2000). Second, even if it is expected that
the uncertainty in Ug improves with time the surface of the geoid is difficult to
realize (so that it is difficult to determine the potential difference between the
geoid and the location of a clock). Third, the geoid is, in principle, variable with
time. Therefore it was decided to desociate the definition of TT from the geoid
while maintaining continuity with the previous definition. The constant Lg was
turned into a defining constant with its value fixed to 6.969290134× 10−10 to
ensure the continuity with the current best estimation of UG/c2, from the value
UG = 62636856 m2 s−2 provided by the International Association of Geodesy
Special Commission 3 (Groten 2000).

Thus Resolution B1.9 will allow to use the full potential of future high accuracy
clocks on board terrestrial satellites to realize TT.

4 Some applications of the IAU’1991+2000 framework

All space geodesy techniques must be considered in the framework of general
relativity. The use of a relativistic model implies several steps e.g. as adapted
from (Wolf 2001):

1. to choose of an appropriate coordinate system and associated metric, in
which to model the technique measurement.

2. to transform all input quantities (measurements + other information e.g.
positions, velocities) into this coordinate system.

3. to obtain the results (usually by fitting parameters to measurements) in
this coordinate system.

4. to transform the results, if necessary, into proper quantities or into an-
other coordinate system.

The IAU’2000 framework allows to model unambiguously all space geodesy
and astrometry techniques using the BCRS and GCRS metric and coordinate
systems as defined in Resolution B1.3. It is always possible to define different
coordinates e.g. TT is defined as a time coordinate for the GCRS and TDB
may be defined as a time coordinate for the BCRS.

dTT/dTCG = 1− LG, dTDB/dTCB = 1− LB

The linear factor between the scale units of the different time coordinates is
of order U/c2 or v2/c2 i.e. 7 × 10−10 in the GCRS and 1.5 × 10−8 in the
BCRS. It is possible to use the metric of the GCRS or BCRS along with time
measurements (input quantities) expressed in another coordinate time but care
must be taken when interpreting the results, such as space coordinates or other
quantities (e.g. GM). For example, in VLBI analysis the input quantities are
generally in TT so that the space coordinates obtained are expressed in “TT
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units” in the GCRS (see section 4.1); Or the GM of the solar system bodies are
generally obtained from the determination of planetary ephemerides in “TDB
units” (see section 4.4). These quantities are related to the true GCRS (TCG)
or BCRS (TCB) quantities by the same scaling factors.

For the present time, the approach that seems universally used in space geodesy
and astrometry is to transform measurements (input quantities) to TT or TDB,
use them in models developed in BCRS or GCRS, and appropriately scale the
results, when necessary. One practical reason for this approach is that, in
most cases, a quantity of proper time may be directly identified to its value
after transformation to a coordinate quantity in TT or TDB. This procedure,
when used correctly, may be satisfactory for the present level of uncertainty
of the space geodesy or astrometry techniques (e.g. one to a few parts in 1010

in relative value). However it offers potential sources of error and confusion
and, at some level of uncertainty (possibly of order v3/c3 i.e. 10−12 in scale
or a fraction of µas in angle) it may no longer be adequate. This discussion is
purely qualitative and more study will be necessary to precise these possible
limitations.

In steps 2 and 4 defined above, one has to perform some of the following
tasks: transforming proper quantities to coordinate quantities; transforming
between different coordinate quantities; assigning a date (coordinate time) to
an event. In section 4.1 to 4.4 below, we review how these tasks are performed
for different space geodesy techniques and products and what influence the
underlying choice of coordinate system may have on the space geodesy results.
Finally in section 4.5 some details are provided on the transformation between
TCG and TCB, which is to be used to transform time coordinates when a
technique is modeled in the BCRS.

4.1 VLBI delay

The VLBI model (note that we consider here only the vacuum propagation
delay and also do not account for the desynchronization or desyntonization of
the station clocks) presented in the IERS Standards (1992) and in the draft
IERS Conventions (2000) relates the TCG coordinate interval dTCG = t2 − t1
to a baseline ~b expressed in GCRS coordinates.

t2−t1 =
∆Tgrav − K̂·~b

c [1− (1+γ)U
c2 − |~V⊕|2

2c2 − ~V⊕·~w2
c2 ]− ~V⊕·~b

c2 (1 + K̂ · ~V⊕/2c)

1 + K̂·(~V⊕+~w2)
c

(9)

It is not the purpose of this paper to present proper definitions of the quantities
used in this formula, which may be found in the mentioned documents. This
expression is presented only for evidencing that, with a relative uncertainty of
order v/c at least, a scaling in the time coordinate in the left part results in
the corresponding scaling of the baseline coordinates in the right part.

