VO LUME2
GENERAL

PURPOSE
SOFTWARE

edited by the interface age staff

Best of Interface Age

Volume 2: General
Purpose Software

Best of Interface Age

Volume 2: General
Purpose Software

Edited by
Interface Age Staff

dilithium Press
Portland, Oregon

© Copyright, Interface Age, 1980
10 9 87 6 5 43 2 1

All rights reserved. No part of this book may be reproduced in
any form or by any means without permission in writing from
the publishers, with the following two exceptions: any material
may be copied or transcribed for the non-profit use of the pur-
chaser; and material (not to exceed 300 words and one figure)
may be quoted in published reviews of this book.

ISBN: 0-918398-37-1
Library of Congress catalog card number: 79-67462

Printed in the United States of America.

dilithium Press
P.O. Box 92
Forest Grove, Oregon 97116

Preface

Volume Number 2 of the five volume Best of Interface Age series is
significant since it presents thirteen of the most-asked-for system
and application software articles printed in Interface Age.

The articles that are contained within this volume were chosen not
only for their value as working software systems, but also for their
value in showing a number of different programming techniques. We
at Interface Age firmly believe that serious students of software, and
those that just enjoy making use of software will find this book
invaluable.

vi

Best of Interface Age/Volume 2

Table of Contents

SECTION 1 USEFUL IDEAS

Chapter 1 Inside ASCII

by Contributing Editor R. W. Bemer

Original publication date: May, June, July 1978

Chapter 2 BASIC Cross Assembler for the 8080

by Peter Reece

Original publication date: February 1978

Chapter 3 TLABEL: An 8080 Program to Punch Human
Readable Labels on a Paper Tape

by Software Editor Dr. Alan R. Miller

Original publication date: January 1979

Chapter 4 TAPEMON: An 8080 Binary Tape Monitor

by Software Editor Dr. Alan R. Miller

Original publication date: February 1978

Chapter 5 A Complete Data Base Management System

by Peter Reece

Original publication date: August 1978

Chapter 6 The Computation of Direction

by Gene Szymanski

Original publication date: August 1978

Chapter 7 Random Files lllustrated

by Frederick E. La Plante, Jr.
Original publication date: February 1978

SECTION 2 SOME MEDICAL SOFTWARE
Chapter 8 It's Not a Big Miracle

by Mathew Tekulsky

Original publication date: December 1978
Chapter 9 Heart Attack

by Leo P. Biese, M.D., F.C.A.P.

Original publication date: July 1978

51

67

73

99

119

127

137

145

viii Best of Interface Age/Volume 2

SECTION 3 GAMES, EDUCATION AND PERSONAL
FINANCE

Chapter 10 Shooting Stars 153

by H. DeMonstoy

Original publication date: April 1977

Chapter 11 European Roulette—in Color 161

by W. C. Hoffer

Original publication date: August 1978

Chapter 12 Child’s Piay Number Game 171
by Karen S. Wolfe
Original publication date: September 1978

Chapter 13 On a Bi-lingual Math Tutoring Program 175
by Marvin Mallon
Original publication date: September 1978

Chapter 14 The Personal Management Program 185
by Carl Townsend
Original publication date: August 1978

APPENDICES/INDEX
Appendix A 8080 Instruction Set 193
Appendix B Available Back Issues 201

Index 203

Chapter 1

Inside ASCII

by R. W. Bemer

The data alphabet called ASCII (Figure 1 and Reference 1), also has
two other names—International Standard 646 (the ISO Code
[Reference 2]) and Alphabet No. 5 of CCITT (the International Con-
sultative Committee for Telephone and Telegraph). It is used
throughout the world, incorporated in billions of dollars of equipment.

But is it used correctly and wisely? Not always. There are misinter-
pretations, and gaps in definition that permit nonstandard usage. This
article will give you the background, peculiarities, preferred practices,
and new developments for ASCII. You will find a lot of information not
too generally known or realized; it should help in the correct and safe
usage of ASCII. For additional help, you can reference the various na-
tional and international standards given in Table 1a. Some other
detailed articles are listed in References 3, 4 and 5.

STICKS 4.7

ASCII, as a 7-bit code, is usually represented in 8 columns of 16
positions. The row positions are 0000 through 1111, the low-order 4
bits, 0 through 15 in decimal. The columns are 000 through 111, the
next higher 3 bits, 0 through 7 in decimal. For some reason, the
developers of ASCII found it convenient to refer to these eight col-
umns as ‘“‘sticks.” So shall we. Each position will be represented in
this article by its usual decimal representation. For example, capital A
is position 4/1. Figure 2 is a representation of ASCII that is more con-
venient to those working in octal, rather than hexadecimal, notation.

The first positions of sticks 4 and 6 are respectively the “commer-
cial at” and “accent grave.” Then the upper and lower case Roman
alphabets follow. This offset of one position is historical (from the
United Kingdom), and of no importance as long as you remember that
it is so.

Following the alphabet in both sticks 5 and 7 are three positions
each that one must be very cautious about. In ASCl| they are assigned
as|[, /', and] in stick 5—{, |2, and } in stick 7. But in the 1SO Code and
CCITT versions they are reserved for national usage. Table 2 gives the

2 Best of Interface Age/Volume 2

———————{ 0000 | 0001 [0010] 0011 | 0100 [0101 [0110 | 0111
by bubs | bebiby by [SO 0 1 2 3 4 5 6 7

NUL[OG]DLE[OO[SP [GE| 0 [OC|=e 10| P |00~ Cc0] p |00

0000 | 0 ——00+—=—00——00—0CH—0L—00——00 0o
Oloo, B 00| & loc 0o 0g 06 ih) 0o

soH|0O0} pci|oO| ¥ [0G] 1|00 A |00 Q 60! a |GO| ¢ |OO

0001 | 1 —00——00——00——00——00——o0——00—0a
I oo 00 0o 0g 0g 00 0o 00
STX|0O|pcz2|0a] ¢« |00| 2 |00l 800 R [00] b |0O[¢ (OO

0010 | 2 00 =0 0——C0——00—00—00—00 0o
1lgc| @ ggi__ 100 0g i 0o oo 0o
eTx|00|oc3|00] .00 3 |00| ¢ (00| s [00] ¢ |0O[s |00

0011 | 3 —npl=Hgpnp oo no-S4na-ag
47~ @ |00 Ce 0o 0o 00 0o 0o

eot|- C|oca|0C]™g '[CC] 4 JoOf o |oc] T o0 ¢ [00[¢ |00

0100 | 4 —Zi—L0r—0i——20——00—00—0o—a0
~.|00| © |go 0g 0o 0o 0g 0o @l
ENQ[OG|NaK|OT| % (0Tl 5 |00l E |00] U |00] e 00| w |OO

0101 | 5 ——H0Cr—00—00—00——00——00——o0o——00
R |oci »< (oo 0G 0o 0o 0o 0o ol
AcK|oo|syN{OO| & (00f e |oo| F 0G| v |00 ¢ |00] v |OD

0110 | 6 ——00}=—00——00——00——00F——00——00—60
v 100 00 00 0o al} 0o 0o 0Q
BEL|DG[ETR |00 * |00[7 |00 6 |00 W [00[g {00[w |OC

o111 | 7 —06+——00——00——00—00+——00——00——00
2 log| A |80 on 0og 0o afln} 00 00

BS [QC[CaN|DD Bdl 8 {00| W |0Q[x |00 00 00

1000 | 8 o2 la gl g k- aot oo e - el aa > Han
« ool X |oo 0o 0o 0o i 0o 0n

HT |DO[em |00 00 e |00 1100 v oa[; |Bo 0o

1001 | 9 ——DD——DDLDD—DD—DDMDD—'—DDLDD
-> |00 ¢ |00 0a 0o oo 0o 0o 0o

LF [0O[suB|0O[% |08| : |0C| 4 (00} z |00[; |00Of 2z |0O

1010 |10 +—{00 00—0.—Ja— 0000 0o
=130 S |ag 0o 03) N T 0o 0o

vT [00(esc (00 Col dl K 1o R[] OO[%r 100

1011 11—DDS—DDLDD'—UD—)U»——E—DDLDD—LDD
Y {00/ © |0 0o 0o oo 0o 0o 0o
FF0Fs 100, (00| < |0[L [00]X"100[v |go]~|oo

1100 |12 ——00F—=—00 00—— 00— 00 400+——B0—4a0
¥ 00| [igo 0D 0o 0o 0o 00 ag

CR |00| s {00| — (00 = |CO| m DDWﬁ“DD m ([00[*F:(00

1101 |13 ——J0+—=—00—00——00+——00=+00——B80——80
< |30| B |oc ils] 00 afa) 0a 0o oo

SO [J0[Rs 00| . |00 » [DO[N |23°%"[97] n |00].>,|0C

1110 |14 —30+—=—03——00—00—320—ud g0 0o
® 00| d g5 ao afa] 0o 0o 00 00

sI @8] us |oo| 7 oo[7 ool o [0o] — ool o |oG|oeEL|OD

1111 |15 ——00r=—00r—00r~—o0rH—00 0o 001,00
® |00|@ |og 0o o0 N 00 00l % oo

Note 1

These 12 positions are van
able for national usage -- 2 for
currency, 7 primary national
usage. and 2 secondary usage
which are diacritical marks
when preceded by BSP. The
presently known assignments
are given in the table below

Figure 1. ASCII (ISO Code)

national use assignment for these positions. Surely you remember
that the Scandinavian alphabet has 29 letters, not 26? My friend @rjar
Heen in Oslo is very protective of these positions. He says “If you
Americans want to sell computers and software abroad, don’t use the
ASCII characters for these positions in your software.”

To be more precise, positions 5/11, 5/12, 5/13, 7111, 7/12, and 7/13
(noted above) are called primary national usage positions. So is 4/0,
where ASCIl has the “‘commercial at.” Honeywell, for example, uses

Inside ASCil 3

IS0 ECMA ANSI FIPS CSA BS AS CCITT JIS GOST
pPuB
Binary-coded 646 6 X3.4-1977 1 2243.4 4730 1776 v.3 6220 13052-67
Character Set $4.50
Graphics for 2047 17 X3.32-1973 36 4730
Control Characters $3.50
Character Set 97/3 X3.45-1974 33 2243.34.1
for Handprinting N119 $5.75
Additional Controls 48 BSR
Character Imaging X3.64
4-bit Sets 963 14 15 2243.6 4731/1 1070
Code Extension 2022 35 X3.41-1974 35 7243.35 4953
Techniques $6.00

Registration Procedures 2375
for Escape Sequences

8-bit Coded DIS 43 Xx3L2/77/08
Character Set 4873
Character Set for 42

7 x 9 Matrix Printers

Keyboard 2530 23 X4.14-1971 482211 1922
$3.75

Character Sets for 97/5 53

Programming Languages N&436

Legend

IS0 - International Standards Organization

ECMA -~ European Computer Manufacturers Association

ANSI - American National Standards Institute

FIPS - Federal Information Processing Standard

CSA = Canadian Standards Association

BS - British Standard

AS - Australian Standard

CCITT - Consultative Committee International, Telephone & Telegraph

JIS = Japanese Industrial Standard

GOST - USSR Standard
Table 1a. Loglcal Standards for ASCII

the “at” in a timesharing system for deleting the previous character
upon entry. But this isn’t too serious, because many nations aiso have
the “at” in their primary sets.

Also in sticks 4-7 are three diacritical marks. They are accent grave
() in 6/0, circumfiex () in 5/14, and tilde (~) in 7/14. These are called
secondary national usage positions. In some countries the tilde is a
straight overline.

But it is the circumflex where we have a lot of confusion. Teletype
first made it an “up arrow” in an earlier version of ASCI|, to serve as
an exponentiation symbol, primarily for BASIC. But that doesn’t do
very well, because the exponentiation for FORTRAN is a double
asterisk! The FORTRAN version is preferable in France, certainly,
because they use such words as créne, cdte, colt, and so on.

A companion problem exists in position 5/15, with the underscore.
The underscore is neither national nor diacritical; all countries use it
just as underscore (and for typesetting it is a U.S. convention to in-
dicate italics, but in Italy it means boldface, except when it is the last
character in a line!?). But Teletype’s early version of ASCll used it as a

4 Best of Interface Age/Volume 2

HIGH ORD_El EEMB.E.. LOW ORDER
goTaL 1012 |14 | 16 [y
NUL|DLE|SP| 0 | @ P s p

SOH|DC1| !
STX|DC2|
ETXIDC3| #
EOT|IDC4| $
ENQ|NAK| %
ACK/SYN| &
BEL [ETB| ~

Njolald e N
g <|lc|4j»wDO
g <l |~ =~ |0

HIGH ORDER LOW ORDER
oGS ocTAL
DIGIT

[

H

(FF|{FS| , | < \ B < |
cRlgs| - |=|m 1 /m | N
SO/ RS | .

>
stjus|/ |2

| 1
o |33
1

IDEL

Figure 2. ASCII in Octal Reference Form

“left arrow” —probably for an assignment symbol equivalent to : = in
ALGOL. The up and left arrow have been carried over from Teletype
into many video terminals. Ask your terminal manufacturer to cease
and desist and retrofit. It’s not ASCII and will only cause trouble
forever.

The last character in sticks 4-7 is the Delete, symbol DEL, in posi-
tion 7/17. 1t was put here because the binary code is 1111111, which
would be all punched holes in perforated (not always paper!) tape, and
that is the only way to make sure that it cannot be misread as some
other character. ASCIl is a complete set; all positions are assigned to
have meaning.

STICKS 2-3

These are usually called the sticks for digits and specials.
Remember that they are the “digits” 0 to 9; not numbers, not
numerals, not anything but digits! They are in 3/0 through 3/9 so that
the low-order 4 bits are the representations for packed decimal.
Originally we considered the possibility of a special 4-bit set for

Inside ASCIi 5

numerical applications (see the fifth entry in Table 1a), but it turned
out that computer hardware became inexpensive enough to not
deprive ourselves of the extra capabilities of the 7-bit and 8-bit sets.

Position 2/0 is officially called “‘space.” | don’t and didn’t like it, and
would have preferred “blank.” Which is why the IBM community often
uses a lower case “‘bee” with a slash through the vertical as its sym-
bol. From the Univac side, the space has the official symbol “delta.”

Having mentioned packed decimal, where two digits go into each
8-bit group (“‘byte” to the American, “octet” to the French), a word of
caution on the plus and minus signs—they are in stick 2, rather than
stick 3 with the digits. But the low order 4 bits are distinct, and +
should be used only as 1011, — only as 1101. | mention this because
the nonstandard code EBCDIC permits multiple representations of +
and - in packed decimal. And the ASCIl representations are not even
coincident with any of these, with obvious dangers!

Watch out for the “currency” positions, 2/3 and 2/4. They also have
national variations. In ASCIl| they are customarily # and $, but there
are some things to be remembered:

* #is not “number sign” for many countries, most of which use “No.”
or “Nr.” for that purpose. And when it is “‘number,” it must precede
the digits, not follow.

* # closely resembled the “sharp sign” in music.

* #is “pound sign” only for the U.S., the only major country still not

using the metric system. To the rest, it's kilograms. For now, it’s

best to use the abbreviation “Ib.” in the U.S., not the #. In any case,
both must follow the numeral.

To the British, a “pound” has the symbol “£€”, which is why that is

the symbol in position 2/3 for the UK. They get very irked when # is

called a “pound” sign, especially in software manuals.

The “dollar” is peculiar to the U.S., Canada, and some others. There

are also francs, marks, escudos, pesos, lire, etc., etc. Which is why

the I1ISO code uses the universal currency symbol in position 2/4. It's

a circle with outside spikes at 45, 135, 225, and 315 degrees (x),

called “scarab.” Table 2 also shows these assignments for several

countries.

* ECMA has provided a separate guideline for specifying interna-
tional currencies. See the “Where to Get More Information” at the
end of this article.

It's a tough problem, and will get worse when we get into expanded
character sets for photocomposition and such. For now, all we can do
is follow the ASC!| standard, which says that # is a “number sign.”
Only a few more peculiarities remain for sticks 2-3. An important
one is in the double quote, position 2/2, and the single quote, position
2/7. That is, you may think it is a single quote, and even use it so, but it
is really an “‘accent acute” for vowels. It siants from top right to bot-
tom left, to complement “accent grave” in 6/0, which slants from top
left to bottom right. Some terminal makers do not realize this pairing,
and will have accent grave slanting correctly, but put accent acute as
a single quote in the unstylized up and down method. My Terminet is

6 Best of Interface Age/Volume 2

currency 1st 7 national dia | dia 1st 7 national dia

2/3[2/4]4/015/1115/1215/13(5/14[6/017/11(7/1217/13}7/14

t

Netherlands—A @ | 1) { }
Australia
Belgium—A

W. Germany—A
uUs

Japan

UK

Italy—A
Switzerland—A
France—A
USSR

13
u

> D 4 e———)

— Y — 3
-—
& ——r W ———

LN I O T 2 A

>

Netherlands—B
Belgium—B
France—B £ $
Switzerland—B
Italy—B # s
Switzerland—C
Hungary

W. Germany—B
Switzerland—D
Sweden # I8 £
Finland
Denmark
Norway
Spain

=1

-
o
>

LS
bl
@ wn
BB e e O 0 e
[
. - e
R OR e R om0 o e
L S R
o w o o

ﬁﬁﬁﬁ}_)ﬁm-
ZI®e® 0000 Or P D oD

Table 2. National Usage

one of those that is OK.

Don’t forget that to the typesetter, in contrast to typewriters, both
single and double quotes have two forms—opening and closing. In
fact, the typesetter gets his double quotes by using two single quotes,
of either form, because the quote uses very littie space in variable
space typesetting. Most terminals, either video or hardcopy, use con-
stant spacing. So double and single quotes must be distinct for that
reason.

The last variation is in position 2/6, the ampersand. There are many
legitimate different designs for the ampersand. Neither ASCII nor the
ISO Code prescribe any particular one. But this leads us to the next
topic—how to represent the ASCH characters in handprinted form, so
that they may be input to computer systems.

HANDPRINTING FOR STICKS 2-7

The classical confusion for many years was between the digit zero
and the letter “oh,” but there are other possibilities for confusion.
American Standard X3.45 specifies the handwritten character shapes
shown in Figure 3.

This clears up a longstanding problem. The communications types,
and the armed services, used to put a slash through the zero;
somehow the IBM users got to putting the slash through the letter
“oh” instead, confusing the Scandinavians greatly. Now it’s neither
(which helps), just a 180-degree rotation of the letter Q. The earlier
German Standard DIN 66 002 prescribed the cursive loop in the upper
right, as some may have learned in penmanship courses. It now per-
mits the ANSI form as well.

Inside ASCII 7

ABCDEFGHIJ
OVWXYZ+=_,

|| v T 3

Characo

it
H

Croup trase
Soace e o lewers . L. 1
ol X1

N\ 7 '
? ° e L
[1N I AR

APEREEY 17

Figure 3. Handprinting for ASCII Characters

UPPER AND LOWER CASE LETTERS

Many people are accustomed to using upper case only. This is a
hangover from early line printers and limited sets (until the Stretch
computer of IBM, characters were usually 6 bits in size). It would have

8 Best of Interface Age/Volume 2

been far better if they had all been lower case in those smaller sets.
Putting it simply, would you buy a book to read if it were all in upper
case? Because lower case is much easier and faster to read, lower
case should be the default case when one has only the one case.
There is no reason why FORTRAN or BASIC processors cannot
understand lower case variable names and verbs just as easily as they
can understand upper case.

| always recommend getting a terminal with both cases if it is at all
affordable. Second best is making sure that a single-case terminal is
retrofittable later, if necessary. And if a single-case terminal, get it in
lower case only, if possible. There has been much reportage in the
computer trade press about eyestrain resulting from using computer
terminals. Is the reason obvious?

STICKS 0, 1

These are the control characters. The most important distinction in
ASCII is the split between sticks 0-1, Controls, and sticks 2-7,
Graphics. We'll see this later on in the standards for Code Expansion
(to 8 bits or more), and Code Extension (alternate sets, such as Cyrillic
for the USSR, and Katakana for Japan).

Unfortunately, there is, despite the standard, much difference be-
tween the ways that various terminal devices handle these control
characters. They may act differently, or they may not be operative at
all. | have two very useful programs, written in the TEX language (Ref-
erence 6). One lists each symbol by name and then shows its action
between parentheses. The other asks you to depress in turn all the
funny keys on your terminal, and then tells you what control
character(s) they generate, if any.

GRAPHICS FOR THE CONTROLS

There are standard graphical representations for the 32 controls,
space, and delete. They are defined by ISO 2047, American Standard
X3.32, and ECMA-17, and are shown integral to Figure 1. Some ter-
minals are advertised as ASCII terminals, and yet generate Greek or
other characters for these positions. Don't believe it! These symbols
are every bit as useful as any Greek characters could be.

There are five groups in the basic control set.

STICKS 0, 1—Logical Communication Control (10)
This group is used for both communication and for labeling of

media. It includes:

SOH (0/1) (Start of Heading)—used as the first character in the
heading of an information message.

STX (0/2) (Start of Text)—terminates the heading just before the
text.

ETX (0/3) (End of Text)—Last character in the text message. Unfor-
tunately, it is generated on many terminals via Control-C,
and that’s just to the right of Control-X on the keyboard,

Inside ASCII 9

EOT (0/4)

ENQ (0/5)

ACK (0/6)

DLE (1/0)

NAK (1/5)

SYN (1/6)

ETB (1/7)

which is commonly used to cancel a bad input line. And if
you mis-key—ouch!

(End of Transmission)—the last character in any transmis-
sion, and usualily it turns your device off!

(Enquiry)—requests a response from a remote station,
either an identification of that stations (Who are you?) or
its status.

(Acknowledge)—used by a receiver to reply ‘“yes” to a
sender.

(Data Link Escape)—an Escape character, especially for
communications, analogous to ESC (#/11). It signals the
start of a character sequence that causes a shifting into
another set of communication controls, whenever they are
needed.

(Negative Acknowledge)—used by a receiver to reply “no”
to a sender.

(Synchronous Idle)—needed by synchronous transmission
systems to get into, or stay in, synchronization when no
other such signal is available to them.

(End of Transmission Block)—indicates the end of some
division of data that the transmission system must make,
unrelated to any division in the format of the logical data
itself.

STICKS 0, 1—Physical Communication (4)
This group is used for communications. It includes:

NUL (0/0)

CAN (1/8)

(Null)—the standard says that it is “used to accomplish
media fill or time fill”. . . “may be inserted into or removed
from a stream of data without affecting the information
content of that stream.” And that’'s exactly what the stan-
dard also says about DELete (7/15), which it lists as a con-
trol character even though it is not in the control sticks!
The only difference | can see between them is that on per-
forated tape you can make any character into a DELete,
but none into a Null.

(Cancel)—the receiver is to disregard the data received up
to that point, starting from restart point that receiver and
sender have agreed upon. It is common in timesharing for
Cancel (often generated by a Control-X) to work on a line-
at-a-time basis, to delete an unwanted string of entry
characters, and effectively put one back to the position of
reentering the entire line. In this case, the agreement be-
tween sender and receiver is “back to the last CR.” But
there are many other ways that Cancel could be used, and
for parallel as well as serial transmission.

SUB (1/10) (Substitute)—a character that says probably we would

have had another character in this position if we could

10

EM (1/9)

Best of Interface Age/Volume 2

have figured out what it was supposed to be! There are
many reasons for such confusion—perhaps parity didn’t
check out. But it is better to put in a SUB to keep the field
lengths and such correct. Moreover, note its symbol, a mir-
ror image (not the Spanish inverted) question mark. If this
is displayable, it will tell you definitively that the system
doesn’t know what it is, and you can make a good guess in
many cases, particularly in word text.

(End of Medium)—defines the previous character as the
last usable character on that medium, whether or not there
is more recordable space on the medium.

