

Side-Channel Leaks in Web Applications: a Reality Today, a Challenge Tomorrow
Shuo Chen

Microsoft Research
Microsoft Corporation
Redmond, WA, USA

shuochen@microsoft.com

Rui Wang, XiaoFeng Wang, Kehuan Zhang
School of Informatics and Computing

Indiana University Bloomington
Bloomington, IN, USA

[wang63, xw7, kehzhang]@indiana.edu

Abstract– With software-as-a-service becoming mainstream,
more and more applications are delivered to the client through
the Web. Unlike a desktop application, a web application is
split into browser-side and server-side components. A subset of
the application’s internal information flows are inevitably
exposed on the network. We show that despite encryption, such
a side-channel information leak is a realistic and serious threat
to user privacy. Specifically, we found that surprisingly
detailed sensitive information is being leaked out from a
number of high-profile, top-of-the-line web applications in
healthcare, taxation, investment and web search: an
eavesdropper can infer the illnesses/medications/surgeries of
the user, her family income and investment secrets, despite
HTTPS protection; a stranger on the street can glean
enterprise employees' web search queries, despite WPA/WPA2
Wi-Fi encryption. More importantly, the root causes of the
problem are some fundamental characteristics of web
applications: stateful communication, low entropy input for
better interaction, and significant traffic distinctions. As a
result, the scope of the problem seems industry-wide. We
further present a concrete analysis to demonstrate the
challenges of mitigating such a threat, which points to the
necessity of a disciplined engineering practice for side-channel
mitigations in future web application developments.

Keywords– side-channel-leak; Software-as-a-Service (SaaS); web
application; encrypted traffic; ambiguity set; padding

I. INTRODUCTION

Regarding the pseudonyms used in the paper
This paper reports information leaks in several real-
world web applications. We have notified all the
affected parties of our findings. Some requested us to
anonymize their product names. Throughout the paper,
we use superscript “A” to denote such pseudonyms, e.g.,
OnlineHealthA, OnlineTaxA, and OnlineInvestA.

The drastic evolution in web-based computing has
come to the stage where applications are increasingly
delivered as services to web clients. Such a software-as-a-
service (SaaS) paradigm excites the software industry.
Compared to desktop software, web applications have the
advantage of not requiring client-side installations or
updates, and thus are easier to deploy and maintain. Today
web applications are widely used to process very sensitive
user data including emails, health records, investments, etc.
However, unlike its desktop counterpart, a web application
is split into browser-side and server-side components. A
subset of the application’s internal information flows (i.e.,

data flows and control flows) are inevitably exposed on the
network, which may reveal application states and state-
transitions. To protect the information in critical
applications against network sniffing, a common practice is
to encrypt their network traffic. However, as discovered in
our research, serious information leaks are still a reality.

For example, consider a user who enters her health
profile into OnlineHealthA by choosing an illness condition
from a list provided by the application. Selection of a certain
illness causes the browser to communicate with the server-
side component of the application, which in turn updates its
state, and displays the illness on the browser-side user
interface. Even though the communications generated
during these state transitions are protected by HTTPS, their
observable attributes, such as packet sizes and timings, can
still give away the information about the user’s selection.

Side-channel information leaks. It is well known that
the aforementioned attributes of encrypted traffic, often
referred to as side-channel information, can be used to
obtain some insights about the communications. Such side-
channel information leaks have been extensively studied for
a decade, in the context of secure shell (SSH) [15], video-
streaming [13], voice-over-IP (VoIP) [23], web browsing
and others. Particularly, a line of research conducted by
various research groups has studied anonymity issues in
encrypted web traffic. It has been shown that because each
web page has a distinct size, and usually loads some
resource objects (e.g., images) of different sizes, the attacker
can fingerprint the page so that even when a user visits it
through HTTPS, the page can be re-identified [7][16]. This
is a concern for anonymity channels such as Tor [17], which
are expected to hide users’ page-visits from eavesdroppers.
 Although such side-channel leaks of web traffic have
been known for years, the whole issue seems to be neglected
by the general web industry, presumably because little
evidence exists to demonstrate the seriousness of their
consequences other than the effect on the users of
anonymity channels. Today, the Web has evolved beyond a
publishing system for static web pages, and instead,
becomes a platform for delivering full-fledged software
applications. The side-channel vulnerabilities of encrypted
communications, coupled with the distinct features of web
applications (e.g., stateful communications) are becoming
an unprecedented threat to the confidentiality of user data
processed by these applications, which are often far more
sensitive than the identifiability of web pages studied in the
prior anonymity research. In the OnlineHealthA example,

different health records correspond to different state-
transitions in the application, whose traffic features allow
the attacker to effectively infer a user’s health information.
Despite the importance of this side-channel threat, little has
been done in the web application domain to understand its
scope and gravity, and the technical challenges in
developing its mitigations.

 Our work. In this paper, we report our findings on the
magnitude of such side-channel information leaks. Our
research shows that surprisingly detailed sensitive user data
can be reliably inferred from the web traffic of a number of
high-profile, top-of-the-line web applications such as
OnlineHealthA, OnlineTaxA Online, OnlineInvestA and
Google/Yahoo/Bing search engines: an eavesdropper can
infer the medications/surgeries/illnesses of the user, her
annual family income and investment choices and money
allocations, even though the web traffic is protected by
HTTPS. We also show that even in a corporate building that
deploys the up-to-date WPA/WPA2 Wi-Fi encryptions, a
stranger without any credential can sit outside the building
to glean the query words entered into employees’ laptops, as
if they were exposed in plain text in the air. This enables the
attacker to profile people’s actual online activities.

More importantly, we found that the root causes of the
problem are certain pervasive design features of Web 2.0
applications: for example, AJAX GUI widgets that generate
web traffic in response to even a single keystroke input or
mouse click, diverse resource objects (scripts, images, Flash,
etc.) that make the traffic features associated with each state
transition distinct, and an application’s stateful interactions
with its user that enable the attacker to link multiple
observations together to infer sensitive user data. These
features make the side-channel vulnerability fundamental to
Web 2.0 applications.

Regarding the defense, our analyses of real-world
vulnerability scenarios suggest that mitigation of the threat
requires today’s application development practice to be
significantly improved. Although it is easy to conceive
high-level mitigation strategies such as packet padding,
concrete mitigation policies have to be specific to individual
applications. This need of case-by-case remedies indicates
the challenges the problem presents: on one hand, detection
of the side-channel vulnerabilities can be hard, which
requires developers to analyze application semantics, feature
designs, traffic characteristics and publicly available domain
knowledge. On the other hand, we show that without
finding the vulnerabilities, mitigation policies are likely to
be ineffective or incur prohibitively high communication
overheads. These technical challenges come from the fact
that sensitive information can be leaked out at many
application states due to the stateful nature of web
applications, and at different layers of the SaaS
infrastructure due to its complexities. Therefore, effective
defense against the side-channel leaks is a future research
topic with strong practical relevance.

In addition, we realized that enforcing the security
policies to control side-channel leaks should be a joint work
by web application, browser and web server. Today’s
browsers and web servers are not ready to enforce even the
most basic policies, due to the lack of cross-layer
communications, so we designed a side-channel control
infrastructure and prototyped its components as a Firefox
add-on and an IIS extension, as elaborated in Appendix C.

 Contributions. The contributions of this paper are
summarized as follows:
• Analysis of the side-channel weakness in web

applications. We present a model to analyze the side-
channel weakness in web applications and attribute the
problem to prominent design features of these
applications. We then show concrete vulnerabilities in
several high-profile and really popular web applications,
which disclose different types of sensitive information
through various application features. These studies lead
to the conclusion that the side-channel information
leaks are likely to be fundamental to web applications.

• In-depth study on the challenges in mitigating the threat.
We evaluated the effectiveness and the overhead of
common mitigation techniques. Our research shows
that effective solutions to the side-channel problem
have to be application-specific, relying on an in-depth
understanding of the application being protected. This
suggests the necessity of a significant improvement of
the current practice for developing web applications.

 Roadmap. The rest of the paper is organized as follows:
Section II surveys related prior work and compares it with
our research; Section III describes an abstract analysis of the
side-channel weaknesses in web applications; Section IV
reports such weaknesses in high-profile applications and our
techniques that exploit them; Section V analyzes the
challenges in mitigating such a threat and presents our
vision on a disciplined development practice for future web
applications; Section VI concludes the paper.

II. RELATED WORK
Side channel leaks have been known for decades. A

documented attack is dated back to 1943 [22]. Side-channel
leaks are discussed broadly in many contexts, not
necessarily about encrypted communications. Information
can be leaked through electromagnetic signals, shared
memory/registers/files between processes, CPU usage
metrics, etc. Researchers have shown that keystroke
recoveries are feasible due to keyboard electromagnetic
emanations [18]. In Linux, the stack pointer ESP of a
process can be profiled by an attack process, and thus inter-
keystroke timing information can be estimated in the cross-
process manner [24]. Also related is the research on the co-
resident-VM problem within commercial cloud computing
infrastructures: Ristenpart et al demonstrated that an
Amazon EC2 user can intentionally place a VM on the same

physical machine as another customer’s VM, which allows
the former to estimate the cache usage, traffic load and
keystroke timing of the latter [12].

