# Securing the Tor Network

Mike Perry
Riverbed Technology
Black Hat USA 2007
Defcon 2007



#### Who am I?

- Volunteer Tor developer
- Forward+Reverse engineer
- Employed by Riverbed (shameless plug)
  - Leading manufacturer of WAN accelerators
  - 20-200X (not percent. X) improvement of CIFS
  - 5-50X improvement of MAPI/Exchange
  - Protocol independent data reduction
  - > 90% head to head win rate
  - Outselling Cisco accelerators 2:1

## Preaching to the Choir

- Don't yet understand consequences of having lives+thoughts archived by IP, bought and sold
- Google may not be (that) evil, but what about ISPs, other search engines?
- Information can come back to bite in unexpected ways
  - Divorce cases
  - Lawsuits
  - Catalogs/Spam

#### What is Tor?

- Volunteer run relay network designed for privacy, anonymity, and censorship resistance.
- Client acts as SOCKS proxy
- Relays TCP connections ("streams")
  - Multiplexed on encrypted paths ("circuits")
- Circuits multiplexed over node-to-node TLS/SSL
- Circuits route through 3 nodes
  - "Guard", "relay", "exit"

## Tor Routing





#### Classes of Attack

#### Passive attacks

- Packet and connection timing correlation
- Fingerprinting of traffic/usage patterns
- "Intersection Attacks" of multiple attributes of users

#### Active attacks

- Lying about bandwidth to get more traffic
- Failing circuits to bias node selection
- Modifying application layer traffic at exit

#### Position of Attack

#### Internal

- Node operator
- Can differentiate circuits at guard and relay.
- Able to differentiate streams per circuit at exit

#### External

- ISP or Echelon-style adversary
- Assumed to be unable to see inside TLS streams
- Likely frustrated to a large degree by running Tor as both node and client

#### Attack Points



#### Passive Attacks



#### Active Attacks



# Application Attacks



# Questions/Intermission 1

Questions so far?

## Approaches to Security

- Verify node operators (Ha!)
- Path selection hacks
- "Tor up from the floor up"
- Improve network speed and usability
- Scan nodes for modification/reliability
- Secure the applications (different threat model)

#### Path Selection Hacks

- /16 hack: No two nodes from same /16 netmask
  - Many ISPs have disjoint IP ranges...
- Guard nodes
  - Chosen from top 50% uptime, top 50% bandwidth
  - Foil "repetitive fetch" application layer attacks
  - Reduces long-term fingerprinting potential
  - Without rotation, can deter intimidation attacks
  - Difficult to do right. Typically still rotate
    - Essentially a time-tradeoff of risk

#### Tor Routers and LiveCDs

- JanusVM, Anonym.OS, xBVM
  - "Tor up from the floor up"
  - Address application-level attacks to bypass Tor
  - Block UDP
- Major flaw: Circuit reuse -> app correlation
  - AV software update, other ID-based software updates
  - AIM, ssh, email usage of different "nyms"
  - Media players checking recommended music, etc etc

## Improving Speed and Usability

- Key component of Tor security: Large userbase
  - Users have been harassed because of small anonymity sets! Whistleblower/Blogger scenario can be unsafe!
- Users want speed and ease of use
  - Many do not need as much anonymity
  - Two hop proposal (semi-controversial)
  - Intelligent path selection
  - Ensure network is evenly balanced and reliable

## Centralized Network Scanning

- Tor control port is fun stuff
- Snakes on a Tor and TorFlow
  - Verifies md5 sums of googled URLs
  - Also verifies node reliability+bandwidth
- Works against incompetent+blanket adversaries
  - Actually found some broken+malicious nodes
- Does not work against selective adversaries
- Vulnerable to detection

### Scanning Methods and Weaknesses



### Stuff We Found Anyway

- 1. Chinese ISP doing SSL MITM
- 2. Popup blocking! :)
- 3. Google Analytics Blocking! <3
- 4. DNS Spoofing
- 5. SSH+SSL MITM
- 6. Overloaded nodes
- 7. Balancing issues :(

## Decentralized Network Scanning

#### • Client-based:

- Use reliability averages from TorFlow
- Alert user if guard node fails more than X% circuits
- Measure observed bandwidth/latency of nodes

#### Node-based:

- Gather statistics on average capacity and queue lengths to peers, compare to node rankings
- Report major deviations or use as balancing feedback
   loop.