STICKS 0, 1—Device Control (11)
This group is used for control of devices such as terminals.

HT (0/9)

VT (0/11)

LF (0/10)

(Horizontal Tabulation)—the standard says that is “ad-
vances” the active position to the next predetermined
character position on the same line.” There are two ways
this can work:

1. Right at the terminal, if it has the horizontal tab
capability built in. Sometimes you can set the tab posi-
tions by using the terminal only; almost always the com-
puter can be made to set the tabs on the terminal. Then
when you hit HT during entry, or HT is read from the
computer output, the printing or displaying (active) posi-
tion will skip to the next tab setting.

2. By a formatting program in the computer, which must
be given some indication of the tab setting positions in
force at any particular point in the file. The program
then simulates horizontal tab movement by filling the
lines with spaces as needed to achieve the alignment.

(Vertical Tabulation)—the standard says that it “advances
the active position to the same character position on the
next predetermined line.” And if you agree with somebody
else, it can be to the first position in that line instead. This
is a very dangerous character to use. it cannot be used
directly on any terminal that | know of. Even if it could, the
implementation rules are not supplied unambiguously in
the ASCII standard. And for use by a formatting program,
one would have to predefine the number of lines to be
skipped. That’s pretty tough when you are inserting and
deleting lines, as every programmer knows.

(Line Feed)—like vertical tab, but just to the next line,

which is clean enough. If receiver and sender agree (again

as in vertical tab), it can be to the first position of the next
line, in which case it is called New Line (NL). Some

manufacturers implement this. | personally prefer having a

separate Carriage Return and Line Feed. Both codes can

be generated with a single keystroke, and they often are.

Inside ASCII "

FF (0/12)

CR (0/13)

BS (0/8)

(Form Feed)—again like vertical tab, to the same character
position unless sender and receiver agree that it is to the
tirst position in the new line, except that the tab is to a new
line position that is related to a form of some size (those
that fold 11 inches apart, for example). This control could
run wild if your terminal or other display device is not
equipped to handle it, so use it with caution in files.

(Carriage Return)—moves the active position to the first
position on the same line! Not like typewriters. They have
effectively incorporated the New Line feature. But the non-
advancing CR is better for terminals, even if it is mis-
named. Neither video terminals nor ball and daisy wheel
typewriters have carriages, so live with it.

(Backspace)—Backspace is a very tricky character. On
some terminals, such as video terminals, there is no key to
generate Backspace for entry into the text stream or buf-
fer. On many it can be created via Control-H. Even then, it
may or may not be operative.

Backspace is meant for physical movement of the active
position (which may or may not coincide with a cursor
position, when such exists). Historically, it was included
for hardcopy terminals and other hardcopy devices for
some of these uses:
¢ Underscoring (underlining).
¢ Other forms of highlighting, such as bold. For example,

the sequence A BS A BS A would strike the A three times

on a hardcopy device, and make it look boldface (such a

sequence can also be translated to call a boldface font

in photocomposition).
¢ Editing indications. For example, in legislative bill draft-
ing to indicate the deleted or changed portion:
Thig I8 obsdletd.
¢ Forming composite characters, e.g.:
% = % 1A | } FE(Hungarian forint)
e Forming accented letters, primarily for European
languages. Examples:
A A @ (Scandinavian letters following 2)
N a a o u

Warning: Backspace is entirely different from a cursor
movement on a video terminal! When the cursor is moved
to a position where a character is already entered, suc-
ceeding entry in that position usuaily destroys the original
character and replaces it with the new entry.

| personally haven’t seen any video terminals with a true
backspace. A former president of Infoton told me it could
be done as an engineering special for about $5,000 one-
time cost.

12 Best of Interface Age/Volume 2

Warning: There are three ways to create underscored text

for hardcopy terminals:

1. The characters, that many backspaces, and that many
underscores (or vice versa).

2. A character, BS, underscore, the next character, etc.
This is called the canonical form, and is used quite
commonly.

3. Underscore, BS, character, underscore, etc.

1 have noticed a lot of difficulty moving back and forth be-
tween hardcopy (at my home) and video (in my office) ter-
minals. One tends to underscore on the hardcopy terminal
and forget that half of the pairs are going to be wiped out
by the cursor on the video terminal. In the first two
methods above, it’s the text that gets wiped out, and it's
hard to read on the fly. So if you plan to display a file on a
video terminal, find another highlighting method, or use
the third underscoring convention. Even that may give
problems if done by embedding an underscoring command
in the file you pass to a formatting program; most such
programs put the underscore last instead of first.

BEL (0/7) (Bell)—sounds an audible signal to get the user's atten-
tion. Some terminals are not so equipped, but they should
be. It’s good human engineering. But please give me an ad-
justable volume control!

And then there are the four device controls for unspecified purposes,
DC1, DC2, DC3, and DC4—in positions 1/1 through 1/4. Different
manufacturers treat these like a wild card in poker—-they make them
anything that they want. Doesn’t lead to much compatibility, so
beware.

STICKS 0, 1—Information Separators (4)

This group is used for formatting and string processing. These are
the separators in positions 1/12 to 1/15. | got the idea originally from
the Word Mark in the 1BM 1401, which used an extra bit in the low-
order character in a field as a delimiter. ASCIl uses special and
separate characters to indicate a hierarchical structure. Originally |
put in eight such characters, but only these four remain:

FS (File Separator —1/12)
GS (Group Separator —1/13)
RS (Record Separator—1/14)
US (Unit Separator —1/15)

FS is most inclusive, US the least inclusive. And we can consider the

blank/space as the next lower order separator from these. Suppose

we had a line of text like this:
(text1)US(text2)US(text3)RS(text4)US(text5)GS(text6)

On many terminals these delimiting control characters would not
print, so we would see only a continuous stream. On others they might

Inside ASCII 13

show as spaces. A TEX command to break the line at the record
separator would be:

scan:line:*rs
The variable *left would contain “(text1)...(text3)”’. The variable
*right would contain “(textd). . .(text6)”.

STICKS 0,1—Changing Sets (3)

This group is used for moving to and from alternate graphic and
control sets. This includes ESCape (1/11), Shift Out (0/14), and Shift In
(0/15).

These basic control characters have permitted design of a quite
marvelous structure for extension and expansion. It aliows us to code
and classify most of the world’s graphic symbols for computer
storage, interchange, and display.

THE ASCII COLLATING SEQUENCE

The abstract aspects of ASCIl have been treated. Now we come to
some aspects of usage and implementation. Certainly one major use
area is the ordering of files.

To put items in some ordering, the entire precedence relationship
for that ordering must be defined. Higher or lower, precedes or
follows, or whatever. For single characters, this ordering relationship
is called the “collating sequence.”

The ASCII standard used to say that the collating sequence for both
graphics and control characters is defined simply by their binary
representations. Later it added a warning that this collating sequence
“cannot be used in many specific applications that define their own
sequence.” What an understatement!

The 1977 version hedges and speaks all around the probiem without
making it clear. It's not all that difficult. Suppose you have two files,
and you want to know how they differ and/or how they are the same.
For this purpose, the implied collating sequence (straight binary com-
parison) is just fine. The two files will be in the same order, and can be
matched.

Whether that straight binary ordering can be used for any other pur-
pose is doubtful. It won’t work for signed numbers.

Ordering Numerals

Take these four values: 22, 13, minus 6, and minus 31. If the sign is
placed before the digits, ordering by the ASCII collating sequence
yields:

+13
+22
-06
-3

This is obviously worthless. it’s because ordering is decided left to
right, and the minus sign has a binary value 2 higher than the plus

14 Best of interface Age/Volume 2

sign. Or if the sign were to follow the numeric values we would get:
06 —
13+
22+
31-
because the complete decision is made in the leading digit. Again, a
worthless sequence.

The way to achieve a proper ascending sequence is to separate the
values into two groups, ordering those with plus signs in ascending
sequence, and those with minus signs in descending sequence. Then
put the plus group following the minus group. And vice versa for a
total descending sequence. Notice that this works regardless of
whether the sign precedes or follows the digits.

Ordering Alphabetic Fields

Alphabetic ordering is even more complex, particularly in handling
both upper and lower case. Again the implied ASCII collating se-
quence can go wrong. People who have not studied the collating prob-
lem for data containing both upper and lower case are inclined to
jump to wrong conclusions. | did myself, for the IBM Stretch computer
in 1958, assigning the ascending binary sequence as AaBbCc. Using
this for a telephone directory would give us the left hand column. The
straight binary sequence of ASCIl would yield the righthand column,
just slightly different:

De Carlo De Carlo
De La Rue De La Rue
De Long De Long
Delair Del.aRue
DelLancey Del.air
DelLaRue Del.ancey
Delancey Delancey
de Carlo de Carlo
de la Rue de la Rue
deLancey deLancey

Either version will get a lot of anguished subscribers!

In the simplest case, two alphabetic items must be compared with
the case ignored. Only if they are then equal is case called into con-
sideration to break the tie, and it is also applied successively left-to-
right!

In short, the upper and lower case versions of a letter do not both
get full graphic significance. Typing either “Y” or “y” will indicate a
“yes” reply, but “N” will not. Because the case distinction is minor,
comparisons must first be made on major distinctions, with the minor
distinctions used only as tiebreakers. Accenting of letters must also
be considered minor, if accomplished via backspace, but this leads us
into rules controlled by foreign governments, and won’t be considered
here.

Inside ASCII 15

Real life is more complicated than this. The ordering and sequenc-
ing of characters and words cannot always be accomplished by sim-
ple binary comparison of codes. There are constructions such as
O'Reilly, I'lnformatique (as data processing is called in French), and
Smith-Jones—to say nothing of the Juniors, llls, Esq., FBCS (which |
am), and so on.

Making an ASCIl comparison, with the case as a minor, gives us:

De Carlo
de Carlo
De La Rue
de la Rue
De Long
DeLair
DeLancey
Delancey
delLancey
DelLaRue

Because we at first ignored case here, De Carlo and de Carlo have
identical bit patterns. Tiebreaking is done by appending the binary
pattern representing case, “0” for upper, “1” for lower. Specifically,
01001111 for De Carlo, 11001111 for de Carlo.

D E C A R L O
DeCarlo 44 45 20 43 41 52 4AC 4F (4P
deCarlo 44 45 20 43 41 52 4C 4F (CF)

But even this method will not put “DeLaRue” and “De La Rue” in the
same cluster. And surely this is desirable and even mandatory. It will
require some special handling for spaces. The New York Telephone
Company’s document on this problem runs to several pages! They'd
probably give you a copy upon request. You might need to know those
rules before trying one of the toughest acts in data processing—
putting last name first, or vice versa.

Using Controls in Ordering

There is one more aspect of ASCII useful to the ordering problem. In
the days of punch cards, before computers, one often used several
card files related by a key. A sorter (with pockets for the cards to drop
into) might be used to select the cards for all redheaded females be-
tween 18 and 24 years of age. But these cards would have only the
employee number and such characteristics on them. To get the name,
address, and telephone number one might have to go to a second (re-
lated) deck of cards. So the first deck (the subset of interest) would be
placed in the first hopper of a collator, and the deck with all names
and phone numbers in the second hopper. Then a card would be fed
from the first hopper, followed by successive cards from the second
hopper, until a match was found on employee number. Obviously both
decks had to be in the same ordering for this to work, and thus the
term “collating sequence.”

16 Best of Interface Age/Volume 2

1

1

—
10
—

=] o

v
I—Du/I—IN-<><£<C—GMZJDTJUI_‘IOI

7

=} K=1 H=

oOojojoj]joj]o
Jry

-—
-—
-—

-—

Noll He M EaNE Ne N RN IEN NV N B \VE B_j f =
VOOl ~NITON VST WIN] =] OR W

+1 ¥ v~

“~
AL N

\'

olZiIIri Rxl~] =]l mMmjojo]l®w] >»

~
D

Figure 4. APL Character Set

In effect, we were sticking the cards of the first deck upright just in
front of the corresponding cards of the second. To do this with ASCIi
requires that we have characters that collate lower than the lowest

Inside ASCII 17

graphic, the space (2/1). We do have them. The best to use are NUL,
FS, GS, RS, and US. Put one of these after each search key, then put
the two files together and order them as adjoined. Now those records
having a search key with one of our five control characters appended
will precede the corresponding record having an ASCII graphic fol-
lowing the key.

Note that the four information separators (FS, GS, RS, US) are
designed to collate just behind Space, in that order. This contiguity
means that they can be used as a hierarchy of spaces of different
class.

Other Collating Features

ASCII was designed when there was substantial investment in files
already ordered on a Topsy-class IBM sequence, where the basic
punctuation was low to the alphabet, but the digits were high to it.
How then to accomodate this and still provide a 4-bit subset? My
morning shower provided a solution (it still does!).

The 4-bit subset is formed of the first 10 graphics of stick 3 (the digit
graphics) and the last 6 of stick 2. This job was shown shaded in the
early forms of ASCII, but has all but disappeared from memory now. It
enables stick 3 (with the digits and new special graphics) to be
ordered high to all the others via passive logic, thus overcomung op-
position to the adoption of ASCII.

ASCIl AND PROGRAMMING LANGUAGES

Standard ECMA-53 (1978 Jan), “Representation of Source Programs
for Program Interchange,” gives the subsets and/or modifications of
ASCII as they are used for these five programming languages:*

NO. OF CHARACTERS USABLE

Language Subset of ASCII Other
APL 57 32
Minimal BASIC 60 0
COBOL 51 0
FORTRAN 49 0
PLN 55 2

Figures 4 through 8 are the character sets for these languages as
given in ECMA-53. They show the only characters permissible for use
in source programs, except for:

non-numeric literals in COBOL
comment-entries ”
comment lines ”

character constants in FORTRAN
comments "
character-string-constants in PUI
comments ”

For these purposes only, other ASCII characters may be used, pro-
viding there is agreement between the sender and receiver for any in-
terchange of source programs.

18 Best of Interface Age/Volume 2

[)':t)"TL1'1_6'1 11 11

1 o 1T ol 1
R 3 >
ojojojo 0 P
ojojo]1 1TjA]Q
ofoj1]o 2]B|R
ofo|1 |1 3jC]S
o]1}ojo 4ID|T
o}1]o]1| 51E}jU
oj1]1}o 6|F]V
ol |1 71G|W
1}ojojo SJH[X
1]o]o}1 9111]Y
110]110}10 - I 4
11ol1}1111 ;L KE
111]ojo)12 <}JL
111011113 -I1=IM
111110114 - |>1IN
1Mmhi15 7210

Figure 5. Minimal BASIC Character Set

The TEX language has gone farther than this general caution. There
the specific characters have permanent names. For example, one
couid say:

Inside ASCI| 19

S
1 1
3 5
olojo OfF 1P
ojojo 1T1A}Q
ojo} 21BJ]R
ool 31C1|S
oj1]o 4ID)T
oj1]o S51E]U
oj1]1 6lF}V
ol 7|1G1W
1jojo 8lH]X
1|ojo 91I}]Y
J11Z
K:;
L]
M
N|

Figure 6. COBOL Character Set

linefeed =*
" (actual line feed inside the quotes)
if *If:eqs:linefeed. ...

20 Best of Interface Age/Volume 2

%‘1%%% 1L11
a3 _of 1 of 1 of 1
N (5939 2N I = AR
oojojo] O 0 P
ojojoj11 1 1 Q
ojoj1jo] 2 2 R
ojoj1]1] 3 3 S
of1folof 4 & T
oj1lo]1]| 5 > U
oj1]|1]o] 6 6 v
ol |1] 7 ’ W
1{o0jojo] 8 8 X1
1jojoj1} 9 9 Yi
1loj1}o}10 : Z}
1{o]1{1111
1]11]ojo}12
1111011113
1M1]1]lo]14
158 |

Figure 7. FORTRAN Character Set

and it would be true, because “*If” is the permanent name of Line
Feed. The control characters have names that are the letters from the
ASCII chart, preceded by the asterisk to show that they are read-only

Inside ASCII 21

o
=3 52
o ¢
o o

(=)
(=3 K=l
o
-—

OOO\IO\U!-L\LNN—\Ou_‘—‘IO

o
o
N-<><£<C-|U)2JD1JU'IOI

-—
-_—
o
[=)
Af™

olZIBlIri Rl xTjompmiojojlm] >

Figure 8. PL/ Character Set

variables with permanent content. TEX can in fact operate upon all
256 characters of ASCII in an 8-bit byte, all 512 in a 9-bit byte.

22 Best of interface Age/Volume 2

Specific Notes on the Figures

APL—Sticks 6 and 7 (ordinarily lower case alphabet) are re-
placed entirely except for the DELete position.

—Space is nonprinting, although the symbol shown is SP.

—Ampersand (2/6) is not used for writing source programs,
except as the last character of a line if that line is to be
continued on the next line.

PL/I—In position 2/1, the exclamation point is replaced by a ver-
tical bar for OR.

—In position 5/14, the circumflex is replaced by the symbol
shown, for NOT.

—If you have to use your terminal for both PL/I and some
other programming language, forget that foolishness.
You can get by with the exclamatin point as OR, and the
circumflex as NOT. The important point in source pro-
gram interchange is to have the encoded representations
of the characters exchanged correctly.

(all) —Although the character BLANK (space) is shown as the
flagged lower case “b” in the FORTRAN and PL/I sets,
there is no printing graphic to indicate it. For all practical
purposes, it is really the Space of ASCII (2/0).

—Four of these five languages (not APL) have the “$”
shown in 2/4. When the International Reference Version of
the code is used, this becomes the universal currency
symbol, which is also acceptable.

—Minimal BASIC uses ‘#,” which is the International
Reference Version symbol. The national symbols, such as
the English pound sign, are also acceptable.

ASCIl AND MEDIA

ASCIl and Punch Cards

Reading the punching equipment for punch cards, be ing very
mechanical, is so expensive that microcomputer people are unlikely
to use them. So you might ask why we bother here with the represen-
tation of ASCII on this medium? | can think of at least three reasons:

* A scientist at the U.S. National Bureau of Standards said once that
if punch cards were on the way out, it was the only product he ever
saw dying on an upward usage curve. Thus they are likely to be
around for a long time, and you may need to transfer some of those
files to other media that you do use.

¢ There is some likelihood that microcomputers could be used in the
reading and punching equipment itself, to make it less expensive.

* ASCII users are going to be confronted for a while yet with one of
the several versions of IBM's EBCDIC, and the punch card
assignments provide the only legitimate link for conversion of
EBCDIC files to ASCII.

So Figure 9 defines the hole patterns for the binary encodings. And
Figure 10 defines the encodings for the hole patterns. Don’t worry

Inside ASCII 23

IS0 ECMA ANSI FIPS CSA BS AS CCITT JIS GOST
PUB
Hollerith Punched 1679 44 X3.26-1970 14 7243.14 4636/3 1063
Card Code 2021 $4.25 .36 14
Track Assignment - 1113 10 X3.6-1965 2 I243.8 3880/3 1062 c6221
25.4 mm Perf, Tape $3.00
Track Assignment - 1861 5 X%3.14-1973 3968 1007
12.7 mm Mag Tape $3.25
200 cpi NRZ1 7-track
Track Assignment - 962 12 X3.22-1973 3-1 4503/1 1009 6222
12,7 mm Mag Tape 1863 $3.75
800 cpi NRZI 9-track
Track Assignment - 3788 36 X3.39-1973 25 4503/2
12.7 mm Mag Tape $3.75

1600 cpi PE 9-track

Track Assignment - DP X3.54-1976
12.7 mm Mag Tape 5652 $5.25
6250 cpi GCR 9-track

Labeling & File 1001 13 x3.27-1977 2243.7 4732 1068
Structure - 12.7 nm MT {unpriced)

Track Assignment = 3275 34 X3.48-1977 5079/1
Magtape Cassette 3407 $5.75

3.81 mm, 32 bpmm

Labeling & File Struct, = DIS 41
3.81 Magtape Cassette 4341

Track Assignment - DIS 46 X3.56-1977
6.35 mm Cartridge Tape 4057 $4.24
64 bpmm PE

Table 1b. Standards for ASCIl on Physical Media

150 ECMA ANSI FIPS CSA BS AS CCITT JIS GOST
PuB

8it Sequencing in X3.15-1976 16-1 V.é
Serial Transmission $3.00 X.4
Char. Structure & Parity X3.16-1976 17-1 V.b
Sense - Serial-by-Bit $3.50 X.4
Char, Structure & Parity X3.25-1976 18-1 V.4
Sense = Parallel-by-Bit 33.50 X.4
Procedures for Using 1745 16 X3.28<1976 1243.13 4505/1 148471
Commun, Control Chars. $10.50
Message Heading 1745 X3.57-1977
Formats $5.25

Table 1c. Standards for ASCIl in Communications

about the inconsistency in the relationships. Nothing can be done
about it now, because it started with Herman Hollerith’s first U.S. Cen-
sus machines in 1890. At first only digits and + and — signs were
used. Then the code was expanded to the upper case alphabet. And
other special characters for commercial use. When FORTRAN came
along in 1964, it turned out that the limited capability of the subset of
a 6-bit set would not permit the graphics needed for scientific work.
For a long while there were dual graphic representations for several of
the punch card code combinations, and this carried over into printer
chains, and so on.
The only logic that the patterns foliow is that they do or do not have

a punch from among these six possibilities:

12-punch (top row)

11-punch (next to the top row)

0-punch

24

Best of Interface Age/Volume 2

_I—ln] = o IS oo [Gicl oo iala] [alo] (Gl ol ol ol
- E= EriEEEaEeDmesEExEEnEianE | EE)
- = |Z= FEiEe) = 3 & & @ 3EemieEmeimE
o O (ol o [ola]olo] pla) ool oo o ool Glo) ko
- -
- pEn Deo=losonEsoEesl =3 ® = = @
- TIE (e (@i ® | m® e |vr|rreaseslse)
o~ | @ | _BlFEEEEsEsEeE|Emes| e mEEE|)] S mE)
- EEpEEE|EE|EEEeEEssememm 1B s =
- - = ® |® |3 | |®m
O v |erlmeE FreeEsrmrEpEes] 5 & o 5 5 =
-|° z @ | o &5 o = =5 =5 =nEsesessszelss
- ey ® @ | =@ o | @2 @ i@ @ = jm
i CiEEEEEEHEFEHEREEEEED | =0 | =2 E=
o pEEEm: = |2 (@ = (e = = =
- - jp= = = = =2 ® =5 @ ® (e =
O o E-EIEE|EEIEEIE | EE = EE = =) =) = =) &) &= &=
ol™ F = = = ® 2@
- - |EEHpEEEEEEEEEEEEEHEEF |(FEpeEEsemEmmEEmejme
ol"|o|Ex 5 ® ® 3 = = B 3 ® 5 5 ==
o mE == = = ® = = i3] =
- OI[E F ® 3 3 & @ @8 @6 @ &5 =@ = =
[o] o |FEEEEEREEES @ E GFE (FoeEEpoes = &= &)
ol == = = g & = = =@ = ===
- Ol = m = ¢ & sl & = =@ = = =Hocos] o
T~ EmEREEErEEsEeE= @& =& ® =9 &=
- e @ (@ (e v | = | eEm ®= |m (m
[o] Ol [== =@ | Ba)
- o m EED|FTEEEEE|EE|EE|=E|E = = = [c) =) €3
- = =) s @ = = =
[o] O (6D [T <IN 1 <o (¢ ST - [1R (i -afcc] (<o T (¢ TN [-1 (510N 1~ B -3}
o - m = EdjEER]|e] = | M| EEEFE =T = (== [=]] =He)ln
— F | EEE = = EiEmsies
o (o] = ®jm
o Oleg| 3 5 = = ®5 = = = =2 5 5 5 = -
- = = H B2 @2 |®m = =
o (o) E @i |y o |
“lm|= B ® 5 =5 5 @3 ® = @ E EEeEmsE
ol™ = mEs = = = =
(o] (o] = ®
Ol ey = ®| @l B = = &5 e &=
ol™ = = =E® = = Fp=es =5 =m G
(o] (o] = il [E3] i3] [1:3]
o T -— & B &5 & 8 ® =2EE 0 = =@ = = =
o DEE @ @ = ® BEEE =@ S0 Q]G O] o
[o] O o= 3 & @ =31 @8 ®5 =@ =5 =5 = e ®m ®m = e
o] o EEl &8 =5 = EeEEEEs & =Des ® @ = = o
ol® = = = =m o & = =5 &
O BE|EE) = F) =) =] =) =] == =EEER|E | E e
o]
ST ===
D|D|O|O O|l—~lnvjo|g | v/~ OI—|n|o|w|w
slol=-|o[-]o]|]-lo|=-]o]|-]JOo|-]O]~-]0O]~
slo|lo|~|=]JoJo|~-][-JoJo|-]=-Tolo|~1-
sloJoloJo[-T-T-T=-Jololo]o|=-1-1T=-7T-
sloJo|loJo]Jotlololo|-T=-]-1=-T-1T-1T-71-
Figure 9. Card Hole Patterns Assigned by Codes