In the context of encrypted communications, it has been
shown that the side-channel information, such as packet
timing and sizes, allows a network eavesdropper to break
cryptographic systems or infer keystrokes in SSH, spoken
phrases in VoIP and movie titles in video-streaming systems.
Brumley et al showed a timing attack against OpenSSL that
extracts RSA secret keys [2]. Song et al showed that
because SSH is an interactive remote shell service and
typing different keystroke-combinations naturally produces
slight timing characteristics, a network eavesdropper can
build a Hidden Markov Model (HMM) to infer the
keystrokes [15]. When applied to guess a password, the
attack achieves a 50-time speedup compared to a brute-force
guessing attack, i.e., more than 6-bit reduction of the
password’s entropy. Wright et al studied the side-channel
leak in Voice-over-IP systems that use variable-bit-rate
encoding schemes [23]. In their experiment, simulated
conversations were constructed by randomly selecting
sentences from a standard corpus containing thousands of
spoken sentences. They tried to determine if a target
sentences, also from the corpus, exists in each conversation,
and achieved 0.5 recall and 0.5 precision, i.e., when a target
sentence is in a conversation, the attack algorithm says yes
with a 0.5 probability; when the attack algorithm says yes,
there is a 0.5 probability that the target sentence is in the
conversation. Saponas et al showed that the side-channel
leak from Slingbox Pro, a device for encrypted video-
streaming, allows the attacker to determine the title of the
movie being played [13].

In the context of encrypted web communications,
researchers have recognized the web anonymity issue for
many years, i.e., the attacker can fingerprint web pages by
their side-channel characteristics, then eavesdrop on the
victim user’s encrypted traffic to identify which web pages
the user visits. Wagner and Schneier briefly cited their
personal communication with Yee in 1996 about the
possibility of using this idea against SSL/TLS [19]. An
actual attack demo was described in a course project report
in 1998 by Cheng et al [6]. Sun et al [16] and Danezis [7]
both indicated that this type of side-channel attack defeats
the goal of anonymity channels, such as Tor, MixMaster and
WebMixes. Sun et al’s experiment showed that 100,000
web pages from a wide range of different sites could be
effectively fingerprinted. Besides SSL/TLS, Bissias et al
conducted a similar experiment on WPA and IPSec [4].

Our work is motivated by these anonymity studies, but
is different in a number of major aspects: (1) our study
focuses on web applications and the sensitive user data
leaked out from them, rather than the identifiability of
individual web pages; (2) application state-transitions and
semantics are the focal point of our analyses, while the prior
studies are agnostic to them; (3) our target audience is the
developers of sensitive web applications, while the natural

audience of the web-anonymity research is the providers of
anonymity channels, as their objective is directly confronted
by the anonymity issue studied in the prior research.

III. FUNDAMENTALS OF WEB APPLICATION
INFORMATION LEAKS

Conceptually, a web application is quite similar to a
traditional desktop application. They both work on input
data from the user or the file system/database, and their
state-transitions are driven by their internal information
flows (both data flows and control flows). The only
fundamental difference between them is that a web
application’s input points, program logic and program states
are split between the browser and the server, so a subset of
its information flows must go through the network. We refer
to them as web flows. Web flows are subject to
eavesdropping on the wire and in the air, and thus often
protected by HTTPS and Wi-Fi encryptions.

The attacker’s goal is to infer sensitive information
from the encrypted web traffic. In other words, an attack can
be thought of as an ambiguity-set reduction process, where
the ambiguity-set of a piece of data is the set containing all
possible values of the data that are indistinguishable to the
attacker. How effectively the attacker can reduce the size of
the ambiguity-set quantifies the amount of information
leaked out from the communications – if the ambiguity-set
can be reduced to 1/ℜ of its original size, we say that log2ℜ
bits of entropy of the data are lost. Similar modeling of
inference attack was also discussed in prior research, for
example, elimination of impossible traces in [8].

Following we present a model of web applications and
their side-channel leaks. The objective is to make explicit
the key conditions under which application data can be
inferred. We then correlate these conditions to some
pervasive properties of web applications.

A. Model Abstraction
A web application can be modeled as a quintuple (S, Σ,

δ, f, V), where S is a set of program states that describe the
application data both on the browser, such as the DOM
(Document Object Model) tree and the cookies, and on the
web server. Here we treat back-end databases as an external
resource to a web application, from which the application
receives inputs. Σ is a set of inputs the application accepts,
which can come from the user (e.g., keystroke inputs) or
back-end databases (e.g., the account balance). A transition
from one state to another is driven by the input the former
receives, which is modeled as a function δ: S × Σ→ S. A
state transition in our model always happens with web flows,
whose observable attributes, such as packet sizes, number of
packets, etc., can be used to characterize the original state
and its inputs. This observation is modeled as a function f: S
× Σ→ V, where V is a set of web flow vectors that describe
the observable characteristics of the encrypted traffic. A web
flow vector v is a sequence of directional packet sizes, e.g., a

50-byte packet from the browser and a 1024-byte packet
from the server are denoted by “(50Î, 1024)”.

B. Inference of Sensitive Inputs
The objective of the adversary can be formalized as

follows. Consider at time t an application state st to accept
an input (from the user or the back-end database). The input
space is partitioned into k semantically-disjoined sets, each
of which brings the application into a distinct state reachable
from st. For example, family incomes are often grouped into
different income ranges, which drive a tax preparation
application into different states for different tax forms. All k
such subsequent states form a set St+1⊂S. The attacker
intends to figure out the input set containing the data that the
application receives in st, by looking at a sequence of
vectors (vt , vt+1, … , vt+n-1) caused by n consecutive state
transitions initiated from st . This process is illustrated in
Figure 1. It is evident that a solution to this problem can be
applied recursively, starting from s0, to infer the sensitive
inputs of the states that the web application goes through.

Before observing the vector sequence, the attacker has
no knowledge about the input in st: all the k possible input
sets constitute an ambiguity set of size k. Upon seeing vt,
the attacker knows that only transitions to a subset of St+1,
denoted by Dt+1, can produce this vector, and therefore
infers that the actual input can only come from k/α sets in
the input space, where α∈[1,k) is the reduction factor of this
state transition. The new ambiguity set Dt+1 can further be
reduced by the follow-up observations (vt+1, … , vt+n-1).
Denote the ratio of this reduction by β, where β∈[1,∞). In
the end, the attacker is able to identify one of the k/(αβ)
input sets, which the actual input belongs to.

qt+1,2
qt+1,1

qt+1,3 qt+1,k-1 qt+1,k
…

qt+2,2
qt+2,1

qt+2,3 qt+2,4 qt+2,5 qt+2,6

st

δ1
δ2 δ3 δk-1 δk

Dt+1vt

vt+1

…

St+1

St+2 vt+2
vt+n-1

Figure 1: Ambiguity set reduction

C. Threat Analysis over Web Application Properties
The above analysis demonstrates the feasibility of side-

channel information leaks in web applications. The
magnitude of such a threat to a specific web application,
however, depends on the size of the input space of the
sensitive data and the reduction factors incurred by its state
transitions. The former determines whether it is possible for
the attacker to efficiently test input values to identify those
that produce the web traffic matching the observed attribute
vectors. The latter indicates the amount of the information
the attacker can learn from such observations. In this section,
we show that some prominent features of today’s web
application design often lead to low entropy inputs and large
reduction factors, making the threat realistic.

Low entropy input for better interactions. State
transitions of a web application are often caused by the
input data from a relatively small input space. Such a low-
entropy input often come as a result of the increasing use of
highly interactive and dynamic web interfaces, based upon
the techniques such as AJAX (asynchronous JavaScript and
XML). Incorporation of such techniques into the GUI
widgets of the application makes it highly responsive to user
inputs: even a single mouse click on a check box or a single
letter entered into a text box could trigger web traffic for
updating some DOM objects within the application’s
browser-side interface. Examples of such widgets include
auto-suggestion or auto-complete that populates a list of
suggested contents in response to every letter the user types
into a text box, and asynchronously updating part of the
HTML page according to every mouse click. Such widgets
have been extensively used in many popular web
applications hosted by major web content providers like
Facebook, Google and Yahoo. They are also supported by
mainstream JavaScript libraries for web application
development: Appendix A lists 14 such libraries. Moreover,
the interfaces of web applications are often designed to
guide the user to enter her data step by step, through
interacting with their server-side components. Those
features cause the state transitions within a web application
to be triggered by even a very small amount of input data,
and as a result, enable the attacker to enumerate all possible
input values to match the observed web flow vector.

The user data that a web application reads from its
back-end database can also be low entropy: for example, the
image representations of some types of user data have only
enumerable possibilities. This can result in disclosure of
sensitive user information, such as the mutual fund choices
of one’s investment, as elaborated in Section IV.C.

Stateful communications. Like desktop applications,
web applications are stateful: transitions to next states
depend both on the current state and on its input. To
distinguish the input data in Figure 1, the attacker can utilize
not only vt but also every vector observed along the follow-
up transition sequences. This increases the possibility of
distinguishing the input. For example, a letter entered in a
text box affect all the follow-up auto-suggestion contents, so
the attributes of the web traffic (for transferring such
contents) associated with both the current letter and its
follow-up inputs can be used to infer the letter. Although the
reduction factor for each transition may seem insignificant,
the combination of these factors, which is application-
specific, can be really powerful. We will show through real
application scenarios that such reduction powers are often
multiplicative, i.e., β = βt+1 •… •βt+n, where βx is the
reduction factor achieved by observing vector vx.

Significant traffic distinctions. Ultimately the attacker
relies on traffic distinctions to acquire the reduction factor
from each web flow. Such distinctions often come from the
objects updated by browser-server data exchanges, which

usually have highly disparate sizes. As an example, we
collected image objects, HTML documents and JavaScript
objects from five popular websites, and studied the
distributions of their sizes. The outcome, as presented in
Table I, shows that the sizes of the objects hosted by the
same website are so diverse that their standard deviations (σ)
often come close or even exceed their means (μ).