In principle, the observable quantities in the VLBI technique are recorded sig-
nals measured in the proper time of the station clocks. But, for practical
considerations, particularly because the station clocks do not produce ideal
proper time (they even are, in general, synchronized and syntonized to UTC to
some level, i.e. they have the same rate as the coordinate time TT), the VLBI
delay produced by a correlator center may be considered to be, within the un-
certainty of the model, equal to the TT coordinate time interval dTT between
two events: the arrival of a radio signal from the source at the reference point
of the first station, and the arrival of the same signal at the reference point of
the second station. In the following, two different approaches are presented to
interpret the VLBI delay which use two different geocentric coordinate systems
with either TCG or TT as coordinate time.
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In the first approach, which could be termed “fully IAU compliant”, we con-
sider that all quantities have been transformed to GCRS coordinate quantities
i.e. with TCG as a coordinate time. In particular, the VLBI delay obtained
from the correlator would have to be scaled to a TCG coordinate interval
dTCG = dV LBI/(1 − LG). The results of the VLBI analysis, i.e. baseline ~b
from formula (9) would then be directly obtained in terms of the spatial coor-
dinates of the GCRS, as is recommended by the IUGG Resolution 2 (1991) and
IAU Resolution B6 (1997), i.e. one would obtain coordinates that are termed
“consistent with TCG”, here denoted xTCG.

In the second approach, if the VLBI model (9) is used with VLBI delays as
directly provided by correlators (i.e. equivalent to a TT coordinate interval dTT

without transformation to TCG), the baseline ~b is not expressed in GCRS but
in some other coordinate system. The transformation of these coordinates to
GCRS reduces, at the level of uncertainty considered here, to a simple scaling.
The space coordinates resulting from the VLBI analysis (here denoted xV LBI)
are then termed “consistent with TT” and the coordinates recommended by
the IAU and IUGG resolutions, xTCG, may be obtained a posteriori by xTCG =
xV LBI/(1− LG).

4.2 Laser ranging to a satellite or to the Moon

In a reference system centered on an ensemble of masses, as considered in the
IAU framework, if a light signal is emitted from x1 at coordinate time t1 and
is received at x2 at coordinate time t2, the coordinate time of propagation is
given by

t2 − t1 =
|~x2(t2)− ~x1(t1)|

c
+

∑
J

2GMJ

c3
ln

(
rJ1 + rJ2 + ρ

rJ1 + rJ2 − ρ

)
(10)

where the sum is carried out over all bodies J with mass MJ centered at xJ

and where rJ1 = |~x1 − ~xJ |, rJ2 = |~x2 − ~xJ | and ρ = |~x2 − ~x1|.
Because the space coordinates xi are generally determined from the same data
set through the equations of motion of the satellite or of the Moon, it is not so
trivial to directly evaluate the impact of the choice of the reference system on
the model given by (10). Nevertheless it is possible to specified the coordinate
transformations that are to be used in steps 2/4 defined above. The IAU’1991
formalism is sufficient to obtain (10) and to perform the necessary coordinate
transformations (it is however not sufficient for the equations of motion, but
this subject is not treated here).

For near-Earth satellites (SLR), practical analysis is done in the geocentric
frame of reference, and the only body to be considered in the summation of (10)
is the Earth (Ries et al., 1988). Measurement of the time of flight of the laser
signal is obtained with a clock on Earth, which rate is usually close to that of TT
(or corrected to that of TT). The coordinate interval t2− t1 is therefore usually
taken as a TT interval and the GM value and space coordinates obtained from
the dynamical analysis are termed to be “in TT units”.

For lunar laser ranging (LLR), which is formulated in the solar system barycen-
tric reference frame, the Sun and the Earth must be taken into account in the
summation of (10), with the contribution of the Moon being of order 1 ps (i.e.
about 1 mm for a return trip). Moreover, in the analysis of LLR data, the
body-centered coordinates of an Earth station and a lunar reflector should be
transformed into barycentric coordinates. The transformation of ~r, a geocen-
tric position vector expressed in the GCRS, to ~rb, the vector expressed in the
BCRS, is provided with an uncertainty lower than 1 mm by the equation
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~rb = ~r

(
1− U

c2

)
− 1

2

( ~V · ~r
c2

)
~V (11)

where U is the gravitational potential at the geocenter (excluding the Earth’s
mass) and ~V is the barycentric velocity of the Earth. A similar equation applies
to the selenocentric reflector coordinates. The time of flight measured by the
Earth clock has to be transformed into the corresponding interval of TCB and
time tags of measurements expressed in UTC have to be transformed to TCB.

The actual practice of LLR analysis centers is not studied here.

4.3 Scale of ITRF2000

The scale of ITRF2000 is based on “a weighted average of VLBI and most
consistent SLR solutions” (draft IERS Conventions 2000). All VLBI analysis
centers submitting to the IERS have used the second approach described in
section 4.1 and, therefore, the VLBI space coordinates are of the type xV LBI .
Similarly all SLR analysis centers perform their analysis using TT as a coordi-
nate time in the geocentric system and presumably provide space coordinates
“consistent with TT”. For continuity, a ITRF workshop (November 2000)
decided to continue to use this approach, making it the present conventional
choice for submission to the IERS. At the ITRF workshop, it was also decided
that the coordinates should not be re-scaled to xTCG for the computation of
ITRF2000 (see IERS Conventions 2000) so that the scale of ITRF2000 does
not comply with IAU and IUGG resolutions. Space coordinates “consistent
with TCG” may be obtained by xTCG = xITRF2000 × (1 + LG).