25

Inside ASCII

B

EE S1/SL | 60/SL | £0/Ss | €1/vL | OL/10 | 20/00 | Si/10 | S1/00 20/% | 20/€L | 00/EL | 60/21 | 20/20| SL/€0 | ¥1/50 | 10/20
E ﬂ@ vi/SL | 80/sL | Z0/St | 24/%L | v1/60 | 90/00 | v1/10 [wL/00| |e0/wi |90/er | si/zL | so/zs | ei/eo| wi/eo | ti/e0 | wi/z0
HE €1/51 | 20/SL | LO/5L | L1/ | SO/10 | S0/00 | €1/10 | €1/00 so/v | so/eL | vi/zh | 2o/21 | 20/20 | Si/s0 | 60/20 | 80/Z0
E EE 21/st | 90/51 | 00/51 | o1/vL | 90/10 | 2L/80 | 2LA0 | 2L/00 vo/vt | vo/EL | €1/21 | 90/ZL | 00/v0 | SO/20 | OL/20 | 21 /€0
E HE L1/SL | SO/S) | SL/vL | 60/bL | LL/60 | LL/80 | SL/80| LL/00 €0/¥L | £0/8L | 21/21 | SO/2s | €0/20 | ZL/20 | vO/20 | ¥1/20
H ﬂ E ot/s1 | vo/st [vi/vs | 8o/bL] 01/60| 01/80 | 20/60 | v1/80] | 20/m | zo/es | 1/ | vo/2r | oi/e0 | zi/s0 | ei/s0 | Li/s0
E H E 00/60 | 00/80 | 00/10 | 00/00 | 60/60 | 60/80 | 60/10 | £1/80 | | 1o/vL | 01/20 | 20/20 | 60/90 | 60/50 | 01/50 | ZO/s0 | 60/v0 E
E E 20/21 | 80/11 [00/11 | 20/01 | 80/60 | 80/80 | 80/L0 | 20/60 00/vt | 60/20 | 10/20 | 80/90| 80/€0 | 60/50 | 10/50 | 8O/¥O B
E E 10/21 | 20/44 | st/01 | 90/0L | vO/00 | LL/10 | 2o/BO| SL/20 s1/el | 80/20 | 00/20 | £0/90| 20/t0 | 80/50 | 00/50 | 20/v0 E
E E 00/zL [90/1L | vt/0L | so/0L | 90/60 | 20/t0 | 80/00 | 90/80 vi/€t | 20/20 | s1/90 | 90/90 | 90/c0 | 20/S0| SI/¥0 | 90/v0 E
[[] []]s+/rr [sor | 1/0s [vosor| so/e0 |or/00 | so/eo eo/00 | | er/er | 90/20 | t4/90 | s0/90 | so/eo | 90/50 | wi/wo | so/mo i
E E #1/11 [vO/1L | Z1L/01L | €£0/01 | ¥O/60 | vO/8O | €1/60 | Z1/60 21/€L | S0/20 | €1/90 | vO/90| vO/e0 | SO/S0| €1/v0 | vO/PO E
E E €1/t | e0/tL | 11/01L | 20/01 | £0/60 | £0/80 | €0/10 | €0/00 LL/€L | pO/20 | 21/90 | €0/90| £0/€0 | ¥O/S0 | ZL/¥0 | €0/pO E
H E 21/tL 1 2o/1L [o1/0s | 1o/01| 90/10 | Zo/8O | 20/10 | 20/00 oi/eL | €0/20 | 11/90 | Zo/90| Zo/Eo | €0/S0| Li/v0 | ZO/PO E
E E L/iL | s1/60 | 60/01 | 00/0L | 1L0/60 | LO/80 | LO/10 | LO/00 60/¢L | #1/20 | 01/90] 10/90| 10/c0 | s1/20{ O1/%0| 1O/PO E
Eﬂ 80/¢L | 10/€1 | OL/2t | €0/21 | 00/90 | 60/1L | 10/11 | BO/OL oi/rs | €1/20 | 2L/20 | 11/20 | 00/20 | 0O/€0 | €1/20 | 90/20
Uy By | g T | g U T | g U | g

g z

Codes Assigned by Card Hole Patterns

Figure 10.

26 Best of Interface Age/Volume 2

8-punch
9-punch (bottom row)
a punch from among the digits 1 through 7

Including the no-punch-at-all combination (NUL), this gives 256 com-
binations, just right for the 8-bit code. Although ASCII was technically
only a 7-bit code at the time this rule was formulated, it was feit
necessary to plan ahead a little.

ASCIl and Magnetic Tape

Figure 11 gives a compact representation of several relationships,
among which is the assignment of ASCIl bit pattern to 9-track
magnetic tape. The jumbled assignment may remind you of the “firing
order” for the cylinders of an automobile engine. In fact, we used to
call it just that. It was intentional for increased reliability. As in so
many cases, better technology has removed the need for peculiar
design, but the assignments. are unchangeable because of data file
investment.

There is no parallelism in recording and reading on cassettes and
cartridges. The ASCII bits are recorded serially in the track. Thus
Figure 11 does not consider these media.

even feed

/ parity hole
track of 8-track
8 7 3 «—" paper tape

6 5 4 2 1
T t T T 1 1 1 (b: is the first bit
bs b7 be bs be by by b1 - sentin serial trans-
i 1 l l ‘ l mission, then bz, etc.
to by (bs), then parity)
4 7 6 5 3 9 1 8 2
_ ¥~ channel of 9-track
odd parity magnetic tape

Figure 11. Bit Sequences—Media and Communications

ASCIl and Communications

Not only is the topic of ASCIl and communications a very complex
and large dissertation for this article—it is also undergoing substan-
tial rethinking, enlargement, and invention. You will have to follow on
your own the workings of the CCITT, the various networking systems
of the several large and many small manufacturers of computer
systems, and the offerings of the common carriers—either on the
local distribution system (via ATT) or direct distribution (via Satellite
Business Systems).

Many of the existing standards are listed in Table 1¢c. Many more
are under development. Arguments are raging internationally on the
merits of packet switching, byte protocols, value-added systems,
open-working systems, tariffs, data movement across national

Inside ASCil 27

borders, the X.25 protocol, etc., etc. ATT is offering a new service
bureau because they suddenly discovered data-under-voice (DUV). All
| can tell you now is that it is all based upon ASCII, and the proposed
protocols are all dependent upon the ASCII control characters in
sticks 0 and 1. it will take years for this to shake out, and for now all
one can do is get on the CBEMA mailing list (see “Where to Get More
information” at the end of this article).

ASCIl AND THE METRIC SYSTEM

The full ASCII graphic set (both cases) is sufficient to indicate all
symbols and prefixes of the S| (International System of Units, the new
metric system), with three exceptions. They are the Greek letters
“omega” for “ohm,” and “mu” for “micro,” and the degree symbol for
Celsius temperature. These three characters will be provided in 8-bit
ASCIL. Meanwhile, for these, and also for such equipment that has on-
ly a single case, there is a standard way of representing the Si units
and prefixes. This is given in International Standard 2955, “Represen-
tations of Sl Units and Other Units for Use in Systems with Limited
Character Sets,” and also in American Standard X3.50-1976.

To keep the record straight, let's first look at the characters used
for the prefixes. They're shown in Table 3, which indicates multiples
from 10-'® up to 10",

10+ I 10~

exa (E) 18 atto (a)
peta (P) 15 femto (f)
tera (T) 12 pico (p)
giga (G) 9 nano (n)
mega (M) 6 micro (u)
kilo (k) 3 milli (m)
hecto (h) 2 centi (¢)
deka (da) 1 deci (d)

Table 3. Metric Pretixes

Above 3 there are no powers except multiples of 3. This practice
breeds better comprehension, like marking off three's in writing
numbers of many digits. Also, as a memory convenience, all symbols
are capitals for powers greater than + 3. And there are no conflicts
with the symbols for the units of measurement.

Now, again for the record, here are the ASCII character(s) used as
symbols for the units:

A ampere cd candela
Bg Dbecquerel d day

C coulomb g gram

°C degree celsius h hour

F farad I litre

Gy gray Im lumen

28 Best of Interface Age/Volume 2

H henry Ix lux

J joule ® micro

K kelvin m metre

N newton min minute (time)
Q ohm mol mole

Pa pascal rad radian

S siemens s second (time)
T tesla sr steradian

v volt t tonne/metric ton/
W watt megagram
Wb weber

Table 4. Metric Units

Table 4 shows the rules clearly. Units not named after people are all
lower case, as shown in the righthand column (although | do know a
Mr. Day). In the lefthand column are the units that are named after
people. The names of the units are not capitalized at all, but the sym-
bols begin with an upper case letter.

| said previously that there were no conflicts between unit and
prefix symbols. But you've probably noticed “d” for both *‘day’” and
“deci,” “h” for both “hour” and “hecto,” “m” for both “metre” and
“milli,” and “T” for both “tesla” and “tera.” OK. But there isn’t any
confusion in actual usage, because the prefix precedes the unit:

dd is a deciday (2.4 hours)

hh is a hectohour (100 hours)

hH is a hectohenry (but don’t ever use the term)

mm is a millimetre

Mm is a megametre (%, the distance light traveis in
a second)

TT is a teratesia (Wow!)

| am not suggesting that the prefixes should be applied to other
than the primary metric units (the second is the primary time unit;
hour and day are not), even though the timesharing system |
customarily use figures my time in millihours. But when you get
accustomed, the prefixes are very valuable in other ways. For exam-
ple, an American billion is a kilomillion, whereas the British billion is a
megamillion! And my metric teaching program understands such
things as kilofathoms.

The “space” character is also vital to correct SI usage. It must
occur between values and units, like 123.6 mm, and 22°C.

And don't forget another peculiarity of ASCIl as an international
alphabet. (1/14) is absolutely not defined as a “decimal point” (nor is it
defined as “period,” which in Europe is “full stop”). For most of the
rest of the world, the comma (1/12) is the decimal marker, and the
period is used to mark off threes. That's why the recommended prac-
tice for marking off threes is to use the space, not either comma or
period. E.g., “1 234 567 mm.”

To save you the bother of looking up the standards for use with
limited character sets, here is the algorithm:

Inside ASCII 29

1. If you have ASCII with both cases of alphabet, the three missing
symbols are handled as:

ohm for Q
Cel (initial cap) for °C
u (lower case) for u (micro)

2. Iif you have only one case of alphabet (either upper or lower), use
it, and these three replacements remain as:

OHM ohm
CEL or cel
U u
And in addition:
S (siemens) SIE sie
h (hour) become HR or hr
t (tonne) TNE tne
Examples: .

16 UOHM is 16 0
373.15 K = 100 Cel

Notice that no plurals are used in symbol combinations—
MICROHMS, but UOHM.

ASCIl AND KEYBOARDS

Technically, a keyboard is an ASCIl keyboard if it generates the
proper codes for the full set of ASCII graphic and control characters.
Moreover, none of the graphic characters should have any control
properties.

There are many types of special keyboards—Dvorak, a two-sided
one used like an accordian with the hands in a vertical planes, Touch-
Tone and its derivatives, etc. There are no formal standards to relate
these keyboards to ASCII. For typewriter-style keyboards, however,
there are two versions given in the American National Standard. One
is derived from the usual electric typewriter keyboard, the other is
called the “bit-paired” keyboard. Only the bit-paired keyboard will be
shown and discussed here, because the other form is the subject of
proposals for extensive change due to the growth of Word Processing.
ANSI Committee X4A12 is studying this now.

The bit-paired keyboard was designed for minimum circuitry cost.
Thus the “at” symbol (4/0) is paired with the accent grave (6/0), “A”
(4/1) with “a” (6/1), and *“ + " (2/11) with *;” (3/11). Thus the shift key af-
fects each other key by only a 1-bit change.

This keyboard is shown in Figure 12. It is the interchange keyboard
of ECMA-23. The numbered arrows key to the notes on changes that
would make this ECMA keyboard into the ANS! keyboard for ASCII. It
is also equivalent to the keyboard of ISO Standard 2530-1975.5

Notes for Figure 12

1. For the ANSI keyboard, this key is put to the right of the cir-
cumflex key, on the top row (see Note 6). The Shift Key is put

30 Best of Interface Age/Volume 2

i A

)
9(0}-1*

oo
~N -
00~

|QIWIE

S
X

Figure 12. Basic ISO/JECMA/ASCII Keyboard

in its place.

2. If this key exists and is available, the ECMA and /SO stan-
dards put the underscore here, removing it from the “zero”
key.

3. The ANSI keyboard of course puts a “$” here in place of the
international currency symbol.

4. This is where the underscore is removed for the 48-key
keyboard (see Note 2).

5. Here ECMA and ISO show the ‘“overline” instead of the
“tilde.” It’s a question of styling.

6. The ANSI keyboard has the reverse slash and vertical bar
here, rather than between the shift key and “Z” (see Note 1).

7. The ANSI keyboard specifies the underscore here, in both
shifts, rather than the positions shown as options in Notes 2
and 4. Practically no keyboards follow this. In fact, as | am
entering this text, this is the only key where my Infoton Vistar
deviates from the ANSI standard. It has Line Feed there, with
Return to its right—a very sensible arrangement.

Customarily, the Control Key is also tied to bit-pairing in such
keyboards. The standards recommend that characters created in
combination with the Control Key should use the graphic key in sticks
that are 4 or 6 units higher. Thus “X" (5/8) or “x’ (7/8) in combination
with the Control Key produce CAN (1/8). Unfortunately this also means
that Control-C generates ETX (0/3). And whereas Control-X as CAN is
used frequently, to erase an input line of text, ETX is not often wanted.
Yet it is a common miskeying to hit C rather than X. In many timeshar-
ing systems you will get a disconnect rather than a line delete.

Control and Function Keys

The so-called “QWERTY"” arrangement is prevalent throughout the
Anglo-Saxon world. Even the French “AZERTY” set is being con-
sidered for change. But on top of these basics there are hundreds of
keyboard varities. Some of them have “dead keys” (i.e., the platen or
printing element is not advanced when they are hit). This avoids hav-

Inside ASCH 31

ing to use BS for accented letters, but it also creates difficulties in
code generation.

There are some general good practices that ASCIlI keyboards
should foilow. To facilitate usage by those experienced with
typewriters, all controls not used with typewriters should be located
outside the customary touch-typing area. As a specific example, the
Break/Interrupt key should be located where it is a definite effort to
reach it (not mixed in with the keyboard). ISO 3244 may be consulted
for these considerations.

Function Keys are those that generate sequences of more than one
ASCI| character. Examples are cursor keys, Erase-to-EOL, etc. They
should be located in special clusters. Most importantly, they must all
generate ASCII codes for transmission when in character-at-a-time
mode. | know of video terminals where the cursors do not generate
codes, as they should not while in full page buffered mode; but they
still operate in line mode without generating codes. In this case the
screen is alterable, but there is no way of detecting it in the computer.

Many keyboards will have some function keys that are unlabeled,
for do-it-yourself assignment. These should also be clustered
separately, and generate code sequences when in line mode.

ASCIlI AND DISPLAY/PRINTING

When ASCII characters are displayed, it may be on a video screen,
paper, or COM (microfiche).

On the video screen there are a number of methods to form the
characters, mostly at the manufacturer's preference. They are usually
at pica (constant-width) spacing for economy, so an approximation of
graphic quality (such as typesetting) is not obtainable. When lower
case is available, the risers and tails extend above and below the line
for some screens. In others, they fall within the boundary lines of the
upper case characters. They may be shown in inverse video (light
background block), or highlighted by different brightness or blinking.
Controls for this work will be taken up later in this article.

For paper copy one usually finds either direct impact of a formed
letter, or stylus printing. Either method is suitable to proportional
spacing if desired. Recently there has been a general trend toward
using the 7 x9 dot matrix shapes of ECMA Standard 42 for stylus
printers. This set of graphics is shown in Figure 13.

For hard print elements, of course, one can get a nearly infinite
variety of styles and fonts. There are only two, however, specifically
associated with computers—OCR-A and OCR-B. “OCR” stands for
“Optical Character Recognition,” meaning that the shapes are so
styled that a computer-controlled scanner can read the characters as
printed on paper, and encode them directly from their shapes.

OCR-A is not suitable for human reading. It's the funny looking one
with the diamond-shaped letter “Oh.” | won’t dignify it by showing the
font here. It was thought formerly, with technology of that day, that
making humans work harder to read letters would make it easier and
thus cheaper for computers to read them. This argument turned out to

32 Best of Interface Age/Volume 2

L i it i1 . i LR LLiid

£ K IR

7 it - R i

{ N e -

7 IR S TE)
-7 Erne % i :

T YN 1y i

SARAIRNAL o ol I35 %% e

Inside ASCII 33

IRRERRRAN

RN

[RERARI IRRERSRERI

T Ty

H.n.n C ot

RS ARARARR) . i ,’_
ARRAAREAR H"4 (1 114}
S 3 ¥ y X
ity P thitid ”"f 3
SXnE SR : i

B | X T)

A e \ [{ ¥

Figure 13. 7 x 9 Dot Matrix Shapes

be specious, and with today's technology there is no need to use
anything other than OCR-B.

OCR:-B is specified in ISO 1073/2, ECMA-11, and ANSI X3.49. It is the
font shown in Figure 14. | have it on my IBM golfball typewriter at
home, and on my daisywheel element at the office. So it should be
available for most hard elements, including the carousel type.

The first six rows correspond to ASCII sticks 2-7. In the first row, the
pound and universal currency symbol are for replacement as needed.

34 Best of Interface Age/Volume 2

I "H#Efa$%& ' () *x+ -,/
0123456789:;<=>?
dABCDEFGHIJKLMNO
PQRSTUVWXYZLC\J1~_
“abcdefghijklmno
pgrstuvwxyz{Il}~

AREIJINOOQU
gaijg38¥
weAom

1
Figure 14. OCR-B Font

In the fourth row, the underline is discontinuous; a continuous form is
shown in the auxiliary set. This set also contains a matching accent
acute instead of single quote, the real circumfiex (besides an up
arrowhead), a cedilla, and an alternative ‘“m” for variable pitch print-
ing only.

CODE EXTENSION—GENERAL PRINCIPLES

Over ten years ago it was recognized that ASCIl was the basis for
codification of the various symbols used throughout the world.
Through it, libraries could store encoded books as well as printed
books. And while electronic mail may be quite simpie with ASCII and
its Roman alphabet, that’s not the alphabet of all countries. The USSR
uses Cyrillic, the Japanese use Katakana, and the Arab world uses its
own semi-script alphabet. Moreover, to send a mathematics textbook
by electronic mail one would have to be able to encode the formuias
and special symbols peculiar to mathematics, which includes many
Greek characters!

This is where the ESCape character and ESCape sequences come
in. You can get the whole complicated story from ISO Standard 2022

Inside ASCII 35

(or ECMA-35) on Code Extension Procedures. But it will be easier to
think of reproducing many ASCIi Code Tables on the pages of a book,
then replacing the ASCIl symbols on all but the first page with the
other alphabets we need.

Then we make sure that everyone in the world has the same (code)
book. (The resemblance to military code books is intentional.) That’s
done by registering the page number assignment to characters (ac-
tually either a control set or a graphic set, but not both) with the
French Standards Body AFNOR. That's the Assoclation Francaise de
Normalisation, Tour Europe Cedex 7, 92080 Paris La Defense,
FRANCE. But you'll find it perhaps easier to get it from ANSI.

The registration procedure is spelied out in ISO Standard 2375. It is
carefully controlled to prevent frivolity and ciuttering up the assign-
ment books, for that all costs money. But the important control and
graphic sets of the world may be registered and assigned their own
unique ESCape sequence for calling or invoking them.

CODE EXTENSION-BASIC RULES

The control ESC, when encountered in a datastream, means that all
characters following it, up to and including the first character from
sticks 3 to 7, have special interpretation. The delimiting character is
called a “final” (F). Those between ESC and the final are called “in-
termediates” (l). All of the codes in stick 2 can serve as intermediate
characters in ESCape sequences of 3 or more characters in length.
The entire group of characters from ESC through the final is called an
ESCape sequence.

ESCape sequences obviously require buffers for interpretation, for
we cannot know, when they begin, how long they will be. Sequences
of length 2 are for single controls. If the character following ESC is
from stick 3, the sequences are for private usage, of the class Fp. If it
is from sticks 4 or 5, they mean single controls, of the class Fe, from
an appropriate set of 32. If from sticks 6 or 7 (except 7/15), they are of
the class Fs, composed of single controls. This is elementary
extension.

A more complex type of extension is the simulation of one or more
8-bit character sets by alternating between two 7-bit sets. The home
base set consists of the CO (32 controls) set and the GO (94 graphics
plus space and DEL). The alternate sets consist of the C1 (32 controls)
set and the G1 (94 graphics plus space and DEL). The 8-bit set (it
doesn’t have to be just theoretical if you have a full 8-bit capability)
consists of the four parts C0-G0O-C1-G1.

These four types of sets are all invoked (designated) by 3-character
ESCape sequences in this manner, where F is the final (3rd) character:

Sequence Invokes Set Type
ESC 21 F Cco
ESC 212 F C1
ESC 2/8 (or 2/12) F GO

ESC 2/9 (or 2/15) F G1

36 Best of Interface Age/Volume 2

The final character “F” selects the particular set to invoke. Once in-
voked, encountering or entering an SO shifts to the G1 set in force; an
Sl shifts to the GO set in force. SO and S| do not affect the control set.

1SO Standard 2022 defines these matters in far more detail, but that
is enough for here. That document is complicated and ingenious, and
deserves substantial study.

THE CODE EXTENSION REGISTRY

Table 5a identifies the graphic sets registered to date. Table 5b
identifies the control sets registered to date. Remember that these
assignments, once registered, may never be changed!

Regis. Final

No. Char., Name

002 4/9 IRV (Intl. Reference Version) Graphics
004 4/1 UK Graphics

006 4/2 US Graphics (ASCID)

008-1 4/3 NATS Main Graphic Set (Finland, Sweden)
008-2 44 NATS Additional Set (Finland, Sweden)
009-1 4/5 NATS Main Graphic Set (Denmark, Norway)
009-2 4/6 NATS Additional Set (Denmark, Norway)

010 4/7 Swedish Basic Graphics

011 4/8 Swedish Graphics for Names

013 4/9 JIS Katakana Graphics

014 4/10 JIS Roman Graphics

015 5/9 Italian Graphics

017 5/10 Spanish Graphics

018 5/11 Greek Graphics

019 5/12 Latin-Greek Graphics

021 4/11 German Graphics

n2s5 5/2 French Graphics

027 5/5 Latin-Greek Mixed Graphics (Greek Capitals only)
031 5/8 Greek Alphabet Set for Bibliographic Use

For a GO set the ESCape sequence is
ESC 2/8 plus the final shown.
For a G1 set the ESCape sequence is
ESC 2/9 plus the final shown.