Table I. SIZES OF OBJECTS ON FIVE POPULAR WEBSITES

 JPEG HTML code Javascript
(In bytes) μ σ μ σ μ σ
cnn.com 5385 7856 73192 25862 6453 6684

health.state.pa.us 12235 7374 49917 10591 N/A N/A
medicineNet.com 3931 2239 49313 14472 22530 28184

nlm.nih.gov 11918 48897 22581 15430 4934 5307
WashingtonPost

.com 12037 15122 90353 35476 13413 36220

On the other hand, cryptographic protocols like HTTPS,
WPA and WPA2, cannot cover such a large diversity. We
will explain later that WPA/WPA2 do not hide packet sizes
at all. HTTPS allows websites to specify ciphers. If a block
cipher is used, packet sizes will be rounded-up to a multiple
of the block size. We checked 22 important HTTPS
websites in Appendix B. All of them use RC4 stream cipher,
except two: VeriSign, which uses AES128 block cipher for
some communications and RC4 for others, and GEICO,
which uses Triple-DES block cipher (64 bits). No AES256
traffic was observed on any website. This indicates that the
vast majority of the websites adopts RC4, presumably
because it is considerably faster than block ciphers. Note
that we simply state the fact that most websites today have
absolutely no side-channel protection at the HTTPS layer,
not advocating block ciphers as a cure. We will show later
that for most application features, the rounding-effects of
block ciphers offer very marginal or no mitigation at all
because the traffic distinctions are often too large to hide.

In Section IV, we use a metric density to describe the
extent to which packets can be differentiated by their sizes.
Let ℘be a set of packet sizes. We define density(℘) = |℘| /
[max(℘)-min(℘)], which is the average number of packet(s)
for every possible packet size. A density below 1.0 often
indicates that the set of packets are easy to distinguish.

Summary. The above analysis shows that the root cause
of the side-channel vulnerability in web applications are
actually some of their fundamental features, such as
frequent small communications, diversity in the contents
exchanged in state transitions, and stateful communications.
Next, we describe the problem in real-world applications.

IV. ACTUAL INFORMATION LEAKS IN HIGH-PROFILE
APPLICATIONS

As discussed in the previous section, some pervasive
design features render web applications vulnerable to side-
channel information leaks. This section further reports our
study on the gravity of the problem in reality, through

analyzing the side-channel weaknesses in a set of high-
profile web applications.

We found that these applications leak out private user
data such as health information, family income data,
investment secrets and search queries. Both user surveys
and real life scenarios show that people treat such data as
highly confidential. For example, a study conducted by
BusinessWeek “confirms that Americans care deeply about
their privacy. … 35% of people would not be at all
comfortable with their online actions being profiled, but
82% are not at all comfortable with online activities being
merged with personally identifiable information, such as
your income, driver's license, credit data, and medical
status [5].” In another survey, which was about sex practices
in the U.S. (the topic in itself was sensitive), the respondents
identified family income as the most sensitive question in
the survey [1]. Besides the public perception reported by
those surveys, the impact of such information can also be
observed in real life. For example, the public was concerned
about the true health condition of a big company’s CEO. It
is thought that his health matter could affect the company’s
stock price by 20%-25% [21]. Similarly, details of fund
holdings are secret information of big investors: for example,
a major hedge fund management firm was reported to worry
that the government’s auditing might leak out its investment
strategies and hurt its competitive edge [11].

In the rest of this section, we elaborate how such
information is leaked out from these leading applications.
Before we come to the details of our findings, it is important
to notice that identification of a running web application
remotely can be practically achieved through de-
anonymizing web traffic [16] [7]. When Ethernet sniffing is
possible, the application can usually be easily identified by
nslookup using its server’s IP address.

A. OnlineHealthA
OnlineHealthA is a personal health information service.

It is developed by one of the most reputable companies of
online services. OnlineHealthA runs exclusively on HTTPS.
Once logged in, a user can build her health profile by
entering her medical information within several categories,
including Conditions, Medications, Procedures, etc. The
user can also find doctors with different specialties. In our
research, we constructed an attack program to demonstrate
that an eavesdropper is able to infer the medications the user
takes, the procedures she has, and the type of doctors she is
looking for.

1) “Add Health Records”
One of the main functionalities of OnlineHealthA is to

add various types of health records. Figure 2 illustrates the
user interface. On the top of the page are the tabs that
specify the types of the records to be entered. In the figure,
the tab “Conditions” has been selected, which allows the
user to input a condition (i.e., symptom/illness). The record
can be entered through typing, which is assisted by an auto-

suggestion widget, or by mouse selection. Other types of
records can be entered in the similar way.

tabs

“W” clicked

Input box
“Add” button

The tab
“Conditions”

clicked

“Add”
links

AAAAAA

AAAAAA

Figure 2: User interface for adding health records

This tab design already leaks out information about the
type of the record being added because every tab click
generates a web flow vector (1515±1Î, 266±1Î, 583±1,
x), where x takes 4855, 30154, 20567, 1773, 2757 and
2299, for Conditions, Medications, Allergies, Procedures,
Test Results and Immunizations, respectively. The density
of the tab-clicks is 6/(30154-1773)= 0.000211. (Note that
some packets in the vector have small deviations for
different user accounts, so we use symbol ± to denote them.)
Once a tab has been selected, the user further interacts with
the application in one of the following two ways.

Input by typing – the caveat of auto suggestion. As the
user types, a suggestion list appears under the input box.
The list contains at most ten items and is updated in
response to every keystroke1. Figure 2 shows the list after
the user types “ac” in the box. The user can continue typing,
or select one of the items from the list and click “Add”.

Interestingly, the auto-suggestion in fact causes a
catastrophic leak of user input, because the attacker can
effectively disambiguate the user’s actual input after every
keystroke by matching the size of the response carrying the
suggestion list. More specifically, every keystroke generates
a web flow vector (253±1Î, 581, x), where x precisely
indicates the size of the suggestion list, and is same across
all users (i.e., the attacker and the victims).

The communications are stateful: each keystroke
produces a web flow determined by not only the current
letter being typed but also all other letters entered prior to it
(i.e., its prefix). As discussed in Section III.B, such stateful
communications enable the inference of the input. Of course,
the effectiveness of such an inference depends on the
reduction factors α and β. To get a sense about α, we

1 This functionality has no cache effect, so the traffic is always observed on
the network. We will discuss in Section I.A.2) that the cache effect would
not fundamentally salvage the auto-suggestion leak even if it existed.

collected the 26 x-values when typing “a” to “z” as the first
character in the input box under the Conditions tab. The
values are in the range of [273,519], i.e., density=0.11. All
the values are distinct, except the letters “h” and “m”, which
produce the same x value. Similarly, we collected the x-
values when entering “a” .. “z” posterior to an “a”. Only 20
such combinations brings in non-empty suggestion lists (the
others are invalid), and their x-values appear within the
range of [204,515], i.e., density=0.064. These tests show
that the reduction factor α is significant.

The factor β, representing the information leaks caused
by the follow-up state transitions, further helps reduce the
ambiguity set of the input. For example, the letters “h” and
“m”, when entered as the first letter in the text box, cannot
be differentiated by the eavesdropper immediately, as they
all produce identical web flows. However, we collected the
x-values for “ha” to “hz” and “ma” to “mz”. Among these
52 strings, only 20 are valid. All x-values are distinct except
“ha” and “ma”. The x-value range is [213,434], i.e.,
density=0.090. Therefore, by observing the web flow of the
second keystroke, the first letter “h” and “m” can be
effectively disambiguated (except “ha” and “ma”).

After entering some letters, the user can select a
suggestion and click the “Add” button to submit the request.
The web flow we observed is (xÎ, 580, 53±1), which
also contributes to the reduction power. For example, the x-
values of the ten suggested items for the input “head” fall in
[1185, 1283] with the density 0.10, and no collision.

Under the tabs other than “Conditions”, we made the
similar observations, which indicate that the user has almost
no secret when entering her records through typing.

Input by mouse selecting – a caveat of hierarchical
organization of user choices. Alternatively, the user can use
mouse clicks to add a record: through choosing a tab, then a
character in the alphabetical list (26 letters and the link
marked as “0-9”), and finally the “Add” link of an item (see
Figure 2). This selection is essentially a stateful navigation
on a tree-hierarchy. This design significantly lowers the
entropy of the user input, and in the meantime makes the
application states clearly identifiable.

Let us again use Conditions as an example.
OnlineHealthA has 2670 conditions, which are grouped by
their initial characters: for example, the list in Figure 2
consists of the Conditions starting with W because W has
been clicked. We collected the response size x when
clicking every character. The range of x is [226, 5876], i.e.,
density=0.0046. It is trivial to identify the initial character
the user clicks.

Figure 3 describes how the 2670 conditions are
distributed among the characters. For each character, the bar
shows the number of conditions whose names start with the
character. We also show the density of the conditions under
each character, e.g., A=2.50, J=0.08, etc. Many letters have
their densities around or below 1. Even the highest one is
only 2.5. Given the total number of conditions being 2670,

even the 2.5 density offers the attacker 1068× (i.e.,1068-
time) reduction power.

0
50

100
150
200
250
300

A=
2.

50
B=

1.
18

C=
2.

13
D=

0.
98

E=
1.

00
F=

0.
82

G
=0

.7
6

H
=1

.3
4

I=
0.

73
J=

0.
08

K=
0.

23
L=

0.
97

M
=1

.4
1

N
=0

.6
5

O
=0

.5
5

P=
2.

05
Q

=0
.0

3
R=

0.
72

S=
1.

56
T=

1.
14

U
=0

.3
7

V=
0.

56
W

=0
.1

7
X=

0.
03

Y=
0.

06
Z=

0.
09

0-
9=

1.
0

Figure 3: Number of Conditions under each character

On the tabs other than Conditions, we observed the
similar traffic patterns, indicating that they are similarly
subject to the side-channel attack.

2) “Find a Doctor”
Another useful feature of OnlineHealthA is “find a

doctor”, as shown in Figure 4. By choosing a specialty from
the drop-down list and entering a city name (or a zipcode),
the user searches the database of OnlineHealthA to get a list
of doctors matching her desired specialty.

Specialty
City or zipcode

Figure 4: "Find a doctor" feature

We assume that a patient tends to find doctors near her
current geographical location. Therefore the input of “city or
zipcode” is guessable based on her IP address. When the
“search” button is clicked, the web flow vector is (1507Î,
270±10Î, 582±1, x). Selection from the drop-down
list gives a very-low-entropy input: there are only 94
specialties. We tested all the specialties in “south bend, IN”,
and found that x was within [596, 1660], i.e., density =
0.089, and every specialty is uniquely identifiable.