Note that, contrary to ITRF2000, previous realizations ITRF94 to ITRF97
had been scaled to be in compliance with IAU and IUG resolutions (see IERS
Conventions 2000).

Note also that other differences exist between the conventions used to generate
ITRF2000 and IAU/IUGG resolutions. They concern mainly the treatment of
the permanent tide and the geocenter motion. The IERS Conventions 2000
will provide the formulas to transform coordinates expressed in ITRF2000 to
the coordinates that would be obtained in a coordinate system fully compliant
with IAU/IUGG resolutions.

4.4 Solar system Ephemerides

The metric tensor of the BCRS, as defined in the IAU’2000 resolutions, allows
one to derive (see Soffel et al. 2002) the Einstein-Infeld-Hoffman equations of
motion which have been used since the 70s to construct the JPL numerical
ephemerides of planetary motion of the DE series (Newhall et al. 1983). These
planetary and lunar ephemerides have been recommended for the successive
IERS Conventions. For the Conventions 2000, these are DE405 and the Lunar
Ephemeris LE405, available on a CD from the publisher, Willmann-Bell. See
also the website http://ssd.jpl.nasa.gov/iau-comm4; click on the button,
“Where to Obtain Ephemerides”.

Like for all ephemerides in the DE series, the time scale for DE405/LE405 is
not TCB but rather, a coordinate time, Teph, which is related to TCB by an
offset and a rate. Because Teph varies with each realization, it can be identified
as being essentially the same as, but not exactly equivalent to, TDB (and prior
to 1976, ET) (Standish 1998). The GM values of the solar system bodies and
the space coordinates obtained from the dynamical analysis are termed to be
“in TDB units”.
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4.5 Transformation between TCG and TCB

The relation between TCG and TCB is given by (2) in the IAU’1991 framework
and by (7) in the IAU’2000 framework. We consider here only the location-
independent part of (2), i.e. the c−2 term of the relation between TCG and TCB
at the geocenter, noted (TCB − TCG)c−2(Geo, TT ). It is the integral in (2),
i.e. the first integral in (7), and may be computed, through (8), from the Solar
system ephemerides as an integral of the argument Teph of the ephemerides.
This integral in Teph has been termed “time ephemeris” and its current con-
ventional realization is TE405 (Irwin and Fukushima, 1999). It is based on
the JPL ephemerides DE405/LE405 (see previous section) and is available in a
Chebyshev form at ftp://astroftp.phys.uvic.ca/pub/irwin/tephemeris.
An analytic formula approximating TE405 to 0.5 ns RMS over 1600-2200 is
in preparation (Fukushima, 2002, personal communication). While the time
argument of TE405 is, strictly speaking, Teph, it may be replaced by TT for
computing TCB-TCG because the error in doing so is at the ps level.

Actually TE405, as it is computed and distributed, here noted TE405(TT ),
does not provide directly the integral in Teph, defined above, but this integral
minus a linear term so that

(TCB−TCG)c−2(Geo, TT ) = (TE405(TT )+∆LC×(TT−TT0))/(1−LB) (12)

where ∆LC=1.48082685594×10−8 and where TT0 corresponds to JD 2443144.5
TAI. The uncertainty is estimated to be of order 1 × 10−17 in rate and a few
ns in periodic terms over 1600-2200.

Analytical formulas which had been developed to compute the transformation
TDB-TDT before 1991 may still be used to compute the TCB-TCG relation.
Among these formulas, one version of the formula developped by (Fairhead and
Bretagnon, 1990) has been made available with the IERS Conventions 1996
(ftp://maia.usno.navy.mil/conventions/chapter11/fbl.f). It is refer-
enced in (Irwin and Fukushima, 1999) as FB3B and they have shown that
FB3B(TT )− FB3B(TT0) is equivalent to TE405(TT ) to within ±15ns over
1600-2200 and may be used in (12) to this level of uncertainty,

To obtain the full transformation (7) at the geocenter one should also take
into account terms in c−4, as indicated in section 3.2. For completeness, on
may add a small (c−2) contribution from the asteroids which is not included in
(TCB−TCG)c−2(Geo, TT ) as computed in (12), an estimate of which is given
in (Irwin and Fukushima, 1999). Finally

(TCB−TCG)(Geo, TT ) = (TE405(TT )+LC×(TT −TT0))/(1−LB) (13)

where LC = 1.48082686741 × 10−8. To obtain the full transformation (7) for
any event, one should also take into account position dependent terms in c−2

(position dependent terms in c−4 being generally negligible), as indicated in
section 3.2.
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