Table 5a. Registered Graphic Character Sets

Regis, Final

No. Char. Name

001 4/0 IS0 646 Controls

Qo7 4/1 Scandinavian Newspaper Controls
026 4/3 IPTC Controls

The ESCape sequence for a CO set is
ESC 2/1 plus the final shown.

Table 5b. Registered Control Character Sets
The registry set is available from AFNOR for approximately 172

French francs, say $35. It would be vital for an equipment or software
manufacturer to have it, and it comes in a beautiful 4-ring binder sym-

Inside ASCII 37

bolizing worldwide interchange compatibility. But the summary pro-
vided here will fill most needs.

CONTENT OF THE EXTENDED SETS

Figure 15a shows, against the ISO Code, International Reference
Version, how the other graphic sets differ in the column/row positions

col 02 03 |04 05 06 07
row Ro1foz|ozfosfrof1sfoo11{12}13)14]1s]oof11]12]13]14
oo !'1"}#]l= RIS AN I R R RS A Y
004 £1s
006 $ -~
008-1 $ ual A10| R ubla]o]s
009-1 £I>|s valglo|g]|= ublz| o8
010 KlOo]R alo|s
011 Elalo|R&]u élalo]a|u
014 $ ¥
015 £1% N I N ujalolel:
017 £l §li|nge Afel”
018 £1$ ’
019 £19% '
021 $ §|ajolu alojuln
025 £13$ al°1¢]s élute
0z7 g = T rlijajaelejejals

Figure 15a. Registered Graphic Character Substitution

008-2 and 009-2 are shown in Figure 15b. Here these are not excep-
tions from the IRV, but rather the only graphics assigned in the set.
The additions are necessary to set type for newspapers throughout
Scandinavia. See the Crossbar-D, Crossbar-O, the A-E ligature, and
the Icelandic Thorn.

col 04 05 06 07

row goijoslosjoojosfi11{12]o1josfosjoofosfi1}r2

oos2QA|D]|E|B|ufa|e]ald]e]plule
oos-2 QAo |E|p]ulalolaldalelpluls]s

Figure 15b. Registered Additional Graphic Sets

38 Best of Interface Age/Volume 2

shown. The rows are keyed to Table 5a, reminding you that ASCII is
“006,” or ISO 646-006.”

From this figure we can see that many countries need accented let-
ters as individual characters, not compound via BS (BackSpace). This
is particularly true for the double sets 008 and 009, for Scandinavian
newspaper transmission, which have characters that cannot be made
from ASCIl in compound form. For example—Ring-A, a solid, and the
angle open and closed quotes.

Figure 1a doesn’t show Set 031 because it deviates more and is not
of that much general interest. It doesn’t show the Japanese Katakana
set because that is completely different from the IRV. In fact,
Japanese Industrial Standard C6220-1969 is an 8-bit coded set with
the IRV (see Set 014 for the dollar and yen signs) in the lower (bit 8 =0)
portion, and Set 013 in the higher portion, with space reserved for
future additional controls. This Set 013 is shown in Figure 16. It is
shown in its high-order position, to indicate the card codes at the
same time.

Figure 16 also shows the Cyrillic set of the USSR state standard
GOST 13052-67, but it is not half of an 8-bit set as the Japanese do it.
Rather it is another page of extensions. After SO (Shift Out) is used,
the Russian register is operative. Following Sl (Shift In) it is the IRV.
Although this set has no registry number now, it was submitted
recently by ECMA, and we expect an assignment soon. By the way,
both Katakana and Cyrillic are shown in their OCR font.

Figure 17 shows the contents of the registered control sets. Set 007
serves as control set for the graphic sets 008-1,2 and 009-1,2 for Scan-
dinavian newspaper transmission. And set 026 is the control set for
the worldwide newspaper transmission, defined by the IPTC (Interna-
tional Press Telecommunications Council). The 18 control positions
not shown, and those where there is no entry, are the same as in the
International Reference Version (646-001).

These newspapers are driving composition equipment, not line
printers, so they don’t need VT and FF. Their set is already defined, so
they don’t need SO and SI. They have (properly) assigned meaning to
three device controls. And they’re probably not doing payroll, so they
don’t need the four information separators. But they do transmit, and
instead of choosing their own functions and placement they have
chosen to be a registered variant of the ISO Code. And all variants
within this controlled and registered cluster can at least recognize
each other, even if they can’t print it!

CODE EXTENSION IN ACTION

To illustrate the operation of code extension, let's imagine some
equipment that may not exist now:

* A microfiche reader with automatic location controls.

* A microfiche with ASCII (the 8-bit form) on the first two pages, the
other pages containing other sets such as Katakana, Cyrillic,
Arabic, Greek, Hebrew, mathematical symbols, astronomical sym-

Inside ASCII 39

—— f 1000 [1001 | 1010 [1011 | 1100] 1101 | 1110 | 1111
[b.byb.bs Baby by by [S0 8 9 10 11 12 13 14 15

i B0 0| ~ 8 | 8 |66 = |80 2] BE

0000 | 0 —a0—08—— 888 —|REl—Enl—aR

0o il ofa} Bj 0 g n Oijg [Nl &

5 Of o |BE| 2 | O 7 |80[& | O B 7]

0001 | 1 f[— F— - 088 _[—0E——8 [=18m

og 0 0o apgp| @ [Algp| A | @

0 ol ¢ (0] ¢ CRERE B

0010 | 2 — 88— +—8 Hsp—ral—fo}l—8g

0o 0 op 0E| 6 lmg| P m | B g |P|®

O of 3 Jee[& | af 7 |Bo| ® BE ElE]

o1t |3 f~— +— - }+—p8 - e—ea——an—{rg

on 0 la) opjulpg |eja | W Cla

0100 | 4 ! . 98] = BD b BB L m% E]
— — e | et — — — — u

0o 0 oo gojAalg | T Al |Tigg

0 ol . a4 ¥ (BO| 1]

0101 |5 +—8 4 +— 8 F aF—88——ral—eg

0 Q0 0o pplelm |Yiw [E |w |Y |§@

0110 | 6 o “3 801 A E]B = @% 3 @E % E]EI]

0 o 0o gp|®lg | *|g | ®|a | XK|gg

O T EREREINEE! 5[® 5]

01l | 7 ——0 — 8 8H—8 - o—8a—n8l—=—am

al 0 ala] oolrlp Bl {rlg | Blmg

PRI 2 20| y |BO A]

1000 {8 — O @ BB Bf——88—— Bt——B0

oo 0 AE]| X 18 { B g [X 08| b g

] Ol » |00[5 | O] / |B0[» B0

1001 | 9 —— OF— o8 8~ o8 — o}—{mm
0o] 0 o l¥ig |ofg | W iee|bl ge

0 EREE ENEE EREE IR EE]

1000 (10— o B 0 8 =888 = B—88
0g g 0 o lw 3 g | A ing| 3 |an

0 Of » |00y |00 t |EQ] g |90]

1011 |11 b— O} O 0 8 —B8}——8 |— Bl—EE
0o 0 alal WL wig | KlgafW [gE

] ool » |a| v (B8] 7 |88 7 |BE BE 5]

1100 (12 — 84 |8 8 888 }— Bj—{808
0g 0] gol A 3 | N e D [ga

oo Bl 2 (8] & |60 ~ [BE] o |E@ B0 HE

1101 (13— g8 }—E8 B8 +—8e}-—§ —— Bfl—BE

0 a a BE| ™ wig |Mlgg|lae

00 Ol a |B8| & |BO| % |8E| ~ |BD BB BE

1110 (14— B 8—8 | —8 a8~ 8888
O g gal M “lg |H| g4 eE

0 G » [B0f v [2B| 7 |BE| o |BO BE B0

111 |15 —BE—8 [—8 8 -8R ——BE—EE

[ug B we] © —@ (0| ® o)

Figure 16. Katakana and Cyrillic Sets

bols, etc. Also, symbol sets for selecting typestyles, weights, rota-
tions, sizes, and elongations.
¢ A display screen for the microfiche; it is touch-sensitive and
generates 7-bit codes according to location touched on the display.
¢ As an alternative, keyboard tops with fibre optic bundles molded in
as a matrix, so that the keytops can be lighted with different sym-
bols as selected.

Now imagine that we are writing an astrology book:
* Type
Those of you born under the sign of Aries (
* Depress the “astro” key on the special keyboard.

40 Best of Interface Age/Volume 2

IRV
Position 001 007 026
0/09 HT FO FO Format Control
o/1 vT ECD ECD End (a typographical) CommanD
0/12 FF SCD SCD Start (") CommanD
0/13 CR QL QL Quad Left
0/14 S0 UR Upper Rail
0/15 SI LR Lower Rail
1/01 DC1 Font 1 Change to normal
1702 DC2 Font 2 Change to italic
1/03 0C3 Font 3 Change to bold
1/08 CAN KW KW Kill Word (through previous space)
1/12 FS SS SS SuperShift
1713 GS Q¢ Qc Quad Center
1714 RS ar QR Quad Right
1/15 us JY JY Justify

Figure 17. Registered Control Character Substitution

Notice the shift in display for the fiche screen and/or the keytop
lighting.

Touch the Aries symbol on the screen (or the keytop).

Depress Sl (Shift In) on the special keyboard.

And return to typing the rest of the sentence.

) will find this month. ..

Now imagine what a computer would do to the input stream in driv-
ing photocomposition equipment. The “astro” key generated an
ESCape sequence for an astronomical graphic symbol set that would
have been registered by AFNOR. When the Iinput parser recognizes
ESC, it analyzes the following characters, and then calls this set of
character formation methods from the backup store, generates the
character shape of Aries according to the character code after the
final character, notices Sl, and returns to normal mode.

Now we can envision how all of the world’s printed material can be
stored in machine-readable form, and interchanged recognizably!

ALTERNATE CONTROLS

Work has been in progress for several years to develop a compan-
ion standard for controls for devices such as CRT terminals. in the US
this is contained in the ANSI document BSR X3.64, Additional Con-
trols for Character Imaging. In a similar form, this C1 set was before
the Codes Committee of ISO Technical Committee 97 (Computers and
Information Processing) as document 2 N 868, for consideration at its
1978 May 24-26 meeting.

| had hoped to give the essence of this work here. There were only
two negative votes in X3, which one could presume might be
answered. Unfortunately, the work | had to do to compact the stan-
dard, trying to make it understandable, turned up more than
unreadability. It turned up many logical flaws and ambiguities. So it’s
back to the drawing board, perhaps for a considerable period of time.

Inside ASCH 41

Figures 18a through 18e will give, however, some flavor of the con-
trols under consideration.

Figure 18a shows the controls of Format Type (FT) 1 and 2. Format 1
is either the single character of the 8-bit set, shown in the first column
as “Ce”, or the 2-character sequence of the type “ESC Fe"”, where Fe
is a final character taken from 4/00 to 5/15, and whose column
designation is 4 less than Ce. l.e., in an 8-bit code, INDex would be
8/04. In a 7-bit code it would be ESC 4/04. Format 2 is of the type “ESC
Fs”, where Fs is a final taken from 6/00 to 7/14.

Figures 18b through 18e show controls with formats beginning with
the control “CSI”, defined in Figure 18a to be either 9/11 {in the 8-bit
set) or “ESC [(in the 7-bit sets). The six possible formats are:

3a=CSIPnF 4a=CSIPn|F
3b=CSIPn;PnF 4b=CSIPn;PnIF
3c=CSIPsF 4c=CSIPs|F

Pn stands for numeric parameter(s), Ps for a variable number of selec-
tive parameters separated by semicolons. The type 4 formats differ
from type 3 only in inserting the intermediate character 2/00 just prior
to the final.

In the figures, the parameter value enclosed in parentheses is the
default value. That is, if the parameters are not actually inserted, i.e.,
being null, then the effect is the same as if the default value(s) were
inserted.

To give an example of how these controls operate, look in Figure
18d for the second mnemonic, SGR (Select Graphic Rendition). 1t is
represented first by CSI, the Control Sequencer Introducer, the
parameter, and the final 6/13. This means that when the 4-character
string

ESC[6m

is encountered, it should turn on rapid blink in the field(s) specified on
your video screen.

AL = Active Line (containing AP)

AP = Active Position (where the cursor is)
EF = Editor Function

FE = Format Effector

HT = Horizontal Tabulation

IN = INtroducer

PAD = Primary Auxiliary Device

RD = Received Datastream

SAD = Secondary Auxiliary Device

SD = String Delimiter

VT = Vertical Tabulation

QA = Qualified Area (defined by DAQ, SPA, EPA)
rfs = reserved for future standardization

Abbreviations for Figures 18a through 18e

42 Best of Interface Age/Volume 2

Ce FT Type Param Mnem Name

8/00-03 1 (rfs)

8/04 1 FE IND INDex

8/05 1 FE NEL NExt Line

8/06 1 SSA Start of Selected Area
8/07 1 ESA End of Selected Area

8/08 1 FE HTS Horizontal Tabulation Set
8/09 1 FE HTJ Horiz. Tabul. with Justification
8/10 1 FE VTS Vertical Tabulation Set
8/11 1 FE PLD Partial Line Down

8/12 1 FE PLU Partial Line Up

8/13 1 FE RI Reverse Index

&/14 1 IN 352 Single Shift 2

8/15 1 IN SS3 Single Shift 3

/00 1 SD DCS Device Control String
9/01 1 PU1 Private Use 1

9/02 1 PU2 Private Use 2

9/03 1 STS Set Transmit State

9/04 1 CCH Cancel CHaracter

9/05 1 MW Message Waiting

9/06 1 SPA Start of Protected Area
9/07 1 EPA End of Protected Area
9/08-10 1 (rfs)

9/11 1 IN csI Control Seguence Introducer
9712 1 SD ST String Terminator

9/13 1 SD 0S¢ Operating System Command
9/14 1 SD PM Privacy Message

9/15 1 SD APC Application Program Command
Fs T Mnem Name

6/00 2 DMI Disable Manual Input

6/01 2 INT INTerrupt

6/02 2 EMI Enable Manual Interrupt
6/03 2 RIS Reset to Initial State

Figure 18a. Controls for Character-iImaging Devices

Final FT Type Param Mnem Name

4/00 a EF (GD] ICH Insert CHaracter

&/01 3a EF (4P] cuu CUrsor Up

4/02 3a EF 1) cuD CUrsor Down

4/03 3a EF (§P] CUF CUrsor Forward

4/04 3a EF (§D] CuB CYrsor Backward

4/05 3a EF 1> CNL Cursor Next Line

4/06 3a EF (@D CPL Cursor Preceding Line

4/07 3a EF QP CHA Cursor Horizontal Absolute

4/08 3b EF 1;D cup CUrsor Position

4/09 3a EF (&)} CHT Cursor Horizontal Tabulation

4/10 3¢ EF ED Erase in Display
@ fFrom AP to end (inclusive)
1 From start to AP (inclusive)

2 ALL of display

Inside ASCII 43

4/11 3¢ EF EL Erase in Line
(8] From AP to end (inclusive)
1 From start to AP (inclusive)
2 ALL of Lline

4/12 3a EF o IL Insert Line

4713 3a EF (D] DL Delete Line

4/14 3¢ EF EF Erase in Field
()] From AP to end (inclusive)
1 From start to AP (inclusive)
2 ALl of field

4/15 3¢ EF EA Erase in Area
(1)) From AP to end (inclusive)
1 From start to AP (inclusive)
2 ALL of QA

5/00 3a EF (@D DCH Delete CHaracter

5/01 3¢ SEM Select editing Extent Mode
() Edit in display
1 Edit in AL
2 Edit in field
3 Edit in QA

5/02 3b 1;1 CPR Cursor Position Report

5/03 3a EF (&P Su Scroll Up

5/04 3a EF (D] SO Scroll Down

5/05 3a EF QD] NP Next Page

5/06 3a EF QD] PP Preceding Page

5/07 3c EF cTC Cursor Tabulation Control

[0)} Set HT stop at AP

1 Set VT stop at AL

2 Clear HT stop at AP

3 Clear VT stop at AL

4 Clear all HT stops in AL

5 Clear all HT stops in device
6 Clear all VT stops in device

5/08 3a EF) ECH Erase CHaracter
5/09 3a EF (&P cvT Cursor Vertical Tabulation
5/10 3a EF (4D cBT Cursor Backward Tabulation

Figure 18b. Controis for Character-imaging Devices

Final FT Type Param Mnem Name
6/00 3a FE (D) HPA Horizontal Position Absolute
6/01 3a FE (D) HPR Horizontal Position Relative
6/02 3a (@D REP REPeat
6/03 3a (1)) DA Device Attributes
6/34 3a FE (Gp) VPA Vertical Position Absolute
6/05 3a FE (@) VPR Vertical Position Relative
6/06 3b FE ;1D HVP Horiz. and Vertical Position
6/07 3¢ FE TBC TaBulation Clear

(1)) Clear HT stop at AP

1 Clear VT stop at AL

2 Clear all HT stops in AL

3 Clear all HT stops

4 Clear all VT stops

6/08 3c

VWO NONN W =

[P R GO O O O G Y
QVOVOO~NO>WVHTWN-—O

6/09 3c

~

Nowvs WSO
-~

SM
GATM
KAM
CRM
IRM
SRTM
ERM
VEM

HEM
PUM
SRM
FEAM
FETM
MATM
TTM
SATM
TSH
£BM
LNM
MC

Best of Interface Age/Volume 2

Set Mode
Guarded Area Transfer Mode
Keyboard Action Mode
Control Representation Mode
Insertion-Replacement Mode
Status Reporting Transfer Mode
ERasure Mode
Vertical Editing Mode
(rfs)
(rfs)
Horizontal Editing Mode
Positioning Unit Mode
Send-Receive Mode
Format Effector Action Mode
Format Effector Transfer Mode
Multiple Area Transfer Mode
Transfer Termination Mode
Selected Area Transfer Mode
Tabulation Stop Mode
Editing Boundary Mode
Line feed New Line Mode
Media Copy
To PAD
From PAD
To SAD
From SAD
Turn OFF copying RD to PAD
Turn ON copying RD to PAD
Turn OFF copying RD to SAD
Turn ON copying RD to SAD

Figure 18c. Controls for Character-Imaging Devices

final FT Type Param

Mnem

Name

6/10-11
6/12 3¢

6/13 3¢ FE

~
N =0
~

O 00NN W

11-19

20
6/14 3c

()

RM

SGR

DSR

(rfs)
Reset Mode
(same parameters as SM)

Select Graphic Rendition
Primary rendition

8old, or increased intensity
Faint, decreased intensity,

or secondary color

Italic

Underscore

Stow blink (< 2.5/second)
Rapid blink (> 2.5/second)
Negative (reverse) image
(rfs)

(rfs)

Primary Font

1st to 9th alt. font (via FNT)
Fraktur
Device Status Report

Ready, no malfunctions detected
Busy - retry later

Busy - DSR will notify ready

Inside ASCII

6/15

3¢

o N

DAQ

€0))

CO~NOWVI S WY

45

Malfunction - retry
Malfunction - DSR will notify ready
Please report status (DSR or DSC)
Please report AP via CPR
Define Area Qualification
Accept all input
Accept no input (protected);
do not transmit (guarded)
Accept graphics
Accept numerics
Accept alphabetics
Right justify in area
Zerofill in area
HT stop at start of area (field)
Accept no input (protected);
permit transmit (unguarded)
Spacefill in area

Figure 18d. Controls for Character-Imaging Devices

Type Param

Mnem

Name

4/05
4/06

4/07
4/08

4a
4e

4b
4e

Figure 18e.

EF
EF
FE
FE
FE

FE
FE

FE
FE

(4D] SL
N SR
(100;100)GsSM
GSS
(0;0 FNT
0;
1;0
9;0
TSS
JFY
@
1

[=-BENINe SRV, I S VAR V1

SPI

Scroll Left
Scroll Right
Graphic Size Modification
Graphic Size Selection
FONT selection
Primary font
First alternative font
Ninth alternative font
Thin Space Specification
JustifyY
Terminate all justify actions
Fill action ON
(text to/from other lines)
Interword spacing
Letter spacing
Hyphenation
Flush Lleft margin
Center text between margins
Flush right margin
Italian form (underscore last)
SPacing Increment

QUAD Quad

~

VIS W -0

Flush Lleft

Flush left, fill with leader
Center

Center, fill with leader
Flush right

Flush right, fill with leader

Controls for Character-imaging Devices

46 Best of Interface Age/Volume 2

CODE EXPANSION

We have seen how ASCIlI was extended by making many related
pages of the 7-bit code. It is also possible to expand ASCII into an
8-bit code, or even 9-bit and 10-bit if we wished, for that matter. But an
8-bit code is obviously the most logical one to concentrate on, and
this has been under development for several years.

The proposed 8-bit Expanded ASCI! Code is shown in Figure 19. The
identification of the graphic symbols is given in Table 6.

One can observe many interesting things about this set. For exam-
ple, it has the entire Greek set of small letters except for “omicron,”
with eleven capitals to go with others from the Roman capitals to
complete the Greek set. But apparently the committee didn’t follow
646-031, the Greek alphabet mentioned in Table 5a. They didn’t use
the customary ordering ‘““alpha-beta-gamma,” the way we learn our
“a-b-¢’s.” | suppose it is argued that this set will never be used for
language, only math symbols. And 646-027, shown in Figure 15a, does
not demand the special capital “upsilon” shown in position 13/5. If the
Greeks can agree to using a Roman capital “Y” for upsilon, could the
Americans?

You'll notice some math symbols, but not enough for APL. in fact,
the whole set seems highly slanted to mathematics, rather than
business. Of course there are the four corner symbols for forms.
Presumably the card suits will strike your eye, and you will wonder
why so many other useful symbols were ignored in favor of these.
Don’t worry, they will always come in handy; it's sometimes useful to
have symbols whose meaning you can reassign without harm to pro-
gramming languages, etc. The committee were obviously bridge
players, for spades collate high.

This proposal has not had real public scrutiny yet, and it must be
considered no more than a proposal. Presumably X3 will agree about
July that it should be sent out for public review and letter ballot. My
guess is that it will not be adopted in just the form you see here.

FUTURE FOR ASCH

The methods are in place for codifying all symbols that people use.
They may be language alphabets, signs, drawing symbols, or controls
for equipments. Robots, for example. Satellites are augmenting con-
ventional telecommunications systems, so that one can borrow
cheaply and permanently from electronic libraries.

To prepare for this, other sets are being developed for registry,
many through ISO Technical Committee 46/1, Automated Documenta-
tion. A 2-page mathematical symbol set is near submission, as are
African sets. Work is started for Arabic, which will take about 5 sets to
handle fully, although there is a commercial subset of 94 graphics.
Another C1 set is being proposed for bibliographic controls. it con-
tains four types—annotation controls, fiting controls, reference con-
trols, and subject designators. Other C1 sets can come from process
control, animation and other graphics applications, etc.