B. OnlineTaxA
We studied OnlineTaxA, the online version of one of

the most widely used applications for preparing the United
States’ tax documents (a.k.a. tax returns) for individuals and
businesses. They are accessible through HTTPS exclusively.
We found that the web applications leak a large amount of
user information, such as family income, whether the user
paid big medical bills, etc. The family income is particularly
sensitive as discussed earlier.

1) Background
The U.S. taxpayers pay annual taxes – by April 15th,

they file the tax returns for the previous year in order to
claim back the money over-withheld by the government or
pay the government any owed tax. The tax returns are a set
of standard forms designed by the government. The total
number of different forms is very big. Fortunately,
depending on one’s specific tax situation, she only needs to
work on a subset of the forms. Although the tax laws
explain which forms to file, it requires considerable brain
power to understand the laws and accomplish the necessary
calculations to make tax-return claims right.

OnlineTaxA is a tax-preparation application designed as
a wizard that essentially implements the tax laws as an
“algorithm”. It asks the user simple questions, and tailors
the future questions based on the user’s earlier answers.
When the user finishes the conversation, OnlineTaxA has all
the information for preparing required tax forms. Also, it is
intelligent enough to find hundreds of tax deductions and
tax credits to make the user’s tax as low as possible.

2) Workflow of the Tax Calculation
The tax calculation has a clear workflow: it starts with

basic personal information, followed by the calculation of
federal taxes, then the state taxes. Figure 5 shows the main
modules of OnlineTaxA. Sub-modules under the Federal
Taxes module are also shown in the figure.

State Taxes
Tax preparation

Personal info Print & FileFederal Taxes

Deductions & Credits OthersIncome
Figure 5: Main modules of OnlineTaxA and sub-modules of Federal Taxes

In the Personal Info module, the user enters the basic
information about her family, e.g., the information about
spouse and children. She also needs to select one of five
filing statuses (to be explained later). These statuses
profoundly affect the logic of the tax calculation.

After the Personal Info module is completed, the user
starts to work on Federal Taxes. As shown in Figure 5, there
are three sections: Income for reporting all types of incomes;
Deductions & Credits for deducing the tax due according to
available tax laws, and other tax situations.

The income information includes many categories, such
as salaries, investments, etc. Based on the income
information and the number of family members (a.k.a.
exemptions), the Adjusted Gross Income (AGI) is calculated.
AGI represents the family’s actual income standing, and
thus is the basis for many tax calculations.

3) Leaking Private Information
The attacker can easily learn certain basic facts from

analyzing the application’s traffic. For example, Figure 6
depicts the application’s decision logic for the filing status.
The state-transitions can be easily identified from the web
flows of the application, as the web pages are very different.

Social security
number of
deceased spouse

Choose a filing
status

Spouse
info

Eligibility
test result

Head of Household
eligibility test

Personal info
summary

Claim an
exemption
for spouse?

Exemption
eligibility test

(1)

(1) Single
(4) Head of household

(2)
(3) (4)

(5)

(2) Married filing jointly
(5) Qualifying Widow(er)

(3) Married filing separately

Figure 6: State machine that decides the filing status

Similarly, we can infer the number of children in the
family by observing how many times the user fills out the
child info page, and whether the spouse has salaries by
observing the salary form submissions (a.k.a., W-2 form).
All these user actions produce unique web flow vectors.

Inference of AGI. AGI is calculated by OnlineTaxA based on
the data in the Income module. It is unlikely to infer the
AGI from the sizes of W-2 or other income forms: for
example, each W-2 form has twenty input boxes, most of
which take the data of variable lengths; this gives the input
(which includes the AGI) a sufficiently high entropy that
discourages a side-channel analysis.

As described in Section III, communications in web
applications are stateful. The inference of user input does
not have to be accomplished when the data is initially
entered by the user, and can instead make full use of the
web flow vectors observed from the later state transitions
that are also affected by the input data. When it comes to tax
calculation, the dependencies between the AGI and tax
deductions/credits become an intrinsic link to tie the AGI to
the state transitions. More specifically, the attacker can
utilize the following two facts: (1) the user’s eligibilities for
many credits and deductions depend on the AGI, and such
dependencies can be identified from tax laws; (2) such
eligibilities affect state transitions, which can be inferred
from observed traffic patterns.

For example, Figure 7 shows OnlineTaxA’s state
machine for determining one’s eligibility for the child credit.

1476, 1476, 584+b

700+b

890+b

Entry page of
Deductions &
Credits

Summary of
Deductions
& Credits

Full child credit

Not eligible for
child credit

Partial child credit

(2028±10Î, 208±10Î,

1476, 1476, 1476, b)

(2095Î, 195±5Î,
1476, 1476,

)

(2095Î, 195±5Î, 1476, 1476,
)

(2095Î, 195±5Î,
1476, 1476,

)

X:

Figure 7: State transitions for child credit eligibilities

When the user gets the entry page of Deductions &
Credits, web flow vector X: (2028±10Î, 208±10Î,
1476, 1476, 1476, b) is observed, i.e., the attacker
learns from the observation about the value of b, which is a
value different for each user because the response packet
contains user-profile data of a certain length. Based on the
value of b, the attacker can determine the transition to one
of the three possible states: “not eligible for child credit”,
“partial child credit” and “full child credit” (the web flow
differences are highlighted in the figure). According to the
tax law document IRS-Pub-792, (1) the taxpayer can claim
up to $1000*c credit, where c is the number of dependent
children; (2) if the AGI is below $110,000 for Married
Filing Jointly, the taxpayer gets the full credit; (3) for every

$1000 income in the AGI above $110,000, the taxpayer
loses $50 child credit (a.k.a. the phase-out rule). Therefore,
if a taxpayer claims two children in the personal info
module, by observing the transitions in Figure 7, the
attacker is able to confidently identify where the taxpayer’s
AGI falls: below $110,000, between $110,000 and $150,000,
or above $150,000.

Even more intriguing are other Credits & Deductions
situations, which often have asymmetric execution paths for
different eligibilities. For example, Figure 8 shows the
Student Loan Interest deduction: if the AGI is higher than
$145,000, the user is not eligible, and no further question
will be asked; otherwise, the application gets into the
highlighted state where the information about the user’s
interest is required. Therefore, if the user is partially or fully
qualified, the path of state transitions will be longer than
that for those not eligible. This allows an eavesdropper to
tell whether one’s AGI is above $145,000, even when the
web flow vector of transition A in Figure 8 are made
indistinguishable from that of D. Asymmetric paths widely
exist in OnlineTaxA: all the nine credits and deductions
listed in Figure 9, except “child credit” and “elderly or
disabled credit”, have this situation.

Entry page of
Deduction &
Credit

Summary of
Deduction
& Credit

Not eligible
for the credit

Partial credit
to be claimed

(2028±10Î,
208±10Î,
1476,
1476,
1476,b)

A: (2084Î,
207Î,1476,
1476,
675+b)

B: (2084Î,
260±10Î, 1476,
1476,336+b)

Enter your
interest paid

D: (2084Î, 207Î, 1476,
1476,1476, 73+b)

C: (2084Î,
260±10Î,
1476, 1476,
275+b)

Full credit to
be claimed

FIGURE 8: ASYMMETRIC PATHS IN STUDENT LOAN INTEREST DEDUCTION

We skimmed through the U.S. tax instructions to
sample some common credits/deductions, and confirmed
that the web flow vectors of OnlineTaxA indeed enable the
attacker to infer a series of AGI ranges (see Figure 9) for
those who attempt to claim the credits and deductions.

Elderly or
Disabled Credit $24999

Retirement Saving
Contribution $53000

Retirement Account
(IRA) Contribution $85000 $105000

College Expense $116000

$115000Student Loan Interest $145000

First-time Homebuyer credit $150000 $170000

Earned Income
Credit $41646

Child credit * $110000

* The upper limit of Child Credit Eligibility = $110000+$20000*c (c is No. of children)

Adoption expense $174730 $214780

$130000 or $150000 or $170000 …

$0

Figure 9: Some disclosed AGI ranges

So far we have only focused on the federal tax. Most
U.S. states have their state income tax provisions. Many of
them are also associated with the AGI. We believe that the
same attack could work on state taxes. Since none of the
authors of the paper is a tax expert, we only studied a small
fraction of all (hundreds of) the credits and deductions that
OnlineTaxA can process. We believe that state transitions
associated with those credits and deductions could give
away more private information, such as other AGI ranges,
whether the user paid large medical bills or mortgages, etc.

C. OnlineInvestA.com
OnlineInvestA is a leading financial company in the

U.S., which provides a wide range of financial products and
services to investors. The service is also exclusively
accessible through HTTPS. Different from prior examples
in which data leaks are caused by auto-suggestion, search,
and wizard conversation, etc, here privacy information is
disclosed by graphical visualization of data.

1) The Mutual Fund Page and the Fund Allocation Page
When the user logs onto the OnlineInvestA account, one

can choose to view investment holdings such as mutual
funds, stocks or bond, in a list. Figure 10 (upper) illustrates
an example in which the user invests three funds, and their
12-month price history charts are displayed on the side of
the textual content. These charts are GIF images. Per
OnlineInvestA’s request, we replaced the actual screenshots
with the mock-up graphics.

φ

The pie chart shows the allocation
among your funds.

34.9% Fund A
34.2% Fund B
30.8% Fund C

φ ω

100-φ-ω

Your Retirement Investment Portfolio

� Fund A: 34.9%
� Fund B: 34.2%
� Fund C: 30.9%

Fund A
Price $52.85 09/09/2009

Value Quantity
$12345 234

Fund B
Price $32.15 09/09/2009

Value Quantity
$12330 384

Fund C
Price $28.80 09/09/2009

Value Quantity
$11111 386

Mutual Funds

Note: Hyperlinks in the circles navigate to fund detail pages.