## Passive Client+Node Based Scanning



### Balancing Issues

- Tor network is unbalanced
  - Guard node issues (bug #440)
  - Bandwidth clipping
- Detectable during scans
  - Top 5% of nodes have room for 7X more capacity
  - Next 10% of nodes have room for 3X more capacity
  - High circuit failure rates that drop off at 50% mark
  - High extend times that drop off at 50% mark

## Scanning Methodology

- Divide Tor network into 5-percentile segments
  - About 80 nodes each
- Circuit Scanning
  - Build 500 three hop paths for each range
  - Fetch ~20k file on each path
  - Count failures, track extend times
- Bandwidth Scanning
  - Fetch 512k file 200 times over two hop paths
  - Average the observed bandwidth for each range

# Bandwidth (Mis)Balancing







# Side Effects of Unbalancing





## Probability of Existing Tor Usability

- 70% Chance of choosing one unbalanced guard
  - Tor goal: 3 guards
- .7x.7x.7 = 34% chance of 3 unbalanced guards
  - Tor is likely unbearable for 34% of users
- C(3,2)x.7x.7x.3 = 44% chance of 2/3 bad guards
- C(3,1)x.7x.3x.3 = 19% chance of 1/3 bad guards
- .3x.3x.3 = 3% chance of 3/3 usable guards

## Other Load Balancing Factors

- Insane exit policies
  - Allowing bittorrent, p2p, smtp...
- High uptime vs low uptime
- Scarce guard bandwidth
  - Avoid guards for relay choice
- Directory vs Node traffic
- Time of day
- Location

# Questions/Intermission 2

Questions so far?

## Securing the Application Layer

- Tor has a superset of the threat model most applications are written for.
  - No UDP!
  - Unique identifiers are bad
  - Proxy settings must be sacrosanct
  - Location information must not be transmitted
  - Updates are dangerous. Hostile network.

#### Tor's Web Attack Profile

- 1. Bypassing proxy settings
- 2. Correlation of Tor vs Non-Tor
- 3. History disclosure
- 4. Location information
- 5. Misc Anonymity set reduction
- 6. History records

#### Plugin Wall of Shame

- Flash v9
- Quicktime v7.2
  - RTSP proxy (does not apply to web streams)
- Windows Media Player v10.000000.4040
  - Has proxy settings. Even has a "No Bypass" option.
    - Still Ignores them
- Adobe Acrobat Reader Plugin v8.1
  - Leaks DNS
- mplayerplug-in

## Solution: Improved TorButton

- Disable plugins while Tor is enabled
- Isolate dynamic content per Tor load state
- Cookie jars/cookie clearing
- Cache management
- History management
- User agent spoofing during Tor
- Timezone+Locale spoofing

#### TorButton Demo

- http://gemal.dk/browserspy/basic.html
- http://gemal.dk/browserspy/css.html
- http://gemal.dk/browserspy/date.html
- http://gemal.dk/browserspy/plugins.html
- http://metasploit.com/research/misc/decloak/index
- http://ha.ckers.org/weird/CSS-history.cgi
- http://www.tjkdesign.com/articles/css%20pop%20

## Interesting Technical Details

- Context issues
- Tab tagging
- XPCOM hooking and XPCOM policies
- Javascript hooking

### Final Thoughts

- Tor security != Internet security
  - Superset, actually
  - Adversary has different goals
  - Many apps do not consider privacy vulnerabilities as real vulnerabilities

#### Credits+Contributions

Scott Squires (Original TorButton Author)

Collin Jackson (History blocking+Cookie jars)

Johannes Renner (TorFlow contributions+research)

Nick & Roger (Advice, Tor in general)

Nitin, Dave, Thom (Advice, Moral Support)

## "What can I do to help Tor?"

- Extra bandwidth? Run a node!
  - See conference CD for Linux 'tc' prioritization script
  - No need to impact your own traffic flows
- Post patches/plugins to your favorite apps to protect against info disclosure.
  - Work to raise awareness that privacy issues should be considered as part of security measures