Inside ASCII

Code Symbo L
10/00
10/01
10/02
10/03
10/04
10/05
10/06
10/07
10/08
10/09
10/10
10/11
10/12
10/13
10/14
10/15

(same as 02/00)
Opening double quote
Closing double quote
Club suit

Diamond suit

Heart suit

Spade suit

Closing single quote
Is implied by
Implies

Multiply

Plus or minus

Nabla, or del

Em dash

Radix point

Divide

12/00
12/
12/02
12/03
12/04
12/05
12/06
12/07
12/08
12/09
12/10
12/11
12/12
12/13
12/14
12/15

Section mark
Double dagger
Dot bullet
Capital theta
Capital delta
At least one exists
Capital phi
Capital gamma
Upward arrow
Right arrow
Dot product
Degree

Capital lambda
Register
Copyright mark
Capital xi

14/00
14/01
14/02
14/03
14/04
14/05
14/06
14/07
14/08
14/09
14/10
14/11
14/12
14/13
14/14
14/15

Opening single quote
Small alpha

Small beta

Small theta

Small delta

Small epsilon

Small phi

Small gamma

Small eta

Small iota

Small kappa
Small tambda
Small mu
Small nu
Small xi

Identically equivalent

Code

11/00
11/01
11/02
11/03
11/04
11/05
11/06
11/07
11708
11709
11710
1M/
11712
11/13
11/14
11715

13/00
13/01
13/02
13/03
13704
13/05
13/06
13/07
13/08
13709
13710
13/11
13712
13/13
13714
13/15

15/00
15701
15/02
15/03
15/04
15/05
15/06
15/07
15/08
15/09
15710
15/11
15712
15/13
15/14
15/15

47

Symbol

Large circle

Dagger

Superior (superscript) 2
Superior (superscript) 3
Rectangle

Parallel

Partial derivative
Lower left corner,
Upper Left corner,
Upper right corner
Lower right corner
Perpendicular

Less than or equal
Not equal, other than
Greater than or equal
Paragraph mark, pilcrow

floor
ceiling

Capital pi

Capital psi

Square bullet

Capital sigma

Integral

Capital upsilon
Therefore

Capital omega

Downward arrow

Left arrow
Approximately equal
Opening angular bracket
Logical AND

Closing angular bracket
Logical NOT

Infinity

Small pi

Small psi

Small rho

Small sigma

Small tau

Small upsilon

Check mark, radical mark
Small omega

Small chi

Logical universal quantifier

Small zeta

Cap intersection
Logical OR

Cup, union
Overbar

(same as 7/15)

Table 6. Names of the Additional Graphics, 8-Bit Set

48 Best of Interface Age/Volume 2

08 09 10 n 12 13 14 15
0 N g O § n .]
1 o t t v a [
2 " . . 8)
3 3 ’ e b [} o]
4 * a ! J T
5 g v] q T € v
6 é . ? ® ¢ v
7 § ’ L r o b w

[1]

8 .g‘ C ln t i n X
9 é > q - - . v
10 X | E] = ¢
n t i ° { x n
12 v < A A A v
13 - * ®) u v
14 + > © o v -
15 + L) = = ¢ \\

Figure 19. 8-Bit ASCII Proposal

West Germany has proposed a new 1SO Project on text communica-
tion, to harmonize teleconnection of the more than one hundred
varieties of typewriters (and keyboards) throughout the world. The ex-
tension method of multiple 7-bit codes is ideal for this (8-bit codes im-
ply too many keys or shift combinations for people to use easily).

| am convinced that microcomputer users are going to develop
some fantastic applications that will become widespread enough for
their special graphic and control sets to be registered. How about a
control set or two for sewing machines?

In fact, it is very difficult ot think of any general application where

one could not find a usage for these registered variants and
extensions. :

WHERE TO GET MORE INFORMATION

There are four sets of Information Processing Standards that may
be of concern to you:

¢ {SO. Sold only through ANSI (American National Standards Insti-
tute), which has the franchise. That makes the prices high—much
higher than in other countries.

* ANSI. These are American National Standards developed via the X3
and X4 committees, mostly. Prices still pretty high.

* ECMA (European Computer Manufacturers Association), 114 Rue
du Rhone, 1204 Geneva, Switzerland). Free, and they have a lot more

Inside ASCII 49

advanced standards than ISO and ANSI. But a modest donation
would not be unwelcome.

* Your friendly U.S. Government, in the person of the Department of
Commerce, National Bureau of Standards, Institute for Computer
Sciences and Technology, in Gaithersburg, MD 20760. If by any
chance you are employed by the U.S. Government, you get FIPS
PUBS (Federal Information Processing Standards Publications) for
cheap. Otherwise, see ANSI. (Refer to Tables 1a, 1b, and 1¢). In
many cases they are essentially reprints of the ANSI standards, for
a fraction of the cost.

If you can’t wait for the standards to be approved and published,
catch them in progress. Ask CBEMA, the sponsor of ANSI X3, to put
you on an observer list for the committee in your area of interest. The
address is:

Director of Standards

Computer & Business Equipment Manufacturers Association
1828 L Street NW

Washington, D.C. 20036

(202) 466-2288

REFERENCES

1. ANS X3.4-1977, available from the American National Standards Institute,
1430 Broadway, New York, NY 10018.

2. 1SO 646, available from ANSI (Reference 1).

3. R.W. Bemer, “ASCll—the data alphabet that will endure,” in Management
of data elements in information processing, National Bureau of Standards,
1975 October, 17-22.

4. R.W. Bemer, “A view of the history of the ISO character code,” Honeywell
Computer J. 6, No. 4, 1972, 274-282.

5. E.H. Clamons, “Character codes: who needs them?”, Honeywell Computer
J. 5, No. 3, 1971, 143-146.

6. The TEX Subsystem of the Timesharing System, Series 60 Level 66,
Honeywell Information Systems, 200 Smith Street, Waltham, MA 02154,
Order DF72.

ACKNOWLEDGEMENTS

Thanks go to co-workers at Honeywell Information Systems: Eric Clamons
for much background, insight, and experience gained from working for a long
time as chairman of X3J2—the committee charged with the development of
ASCII. And to Pat Skelly, ACM representative on ANSI X3, for collecting al! the
various national and international standards documentation upon which
many of the figures were based.

FOOTNOTES

' For those curious about the reverse slash, it came from ALGOL 58. The
reference language specified A and \/ as the symbois for AND and OR
respectively. | put the reverse slash in so these could be made as 2-character
groups—/\ and \/.

2 You will still see many terminals where this vertical bar is broken in the mid-
dle. This resulted from a hassle with the PU/I people, who wanted to stylize
the exclamation point (2/1) as a vertical bar for OR in that language. And of

50 Best of Interface Age/Volume 2

course that would make the graphics the same. The compromise (at horren-
dous cost in people time) was to break the real vertical bar in ASCII. But it
turned out that the PL/I people didn’t really need it, or else it gained no
momentum, so the real vertical bar is back to normal in ASCII-1977. Let’s fix
those terminals.

® The ltalians also have a different solution to hyphenation and right justifica-
tion. It ignores the syllable structure and simply demands that if, when you
get to the last position in the line, the current word is not yet completed, that
last character shall be underscored, and the word continued without fuss on
the next line. | rather like it.

‘ With the distribution, ECMA said “ECMA-53 is an attempt to improve por-
tability of programs. It links the language character sets defined by the
language standards, their coded representatives by means of the 7-bit code
and the implementations on data carriers (punched tape, punched cards,
magnetic tape and magnetic tape cassettes and cartridges). It is a standard
of a new type in which already standardized features are assembled in a new
standardized combination aimed at supporting interchange and decreasing
implementation dependency.”

© 1SO 2530 is for the alphanumeric area of the keyboard only. It is augmented
by 1SO 3243-1975—Keyboards for Countries whose Languages have Alpha-
betic Extenders, Guidelines for Harmonizations, and also by ISO 3244-1974—
Principles Governing the Positioning of Control Keys on Keyboards.

The fact that these are “guidelines” and “principles” indicate the com-
plexity of the subject. Typewriter manufacturers now supply over a hundred
different keyboard arrangements, as their catalogs will indicate.

Chapter 2

BASIC Cross Assembler
for the 8080

By Peter Reece

INTRODUCTION

A cross assembler is a high level language program which
assembles low level code for a goal computer. Since the host machine
is usually much larger than the goal computer, code which is too long
to be assembled in the smaller machine can be easily handled by the
cross assembler. The binary tape which is produced can then be
loaded directly into the goal computer.

CROSS

The cross assembler reproduced on the following pages is written
in BASIC for a PDP-10 computer, and will accept and assemble code
for 8080-based computers. It allows the user to produce ASCII listings
in octal or HEX of his source code, define variables for a symbol table,
and generate a binary file of the assembled source.

The program requires two passes (i.e., it reads the source code
twice), hence random access files are not required. This permits the
user with a smaller secondary memory, such as sequential cassette
storage, to use the system. In addition, much less storage space for
variables is required by the host computer.

The first pass scans each line of source looking for an OPCODE. If
one is found, the address pointer a(i) is advanced an appropriate
number of bytes. If a comment only, or an equate or origin line Is
found, afi) is set equal to a(i-1), where ‘I’ corresponds to the previous
statement number. Pass One also creates a symbol table of all labels
and equates with user defined mnemonics.

Pass Two translates OPCODES and their arguments into octal, and
outputs the results in both a binary file (as address, byte one, byte
two, byte three) and an ASCH form (see example in Figure 1). All
translation is initially done into octal. If all attempts at translation
fail, byte one is set equal to ‘777 (i.e. an extra bit is flagged), the error

52

options: ?hex list
adrs op b2
00000
00000
00000
00000
00006
00007 31 3D
0000A AF
0000B 47
0000C 21 08
0000F 48
00010 OE 24
00012 21 08
? 00015 ** 48
00016 OE 0A
00018 D5
00019 76
start=07
ok=0C
write= 10
end=19
load = 08
ERRORS = 1
options: ?octal list
adrs op b2
0 0 0
0 0 0
0 0 0
0 0 0
[o] 0
7 61 75
12 257 0
13 107 0
14 41 10
17 110 0
20 16 44
22 41 10
? 25 1027 88
26 16 12
30 325 0
31 166 0
start=7
ok=14
write =20
end =31
load=10
ERRORS = 1

1f
b3

-
-

o
Co0C0O000000O0O0COOW

Best of Interface Age/Volume 2

/

/Here’s a simple do-nothing
fexample of the program.

/

*7#d
start: {xi sp'61#d llabel line
Xra a
mov b’a [*'" is a separator
ok: Ixi h'load /fwd ref

mov c’'b
write: mvi ¢’44#0 Joctal num
Ixi h'load
xra j Inote error code
mvic'$j falpha-num conversion
push d
end: hit

load = 10#0 /equate line

!

/Here’s a simple do-nothing
lexample of the program.

/

*7#d
start: Ixi sp’61#d /label line
xra a
movb’a I*'” is a separator
ok: Ixi h'load /fwd ref

mov ¢’'b
write: mvi ¢'44#o /octal num
Ixi h'load
xra j Inote error code
mvic’$j falpha-num conversion
push d
end: hit

toad = 10#0 /equate line

Figure 1

BASIC Cross Assembier for the 8080 53

Below is a simple example of the use of the program:
OPTIONS? octal-If-nobin-list

adrs op b2 b3
0 0 0 0 i
0 0 0 0 !
0 0 0 0 /Here’s a do-nothing
0 [0 0 Isample output from
0 0 0 0 Ithe prog CROSS.
0 0 0 0 *1
1 61 0 4 start; Ixi sp’stack Iset stack
?4 777 1000 Ibl h’buffer Iset buffer
7 176 0 O strt1: mova’'m
INote that CROSS automatically
/sets the spacing of the output.
s [The tabs were not in the source.
10 315 26 0 call write
13 176 0 O mova’'m Htinished?
14 376 166 0 cpi 166#0
16 302 22 0 jnz strt2 Inope
21 166 0 O hit lyes
22 16 1 0 strt2: mvic’i$ fascii char
24 166 0 O hit
i
i
stack = 2000#0
buffer=100#0
write=26
I}
i
start=1
strt1=7
strt2 = 22
buffer= 100
stack = 2000
write = 26
ERRORS = 1

options: ?show -
/

/Here's a simple do-nothing
lexample of the program.

i

*7#d

start: Ixi sp’61#d flabel line
xra a

mov b’a /“'” is a separator

ok: Ixi h'load /fwd ref

movc'b

write: mvi c’44#0 foctal num
Ixi h'load

xraj /note error code

mvi ¢'$j /alpha-num conversion
push d

end: hit

load = 10#0 lequate line
.end

ox = 32#d Jequate line

jmp write

end: hit

.end

options: ?end

Figure 1 continued

54

count is increased by one, and Pass Two continues. If, during a listing,
a ‘777 is encountered in byte one, a question mark is output beside
the line being listed. The accompanying flow charts indicate the pro-

Best of Interface Age/Volume 2

ceedings during the two passes. (See Figures 2 and 3)

Use of the program is straight forward. A number of options are

available:
$

HEX

OCTAL

LF

NOLF
LIST

NOLIST
BIN

The character immediately preceeding the
dollar sign in a line of source will be
transliated into octal, with the ASCH letter ‘a’
being translated as ‘001’ and ‘Z’ as ‘032'.

If followed by a ‘d’, the numeric preceding
the ‘# will be translated into octal from
decimal; if followed by ‘h, the translation
will be from HEX to octal; if foliowed by ‘0,
the numeric will be assumed to be octal.

Any ASCII string preceding a colon will be
assumed to be a label, and will be entered in
the symbol table.

The right hand side of an equate will be
translated into octal, and set equal to the
left hand side as an entry in the symbol
table.

A slash is followed by a comment.

An asterisk precedes a numeric expression
which is to be used as an origin address.

Occurs beside all untranslatable lines of
output.

If a user wishes output to be listed in HEX,
type this when the program types ‘Options:’.

(default condition)—output is listed in octal
if this option is chosen.

Choosing this option produces seven line
feeds per 66 lines of output, thereby produc-
ing 66 lines per 9*11-inch page.
Suppresses LF (default option).

Lists assembled code beside each line of
source at the end of Pass Two (default
option).

Suppresses ‘list’.

This option produces an output file which
may be read by the goal computer. For each
line of source which is not a comment or an
origin or equate line, ‘BIN’ produces the cur-
rent address, byte one, byte two, byte three,
and a carriage return (defauit option).

BASIC Cross Assembler for the 8080

NOBIN
SHOW
END

MAKE

Supresses ‘BIN’.
Print the source listing; do not assemble it.

End the program.

To create a source file, type “make” when
the program starts, then type your source
(one line of source per input line). Terminate
“make’ with the line “end”.

REWIND
SOURCE
FILE

PASS | Each Iine ol

suurce 15 checked 10 see
115 a comment. onigin l

tabel. or upcode hne

Address ponler array “ai)
1 sel accordingly. and the
“ymbol 1able (S 1) 1s updated SEARCH TABLE

ain=an-
SET aily
EQUAL TO
ORIGIN
VALUE
DECODE TO
OCTAL &
ENTER ASCH
AND OCTAL
INTO S T
ENTER ai)
& LABEL
INTOS.T

ELIMINATE

FROM LINE

FOR OPCODE
MATCH & SEY
Q= #BYTES
NEEDED

I

aul =
an+q

Figure 2

55

56 Best of Interface Age/Volume 2

IF LIST
SET PRINT
57

ELIMINATE
ALL BUT
OPCODE +
ARGUMENTS
FRAOM LINE
PASS I1. Generate
octal of opcodes
and argumenls
COMMENT

/ PRINT
oR ASSEMBLED
ORIGIN \ LINE

SEARCH 3 SEARCH 2. SEARCH 1
BYTE TABLE BYJE TABLE BYTE TABLE
FOR OPCODE FOR OPCODE FOR OPCODE
MATCH & MATCH & MATCH &
SET 1) SET et SET (i)
DECODE IRD
YTE AND OECQOE 2ND :::z’:::es
2ND BYTE: BYTE AND DECODE &
2 & 13 SET (20 ADD 10 1161

L e I

= 777 - elzel 41 £RAOR?

Figure 3

PROGRAM LISTING

10rem*H S SR ERESEEERRRRRRERESRARBRRNARAGARURRERFHERRARSRAEH AR TR NBEE

20rem* »
30rem® A BASIC LANGUAGE CROSS-ASSEMBLER FOR THE INTEL 8080 yp #
40rem® *
5Orem® by P. Reece, 1977 »
60rem® *

TOremHi# # 51 E44EANARRRRRRARRRENRRBERRERINRRRNNNGRARRNRNSRRRNNHER NS

BASIC Cross Assembier for the 8080 57

80rem

90rem

100rem
110rem
120rem
130rem
140rem
150rem
160rem
170rem
180rem
190rem
200rem
210rem
220rem
230rem
240rem
250rem
260rem
270rem
280rem
290rem
300rem
310rem
320rem

330rem
340rem
350rem
360rem
370rem
380rem
390rem
400rem
410rem
420rem
430rem
440rem
450rem
460rem
470rem
480rem

490rem
500rem
510rem
520rem
530rem
540rem
550rem
560rem
570rem
580rem
590rem
600rem
610rem
620rem
£30rem

640rem

ARSERERERRRRERNNRY

BASIC VERSION: *

T P ey

PDP-10 Basic is used. Functions are as follows:

1) nzinstr(a$,b$). This returns n equal to the

position of the 1st letter of a$ which matches the

string b$. Eg. n=instr("abcd®,"be") returns n=2.

If no match is found, n is returned as zero.

2) n$=mid$(a$,a,b). N$ is returned equal to the substring

of a$ begining with character a, and extending for b characters.
Eg. n$zmid$("abede”,3,2) returns n$="de".

3) n$=chr$(a). Converts the integer a to the ascii string

n$. Eg. n$=chr$(56) returns n$="A" (PDP-10 ascii).

4) n$=str$(a). Converts the integer a to its agcii equivelent.

Eg. n$=str$(12) returns n$="12".

S)n=val(a$). Converts the integer ascii a$ to an integer.

Eg., if a$="12", then n is returned equal to 12.

NOTE: The array a(®%) must be set equal to the number of statements
in the source. For most programs, this is generally not more than
500 statements, so a(500) is sufficient. If an output file is to be
gnerated (via the ‘bin’ command), the dimensions on r1(¥), r2(*), and
r3(%) must also be set. Otherwise, they may be left small if only a
listing and assembly is desired.

ARRERARARBRE

* COMMANDS *

HERERERRBNNE

hex: produces hex listing

octal: produces octal listing (default)’

1f: prints 7 1f’s every 66 lines of listing

nolf: cancels 1f (default)
nolist: suppresses listing
list: gives listing (default)
nobin: suppresses output file

bin: creates output file (default)}

symbol: prints symbol table of pass#1, then stops
make: create a source file

.end: termimate a source file (used during make)
end: terminate the program

show: 1list the unassembled source

RRERAEERRRSRERRBRRERRS

* SPECIAL CHARACTERS *

LT L LTI Y

the next char is ascii & will be translated to octal
a label preceeds a colon

follows a numeric

follows a ‘#° if the numeric is decimal

follows a "# if the numeric is octal

follows a “#° if the numeric is hex

preceeds a numeric which is to be used as an origin
preceeds a comment

indicates an equate line of source

? indicates an error in assemblage

bd indicates a hex number too large for the listing

8 “Jith a "2 for a hex listing, indicates the error byte

E sl N 23 0 A% 0 &

777 as above for ‘48°, but for an octal listing

650remHE#HEEEEERESARERNRRRRERE

660ren* OPTIONS *
670remt HHRERHEEEERERRBRRENRENE

680rem
690rem
700rem
T10rem
720rem
730rem
TU40rem

Options in effect if switches = 1:

01: hex listing

02: suppress listing

03: suppress binary output

ol: generate 7 LFs every 66 lines
05: list symbol table, then stop
0b: ‘make” a source file

58 Best of Interface Age/Volume 2

TSOrem¥*EnsnaEELnsnns L
760rem* DEFINITIONS *

TTOr m™ S 30635815 1519508163096 330 3000 0 0 8
780rem r$(%)= registers

790rem r1(*)= byte #1

800rem r2(*)= byte #2

810rem r3(*)z= byte #3

820rem a(*)= decimal address of each source line
830rem s$(*)= symbol table

840rem s1(*)= octal of s$(¥)
850rem m$(¥)= binary of dec 1 -> 7
860rem h2$(*)= array of hex digits

870rem b1= pointer for s$(¥*),s1(%*)
880rem b= pointer for a(#*)

890rem el= number of assemble errors
900rem¥## bl REEERER bkl

910rem There are two files - a source file, and an output file.

920rem The output file will contain the assembled octal of the source

930rem in the format: address-1st byte-2nd byte-3rd byte-carriage return.

940rem The address is 6 digits, the bytes are each 4 digits long.

950rem All files are sequentially read (i.e. no direct access is used)

960rem to ensure that non-disc systems can also use the program ({i.e.

9ggrem a cassette oriented Basic could.also use the cross-assembler).
rem® INITIALIZE

ggopemlIlillllll!l!lliil!!iiliillliiill

1000files s8080.bas$80,08080.bas$80

1010dimr$(8),r1(100),r2(100),r3(100)

1020dima(§?0%is$(50),s1(50),m$(8)

1030dimh2$(1

1040fori=0to9

1050h2$(i)=str$(i)

1060next i

1070fori=10to15

1080n2$(i)=chr$(i+55)

1090next i

1100e1=0

1110r$(0)="b"

1120r$(1)="c"

1130r$(2) ="g"

1140r$(3)="e"

1150r$ (4) ="h"

1160r$(5)="1"

1170r$(6)="m"

1180r$(7)="a"

1190m$(0)="000"

1200m$(1)="001"

1210m$ (2)="0 10"

1220m$ (3)="0 11"

1230m$ (4)="100"

1240m$(5)="101"

1250m$ (6)="110"

1260m$ (7)="111"

1270b=0

1280a(C)=0

1260b1=0

1300print"options: ";

1310inputc$

1320ifinstr(c$, "show") <>0thenb750

1330ifinstr(c$,"nolist")=0then1350

134002:11

1350ifinstr(c$,"nobin")=0then1370

136003=1

1370ifinstr(c$,"1f")=0then1390

138004=1

1390ifinstr(c$,"symbol")=0then1410

140005=1

1410rem

1420print® ¥

1430ifinstr(c$, "hex")=0then1450

144001=1

BASIC Cross Assembler for the 8080

1450ife$="make"t hen6380
1460remt HHERFERER SR EANERESBNRSEERNRE

1470rem* CREATE ADDRESSES & SYMBOLS *
T L T T T T L L)
1490rem

1500rem Pass one creates a symbol table, and
1510rem calculates all addresses for every
1520rem line of source.

1530rem

1540q=1

1550ifend: 1then2290
1560input:1,c$
1570ifinstr(c$,".end") OGOthen2290
1580rem comment line only?
1590ni=instr(c$,"/")

16001 fn 1=0then1690
1610ifn1>3then1690

1620b=b+1

16301£q<2then1660
16U40a(b)=a(b-1)+q-1

1650got01530

1660a(b)=a(b-1)

1670goto 1530

1680rem origin line?
1690n=instr(c$,"*")
1700ifn=0then1810
1710c$=mid$(c$,n+1)

1720b=b+1

1730k$=c$

1740gosubli770

17501 fk=777then1770

1760c$=str$(k)

1770a(b)=val(c$)

1780a(b)=a(b)-1

1790goto01530

1800rem equate line?
1810n=instr(c$,"=")
1820ifn=0then1920

1830b12b1+1
1840s$(b1)=mid$(c$,1,n-1)
1850c$=mid$(c$,n+1)

1860k$=c$

1870gosubd770

1880s81(b1)=k

1890b=b+1

1900a(b)=a(b-1)

1910goto1530

1920rem label line?
1930n2=instr{c$,":")

19401 fn2=0then2030

1950b=b+1

1960a(b)=a(b-1)+q
1970b1=b1+1
1980s$(b1)=mid$(c$,1,n2-1)
1990k=a(b)

2000gosub5340

2010s1(b1)=k

2020g0t02060

2030rem opcode line? - get the number of bytes

2040b=b+1

2050a(b)=a(b-1)+q
20601fn1>n2then2080

2070n1=80
2080k$=mid$(c$,n2+1,n1-1)
2090ifinstr(k$,"1xi")=0then2120
2100q=3

2110goto 1550

2120rem

2130ifinstr(mid$(ks$,1,3)," j*) <>0then2100
2140ifinstr(k$,"pehl")<>0then2100

59

60 Best of interface Age/Volume 2

2150ifinstr(k$,"1da")<>0then2100
2160ifinstr(k$,"sta" }<>0then2100
2170ifinstr(k$,"nld")<O0then2100
2180ifinstr(k$,"call")<>0then2100
2190ifinstr(k$,"out")=0then2220
2200q=2

2210goto1550

2220rem
2230ifinstr(k$,"inx")<>0then1530
22401 finstr(k$,"cpi®)<>0then2200
22501 finstr(k$,"inr"}<>0then1530
22601 finstr(k$,"in")<>0then2200
2270ifinstr(k$,"i")<O0then2200
2280goto1530

2290rem

2300rem® S HEEEEEERELEREEEEEEHERNRE RS

2310rem* DECODE OPCODES & VARIABLES *
2300rem SRR EREEIHEBHEREEEEHIEES HINE
2330rem

2340rem Pass two decodes opcodes and their
2350rem variables. The results are stored
2360rem in arrays representing the
2370rem first, second, and third bytes of
2380rem the source line. The stored values
2390rem are octal.