M
ut

ua
l f

un
d

lis
t

Fu
nd

 a
llo

ca
tio

n

Figure 10: Mutual fund list (upper) and allocation (lower)

An image (i.e.,) on an HTML page is loaded
separately from the page. Therefore the size of the image
can be identified from the packet size of the response from
the server. There are 9 mutual funds available in this type of
account to choose, which are obviously a set of low entropy
inputs. We recorded the sizes of all the price-history charts

on 9/9/2009, which were all distinct, with a density 0.044.
To access the fund details, the user can click the hyperlinks
highlighted in circles in Figure 10. The sizes of the fund
detail pages were all different too, with a much lower
density 0.010.

Figure 10 (lower) is another view that can be selected
by the user, which displays the percentages of the
investment on the funds. The pie chart is also a GIF image.
In the next subsection, we will see how the pie chart can be
inferred from its size, which once again demonstrates the
multiplicative reduction power that the attacker can obtain.
2) Leaking Investment Secrets

The price history charts and the fund detail pages are
publicly accessible to everyone, with or without
OnlineInvestA accounts (in fact, the browser imports the
charts from the website https://FinancialDataA.com, which
is not OnlineInvestA’s property). Since the choices of
mutual funds have low entropy and the sizes of the charts
and the detail pages are all distinct, the funds that the user
invests can be identified by comparing the sizes of the
packets she receives with the publicly obtained sizes.
However, inferring pie charts seems more challenging, as
the entropy is much higher. This is the focus of the
discussion below.

Inferring fund allocation. We first assume that the user
invests in 3 funds (2-fund and 1-fund scenarios are trivial
cases). The dimensions of the pie chart image are 136×136.
It has 380 pixels on the circumference. Therefore the
portions of two of these funds, denoted by φ and ω as
indicated in Figure 10 (right), have 380 possible values each.
To make the analysis easier, we conservatively adopted
0.25% as the increment to enumerate φ and ω values, which
gives each fund 400 values, and totally 79401 possible
charts. We observed that the sizes of the charts varied, but
within a range smaller than 200 bytes. The density is over
385. At the first glance, the inference seems impossible.

Interestingly, since OnlineInvestA updates the pie chart
every day after the market closes, the pie chart’s evolution
can be viewed as state transitions over a multiple-day period,
initiated by the input of the first-day’s financial data from
the backend database and driven by the follow-up daily
inputs from the market. This gives the attacker a significant
reduction power, similar to that in the auto-suggestion
scenario, with only two unessential differences: (1) the input
comes from the backend database, not from the user; (2) the
state transitions in the auto-suggestion widget are in the
form of consecutive keystroke inputs, while the pie chart of
each day is the evolution result of the chart of the previous
day, by applying the mutual fund price changes of the
current day. Since the price of each fund, in U.S. cents, is
public knowledge, the pie charts on different days are
indeed semantically correlated.

Following we describe an algorithm that performs such
an inference. Its parameters include: allSizes(φ,ω) –

an array that keeps the image sizes for the 79401 pie charts,
price(fund,day) – the prices of the invested mutual
funds everyday, and size(day) – the image size of the
pie chart of each day observed by the attacker. The program
first determines the initial ambiguity set AgtySet based
upon the image size of the first day. For each following day,
the price change is applied to every pie chart in the set, and
those that do not match the image size of the day are
dropped. In this way, AgtySet shrinks everyday.
AgtySet= {(φ,ω)| allSizes(φ,ω) == size(1)};
for (d=2; |AgtySet| > 1; d++){ /*d is the day*/

AgtySet’={(φ,ω)| ((φ,ω) ∈ AgtySet) ∧ ((size(d)
== allSizes(applyDailyUpdate((φ,ω),d-1)))));

AgtySet = {(φ,ω)| ∃(φ1,ω1) ∈ AgtySet’ ∧
((φ,ω)== applyDailyUpdate(φ1,ω1))};

}
Output AgtySet and d;

We define function applyDailyUpdate (φ1,ω1)
based on price(fund,day), a function that calculates
today’s percentages φ and ω given yesterday’s φ1 and ω1.
The array allSizes(φ,ω) can be acquired through
adjusting the money allocation in our own account to
produce pie charts of different sizes. This, however, requires
too much effort. A more efficient approach is to use the
same GIF compression algorithm adopted by OnlineInvestA
to generate a set of the pie charts identical to those issued by
OnlineInvestA. We conducted a detailed study of some pie
chart samples, and compared them with the same GIF pie
charts generated by Microsoft Office Picture Manager.
Although their palette scopes and color encoding are
different, the lossless compression algorithm, a.k.a. Lempel-
Ziv-Welch (LZW) [20], produces the same compression
data in both applications. Therefore we believe that the
exact GIF compression algorithm used by OnlineInvestA can
be built based on the knowledge of sample pie charts.

The experimental results. As a proof-of-concept
demonstration, we used the Java package JFreeChart [10] to
generate all 79401 pie charts, whose sizes fell in the range
of [700,900] bytes, similar to the sizes of the sampled
OnlineInvestA pie charts. Figure 11 illustrates the relations
among sizes, φ and ω for all those pie charts. The upper
triangle is invalid because φ + ω > 100. The sizes of those
charts form a symmetric surface. It is easy to understand the
geometrical meaning of the algorithm shown earlier: given
size(d)for a specific day, a contour line can be identified
from the surface that include all the charts of that size. From
this line, our algorithm drops all such points (i.e., charts)
that do not evolve into the points on the next day’s contour
line, given the price changes of the mutual funds. The
algorithm ends when there is only one point left.

Our experiments demonstrate the power of the attack.
We simulated the financial market by randomly increasing
or decreasing the price of each fund by [0.5%, 1%] every
day. We found that typically, our algorithm successfully
inferred a pie chart according to the dynamics of its sizes on

4 different days. There are some situations where the pie
chart size of the fifth day is needed. Given that the initial
ambiguity set contains 79401 possibilities, the result is
impressive: on average, each observed pie chart size reduces
the ambiguity set by more-than-one order of magnitudes.

100

100

90 80 70 60 50 40 30 20 10 0

700

80
60

40
20

0

750

800

850
900

φ

ω
packet
size

Figure 11: Pie chart sizes plotted on φ and ω axes

3) Potential More Serious Consequence
Like many financial companies, OnlineInvestA provides

a variety of account types for a broad range of customers,
including investment professionals. We do not have
resources to conduct the study on all these account types.
However, it is possible that they also contain similar
problems because it is a common practice to show price
history curves and pie charts on financial pages, and these
accounts probably share the same application infrastructures
with the type of accounts that we studied. If an institution’s
or professional’s account leaks out information, for example,
the consequence is obviously more devastating. Of course,
an institution or professional may invest in more than three
funds, which increases the pie chart possibilities. On the
other hand, an institution’s or professional’s account may be
expected to be updated and viewed much more frequently.
We believe that with the multiplicative reduction power, the
pie chart can still be revealed.

D. Google Search, Yahoo Search and Bing Search
In addition to HTTPS extensively used to secure the

web flows in web applications, cryptographic protocols for
wireless communications, such as WPA and WPA2, are also
found in our research to leak out a significant amount of
information of the web applications that they protect. We
realized that this problem is particularly serious for search
engines. Although individual query words that the user
enters may not be as sensitive as health, income and
investment data discussed before, if an attacker can obtain
her query history, the consequence can be serious: query
histories reveal a lot about one’s online activities, which is
often viewed as sensitive information assets, particularly in
corporate settings due to intellectual property concerns. To
illustrate the problem, we constructed an attack program to
allow an unauthorized stranger sitting outside a corporate
building to glean the query words entered by employees.

1) Basics of Wi-Fi Encryption Schemes
An early scheme, WEP, is deprecated now because it is

susceptible to key-recovery attacks [3]. Here we only

discuss the up-to-date Wi-Fi encryption schemes, i.e., WPA
and WPA2. Using these schemes, every Wi-Fi device can
establish a private channel to communicate with the wireless
access point (AP). WPA is based upon TKIP, which uses
RC4 stream cipher. As a result, packets encrypted by WPA
exhibit byte-level granularity. WPA2 is based upon CCMP,
which adopts the 128-bit AES block cipher operating in the
counter mode. One might expect the “round-to-16-byte”
effect due to the use of the block cipher. In fact this effect
does not exist, because of the counter mode, which makes
the ciphertext fully preserve the size of its plaintext, just like
a stream cipher. An illustration of the CCMP packet
structure is given in the IEEE 802.11 specification (see Page
180 of [9]). Therefore the reality for web developers is that
they need to take the full responsibility to pad packets, as
there is no mitigation at the Wi-Fi encryption layer.

2) Query Word Leaks
As discussed before, the auto-suggestion feature is

vulnerable to side-channel analysis when the traffic it
generates is protected by HTTPS. Many major search
engines, including Google, Yahoo and Bing, also implement
the feature to help users enter their queries quickly and
accurately. It appears to become an important means to
ensure high relevance of search results, in addition to
offering friendly user interactions. Although the basic idea
here is similar to that described in prior sections, a number
of details and new observations are worth highlighting.

Web flow vector. Once the Wi-Fi packets are encrypted,
a wireless sniffer cannot see their IP addresses but MAC
addresses. However, the packets associated with auto-
suggestions are easy to identify by the web flow vectors.
For example, when the word “list” is entered in Google, the
vector of the WPA2 packets are (bÎ, 910, 96Î, b+1Î,
931, 96Î, b+2Î, 995, 96Î, b+3Î, 1007, 96Î),
where b is around 800 bytes. As we can see from the vector,
every request increases its size by one byte (b, b+1, b+2,
b+3) in response to each keystroke (except backspace). The
response sizes 910, 931, 995, 1007 correspond to the
suggestions for “l”, “li”, “lis” and “list”.

