
New Kid on the Web: 
A Study on the Prevalence of 

WebAssembly in the Wild
Marius Musch

TU Braunschweig

Together with Christian Wressnegger, Martin Johns, and Konrad Rieck



The native Web
Previous attempts at native performance

▪ Adobe’s Flash
▪ Microsoft’s ActiveX
▪ Google’s Native Client

asm.js
▪ Subset of JavaScript with special optimizations
▪ Type consistency and manual memory management
▪ Faster execution, but parsing still slow

2



WebAssembly (Wasm)
Introduced March 2017

▪ Supported by all major browsers, even on iOS and Android
▪ Faster transmission, parsing and execution than JS

Low-level bytecode language
▪ Standardized, platform-independent
▪ Executed in stack-based virtual machine

=> Compile any LLVM-supported language to the Web

3



Using Wasm modules
const obj = {
imports: { 
imported_func: function (arg) { console.log(arg); } 

}
}

const wasm = await WebAssembly.
instantiateStreaming(fetch('example.wasm'), obj);

let result = wasm.instance.exports.factorial(13);

4



WebAssembly in the Wild

5



Prevalence
Data collection

▪ Alexa Top 1 million sites + three random subpages
▪ In total about 3.5M pages

1950 Wasm modules on 1639 sites
▪ 150 unique samples
▪ Most popular module: On 346 sites
▪ Only seen once: 87 modules

6



Extent of usage
▪ 8 bytes – 25.3 MB module size

▪ Wasm median 99.7 KB
▪ JS median 2.79 MB

7



Applications of WebAssembly

8



Game
▪ 44 unique samples on 58 sites

9



Custom, Library and Test
Custom

▪ 17 unique samples on 14 sites
▪ Example programs, Background animations, ...

Library
▪ 25 unique samples on 636 sites
▪ Draco: Decompress 3D meshes

Test
▪ 2 unique samples on 244 sites

var a = new WebAssembly.Module(Uint8Array.of(0,97,115,109,1,0,0,0));
return new WebAssembly.Instance(a) instanceof WebAssembly.Instance;

10



Mining
▪ 48 unique samples on 913 sites

11



Mining
▪ 48 unique samples on 913 sites

12



Obfuscation
▪ 10 unique samples on 4 sites

▪ Code embedded in the Wasm memory section

<script>
var popunder = {expire: 12,
url: ’//hook-ups-here.com/?u=8l3pd0x&o=4gwkpzn&t=all’};
</script>
<script src=’//hook-ups-
here.com/js/popunder.js’></script>

13



Overall

14



The Future of Malicious 
Wasm

15



Possible progress

▪ Embedded HTML/JavaScript code

▪ Loader in Wasm

▪ Full implementation in Wasm

▪ Fully intertwined code

16



Conclusion
▪ Exciting new feature for the Web platform - but also for

attackers

▪ Currently, over 50% of the sites misuse it for cryptojacking

▪ Enables novel obfuscation techniques

▪ Effective defense mechanisms will need to incorporate
WebAssembly analysis

17



Thanks for your attention :)

Questions?

Contact
▪ Mail: m.musch@tu-bs.de
▪ Twitter: @m4riuz