2400ifo5=1then28U40

2410b=0

2420printtab(#);"adrs";
2430printtab(12);"op";
2440printtab(17);"b2";
2450printtab(21);"b3"

2460restore: 1

2470goto2510

2480ifend: 1then2840

2490rem go print the result for this source line
2500gosub3060

2510input:1,c$

2520e$=c$

2530ifc$=".end"then2840

25U0b=b+1

2550rem let k$= opcode + variables only
2560ifinstr(c$,""#")<>0then2480
2570ifinstr(c$,"=")<>0then2u80
2580n=zinstr{c$,"/")

2590ifn=0then2620

26001 fn<6then2480

2610c$=mid$(c$.1.n-1)
2620n=1instr(c$,":")

2630ifh-0then2650

2640c$=mid$(c$,n+1)

2650k$=c$

2660remt HESRRRRERER RSN

2670rem* DECODE ‘MOV~ #
2680remtHHHIEESEIRE NI
2690n=instr(c$,"mov")

27001 fM=0then3480
2710k$=mid$(c$,n+l, 1)

2720q9=n

2730gosubli630

27401 fk=777then2810

27501=k

2760k$-m1d$(c$,q+6 1)

2T70gosub:

27801f'k~777then2810
2790k$="1"+3tr$ (1) +str$(k)

2800goto2820

2810k$="777T"

2820r1(b)=val(k$)

2830goto2480

BASIC Cross Assembler for the 8080

2840rem end of decode phase
2850rem print the symbol table
2860print® "

2870forq=1tob1
28801f01<>1then2940
2890k$=str$(s1(q))
2900gosub5820

2910gosub5950
2920prints$(q);"=";k$
2930goto2950
2940prints$(q);"=";s1(q)
2950nextq

2960print"
2970ife1<>0then3000
2980printtab(10);"NO ERRORS"
2990got03020
3000printtab(10);"# ERRORS = ";
3010printel

3020stop
3030remt#HHIEEEHEMEHEREHEEHEHEEERHERER
3040rem* PRINT THE RESULTS *
3050 emE FHIEHEEEHERHEESHEEHEHEHE LS
30601i=b

3070k=a(1)

3080ifk>0then3110

3090a(1)=0

3100g0t03150

3110gosub5340

3120i=b

3130a(i)=k
31404fa(1i)=a(i-1)then3330
31501ifr1(1)>377then3170
31601fr2(i)<400then3200
3170print"?";

3180el1ze1+1

3190r2(1)=88
32001fol<>1then3250
3210t 1=t 141

32201t 1<66then3250

3230t1=0

3240print" "

3250g0subb470

32601 f02=1then3U60
3270ifo1=1then6100

3280rem
3290printtab(4);a(i);
3300printtab(12);r1(i);
3310printtab(17);r2(i);
3320printtab(22);r3(i);
3330n=instr(e$,"/")
3340n1=instr(e$,":")
3350ifm1=0then3400
3360k$=mid$(e$,1,n1)
3370e$=mid$ (e$,n1+2)
3380printtab(30);k$;
3390goto3420

34001 fn=0t hen3420

34101 fn<3then3is50
3420printtab(37);e$
3U30goto3l60
3440printtab(30);e$
3450printtab(30);e$
3460return

3UTOremt SHNRAER SRR RES

34B0rem® DECODE "'MVI’ #
JUGOrem NI RN EARR R R NRR
3500n=instr(c$,"mvi")
3510iM=0then3620
3520k$=mid$(c$,n+d, 1)

62 Best of Interface Age/Volume 2

3530u=n

3540gosubd630
3550r1(b)=15+k

3560n=u

3570k$=mid$(c$,n+6)

3580rem see if k$ is in s.t.
3590gosubi760

3600r2(b)=k

3610goto2480

3620 remiHFEHIHE LR
3630rem®* DECODE 2 BYTE QP #
3640rem HEREE
3650restore

3660data in ,333,0out ,323,adi,306,aci,316,sui,326
3670data sbi,336,ani,346,xri,356,0ri,366,cpi,376
3680data end,0

3690readk$, k
3700ifk$="end"then3810
3710rem

3720n=instr(c$,k$)
3730ifm=0then3690
3740r1(b)=k

37501=1en(k$)

3760k$=mid$ (c$,n+1)
3770c$=k$

3780gosubd760

3790r2(b) =k

3800goto2480

38710rem® HEHEERERRERRERERS R
3820rem* DECODE 'LXI’ *
3830 remMFHEEHEENHERE RS
3840data 1xi b,1,1xi d,21,1xi h,41,1x1 sp,61
3850read k$,k
38601fk$="end"then3980
3870n=instr(c$,k$)
3880ifn=0then3850
3890r1(b)=k

3900k$=c$

3910gosubd760

3920gosub5110

3930g0t02480

3940data jnz,302,jz,312, jnz,322, je,332, jpo, 342, jpe, 352
3950data jmp,303,3m,372, jp,362,cnz,304,cnc,324,c2,314
3960data cc,334,cpo,344,cpe,354,cp,364,cm ,374,call,315
3970data sta,062,1da,072,shld,042,1h1d,052,end,0
3GB0remFSESEEEEEEEESHEEHENERERE

3990rem® DECODE SINGLE BYTE *

TYOOOREMS #8513 33163013333 3 4 0 M M2

4010data rnz,300,rz,310,rnc,320,rc,330,rpo,340,rpe,350
4020data rp,360,rm,370,ret,311,rle,7,rre,17,ral,27,rar,37
4030data xchg,353,xthl,343,sphl,371,pchl,351,hlt,166,n0p,0
40U0data di,363,ei,373,daa,47,cma,57,stc,67,0me,77,end,0
4050readk$, k

40601 fk$="end" thend 100

4070ifinstr(c$,k$)=0thend050

4080r1(b)=k

4090goto2480

4100rem see if line is a one byte + register instr
4110data pop,301,push,305,stax,2,1ldax,12

4120data inx,3,dex,13,dad,11,end,0

4130readk$,k

41401 fk$="end"then4290

4150n=instr(c$,k$)

41601 fn=0thent 130

41701=1en(k$)

4180k$=mid$(c$,n+1+1,1)

4190n=instr("bdh" ,k$)

4200ifn=0thenld240

4210k=k+(n-1)%20

BASIC Cross Assembler for the 8080

4220r1(b)=k

4230goto2u80

42401 fk$<O"s"thenl270
4250k=k+60

4260gotod220

42703 fk$="p" thenl 250
4280gotol530

4290rem decode final single byte opcode
4300data add,20,ade,21,sub,22, sbb,23
4310data ana,24,xra,25,0ra,26,cmp,27,end,0
4320readk$,a

43301 fk$="end"t henlil 10
43U0n=instr(c$,k$)

43501 f=0thenli 320
4360k$=mid$(c$,n+4,1)
4370gosubd630

4380r1({b)=a*10+k

4390goto2iB0

4400data inr,4,der,5,end,0
4410readks$,a

44201 fic$="end" thend500
4430n=instr(c$,k$)

44401 M=0thendd 10
4450k$=mid$(c$,n+l,1)
4460gosubl630

44701 fk=77Tthenk510
4480r1(b)=k*10+a

4490goto2480

LS00remt SREREEHEEERRERRRRES
4510rem® ERROR *
LS20remt HIEERERRBES RIS
4530r1(b)=777

45upgoto2480

4550rem

4560rem

4570rem

4580rem SUBROUTINES
4590rem 0000 e
4600rem

4610rem

4620rem

4630remt HEREEERNSSEERSNLNNRERE SIS

4640rem*® DECODE A REGISTER »
HE50remiHHHHHNEESE 0000 NS

4660rem enter with: k$= register
4670rem exit with: k= octal of register
4680rem k= 777 if error
4690Kk=777

4700fori=0to7

47101k $<Or$ (1) thend 740

4720k=1

4730i=7

4740next i

4750return

BT60remi MRS SRR

4770rem* DECODE #,ASCII,S.T. *
u']aoremllli.ll’ll'.ll'll!lll'Ill
4790rem enter with: k$ = string for decoding
4800rem exit with: k = octal if s.t. entry

4810rem k = octal if ascii entry
4820rem k = octal if numeric entry
4830rem k = 777 if none of the above
U8UOK=TTT

4850a$=k$

4860k$=c$

4870n=instr(k$," ")
48801 fn=0t henli900
4890k$=mid$(k$,n+1)
4900n=instr(k$,"#")
49101 M=0thent980

64 Best of Interface Age/Volume 2

4920rem reach here if a numeral existed
4930b$=mid$ (k$,n+1,1)
4940Kk=val(mid$(k$,1,n-1))

49501 fb$="0"then5100

4960gosub5330

4970goto5100

4980rem see if k$ is ascii
4990n=zinstr{a$,"$")

5000if n=0then5040
5010k=instr("abcdefghi jklmnopqrstuvwxyz" ,mid$ (a$,n+1,1))
5020gosub5330

5030got05100

5040rem see if a$ is in the symbol table
5050fori=1tob1

5060ifinstr(a$,s$ (1))<>0then5090
5070nexti

5080g0t05100

5090k=s1(i)

5100return
5110remHHHERESERRERERERRERERNES

5120rem* DECODE BYTE #3 *

5130rem* HRRARER

5140rem enter with: k = octal

5150rem exit with: r2(b) = octal if k<377
5160rem : r3(b) = octal if k>377
5170r2(b)=k

51801 fk>37Tthen5200

5190g0t05320

5200rem convert k to a binary string
5210k$=str$(k)

5220g0sub5460

5230h$=mid$(k$,1,8)

52401$=mid$ (k$,9)

5250rem convert h & 1 to octal

5260k$=h$

5270gosub5640

5280r3(b)=val(ks$)

5290k$=1$

5300gosub5640

5310r2(b)=val(k$)

5320return
5330remHHEEREREEEEEEESEE RS RIS
5340rem* CONVERT DECIMAL K TO OCTAL K #
5350 @m0 IO
5360a1=k

5370h$=""

5380fori=4to0by-1

5390a=int (a1/8%#i)

5400k 1=a1-a%3#¥%i

5410a1zk1

5420h$=h$+str$(a)

5430nexti

S440k=val(h$)

5450return

SUOOrem* FHEHEMMEE IR N
S5470rem* CONVERT OCTAL K$ TO BINARY K$ *
SUBOrem*#HH LIS EE R R
5‘,‘90h$:"ll

5500fori=1tolen(k$)

5510k2$=mid$(k$,i,1)

5520fork=0t.07
5530ifstrs$ (k) Ok2$thens5560
55U0n$=h$+m$ (k)

5550k=8

5560nextk

5570nexti

5580k$=h$

5590rem make k$ 16 characters long
5600fori=1to16-len(k$)

BASIC Cross Assembiler for the 8080

5610k$="0"+k$

5620nexti
5630return
SELOrem HHEEEE R IR R U
5650rem* MAKE BINARY K$ OCTAL K$ M

SEO0TMII IS0 0300010006050 30000000 000000 00 0

5670rem enter with: k$ = 8-char binary
5680rem exit with: k$ = octal equivilant
5690k$="0"+k$

5700Kk3$=""

5710fori=1to9step3

5720k2$=mid$(k$,1,3)

5730fork=0to7
S5740ifinstr(k2$,m$ (k))=0then5770
5750k3$=k3$+str(k)

5760k=8

5770nextk

5780next i

5790k$=k3$
2%?8:2;2:2!!!!.Illlllll.lllllllll!lllllllll

5820rem* CONVERT OCTAL K$ TO DECIMAL K$ *
5830remW ISR EEESEENHEERREEREHEEN NN
5840k=0

58501=1en(k$)

586011=1

58701=1+1

5880foriz1toll

58901=1-1
5900k=k+val(mid$(k$,1,1))*8%#(i-1)
5910nexti

5920k$=str$(k)

5930return

SQUO YN I 1106000000300 0000000 00000003000 0000 0 00 0
59%0rem* CONVERT DECIMAL K$ TO HEX K$ *
SOB0r@MIH I 111110000 00 0000 0000000 0 RN
5970a1=val(k$)

5980h1$="n

5990fori=nTto0step-1

6000k=1int(a1/16%%1)

6010k 1za1-k*16%%4

60201 fk<17thenb6050

6030h 1$=" 8w

6040got 06080

6050h1$=h1$+h28 (k)

6060a1=k1

6070next i

6080k$=h1$

6090return

6100rem S RERNEEEEESRERERES RS

6110rem* OUTPUT A HEX LINE *

6120 emMHHEEH RSN
6130k$=str$(a(i))

6140n7 =4

6150gosub5820

6160gosub5950

6170printtab(4);k$;

6180k$=str$(ri(b))

6190n7=1

6200gosub5820

6210g03ub5950

62201 fk$<>"00" then6240

6230k$=" "

6240printtab(12);k$;

6250k$=str$(r2(b))

6260gosub5820

6270g0osub5950

62801 fk$<>"00"then6300

6290k$=" "

65

66 Best of Interface Age/Volume 2

6300printtab(17);k$;

6310k$=str$(r3(b))

6320gosub5820

6330g0sub5950

63401 fk$<O"00"thenb 360

6350k$=" "

6360printtab(21);k$;

6370goto3330

6380remt#sns

6390rem* MAKE COMMAND *
T e T LT T P P e T T T
6410inputc$

64201 fe$<O" . end"thenbli50

6430print:1,c$

6440stop

6450print : 1,c$

6460gotobd10

6480rem® CREATE OCTAL OUTPUT FILE .
6490remtues .
6500k$=str$(a(i))

6510g0osub6640

6520k 1$=k$

6530k$=str$(r1(i))

6540gosubb640

6550k 1$=k 1$+k$

6560k$=3tr$(r2(1))

6570208ub6640

6580k 1$=k1$+k$

6590k$=str$(r3(i))

6600gosubb640

6610k 1$=k 1$+k$

6620print:2,k1$

6630return

6640rem® HHARBEHESHERRRELHEBEERERE
6650rem* MAKE K$ = 3 CHARACTERS *
6660REM#E* x L RESREEN
6670n=1en(k$)

66801fm=3thenb730

66901 fn=2thenb720

6700k$="00"+k$

67108006730

6720k$="0"+k$

6730return

6TUOrem *ExEsns

6750rem #SHOW *

6760r‘em HREEERE

6770ifend: 1then6810

6780input:1,c$

6790printc$

6800goto6770

6810restore:1

6820goto1300

6830end

READY

Chapter 3

TLABEL: An 8080
Program to Punch
Human-Readable Labels
on Paper Tape

By Alan R. Miller,
Contributing Editor

Have you ever discovered unlabeled tapes lying about and won-
dered what they were? Did you attempt to print them, only to find that
they were punched in a binary or hexadecimal format? Would you like
to have the file name and address in a form that you can read at the
beginning of each tape? TLABEL can do that. TLABEL is an 8080
assembly-language program that can be used to punch human-
readable messages on paper tape. It uses the set of 63 ASCII
characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

1“#8%8&()* + /< =>7@[\]A.
and a blank. These represent the ASCIi values 20 to 5E HEX (040 to 135
octal).

TLABEL can be used two ways: either by itself or as a subroutine
that can be called by a monitor, or by BASIC. To use TLABEL in the
stand-alone mode, jump to the first instruction “START” at address
SE00 HEX. To use it as a subroutine, call ‘SUBR” at address 5E09
HEX. In the latter case, your calling program must provide four levels
(8 bytes) of stack. In either case, a 5-inch leader is punched out when
TLABEL is started.

Type the desired message, including any necessary blanks, then
signal the end of the message by typing a Control-Z (all other control

68 Best of Interface Age/Volume 2

characters are ignored). Another five inches of blank tape will now ap-
pear and the program counter will jump to the address defined
“MONIT” in the source program (zero in this case) if TLABEL is being
used in the stand-alone version. Alternately, control will return to your
calling program if TLABEL was called as a subroutine.

TLABEL can also be used to punch labels on BASIC source tapes.
For use with MITS BASIC, answer the question “MEMORY SIZE?” dur-
ing initialization with a value that will keep BASIC from plowing
through TLABEL (24063 for TLABEL at 5E00 HEX). For MITS extended
BASIC versions 4.0 and 4.1, put the following two lines at the end of
your regular source program:

5000 DEFUSR = ?H 5E09: REM POINT USR TO TLABEL
5010 X =USR(9): LIST

Be sure that the statement prior to 5000 is an unconditional branch,
such as a RETURN or GOTO, or is a STOP or END. Then give the direct
command:

RUN 5000

The USR function will call TLABEL, allowing you to punch out the
message on the tape leader. Type a Control-Z when finished and con-
trol will return to BASIC at the next expression after the USR com-
mand. Since this is LIST, the source program will then automatically
be punched out.

Other versions of MITS BASIC should be changed to:

5000 US =73: POKE US, 9: POKE US + 1,94

This command will patch USRLOC with the address of TLABEL's
subroutine entry for MITS 8K, versions 3.2 and higher. For extended
BASIC version 3.2, USRLOC is at 65 decimal. Therefore, the above
statement should read US =65.

In the 4K versions USRLOC is at 111 octal (49 HEX). However, a
manual patch must be made since the POKE function is not available.
Now only one line is needed:

5000 X = USR(9): LIST
The direct command is still:
RUN 5000

TLABEL requires 421 bytes including 8 bytes of stack. The HEX
checksummed listing is assembled for the address range 5EQ0 to
5FAS5. Keyboard input is at address 10/11 HEX (20/21 octal); in stand-
alone mode, the separate punch is addressed to 12/13 HEX (22/23 oc-
tal). The keyboard-input address and the punch address can be the
same (e.g. if a teletypewriter is used as the only peripheral) since the
keyboard input is not echoed. The locations in Figure 1 may need to
be changed for your system.

TLABEL 69

Source
Program Address Data
Variable (HEX) (HEX)

Your monitor MONIT 5E07,8 0000
Keyboard status addr TYSTAT 5EOD 10
Keyboard data addr TYDATA 5E14 11
Input-ready mask INMSK 5EQF ot
Jump zero 5E10 CA
Punch status addr PSTAT 5E57 12
Punch data addr PDATA 5ES5F 13
Output-ready mask PMASK 5E59 02
Jump zero 5ES5A CA
Figure 1

PROGRAM LISTING

3 TLABEL: PPJICRAM TJ MAKE HUMAN-PEADABLE
H LABELS 3N 3N PAPER TAPE

3 PRIGRAMMED FOR AN 8080 MICRIPRICESSIR
3 BY ALAN Re. MILLER

5 NEW MEXIC3 TECH, S3CJRRJI, NM 87801

i 505-835-5619

5 INTERFACE AGE» JANUARY 1979, PAGE 134

TITLE ‘TAPE LABEL'

SEQOQ @RG SEQOH

F800 = MENLT EQU OF800H 3JMP T3 MZNITIR 3N 12
0010 = TYSTAT EQU 10H 3 CINSALE STATUS

00ttt = TYDATA EQU TYSTAT+1 ;CONSOLE DATA

0001 = INMSK EQU 1 3 INPUT MASK

0012 = PSTAT EQU 12H 3 PUNCH STATUS

0013 = PDATA EQU PSTAT+1 ;PUNCH DATA

0002 = PMASK EQU 2 3 PUNCH-READY MASK

33333333333353333335333333333333333333333335333333

3 ENTER AT THIS PZINT WHEN USED AS MAIN PR3 GRAM

SEQO0 J1A2SF STARTs LXI SP» STACK 3 STACK AT END
SEQ3 CDO9SE CaLL SUBR
SE06 C300F8 JMP MINIT 3 WHEN DINE

3333333335335535553333333333333353333333333333333
3 CALL AT THIS P3INT FOR USE AS A SUBRIUTINE
SEQ9 CD4ASSE SUBR: CaLL LEADR 3PUNCH A LEADER

3 INPUT A CHARACTEP FRIM THE KEYB3ARD

SEOC DB1O READs IN TYSTAT 3 GET STATUS

SEQE E601 AN1 INMSK JMASK UNWANTED BITS
SE10 CAOCSE JZ READ 3LOOP UNTIL READY
SE13 DBl IN TYDATA 3 GET DATA

SE1S E6TF AN1 TFH 3 STRIP PARITY

SEL7 FEIA CpPI 1AH 3QUIT 8N CONTRIL-2Z
SE19 CA48SE Jz DINE

SEIC DE20 SBl 204 JREM@VE ASCI1 BIAS

70 Best of Iinterface Age/Volume 2

il

INITIALIZE PUNCH
STACK TRAILER
RETURN
PUNCH TO ORIGINAL
LABEL

ALLING PROGRAM,

i

)
ACCUMULATE
SET D FOR
50 NULLS
PUNCH
LEADER
PUNCH
ANULL
INPUT]
CHARACTER
FROM
KEYBOARD DECR D
ves
DONE
No
No
YES
REMOVE
ASCIl BIAS
CONTROL
CHAR?
SAVE BYTE
ON STACK
CHECK PUNCH
MULTIPLY BY 5 STATUS
ADD TO TABLE
ADORESS
¥ wo
POINT TO CHAR.
IN TABLE
ves
T senen
N
PUNCH 5 BYTES
INCH S BT PUNCH IT
AND ONE
SEPARATOR |

TLABEL

SEIL
SE21
SE23
SE26
SE28
SE29
SE2A
SE2C

SE2E
SE2F
SE30
SE31

SE32
SE3S
SE36
SE38
SE39
SE3C
SE3D
SE3E
SE4ql

SE42
SEAS

SE48
SE49
SE4B
SE4E
SE4F
SES52

SES3
SES4
SES6
SESE
SESB
SEEC
SESE

SESF
SE64
SE69
SE73
SE78
SE7D
SE87
SE91
SE9B
SEAS
SEAF
SEB4
SEB9
SEBE

DAQCSE

FEAQ

DA28 SE

DE20

6F RD2:
SF

2600

1600

JC
CPl
JC
SBI
Mav
MOV
MVl
MVl

71

READ 3 SKIP CANTR3L CHARACTER
40H

RD2 3 UPPER CASE

204 3JMAKE UPPER CASE
L,A 3 SAVE CHARACTER IN L
A 3 AND E

H, 0 3ZERd H

D, 0 3 AND D

3 FIND THE TABLE @FFSET BY MULTIPLYING THE
3 CHARACTER VALUL BY FIVE (5 PUNCHES PER
5 CHARACTER) AND ADDING IT T4 THE TABLE ADDRESS

29
29
19
EB
21SFSE

7E NEXTCs
AF

CDS3SE
C30CSE

DAD
DAD
DAD
XCHG
Lxi
DAD
MVl
Mav
CALL
INX
DCR
JNZ
XRA
CALL
Jup

5 FINISHED,
3 AND RETURN T&d CALLING PROGRAM

DANEs

H JDOUBLE THE CHAR. VALUE
H 3 THEN QUADRUPLE IT
D 3NdW TIMES FIVE
3SAVE IT IN D/E
Hs TABLE ;PBINT T3 TABLE

D 3 ADD S FFSET

Es S 35 PUNCHES PER CHAR.