Ambiguity set size. Unlike OnlineHealthA, which only
consists of thousands of items, the number of possible query
words is huge. This, however, does not impair our attack,
because the number of guesses is only linear to the length of
the query words. Our attack generated Google queries to
match their traffic with those produced by the victim’s
keystrokes. The number of such attempts was only
27*(query word length), with the character set {a..z, space}.

Caching effect. Google and Yahoo set a one-hour
caching period. Due to the caching, a keystroke does not
generate an HTTP request if the exact request was sent
recently, e.g., if one queried “aa” recently, and types “ab” in
the search box, there will be no request for the suggestion
for “a”. However, the input here is still identifiable from the
sizes of the suggestions for multiple letters, e.g., “aa” and

“ab” can be determines from 26×26 2-letter combinations,
even if “a” does not produce any traffic. In reality, Google’s
caching is seldom in effect: it disappears if the user enters
the next query on the current query’s result page (as oppose
to always entering queries on Google’s homepage), because
the auto-suggestion request contains the current query word,
which avoids cache hits. Bing does not cache queries.

V. CHALLENGES IN MITIGATING SIDE-CHANNEL THREATS
We have demonstrated the gravity of the information

leaks in today’s web applications. This section analyzes the
challenges in addressing these vulnerabilities in real-world
scenarios. We found that mitigation of such side-channel
threats is much more difficult than it appears to be, as such
an effort often needs to be application-specific, which
means that developers must first identify the vulnerabilities
in individual applications, and then think of their remedies.
Identifying the vulnerabilities is challenging, as suggested
by the examples in Section IV: developers need to analyze
the specific program structures related to state transitions,
and even semantically understand how the applications are
used in various administrative environments.

One may wish that there is a “universal” mitigation so
that we can fix the vulnerabilities without finding them.
Section V.A assumes that developers do not know where the
vulnerabilities are, but use application-agnostic mitigation
approaches. We show that such mitigations are unlikely to
be applied in reality due to the uncertainty of their
effectiveness and the significant network overhead they
incur. This finding urges an in-depth rethinking of the way
today’s web applications are developed.

A. Evaluations of Application-Agnostic Mitigations
It is easy to conceive high-level strategies for hiding

side-channel information. Padding packets, faking
superfluous (noise) packets, chopping packets into fixed-
size segments and merging/splitting application states are all
reasonable (and well-known) strategies. However, this does
not necessarily imply that effectively deploying these
strategies in real application scenarios is also easy. We can
draw an analogy from the buffer overrun problem here:
everyone understands the high-level strategy – buffer sizes
should be correctly checked. However, how to check every
vulnerable buffer in every application is non-trivial,
advanced technologies need to be developed and applied,
such as static analyses, type-safe languages, address space
layout randomization, control-flow integrity protection, etc.

Regarding the side-channel leak problem, we focus the
discussion of this section on the feasibility of finding
universal mitigation policies that are both effective and
agnostic to individual web applications. This examination is
crucial because if we have such policies, the problem as a
whole can then be solved without analyzing individual
applications; otherwise, the solutions inevitably require
significant efforts to identify and analyze vulnerabilities in
individual applications.

Some side-channel vulnerabilities studied in prior
research indeed have universal mitigations. For example,
Song et al suggested a simple mitigation for the SSH inter-
keystroke timing issue [15], which combines the strategies
of faking noise packets and merging states to hide the
timing characteristics: an SSH client always sends a packet
every 50-millisecond even when the user types no keystroke
or multiple keystrokes. This solves the problem with
negligible network overhead, while maintaining the
responsiveness of SSH. Similarly, to solve the side-channel
issue of variable-bit-rate based VoIP, rounding up every
packet size to 128-bit (i.e., padding the packet so that its
size is a multiple of 16 bytes) is already very effective [23].
Also, in [13], the authors suggest that setting video-
streaming to a constant rate would significantly reduce the
attacker’s ability of inferring movie titles.

Web applications, on the other hand, are much more
complex than SSH, VoIP and video-streaming in terms of
traffic patterns and semantics. We report here our study on
how practical to deploy application-agnostic polices, based
on the analyses of the applications discussed in Section IV.
Note that unless explicitly denoted, all the packet sizes are
in bytes, not in bits, in the following discussions.

1) On the Mitigation of OnlineHealthA Leaks
The most promising strategy that can be applied in an

application-agnostic manner is padding2. Here we consider
two typical padding policies that can expand ambiguity sets:
rounding that rounds up the size of every packet to the
nearest multiple of Δ bytes, random padding that appends
every packet with a padding of random length in [0,Δ). For
OnlineHealthA, the effects and the overheads of rounding
and random padding are essentially the same, as they both
make a packet of a size x indistinguishable from those
within the Δ-byte range [⎣x⎦Δ,⎡x⎤Δ) (rounding) or [x,x+Δ)
(random padding), and on average incur the same overhead
Δ/2 bytes per packet. Without loss of generality, here we
just describe the analysis of rounding.

Figure 12 shows our measurements of attacker’s
reduction power and network overhead on each different Δ
value. The network overhead was measured using a scenario
of a user working on one task in every one of the 17 top-
level functionalities in OnlineHealthA. The curve for “find-
a-doctor” was obtained when the city name “South Bend,
IN” was used. We also plotted the curves for selection of a
condition/illness through manual typing or mouse-select. In
the mouse-select scenario, given a Δ value, the reduction
power was calculated by identifying the conditions under
the alphabetic list that became indistinguishable from each
other after rounding, and then merging those conditions to
measure the average ambiguity-set-sizes of individual

2 Other common mitigation strategies, like adding noise packets, are hard
to be application-agnostic for web applications. For example, fake packets
unrelated to an application’s behavior are identifiable by comparing the
observations from two runs of the application with different inputs.

conditions. For manual input, we measured the scenario of
typing 3 or 4 keystrokes and selecting an item from the
suggestions. We observed that on average the size of the
suggestion list for a keystroke varied in a byte range [B,
B+260]. Different prefixes in the input box correspond to
different B values. Let B + τ = κΔ, where τ and κ are
integers and τ∈[0, 260]. After the rounding, the suggestion
list size can be κΔ, (κ+1)Δ, …, (κ+⎣260/Δ⎦)Δ. The size
difference gives the attacker some information about the
keystroke. In our analysis, we enumerated all 260 possible
values of τ to calculate the entropy reduction associated
with each τ value. The calculation showed that each
keystroke leaked 1.41 or 0.724 bit entropy when Δ was 128
bytes or 256 bytes respectively. Similarly, we calculated the
entropy reduction of selecting an item on the suggestion list,
which was found to be much less significant. We plot the
manual input curves (3- and 4- keystrokes) by combining
the entropy reductions caused by all user actions.

0%

5%

10%

15%

20%

25%

30%

35%

1

4

16

64

256

1024

1 16 32 64 128 256 512

O
ve

rh
ea

d

R
ed

uc
ti

on
 P

ow
er

Δ value (bytes) : aggressiveness of padding

3 keystrokes

4 keystrokes

mouse-select

find-a-doctor

overhead

Figure 12: Reduction power and network overhead of OnlineHealthA

Figure 12 suggests that Δ=128 is clearly unsatisfactory:
the attacker’s reduction powers are still 67×, 25×, 37× and
8.3× for 4-keystroke, 3-keystroke, mouse-select and find-a-
doctor respectively. When Δ=256, the overhead becomes
14.8%, while the information leak then is still realistic: the
reduction powers are 31× and 8× for mouse-select and 4-
keystroke, which means that if the attacker suspects a
person having one of 31 (or 8) possible illnesses and the
person uses the mouse-select (or manual input) feature,
there is a good chance that the attacker can identify the
illness. This reduction power is worrisome because: (1) the
set of suspected illnesses may not be very big in reality. For
example, the health concern surrounding the aforementioned
CEO is basically whether he is having pancreatic cancer,
hormone imbalance (as the company announced) or some
types of weight loss [21]; (2) the state information of the
application has not been fully exploited yet in our research.
Particularly, we did not utilize the probabilistic correlations
among conditions, medications and procedures, due to our
lack of medical knowledge: for example, a pancreatic cancer
patient is more likely to receive chemotherapy than wisdom-
tooth removal. Such information can be leveraged to
achieve an even bigger reduction power. Finally, when Δ
reaches 512 bytes, the reduction power for the mouse select
scenario is reduced to 11×, and the powers for other
scenarios basically vanish. The network overhead then is
32.3%. This analysis shows that application-agnostic

mitigation incurs a large overhead, one third of the
application’s bandwidth consumption, but still cannot fully
subdue the information leaks.

2) On the Mitigation of OnlineTaxA Leaks
Figure 13 shows our evaluation of the effectiveness and

the overhead of applying the rounding strategy to
OnlineTaxA. The overhead here was calculated under the
scenario where a user was working on Personal Info,
Income and Credits & Deductions modules. In absence of
any mitigation measures, 15 income ranges can be
distinguished. Because the differences in traffic patterns are
big, Δ=64 does not have any mitigation effect. When Δ=256,
which significantly mitigates the leaks in OnlineHealthA, the
attacker can still distinguish 13 ranges. Even with Δ=1024,
there are still 7 identifiable income ranges. More
interestingly, increasing Δ beyond 1024 bytes does not
lower the attack power, because the remaining 7 income
ranges are identifiable due to the asymmetric path situation
discussed earlier: a user eligible for a tax deduction needs to
answer more questions than an ineligible user. The
communication overhead for Δ=2048 is already 38.10%. Of
course, in an extreme case, if a padding policy could make
all state-transitions in the application indistinguishable, i.e.,
from the attacker’s perspective the state diagram is just one
state looping back to itself, the remaining 7 income ranges
would be hidden. However, since the number and the sizes
of packets involved in each state-transition varies
significantly, our measurement showed that such a treatment
results in a prohibitively high overhead of 21074%.

0%

10%

20%

30%

40%

0

3

6

9

12

15

1 16 64 128 256 512 1024 2048

ov
er

he
ad

Re
du

ct
io

n
Po

w
er

Figure 13: Reduction power and network overhead of OnlineTaxA

To effectively solve the problem, the application needs
to merge multiple states along the longer execution paths, or
produce superfluous packets to fake extra states along the
shorter paths. These policies, however, are clearly
application-specific, which are built upon the understanding
of the state transitions within the application.

3) On the Mitigation of Search Engine Leaks
There are two reasons why the information-leaks in the

high-profile search engines are hard to mitigate in an
application-agnostic way: (1) these search engines need to
handle high-volume search traffic, which makes the cost of
applying any universal mitigations to the entire traffic
unsustainably high. A more realistic alternative seems to be
identifying vulnerable features (such as auto-suggestion)
and applying a mitigation specifically; (2) more importantly,

as we discuss below, whether certain policies can be
effectively enforced also depends on application scenarios.

For example, Δ=128 seems to work for the auto-
suggestion feature, because the response size generated by
entering one of the 26 letters usually varies in a 200-byte
range. However, choice of a specific padding policy, i.e.,
rounding or random-padding, is still application-specific,
depending on the understanding of how the application
operates. For example, we found that the auto-suggestion
responses of Google/Yahoo/Bing were GZip-compressed by
web servers. Typically in corporate networks, web traffic
needs to go through HTTP proxies which inspect the
contents to enforce security and compliance rules. The
inspection requires the traffic to be decompressed. In other
networks (e.g., university or home networks), there are
typically no inspection proxies. As a result, the “round-up-
to-Δ” policy performed on the server side becomes difficult
in simultaneously hiding the packet differences in both
types of environments. Thus the differences will be
preserved in the Wi-Fi traffic. Other related considerations
include (1) when to pad, before or after the compression,
and (2) where to pad, to the HTTP header (not subject to
compression) or to the HTTP body (subject to compression).
For the search engines, we feel that random-padding could
be a suitable mitigation if Δ is reasonably big, which may be
able to ensure that the sizes of both the uncompressed
packet and the compressed packet have sufficient
randomness. Of course, the exact effectiveness needs more
thorough evaluations.

This example, again, demonstrates the need for
application-specific mitigations – even after the effective Δ
value is decided, selection of the right padding policy and
the practical way to enforce the policy requires application-
specific information. This type of consideration was also
found to be crucial for mitigating the information leaks in
OnlineInvestA, which we elaborate below.

4) On the Mitigation of OnlineInvestA Leaks
OnlineInvestA is an example to show that even for a

single application, developers need to consider different
factors to find effective policies. Such considerations can
only be made based on the assumption that the vulnerable
application features are identified.

Hiding the side-channel information of the pie chart
does not require too aggressive padding. Actually, Δ=32 can
already defeat a side-channel analysis, as it increases the
ambiguity sets, which are already quite large, by 32 times.
Alternatively, a 256-bit block cipher can be used.

However, the other two leak problems, i.e., the price-
history charts and the mutual fund details pages, cannot be
addressed without applying aggressive padding. Figure 14
shows that although Δ=128 may be satisfactory for the price
history problem, protecting the fund detail pages requires
Δ=1024. Once Δ=1024 has been applied application-wide,
the network overhead is 18.8%.

0.00%

5.00%

10.00%

15.00%

20.00%

1

3

5

7

9

1 16 32 64 128 256 512 1024

Fund detail pages

Price history charts

Network overhead94.6%

94.6%
56.9%

56.9%
20.1%

20.1%

Figure 14: Account holdings anonymity, network overhead and

degradations of random-padding effects upon 7-visits

More interestingly, we found that the enforceability
issue, again, needs to be considered here: contrary to the
search engine scenario, OnlineInvestA should use the
rounding policy, rather than random padding, because
repeatedly applying a random padding policy to same
responses significantly reduces its effects. Consider the
price history chart problem as an example. Suppose random-
[0,128)-padding has been applied several times to the same
image response, making its observable sizes vary in a 100-
byte range, which essentially degrades the effect of the
padding to Δ=28. In our research, we ran a simulation
program to calculate the probability of such degradations
after applying random-padding 7 times. The program
performed 2000 simulations, each generating 7 random
numbers, calculating their range and subtracting it from the
Δ. We observed that the padding effect was degraded to Δ/2,
Δ/4 and Δ/8 with a probabilities of 94.6%, 56.9% and 20.1%
respectively when a page is visited 7 times (including the
page visits by history-back and reload). Similarly, 10 visits
degraded the padding effect to Δ/2, Δ/4 and Δ/8 with
probabilities of 99.0%, 74.7% and 33.9% respectively. The
rounding policy is not subject to such degradations, and thus
may be more suitable for protecting the OnlineInvestA.

Finally, there is an enforcement difficulty for mashups
(i.e., functionalities that import data from third-party
services). Because the price history charts are fetched by the
browser from the public website https://FinancialDataA.com,
OnlineInvestA is unable to fix the problem. They must
convince FinancialDataA that because the charts are
embedded in the pages of OnlineInvestA, FinancialDataA
should fix the problem, though FinancialDataA only shows
public data with no confidentiality concern. Since mashups
are a widely-used means for integrating third-party services,
it is not realistic to require all services to pad their packets
aggressively without first knowing the actual vulnerabilities.

B. Impacts on the Application Development Practice
The above analyses suggest that it is unlikely to have a

universal remedy that fixes the whole problem without
understanding the specific vulnerabilities in individual
applications. Instead, the mitigation often needs to be
considered as part of application development practice. Here,
we summarize the technical challenges identified above and
discuss the measures that need to be taken.

Challenge 1 – identifying vulnerabilities. The first
technical challenge is how to find the side-channel
vulnerabilities within individual web applications. As we

discussed in Section III, when an application makes stateful
communications and the communications are associated
with user inputs or stored data, information leaks become
possible. However, many applications today fit this
description, and there should be more in the
future. Identification of such side-channel vulnerabilities
requires an in-depth analysis of the information flows within
individual applications, and in some cases, acquisition of the
background knowledge on how the applications are used: an
example is the correlation between an illness and medicines
in OnlineHealthA. Given the trend of increasing use of web
applications as substitutes for their desktop counterparts,
more and more confidential user data in these applications
will be subject to the side-channel threat. This urges the
developer to treat the problem seriously and come up with
proper testing measures to identify such weaknesses in their
products during the development and testing stage.

Challenge 2 – specifying mitigation policies. Also of
great importance is how to design application-specific
policies that effectively and efficiently suppress the
discovered information leaks. We have shown in the
previous section that specifying such policies often requires
nontrivial efforts to understand a web application, its traffic
patterns, program structure and state transitions, and even
semantic knowledge about its utilization. This makes the
application developer the most suitable party for specifying
those policies. As a result, an improvement is needed for
the current web development practices, which calls for new
technologies to be built to help the developer design and
evaluate such policies.

A necessary collaborative effort – building policy
enforcement infrastructures. Our study, as reported in
Section V.A, indicates that enforcing well-defined policies
can also be nontrivial. The enforcement often needs the
collaboration among multiple parties, including the vendors
of browsers (e.g., IE, Firefox) and web servers (e.g., Apache,
IIS). This is because of the following observations. Unlike
low-level socket programming, the design of today’s web
application often renders an application hard to determine
the sizes of the packets it generates, as its dynamic web
pages are essentially collections of element tags and macros
to be expanded by server-side engines such as ASP.NET or
PHP. Adding to this complexity is the encoding (usually by
escaping special characters) and compression (by GZIP or
DEFLATE) typically performed by web servers. This makes
packet sizes even more difficult to gauge by the application
developer. As a result, only the web server and the browser
that work directly on the layer of network protocols, such as
HTTP(S), know the exact sizes of the packets to be sent
onto the network. On the other hand, the protocol layers
have little ideas about the mitigation policies, as these
policies often need to be application-specific, related to its
state transitions. Therefore, web applications must
communicate to the protocol layer about the policies.
Unfortunately such a collaborative mitigation infrastructure

is unavailable on today’s browsers and web servers. In
Appendix C, we present a preliminary design of the
infrastructure on IIS and Firefox that allows the web
developers to apply well-defined padding policies.

C. Envisioning the Future Development Process
Although building the infrastructure for side-channel

information control is a necessary step toward the solution
of the problem, a more challenging task is to identify
vulnerabilities and define right policies during the program
development process. We envision that such a process
includes at least the steps in Figure 15.

Add policies to
manipulate packets,
e.g., rounding,
random-padding.

Specify
privacy
goals

Track information
flows, including
local and web flows

Identify web
flows related to
privacy goals

Solvable by policies
of manipulating

individual packets?

Have
vulnerabilities?

Change the designs
of application
features

Y

Y

N

N

Figure 15: A development process to address side-channel threat

An application should contain clearly-specified privacy
goals; static/dynamic information flow analysis needs to be
applied to track the propagation of sensitive information
within an application and identify violations of the goals; a
traffic analysis tool is needed to ensure that sensitive web
flows cannot be identified. Once a vulnerability is found, the
developer needs to investigate whether it can be fixed by
enforcing certain policies, such as padding or adding noise
packets. If so, the right policies should be specified within
the code of the application. Otherwise, the design of the
application needs to be adjusted, e.g., merging program
states, or re-allocating server and client side program logic,
etc. OnlineTaxA is such an example.

Obviously, accomplishing all these tasks manually will
incur too much cost. Therefore, we believe that automatic
tools need to be built to assist this development process.

VI. CONCLUSIONS
A web application is split between the browser and the

server, so a subset of its internal state-transitions and data
exchanges inevitably go through the network. Despite
encryption, some fundamental characteristics of web
applications, namely low entropy input, stateful
communications, and significant traffic distinctions, make
the side-channel leak a realistic and serious privacy problem.
As examples, we demonstrate that health records, tax
information, investment secrets and search queries are being
leaked out from many top-of-the-line web applications.