Al 3 FETCH PUNCH C@DE

PauT SPUNCH IT

H JINCREMENT POINTER T NEXT
E 3 DECREMENT COUNT

NEXTC

A 3PUNCH A BLANK

PEUT 3 BETWEEN EACH CHARACTER
READ SNEXT CHARACTER

PUNCH TRAILER

i SUBRIUTINE T3 PUNCH A LEADER ON TAPE

AF LEADRs
1632
CDS3SE NLDR:

C24BSE
co

FS POUT:
DB12 PAUTW:
k602

CAS45E

D313
co

XRA
MVl
CALL
DCR
JNZ
RET

PUSH
N
ANI
Jz
P3P
guT
RET

A 3SET F3R NILL

D, 50 3NUMBER dF NULLS
PAUT JPUNCH A BLANK

D

NLDR

dUTPUT DATA T& PUNCH

PSW

PSTAT

PMASK JMASK UNWANTED BITS
PAUTY 3LOQP WITIL READY
PSW

PDATA 3 PUNCH EBYTE

$3333333333335353353353353355353335333333333353333333333333

'2 TABLE 9F PUNCH SYMBALS FJR THE CHARACTER SET

0000000000 TABLE?
0000CCFOO
0007000700
4689 FF8972
4€2010usC4a
6C92AC40A0
003C428100
8850F8 5088
0080703000
00C0C00000
7EA189857E
8482FF8080
C2A1918986
4289898976

DB
DB
bB
DB
DE
DB
DB
DB
DB
DB
DB
DB
DE
DB

0,0,0,0,0 3 BLANK
0,0,207-207.0 ; EXCLAIM

047,05 7+00 40,254, 4002544 40 3 "5 #
70,137,255 137,114 3 §

704 38, 16,200,196 3 %

108, 14€- 172, €4, 1605 0,4,3,3,0 3 & °*
0, €05 €62 12950, 0,129, €6+ €00 3 (
136-80, 248,80, 136 8,8,126,8,8 ;
0,128,112, 48,0, 8,8,8.,8,8 3 » -
0,192,192,0,0, €4,32-16:8,8 3 .+ /

>
*, +

126,161,137, 133,126 3 ©
132,130,255, 128,128 ;5 |
194, 161, 145,137,134 5 2

€6-137-137,137,118 3 3

72 Best of Interface Age/Volume 2

SEC3 OCOAB9FF88 bB 12,10, 137,255 13¢ 3 4

SECE 6789898971 DB 103,137,137, 137,113 3 S

SECD 7EB9898972 bB 126137, 137,137 114 3 €

SED2 0101F90503 DE 151,249, 53 27

SED7 7689898976 DB 118,137,137,137,118 3 8

SEDC 46898989 7E DB 70,137,137, 137,126 3 9

SEE1 00D8D80000 DB 0,2164216,0,0, 0,128, 118,54,0 3 1t 3
SEEB 1028448200 DB 16, 40, 685 1300, 40,40, 40, 40,40 3 < =
SEFS 8244281000 DB 130, €8,40, 16,05 6 1,185.9.6 3 > ?
SEFF 7E819D910E DB 126,129,157, 145-14 5 ¢

SFO04 FEO90909FE DB 254,92,9,9.254 3 A

SF09 81FF898976 DB 129,255 137,137,118 3 B

SFOE 7E81818142 bB 1260129, 129,129, 66 3 C

SF13 81FF81817E bB 129,255, 129,129,126 3 D

SF18 FF89898989 DB 255,137,137, 137,137 3 E

SFI1D FF09090901 DB 255,949,951 3F

SF22 TE81919172 DB 126,129, 14% 145, 114 3 &

SF27 FFO80808FF DB 255.8-8.8,255 3H

SF2C 0081FF8100 DB 0,129,255 129,0 31

SF31 6080817101 be 96, 128.129-,12721 3J

S5F36 FF081422C1 DB 255,8.200 34,192 3 K

SF3IB FF80808080 DB 255,128, 128,128,128 3 L

SFA0 FFO20CO2FF DB 2550 25 12420255 255 2, 60, 64, 255 3 MsN
SF4A FFB1B181FF DB 255 129,129, 129,255 255:9,9.9,6 3 4, P
SFSA TEB81A141BE DB 1261295 1615 65 190 3 P, Q

SFS9 FF19294986 DB 255 25,41,73,134 3 R

SFSE 4689898972 o8B 70,137, 137,137 114 3 S

SF63 0101FFO101t DB 110255 121, 127,128, 128,128,127 3 T, U
SFED OF30CO300F DB 15, 48,192, 48,15 3 Vv

S5F72 7F807T0807F DB 127,128,112, 128,127 3 ¥

SF77 C3241824C3 DB 195, 36-24: 36,195 3,4,248,4,3 3 XoY
SF81 ClA1918987 DB 193,161,145 137,135 3 2

SF86 O0FF81818)1 DB 0,255, 129,129,129, 4,8,16,32,64 30 \
SF90 818181FF00 DB 129, 1295 129,255 0, 12,2,1,2,12 3) ¢
SF9A Ds 8 3 STACK SPACE

SFA2 = STACK EQU 3

SFA2 END

Chapter 4

TAPEMON: An 8080
Binary Tape Monitor

By Alan R. Miller

TAPEMON Is an 8080 Assembly Language program that can be
used to dump, load, and verify checksummed tapes. The Intel HEX
checksum format is commonly used to save relatively short programs
on paper tape because the resulting tapes can be read directly when
fed into a teletype. For longer programs, especially those saved on
magnetic tape or disc, a binary format is more suitable. While the HEX
format requires two types on tape to represent each byte of memory
(only the characters 0-9 and A-F are used), the binary format needs
only one byte on tape for each memory byte. As a consequence binary
tapes load in half the time required for HEX format tape. For example,
a 12K BASIC interpreter on paper tape can be loaded with a teletype in
20 minutes if the object tape is in a binary format. The same program
would require 40 minutes to load if punched in the HEX format.

There appears to be no standard binary format currently in use.
Some methods use a separate checksum for the record address and
another for the data. Others, such as the program presented here, use
only one checksum for each record. Files produced with TAPEMON
consist of a leader, a file header record, one or more data records, an
end-of-file record, and a trailer. The format is:

FILEHEADER [55H | filename , comment CR]

SHORT RECORD |3CH| rec len addr L.H | data]checksum|
LONG RECORD | 77H [rec len L,H| addr L,H]| data] checksum}
END-OF-FILE | 74H [autostart addr L,H | checksum|]

The 55 HEX (1256 OCTAL) byte at the beginning of the file header
signals the beginning of the file. An optional file name of up to eight
characters may follow. This file name may contain any ASCII print-

74 Best of Interface Age/Volume 2

able character except a comma. The file name can be optionally
followed by a comma and a comment of up to eight ASCI! Printable
characters. A carriage return terminates the header record.

Data records consist of a record header byte, a 1- or 2-byte record
length, a 2-byte record address, the data byte and the checksum byte.
There are two types of data records: short and long. Short records
contain less than 256 data bytes; long records contain 256 or more
data bytes. Data records start either with a 3C HEX (74 OCTAL) byte
for short records, or with a 77 HEX (167 OCTAL) byte for the long
records. The recorder-header byte is followed by a 1- or 2-byte record
length, which gives the number of data bytes in the record. A single
byte is used for short records and two bytes (least significant byte
first) are used for long records.

The record address follows the record length. It consists of two
bytes (least significant byte first) and gives the location where the
first data byte of the record is to be stored. The data bytes appear next
in binary form, one byte of record for each data byte. A checksum
byte, obtained by adding without carry the record addresses (two
bytes) and the data bytes, terminates the record. The record length is
not included in the checksum. This is not necessary since if the
record-length byte is incorrectly read, the byte which is incorrectly
calculated to be the checksum byte will be the wrong one.

A 4-byte end-of-file record appears after the last data record. The
first byte of this record is a 74 HEX (164 OCTAL), the next two bytes
are the autostart address (least significant byte first), the address
where the program is to begin. The fourth byte is a checksum for the
two-byte autostart address.

The user initializes the HEXMON by starting at the beginning of the
program (the label START). This produces the statement:

HEX OR OCTAL INPUT?

Type an “O” and a carriage return if you want to enter addresses and
data in octal format. HEX-input mode is selected by typing an “H” and
a carriage return. HEX-input mode will also be selected by default if
just a carriage return is typed. The program then prints accordingly
OCTAL INPUT or HEX INPUT and then asks:

RECORD LENGTH?

Enter a 2-byte record length in the previously selected HEX or OCTAL
mode (6 OCTAL digits or 4 HEX digits) and a carriage return. Typing
just a carriage return will select the default record length of 255 bytes
(377 OCTAL, FF HEX). In this latter case, the computer responds with
the statement RECORD LENGTH 255.

The printing of the prompt “>:" indicates that the main portion of
the program starting at the label RESTRT has been reached. The valid
commands are “M”, “R”, “N”, “G", “D”, “L”, “E”, “V”, “O”, and “C". If
an error is made while entering the task or the addresses that follow,
type a Control-X and this portion of the program will be restarted. At
the completion of any of these tasks, control will return to this point
with a reprinting of the prompt“>:". The current mode (OCTAL or HEX

TAPEMON 75

input) and the record length can be determined by typing an “M”
(MODE). The input mode and record length can be reset by typing an
“R” (RESET).

Typing an “N” and one HEX or OCTAL byte will reset the number of
NULLS that precede and follow a dump. The default value is one
which is satisfactory for magnetic tape. The value should, however, be
reset to 48 HEX (110 OCTAL) for paper tape. This will produce a blank
6-inch leader and trailer.

Enter a “G”, a 2-byte address, and a carriage return to go
somewhere else, for example to your regular monitor. Typing a
Control-X during input will cancel the line and restart this program. A
“WHAT?” will be printed for improper input (e.g., HEX characters
when in OCTAL Mode).

A portion of memory can be dumped to tape by typing a “D” (for
DUMP), the start address, the stop address, and autostart address
(two bytes for each address), and a carriage return. An optional file
name of up to eight characters can be typed after the autostart ad-
dress and before the carriage return. Any printable ASCIl character ex-
cept a comma can be used. If a file name is entered, then an optional
comment of up to eight characters can also be used. The comment
can contain any printable ASCIl character, and is separated from the
file name by a comma. For example:

>:f800:F91F:F803:PROM4,VER 4.1<CR>

will dump from F800 to F91F with an autostart address of F803. The
header will carry the file name/comment PROM,VER4.1. (The colons
and > symbol are printed by the program).

If an error is made during entry of the file name or comment, type a
DEL (RUB OUT) and then the correct character. A back arrow is
echoed when the DEL key is pressed.

A tape can be loaded by typing an “L” and a carriage return. The
keyboard bell will ring and the front panel lights (if you have them) will
change when the file header (55 HEX) is found. This feature requires
six additional bytes and an additional tape-input routine, one is used
to look for the file header and the other is used for everything else. |
feel that the additional complexity is worth it'since | don’t have to wait
until a tape has been played through to find out that | have the left
channel plugged into the computer, but the program | want is on the
right channel.

When the tape has successfully loaded, the autostart address will
be printed in both HEX and OCTAL. The prompt “>:" will be printed in-
dicating that the program is ready for the next task. Another way to
load a tape is to type the file name after the “L"” command, e.g.

>:LPROM4<CR>

can be used to load the tape made in the above example. The DEL key
can be used to correct errors made while entering the file name. If the
file name in the command line does not match the file name on the
tape, the task is terminated. The program prints an error statement
followed by the actual file name and comment, e.g.

76 Best of Interface Age/Volume 2

WRONG FILE NAME, TRY: PROM4,VER 4.1

would be printed if the incorrect file name LPROM3 were given. If the
program loads correctly, the file name, comments and an autostart
address are printed. For example:

PROM4,VER 4.1 STARTS AT F803:370003

would appear in this sample.

A program can be loaded and executed by typing an “E”, optionally
a file name and a carriage return. When the program has been loaded,
the program counter will jump to the autostart address.

A tape can be loaded at other than its normal address by typing an
“0” (for offset), a 2-byte offset address (in the current OCTAL or HEX
mode), optionally the file name and a carriage return. An offset of 0400
HEX (004000 OCTAL) will load the program 1K bytes (1024 bytes)
higher than the normal address. The program can be loaded 4K bytes
lower than the normal address with an offset of either FO00 HEX
(360000 OCTAL) or — 1000 HEX (— 020000 OCTAL). If for example an
offset of FOOO is added to the program address of 3000, the double
register add gives an address of 2000. A negative offset value is first
subtracted from zero and then added to the program address. During
the offset load, the original address is added to the checksum so that
it is properly calculated. Of course the jumps and calls are not altered,
so that the program will not run at the new location if there are jumps
and calls addressed for original location.

MITS software such as BASIC and the Software Package ||
assembler is provided on paper or magnetic tape in a binary format
that is compatible with TAPEMON. This software, however, also con-
tains a reverse-loaded checksum loader ahead of the main program.
All MITS programs can be loaded with the command “C” (for
checksum) and a carriage return. The checksum loader at the begin-
ning of the tape is scanned for the disable interrupt command (DI).
This DI command is the last byte of the checksum loader and now
represents the file header. The record header byte of 3C HEX follow-
ing the checksum loader is then searched for. On the other hand, ab-
solute tapes made with the MITS Software Package || monitor itself
are fully compatible with TAPEMON and can be loaded with the “L”,
“E”, or “O” commands. MITS does not use a checksum on the end-of-
file record, but since the record header is a 78 HEX (170 OCTAL) rather
than a 74 HEX, TAPEMON can distinguish between the two types of
EOF records.

Tapes loaded with TAPEMON do not have to be verified since they
are checksummed. If the load operation was completed, the tape was
loaded correctly. Tapes dumped with TAPEMON of course should be
verified to be certain that they were properly recorded. A defective
spot on the tape for example may give an error. Tapes can be verified
by playing back the tape, typing “V”, optionally the file name, and a
carriage return.

For all of the above load and verify operations, the two record-
address bytes and the data bytes are summed and compared to the

TAPEMON 77

checksum value at the end of each record. If the two do not match, the
operation is terminated, and the message:

CHECKSUM ERROR AT F801:370008

is printed giving the value of the H,L register pair at the checksum.
This will not usually be the location of the error, but can be useful in
deciding whether the error is in the tape or in the interface circuitry. If
a second load or verify gives the same address, it is likely that the
tape is the problem, whereas if the address is different the next time,
the fault may lie with the hardware. During the load operations, each
memory location is immediately read back after a deposit to be cer-
tain that the value in memory is correct. Attempting to load into non-
existent, protected, or defective memory will terminate the load and
error message:

MEMORY ERROR AT F820:370040

will be printed.

TAPEMON can be used to punch binary paper tapes. The resulting
garbage on the printer during the dump will of course be meaningless
and the printer will make funny noises. When the tape is read back,
however, all is quiet, since the input is not echoed. The NULL com-
mand should be used to set 48 HEX (110 OCTAL) nulls to provide a
leader and trailer of six inches. If paper tape is the usual medium,
change the default option to provide 64 nulls during initialization.

TAPEMON requires 1523 bytes of memory, including twelve levels
(24 bytes) of stack. The program is written for the standard MITS con-
figuration of a 2810 serial port addressed to 10/11 HEX (20/21 OCTAL)
and a tape recorder interface addressed to 6/7. The following table
gives the locations and parameters that may need to be changed for
your system.

SOURCE

PROGRAM ADDRESS DATA

VARIABLE (HEX) (HEX)
Define stack STACK 580D,5894 S5DEA
Keyboard status TYSTAT 592D,595D 10
Keyboard data TYDATA 5934,5965 1
Mask for data avail. INMASK 592F 01
Mask for output OUTMSK 595F 02
Jump zero 5930,5960 CA
Tape status TAPES 5B1F,5C44,5C55 06
Tape data TAPED 5B26,5C4B,5C5D 07
Mask for data avail. ACINM 5B821,5C46 01
Mask for tape output ACOM 5C57 80
Jump not zero 5B22,5C47,5C58 C2
Default record len RLEN 587A OOFF

Default leader nulls SNUL 5808 01

78 Best of Interface Age/Volume 2

FLOWCHARTS

TAPEMON

SET DEFAULT TO
HEX INPUT AND
1 LEADER NULL

INITIALIZE STACK

INITIALIZATION

SENDM

INPUT JUMP
ADDRESS

GO TO INPUT
ADDRESS

INPUT TASK

PRINT CURRENT
INPUT MODE AND
RECORD LENGTH

SENDM

INPUT NUMBER
OF LEADER NULLS

SENDM

RESTRT

TAPEMON

C

INPUT BYTE FROM
KEYBOARD
STRIP PARITY

LOOK FOR A
CARRIAGE RET.
AT END OF
KEYBOARD
INPUT

PRINT A CR

E£RROR

PRINT LINE
FEED. NULLS

PRINT A BYTE
ON CONSOLE

RETURN

79

INPUT START, STOP
AND AUTOSTART
ADDRESSES

INPUT OPTIONAL
FILE NAME AND
COMMENTS

OUTPUT LEADER,
FILE HEADER.
OPTIONAL FILE NAME
& COMMENTS

LONG
RECORODS
?

OUTPUT RECORD
HEADER, 3CH AND
RECORD LENGTH

OUTPUT ADDRESS,
DATA & CHECKSUM

QUTPUT RECORD
HEADER, 77H AND
RECORD LENGTH

QUTPUT ADDRESS
DATA & CHECKSUM

80 Best of Interface Age/Volume 2

OUTPUT 2 BYTES FOR
RECORD ADDRESS
(LEAST SIGN. BYTE

FIRST)
ADD TO CHECKSU

OUTPUT DATA BYTE
ADD TO CHECKSUM

END
. OF RECORD
2

OQUTPUT END-OF-
FILE BYTE, 74H

OUTPUT CHECKSUM Tout

U

OUTPUT AUTOSTART
ADDRESS (LH)

L OUTPUT TRAILER]

RESTRT

RETURN

CLOADR

i

/ INPUT A BYTE Z" TIN

YES

RING BELL

TLO

TAPEMON

OFFST

L

INPUT A BYTE L" READ ’

NO

INPUT REST
OF ADDRESS

TLOAD

|

INPUT NEGATIVE
OFFSET ADDRESS

SAVE TASK

INPUT OPTIONAL
FILE NAME AND
COMMENTS

o

INPUT A BYTE
FROM TAPE

YES

RING BELL

O

81

SEE IF FILE NAME
REQUESTED FROM
KEYBOARD

INPUT FILE
NAME
TIN

[s]e]
FILE NAME
MATCH
?

NO

FNERR

INPUT A BYTE

LONG-
RECORD
HEADER
?

SHORT—
RECORD
HEADER
2

82 Best of Interface Age/Volume 2

INPUT RECORD
LENGTH

INPUT REST
OF RECORD

TLO

INPUT 2-BYTE
REC. LENGTH

INPUT AUTOSTART
ADDRESS

TLS2

INPUT CHECKSUM

GO TO
AUTOSTART
ADDRESS

PRINT FILE NAME
AND COMMENTS

PRINT AUTOSTART
ADDRESS

RESTRT

TAPEMON

83

INHL

{:

INPUT RECORD
ADDRESS

ADD OFFSET

INPUT DATA
BYTE

CHECK TASK

STORE DATA IN
MEMORY

COMPARE BYTE
TO MEMORY

MERROR

CSERR

RETURN

CHECK HEX
OCTAL INPUT
FLAG

z
(=]

INPUT 2 HEX
BYTES TO ML

RETURN

I

INPUT 2 OCTAL
BYTES TO HL

RETURN

SENDM

1)

GET BYTE D/E
POINTS TO

INCR. D/E

RETURN

PRINT BYTE

84

TIN

y

4

CHECK TAPE
STATUS

INPUT DATA
BYTE

!

ADD TO CHECK
SUM IN 8

RETURN

TOUT

06

ADD BYTE TO
CHECKSUM IN B

CHECK TAPE
STATUS

OUTPUT DATA
TO TAPE

RETURN

i

Best of Interface Age/Volume 2

MERROR

U

PRINT “MEMORY
ERROR AT"
AND ADDRESS

RESTRT

FNERR

))

PRINT "WRONG
FILE NAME, TRY:"

!

PRINT FILE
NAME ON TAPE

RESTRT

J

ERROR

PRINT "WHAT?

CHECK IF INITIALIZATION
IS COMPLETE

START

O

RESTRT

TAPEMON

CSERR

PRINT “CHECKSUM
ERROR AT AND
ADDRESS

RESTRT

PROGRAM LISTING

Mo %o %o Na We %o We %s We %o We e we W We We %o W %o Mo We we ®r We Mo s We Ge %o Se We We Sa e W

W we e Np W e Me %e % be e b e

.~

TAPEM3N: PRIGRAM T LJIAD, DUMP AND VERIFY BINARY
CHECKSUMMED TAPES WITH AUTISTART AND
VITH A CHOICE 3F HEX 8P GCTAL INPUT

PRIGRAMMED FOR AN 8080 MICRIPROCESSAR
BY ALAN Re MILLER

NEW MEXICS TECH, SOCHRRI, NM 87801
£05-835-5619

INTERFACE AGE» FEEBRUARY 1978, PAGE 144

TITLE ‘BINARY TAPE MINITIR'

KEYBOARD ADDRESS 1S 10/11HEX €20/21 3CTAL)

TAPE ADDRESS IS 6/ 7. TAPE AND KEYBSARD CAN HAVE
THE SAME ADDRESS S4 THAT A TELETYPE TAPE CAN EL
PUNCHED.

WHEN STARTED AT 'START', PRIGRAM PRINTS:
‘HEX JR OCTAL INPUT?'®

TYPE AN 'H' IR HEX MIDE @R AN ‘d°' FIR OCTAL MILE
AND A CARRIAGE RETURN. (A CARRIAGE RETURN WITH@UT
AN 'H' 3R 'd° DEFAULTS TJ HEX MBDE.) THE PRAGRAM
THEN PRINTS:

*RECY4RD LENGTH? '

TYPE A TW-BYTE HEX @R JCTAL RECIRD LENGTH AND A
CARRIAGE RETURW. (A CARRIAGEL RETURN WITH NJd JTHER
INPUT DEFAULTS T4 A RECJRD LENGTH @F 255.) A PROMPT
dF '>31' 1S THEN PRINTED. THE VALID COMMANDS ARE:

M, YRYS PGS "D 'L, "ETS UL "%, N AND 'C'e

TYPE AN 'M' TJ DLTERMINE THE RECORD LEWGTH AND
WHETHER THE I4PUT MODE IS @CTAL 4R HEX.

TYPE AN 'R’ T3 REINITIALIZE THE SYSTEM SO THAT THE
INPUT MODE AND RECIRD LENGTH CAN BE CHANGED.

T4 DUMP A PIRTIIN 3F MEMORY Td TAPE TYPE °D', THE
START ADDRESS (MUST SIGVIFICANT BYTE FIRST), THE
STJP ADDRESS, THE EXECUTISN (AUTdSTART) ADDRESS AND
BPTISNALLY A FILE NAME AND CIMMENTS, THEN A CARRIAGE
RETURN. THE FILE NAME MAY HAVE | TJd 8 CHARACTERS,
FBLLAVED JPTIINALLY EBY A COMMA AND A CIMMENT (EeGes
VERSI@EN) CANTAIJIING UP T 8 CHAPACTERS. ERR4RS
MADE DURING INTRY 4P FILE JAME 0P CIMMENT CAN BE
C4RRECTED BY PRESSING THEL DEL (RUB 4UT) AEY.