We also studied the challenges in mitigating such a
problem, and show that effective and efficient mitigations

have to be application-specific: developers will need to
identify the vulnerabilities first, and then specify mitigation
policies accordingly. This effort requires analysis of web
application semantics, information flow and network traffic
patterns. Public domain knowledge also needs to be
examined in order to understand the real power of the
attacker and the effectiveness of the defense.

 The web industry has decisively moved into the era of
software-as-a-service. Given this unquestionable context,
we envision that research on disciplined web application
development methodologies for controlling side-channel
leaks is of great importance to protection of online privacy.

ACKNOWLEDGEMENT
We thank our colleagues at Microsoft Research: Cormac
Herley offered his insights about the GIF format, and
suggested the possibility of recovering a pie chart through
analyzing the financial market evolution. Ranveer Chandra
offered us guidance on WiFi sniffing. Emre Kiciman
provided highly valuable advices on web server architecture
issues, and commented on an earlier version of this paper.
Johnson Apacible explained IIS implementation details.
Rob Oikawa, Jim Oker and Yi-Min Wang spent significant
efforts helping resolve the issues related to publishing this
research. We also thank anonymous reviewers for valuable
comments. Authors with IU were supported in part by the
NSF Grant CNS-0716292. Rui Wang was also supported in
part by the Microsoft internship program.

REFERENCES
[1] Balobardes B, Demarest S. Asking sensitive information: an example

with income. Social and Preventive Medicine. Volume 48, Number 1
/ March, 2003. Pages 70-72.

[2] D. Brumley and D. Boneh. "Remote timing attacks are practical," the
12th Usenix Security Symposium, 2003

[3] Andrea Bittau, Mark Handley, Joshua Lackey, "The Final Nail in
WEP's Coffin," the 2006 IEEE Symposium on Security and Privacy,
Oakland, CA

[4] George Bissias, Marc Liberatore, David Jensen, and Brian Neil
Levine. "Privacy Vulnerabilities in Encrypted HTTP Streams."
Privacy Enhancing Technologies Workshop (PET), May 2005.

[5] BusinessWeek. Privacy Survey Results.
http://www.cdt.org/privacy/survey/findings/

[6] Heyning Cheng, Heyning Cheng, and Ron Avnur. Traffic analysis of
ssl encrypted web browsing, 1998.

[7] George Danezis: Traffic Analysis of the HTTP Protocol over TLS.
http://research.microsoft.com/en-us/um/people/gdane/papers
/TLSanon.pdf

[8] Catalim Dima, Contantin Enea, and Radu Gramatovici.
Nondeterministic nointerference and deducible information flow.
Technical report TR-LACL-2006-01, LACL (Laboratory of
Algorithms, Complexity and Logic), University of Paris-Est (Paris
12), 2006. http://lacl.univ-paris12.fr/Rapports/TR/TR-2006-01.pdf

[9] IEEE 802.11-2007. Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications. Pages 180-181,
http://standards.ieee.org/getieee802/download /802.11-2007.pdf

[10] JFreeChart. http://www.jfree.org/jfreechart/
[11] Renaissance Lifts Its Veil, But Just a Crack.

http://www.hfalert.com/headlines.php?hid=44928
[12] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. “Hey, You,

Get Off of My Cloud! Exploring Information Leakage in Third-Party
Compute Clouds.” ACM CCS 2009.

[13] T. S. Saponas, J. Lester, C. Hartung, S. Agarwal, and T. Kohno.
"Devices That Tell On You: Privacy Trends in Consumer Ubiquitous
Computing," Usenix Security, 2007.

[14] SmartAnt Telecom Co., Ltd. "Adaptor USB for Wi-Fi 802.11bg
HighGain CPE," http://www.globalspec.com/FeaturedProducts
/Detail/SmartAntTelecom/Adaptor_USB_for_Wi-Fi_80211bg_High
Gain _CPE/97318/0

[15] Dawn Song, David Wagner, and Xuqing Tian. "Timing Analysis of
Keystrokes and SSH Timing Attacks," 10th USENIX Security
Symposium, 2001

[16] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata
Padmanabhan, and Lili Qiu, "Statistical Identification of Encrypted
Web Browsing Traffic," in IEEE Sym. on Security & Privacy 2002.

[17] Tor: anonymity online. http://www.torproject.org/
[18] Martin Vuagnoux and Sylvain Pasini. Compromising

Electromagnetic Emanations of Wired and Wireless Keyboards.
USENIX Security Symposium, 2009.

[19] David Wagner and Bruce Schneier. Analysis of the ssl 3.0 protocol.
The Second UNIX Workshop on Electronic Commerce, pages 29–40.
USENIX Association, 1996.

[20] Wikipedia. Graphics Interchange Format.
http://en.wikipedia.org/wiki/Graphics_Interchange_Format

[21] Sources about Steve Jobs’ health. a) Wikipedia. Steve Jobs.
http://en.wikipedia.org/wiki/Steve_Jobs; b) Steve Jobs' Health,
Apple's Stock. http://www.shortnews.com/start.cfm?id=76013; c)
Once Again, Apple Not Forthright About Steve Jobs' Health.
http://www.businessinsider.com/2009/1/so-apple-lied-about-steve-
jobs-health--again

[22] Wired News. "Declassified NSA Document Reveals the Secret
History of TEMPEST," http://www.wired.com/threatlevel/2008/04/
nsa-releases-se

[23] Charles Wright, Lucas Ballard, Scott Coulls, Fabian Monrose, and
Gerald Masson. "Spot me if you can: recovering spoken phrases in
encrypted VoIP conversations," in IEEE Symposium on Security and
Privacy, May, 2008.

[24] Kehuan Zhang and XiaoFeng Wang. Peeping Tom in the
Neighborhood: Keystroke Eavesdropping on Multi-User Systems.
USENIX Security Symposium,2009

APPENDIX

A: LOW ENTROPY INPUT FEATURES IN POPULAR SCRIPT LIBRARIES
Library
Name

Low entropy
input feature

 Library
Name

Low entropy
input feature

Script.aculo.us Autocompleter Rico Ajax livegrid

Dhtmlgoodies Ajax tooltip jQuery Ajax Event
handling

OpenLaszlo Remote Database TwinHelix AddEvent Manager

DojoCompus Dynamic data
retrieving

 Echo Input component
with Ajax

Mochikit Ajax sortable
tables

 jsLinb Interact with
MySQL

Crosser-Browser Tooltips Rolodex Partial page update
Yahoo YUI Autocomplete Adobe Spry Auto suggest

B: CIPHERS USED BY IMPORTANT HTTPS WEBSITES
Website(s) Cipher(s)
PayPal, WellsFargo Bank, Citi Bank, Bank of America,
American Express, Scottrade, E*Trade, Google Adwords,
Microsoft AdCenter, eSurance, Comcast, AT&T phone
account service, Provident Mortgage, GeoTrust CA,
OnlineInvestA, FinancialDataA, OnlineHealthA, OnlineTaxA

RC4 (a
stream
cipher)

Verisign CA RC4 (stream) and AES128 (128bit block)
GEICO insurance Triple-DES (64bit block)

C: A PRELIMINARY SIDE-CHANNEL-CONTROL INFRASTRUCTURE
Since side-channel control is a cross-layer task as discussed

earlier, the very first step of such an effort, naturally, is to urge
vendors of web servers and browsers to provide an infrastructure
so that well-defined policies can be specified by web application
developers and enforced on the protocol layer by browsers and
web servers. We implemented a prototype for packet-padding as
an IIS extension and a Firefox add-on, shown in Figure 16.

Link
<form target=“a.aspx” method=“post”>

<input type=‘hidden’
name=‘policy’ value=[Policy]>
…

</form>
XHR.open("GET“,"a.aspx?policy=[Policy]");

ASP.NET pages

ASP.NET engine

IIS

AppendHeader(‘policy’, ‘[Policy]’
….

Padder module
as an IIS
extensionHTTP(S)

handler

HTML pages

Padder module
as a Firefox
add-on

HTTP(S)
handler

GET/POST
requests

browser web server

Figure 16: Padder prototypes on browser and web server

Our prototype works on the web applications written in
ASP.NET. A padding policy for a response is specified by calling
AppendHeader(‘policy’, ‘[Policy]’) in the
corresponding ASP.NET page, where [Policy] is the policy
definition to be discussed later. Such a policy is enforced by a
padder module on the protocol layer, which intercepts the IIS
workflow for generating the response and pads it according to the
policy header. The interceptions happen before and after the
HTTP compression.

For an application’s browser-side component, HTTP requests
come from the sources like a hyperlink, a form or an
XmlHttpRequest (a.k.a. XHR) shown in Figure 16. Such a request
is either GET or POST. For GET, the padding policy is inserted
into the argument list in the URL, right after “?”. For POST, the
policy is inserted as a hidden input field. The browser-side padder
is a Firefox add-on called by the HTTP handler when processing
GET and POST requests.

Policy specification and enforcement. The server-side policies
are specified by the following grammar. For example, a policy can
be “random-padding; 128; before-compression; header”. The
policies on the browser-side are similar, except that there is no
When-clause, as the HTTP protocol does not support compressions
for requests.

Policy ::= Strategy ; Delta ; When ; Where
Strategy ::= rounding | random-padding
Delta ::= integer
When ::= before-compression | after-compression
Where ::= header | body

Enforcement of such policies is straightforward. The padder
module retrieves the policy from a packet passed from the HTTP
handler, calculates the packet size, applies rounding or random-
padding to the packet, and then gives it back to the HTTP handler.

Functional tests. We evaluated the functionality of our
prototype using a sample web application with an auto-suggestion
feature implemented by XmlHttpRequest (to test AJAX-style
requests), a selection list for the user to click (to test POST
requests) and a search functionality similar to find-a-doctor in
OnlineHealthA (to test server responses). We analyzed the network
traffic and confirmed that the policies specified in the application
were correctly enforced.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