THE TAPL FORMAT 1S:

85

o}
»

Mo %o Mo Mo e ke Mo Mo We ®a Ne We W Ma e Mo M We wo be e Mo Ms %o ba s e

Me % N e %e b Be be e W S Ve

e b b e e ma %o We We %o We %o

Ne Ne % % e we b b

N e b be e W e

Best of Interface Age/Volume 2

SYNC BYTE (FILE HEADER) (t€ HEX, 125 JCTAL)

REC4PD~HEADER BYTE
(3C HEX, 74 4CTAL 1SR PELCIRDS < 256 BYTES)
<77 HEX» 167 dCTAL FIR RECIRDS »255 BYTES)
RECORD-LENGTH (NUMBER @F DATA BYTES)
UNE BYTE F4R RECHRLS < 25€ LING
TWd BYTES FIR PECJRDS > 255 LANG
(LEAST-SIGNIFICANT BYTE FIRST)
2-BYTE BECIRD ADDRESS (L@W/HIGH)
DATA BYTES
CHECASU4 BYTE (SUM QF RECARD ADDRESS AND DATA)

END-3F~FILE BYTE (74 HEX» 164 3CTAL)
2-BYTE AUTISTART ADDRESS (L3W/HIGH)
CHECKSUM BYTE 3N THE AUT3START ADDRESS

T3 LJAD A TAPEs TYPE °u*'s JPTIONALLY THE FILE NAME
AJD A CARRIAGE RETURN. I} A FILE NAME IS ENTERED
THAT DSES NAT MATCH THE @NE 4N THE TAPE, AN ERRZR
MESSAGE 1S PRINTED ALYUNG WITH THE CORRECT FILE NAME
4N THE TAPE.

Té LOAD A TAPE AT 4THER THAN ITS NJRMAL ADDRESS, TYPE
'3's A TWI-BYTL SFFSET ADDRLSS T3 BE ADDED Td H.L.,
JPTIBNALLY THE FILE NAMEs AND A4 CARRIAGE RETURN.

AS THE TAPE L3ADS AT THAE NEW ADDRESS, THE CHECKSUM
WlLl BE PRIPERLY CALCULATED. AN OFFSET dF 0400 (HEX)
WILL LJAL THE PRIGRAM 1K HIGHEP, AN OFFSET 4F FOOO
OR -1000 WILL LJAD THE PRJIGRAM 4K LI VER.

T3 LIAD ANY MITS CHECKSUMMED TAPE (WHICH HAS A
CHECKSUM L@ADER AT THE BEGINNING)s TYPE A °'C' (F3R
CHECKSUM) AND CR. THE PRIGRAM SEARCHES FJR THE
DISABLE-INTERFUPT (DI) INSTRUCTIGN AT THE END dF THE
CHECKSUM LOADERs THEREBY SLIPPING BVER IT.

Td VERLIY A TAPL AGAINST MEM@RY, TYPE 'V', AN
@PTIGNAL FILE NAME AND A4 CARRIAGE RETURN.

FOR THE AB3VE THREL CASLS, THE AUTdSTART ADDRESS IS
PRINTED AND THIS PRIGRAM IS RESTARTED. IF A FILE NAME
IS ENTERED THE FILE NAME AND ANY CUMMENTS ARE PRINTED.

Td LJ4AD AND EXECUTE A TAPE, TYPE E JPTIBNALLY A
FILE NAME, AND A CARRIAGE RETURN. THE PR3 GRAM
COUNTER WILL JUMP T3 THE EXECUTE ADDRESS AFTER
THE TAPE HAS BEEN L3ADED.

TYPE A °N' T3 CHANGE THE LEADER AND TRAILER LENGTH.
ANSWER THE QUESTI3N °‘LEADER LENGTH®' WITH THE NUMBER
OF DESIRED NULLS C(IN HEX 4R 3CTAL DEPENDING 3N THE
MODE). ¢NE IS G2D FIR MAGNETIC TAPE. 48H WILL
GIVE A €~14 LEADER dN PAPLR TAPE. THE DEFAULT 1S 1.

ENTER A 'G's AN ADDRESS. AND A CARRIAGE RETURN
T? Gd SOMEWHERE ELSE, E.G. T3 RETURN T8¢ YJUR
REGULAR M@NIT3R.

A CINTRBL-X 4N I4PUT WILL RESTART THIS PROGRAM.

IF A CHECKSUM ERRIR 3CCURS DURING L3AD @R VERIFY,

AN ERRIR MESSAGE AND THE ADDRESS WILL BE PRINTED.

A MEMBRY ERRAR (LZADING INT3 PROTECTED, DEFECTIVE
4R NIN-EXISTEINT MEMIRY) VILL PRINT AN ERRIR MESSAGE
AND THE ADDRESS. A 'WHAT? ' WILL THEN BE PRINTED AND
THIS PRIGRAM WILL BE RESTARTED aN IMPROPER INPUT.

3333333533333 353533353335333333533353333533333°33333333333

5800 4RG S800H
3
0000 = FALSE EQU 0
FFFF = TRUE QU =1
3
FFFF = JMPZ EQu TRUE 3JUMP ON ZERS

H
3 EQUATES

TAPEMON 87

O0FF = RLEN EQU 25% 3 DEFAULT RECERD LENGTH
003C = SNUL EQU 60 3 DEFAULT # JF LEADER NULLS
00t5 = SBYTE EQuU SSH ; SYNC BYTE (}ILE HEADER)
003C = RHEAD EQU 3CH 3 RECORD-HEADER FOP SHORT RECIRDS
0077 = LHEAD EQU 77H 7 RECIRU-HEADER FBR LINC REC3IRDS
0074 = EJIC QU T4H 3 EID-2F-FILE HEADER
0078 = EBF EQu 78H 34lTS EJF HEADER
0012 = TAPES QU 12H 3 TAPE STATUS ADDRESS
0013 = TAPED EQu TAPES+1 ; TAPE DATA ADDRESS
0001 = ACINM EQU i 3 TAPE INPUT-READY MASK
0002 = ACaM Lou 2 3 TAPE JUTPUT~READY MASK
Quil = TYSTAT EQU 108 JAEYBBARD STATUS ADDRESS
00i1 = TYDATA EQU TYSTAT+! ;A{LYESARD DATA ADDFRESS
0001 = INMASK SKEYBAARD INPUT-REALY MASK
0002 = JUTMSK ;KEYBJARD JUTPUT-READY MASK
oole = BUFL 3 INPUT=EUFFER LENGTH
oooL = (%4 3 CARRIAGE RETUFRH
0004 = LF JLINE FERD
007F = DEL 3 DELLTE CHARACTER
0008 = BACKUP 3 EACKUP CHARACTER

33333333 33333333333333333333333333333

H
S800 AF START: XPA A 3 GET A ZERY
5801 320ALD STA HEXEL $RESET FLACG FIP HEX INPUT
€804 320QESD STA SFLAG 3 SET F8R INITIALIZATION
$807 3EJC x99 Ar SNUL 3 CEFAULT NUMEEP 3F NULLS
S809 32145D STA NNUL 3 SET LEADER NULLS T4 DEFAULT
580C 31EASD Lx1 SP, STACK
580F CD4AS9 CALL CRLF
5812 111550 Lx1 DsMESC PIINT Td FIRST MESSAGE
£815 CLOOSD CALL SENDM JSEND IT
5818 CD2CsS9 CALL READ 3 INPUT HEX/JCTAL M@DE
S81B FEQD CPl CR 3 CARRIAGE RETURN F4R HiX
581D C22658 JNZ INITO
5820 CC4Fs9 CALL LINE 3QUTPUT LINE FEED F4R CR
5823 C32ES8 JMP INIT)
582€ FEa48 INITO: CPI1 ‘H' FHEX INPUT?
€828 C234%58 JnNZ INET3 JJUMP IF NIT
582B CD4AS9 CALL CRLF JOUTPUT CR AND LF
S82E CDOOSD INIT1s CALL SENDM 3 PRINT °*HEX'
5831 C345%8 JitP INITS
5834 FE4E INIT3: CPI1 ‘8 3d FIR #CTAL INPUT
S83¢€¢ C200¢58 JNZ START 3 ERRIR, TRY AGAIN
5839 320ASD 5TA HEXFL 3STAPE '3’ IN HEX FLAG
583C Cb4As9 CALL CRLF $dUTPUT CR AND LF
€83F 112FSD LxI DsMES2 3 PRINT '@CTAL'
5842 CLOOSL CALL SENDM $SEND IT
5845 11365D INITS: LXI D,MES3 P3INT T3 'INPUT's ETC
£848 CDOOSC CALL SENDit 3 PRINT MESSAGE
584 CDOOSD CALL SENDM 3PRINT *?°
S84E 3A0ASD LDA HEXFL 3 FRTCH HEX/JCTAL FLAG
58<1 B7 dRA A 318 1T ZERS?
$8€2 CATFS8 Jz INITH JJUMP IF HEX MJDE
5855 CD6458 CaLL RDCR 3JSEE IF FIRST BYTE IS CR
5858 CDF58C CALL gcri2 3 SECINL OCTAL EBYTE
$85b CDDBSC CALL RICT2
58 5E CDBSSC CALL RHL@ 2
$861 C38EBSS JMP INITE
5864 CD2CS9 RDCR: CALL READ 3 FIRST BYTE @F RECIRD LENGTH
S8 67 FEOD Cp1 CR 315 IT A CARRIAGE RETURN?
5869 CO RNZ FJRETURN IF NOT
586A CD4FS9 CALL LINE ;OUTPUT LINE FERD
586D il141SD Lxl D.,MES4 3 P3INT T80 'RECIRD LENGTH' :
5870 CDOOSD CALL SENDM JPRINT IT
5873 11525D LXx1 DsMESR 3PEINT T@ ‘2°
5876 CDOQOSD CALL SENDM 3PRINT IT
879 21FF0OO LXi Hs RLEN 3 SET STANDARD RECARD LENGTH
S87C CJ38BS8 JMP INlTE)
S87F CDe4ss INITHs CALL RDCR JSEE IF FIRST BYTE IS A CR
5882 CDB9SC CALL HEX22 3 SECAND HEX BYTE
5885 CD7BSC CALL RDHX2
5888 CDABSC CALL FHL. 2
$88B 220FSD INIT€: SHLD RECLN 3 STARE STANDARD RECORD LENGTH
$88E JEFF MVi hs 285

5890 320B5D STA SFLAG 3 SET INITIALIZATIZN FLAG

88

5893
589¢
£899
589C
589D
S8A0
58A3
58AS
58A8
S8AB
S8AE
S8BO
S8B3
£8BS
t8B8
58BA
S8BD
€8BF
s8C2
€8Ca
£8C7
S8C9
£8CC
S8CE
58D1
58D3
58D6
$8D8
S8DB
58 DD

S8EO
58E3
S8E6

S8E7
S8EA
S8EB
S8 EE
S8F1
S8k4
S58F7
S8FA
S8FD
5900
5903
5906
5909

590C
590F
5912
5915
5916
5919
591C
S91F
€922
5923
5926
5929

592C
S92E
5930

31EASD
210000
220DsD
A}
3213sb
CDaAs9
JEJE
CDSBS9
CDADSC
Cb2cs9
FE4D
CAE758
FE44
CA9DS9
FE4C
CAFFSA
FE4S
CAFFSA
FESE
CAFrSA
FE4F
CABB5A
FE43
Caz225C
FES2
CAQ058
FEQE
CAQCS9
FE47
C28D&9

CD9ESC
CD3FS9
E9

3AQASD
B7

CAF758
112FSD
CDOOSD
CJIFD5S8
112ASD
CDOOsD
11365D
CDoOSD
CD6759
2A0QFSD
Ca72s59

11705D
CDOOS5D
3A0ASD
B7

CA1FS9
CDD8 SC
£32259
CD785C
78

32145D
CD4ASY
C39358

DB1O
E601
CA2C59

RESTRT: LX1
LX1
SHLD
XRA
STA
CALL
MVl
CALL
CALL
CALL
(%34
Jz
crl
Jz
CP1
JzZ
Crl
Jz
CPI
Jz
CP1
Jz
CPI
Jz
crl
Jz
cpl
Jz
cpPl
JNZ

Best of Interface Age/Volume 2

SP, STACK

H, 0 JZERY HoL

SFSET JZERY THE LOAD-OFFSET VECTER
A s GET A ZERO

LFLAG 3 RESET LOAD-ERRIR FLAG
CRLE

LVRE PPRINT ‘'>31' F4R

SUTT 3 A PREMPT

CoLan 3 THEN A CaLaN

READ 3 INPUT THE TASK

‘M s PRINT MUDE AND RECORD LENGTH
M3DE

‘Dt }DWMP T4 TAPE

TDUMP

L 3L3AD

TLUAD

'E’ ;LJAD AND EXECUTE

TLBAD

A 3 VERL MY

TLJAD

‘3 3LBAD TAPE AT AN JFFSET
JFIST

'c 3 SKIP OVER MITS CHECKSUM LJADER
CLIADR

‘R’ 3 RESET HEX/OCTAL MODE

START 3 AND RECIRD LENGTH

'N* 3 SET NUMBER 8F LEADER NULLS
SETN

‘G 3 GJ SIMLEWHERE

ERPAF

3333333333333333333335353333333335355353535353333333333

H

; RIUTINE T2 JUMP T@ ANGTHER PRZGRAM

CALL
Go2: CALL
JPCHL: PCHL
H

3 SUBRSUTINE Td

INHL 3 GET H.L ADDRESS
(=] 3LB3L FBR CARRIAGE RETURN
38K, GJSDEYE

PRINT CURRINT M3LE (HEX 2R 3CTAL)

3 AND RECORD LENGTH

H

M@DE: LDA
ORA
Jz
X1
CALL
JMP

MBDEl:s LXI
CALL

M3DE2: LXI1
CALL
CALL
LHLD
JMP

SUBRAUTINE T

TR

ETN: LXi
CALL
LDA
URA
JzZ
CALL
JMP
SETN2: CALL
SETN3: M3V
STA
CALL
JMp

H
3 SUBROGUTINE T9
3
READ: IN

ANT

JzZ

HEXFL 3 FETCH HEX/3CTAL M3DE FLAG
A 315 1T ZER3?

MUDLL JHEX INPUT IF ZLRJ

LoMES2 SPIINT T 'OCTAL °

SENDM 3PRINT MLESSAGE

M DE2

D-MES! 3PRINT Td ‘'HEX'

SENDM 3 SEND MESSAGE

D, MES3 POINT TO ‘'INPUT®

SENDd 3 PRINT MLSSAGE

ELANK 3PRINT A BLANK

RECLN 3 FETCH STANDARD RECORD LEN
TERRJ JPRINT HoL IN HEX AND ACTAL

SET WUMBER UF NULLS ON TAPE

LEADER AND TRAILER

DoMESN S PUINT Td MESSACGE
SENDM JPRINT IT

HEXFL 7 FETCH HEX/OCTAL FLAG
A 515 IT ZLRI

SETNZ2 3JUMP 1F ZERD

RDBCT 3OCTAL INPUT

SETN3

RDHEX JHEX INPUT

Asb JPUT IN A

NNUL 3 ST4RE IN MEMIRY
CRLF

RESTRT

INPUT A BYTL FREM KEYBJAFD

TYSTAT 3 CHECK STATUS
INMASK 3MASK UNWANTED BITS
READ 3LO3P UNTIL READY

TAPEMON 89

$933 DB11} IN TYDATA 3 RLAD CHARACTER
5935 E€TF AN1 TFH 3 STRIP PARITY
£937 FE18 Crl 24 3 RESTART 4N
5939 CA93%8 Jz RESTRT 3 4N CanNTRIL-X
£93C C3ISBS9 Jop YUTT 3 ECH4 INPUT

SUBRBUTINE Td LISK FIR A CARRIAGE RETURN
AT THE END 3F KEYB3ARD-INPUT LINE

. e ve we

593F CD2CS$ s CALL READ 3 INPUT CHARACTER
5942 FEOD CPL CRr 3A CARRIAGE RETURN?
5944 C28DS9 JNZ ERRAR 3Nd, RESTART

£947 C34FsS9 JMP LINE JLINE FEED AND NULLS

3

3 CARRIAGE RETURN., LINE FEED AND NULLS
3

S$94A 3EOD CRLF: MV AsCR 3 CARRIAGE RETURN
£94C CDSBES9 CALL auUTT

S94F 3E0A LINE: MV AsLF JLINE FEED

951 CDSBS9 CALL suTT

€954 AF XRA A 3CET A ZERD

5955 CDSBS9 CALL JUTT 3QUTPUT THREE NULLS
€988 CDSBE9 CALL SUTT 3T3 PRINTER

H
3 SUBRIUTINE T3 JSUTPUT A CHARACTEP FROM KEYBJARD
3

S9SB S SUTT: PUSH PSv¥
595C DBI1O VAITd: IN TYSTAT 3 CHECK STATUS
S9SE E602 ANI GUTMSK 38UTPUT RLADY?
5960 CASCS9 Jz WAITE iNé, LJSP UNTIL READY
5963 F1 PP PSW¥W JYLS
5964 D311 4uT TYDATA 3BUTPUT A4 BYTE T@ KEYBJIARD
5966 C9 RET
;
5967 JE20 BLANK:T MVI VR JLUAD A BLANK
5969 C3SBS9 JMP JUTT 3PRINT IT

3
3 ERROR MESSAGES

H

596C 115FSD MEPROR: LXI DsMESM 3MEMJIRY ERRSP

€96F CDOOSD TERR2: CALL SENDM 3 SEND MESSAGE

5972 CDSFSC TERR3: CALL JUTHL 3PRINT H/L IN HEX

$975 CDADSC CALL CoLanN

£978 CDBCSC CALL JUTHLA S PRINT H/L IN @CTAL

5978 C393%8 JMP RESTRT

S97E 11A08D INEPR: LXI DsMESF ;Pd.nT T3 INPUT FILL NAME
5681 CDOOSD CALL SENDM 3PRINT IT

5984 11COSL LX1 D, IEUF P3INT T3 PFILL NAME SN TAPE
5987 CLOOSD CALL SENDM 3PRINT 1T

598A C39358 JrpP RESTRT

598D 115750 ERFOP: LXI DsMESW S PIINT Td °'WHAT? '

5$990 CDOOSD CALL SENDM 3PPINT IT

5993 3A0BSD LDA SFLAG SFETCH INITIALIZATION FLAC
5996 B7 BRA A 31S 1T ZERO?

997 CA00S8 JzZ START 3 START BVER 1F S8

599A C39358 JMp RESTRT ;@THEPWISE FESTAPT

333333333353335333333333333333333233333333333335333333
H

3 ENTRY FéP DUMP Td TAPE
H

§99D CD9ESC TDWMP: CALL INHL 3 INPUT START ADDRESS (HEX)
S9A0 EB XCHG

59A1 CL9ESC CALL INHL 3 INPUT STIP ADDRESS

59A4 EB XCHG 3 START T H/L, ST8P T8 D/E
S9AS 13 INX D 3INCREMENT ST3P ADDRESS
S9A€ ES PUSH H 3PUSH H/L BNT3 STACK

5947 CD9ESC CALL INHL 3 INPUT AUT@START ADDRLSS
S9AA E3 XTHL 3 EXCHANEE STACK FSR H/L
59AB ES PUSH H

594C OE09 Myl C.9 3 FILE-NAME CBUNT PLUS @NE
S9AE 21C0SD LXI Hs IBUF 3 PIINT T3 INPUT BUFFER
5951 CD9DSA TDMP3: CALL RFILE 3 INPUT FILE-NAME CHAR.
5954 77 Mav Mo A 3 PUT CHARACTER IN BUFFER
59BS 23 INX H 3 INCREMENT BUFFER PJINTER
$9B6 FEOD CPl CR ;L3dK FAR CARRIACG RETURN

S59BE8 CAD759 Jz TIMPS 3 AT END 3F FILE NAME

90 Best of Interface Age/Volume 2

59BB FE2C crl ‘.t 3COMMA AT END @F FILE NAME
S9BD CACT7S9 Jz TDMPE 3 COMMENTS COME NEXT
59C0 0D DCR c 3 DECREMENT FILE-NAME COUNT
$9C1 CABD59 Jz ERRBP 3QUIT IF Tdd MANY CHAPACTERS
59C4 C3B159 JMP TIMP3 3NEXT CHARACTER
S9C7 QEOA TDMP6: MVl C, 10 38 COMMENT CHARACTERS
59C9 0D TDMP7: DCR c 3 DECREMENT CAUNT
59CA CABDS9 JZ ERRAR
59CL CD9DSA TDMP8: -CALL REILE 3 INPUT COMMENT
s9D0 77 Ma v M, A 3 STARE IN MEMIRY
$9D1 23 INX H 3INCREMENT PAINTER
59D2 FLOD Crl CR 3L334 FIR CARRIAGE RETURN
59D4 C2C959 JNZ TiP7 i AT END 4F COMMENT
£9D7 CDaFs9 TDMPSs CALL LINE 3PRINT A LINE FEED
S9DA CD3I6SC CALL LEADR 3dUTPUT A4 LEADER @F NULLS
59DD 3ESS MVI As SBYTE 5 SYNC BYTE
59DF CDS15C CALL TSUT JAUTPUT FILE HEADER
S9E2 21C05D Lx1 Hs IBUF ;POINT T8 INPUT BUFFER
S9ES 7E TDMP4s MOV Al 3 FETCH FILE NAME
$9E6 CDS15C CALL TIUT 33UTPUT FILE NAME
S9E9 23 INX H
S9EA FEOD CPI CR 3 CARRIAGE RETUPN MARKS
S9EC C2ES5S59 JnZ TDP4 3 END PF FILE NAME/COMMENTS
S9LEF El PoP H
59F0 3A105D LDA RECL2 3 FETCH HIGH HALF 3F PEC. LEN.
59F3 B7 @rA A 3 EQUAL T3 ZEFd?
$9F4 C2685A JNZ bauvs iNJ, RECORD LENGTH > 2S¢
;
3 RBUTINE T3 DUMP RECJIRDS LESS THAN 256 BYTES LJNG
H
59F7 3E3C TDO: avl As RHEAD ; RECBRD-HEATER EYTE
S9F9 €D515C CaLL TUT 3JUTPUT RECARD HEADER
S9FC Al XRA A 3ZLERO ACCUMULATZR
S9FD 32115D STh RECA 3ZERS HICH BYTE 4F REC LENGTH
SA00 CD90SA CALL CIND JHOV FAR T3 END?
SA03 3A0FSD LDA RECLN 5SET F6P FULL RECZRU
5A06 C20L5A JNZ NEW2 3USE FULL RECURD LENCGTH (D>H)
SA09 B9 cMp c 3CIMPARE Td E - L
5A0A DAQESA JC NLw2 5 USE FULL RECIRD LENCTH
SA0D 79 a4 v A C 3 SHART RECJRL
SAQE 4% NLW2: Mav Cra 3 PUT PECIRD LENCTH IN C
SAQF CbsisC CALL T3UT 3dUTPUT RECIRD LINGTH
SAhl2 CD18SA CALL TD3 SYUTPUT HsoL» DATA, CHECKSUM
5413 C3k759 JAP TDO 3 START WEXT RECORD
;
; BUTPUT RECJRD ADDRESS, DATA, AND CHECKSIM
3 TEST FAR END 4F FILE AND RETURN IF NJT EJF
£A18 7D TD3: Mav AsL JOUTPUT LIV BYTE
€A19 CDS1EC CALL TIUT 3 3F RECUPL ADDRESS
SA1C 4% mav BsL 5 START CHECKSUM WITH L
SA1D 7C Ma v AsH J4UTPUT HICH BYTE
SALE CDSs1sC CALL TIUT 3 JF RECIPD ADDRESS
5A21 7t TDI: MoV As ; FETCH DATA BYTE
sA22 CDstsC CALL TUT JOUTPUT IT
5425 23 INx H FJINCREMENT PSLWTLP
SA26 79 Mav # C 5 GET RECORD CIUNT (LdW)
SA27 D€O1 sul 1 3 DECREMENT IT
SA29 4} MavV C.a 3SAVE IT BACL 1IN C
SA2A CA3LESA Jz TLS ;JJUAP IF C IS ZERD
542D D2215A JNC TD) JCONTINUE IF NJT 255
SA30 3A118D LDAa RECA 5 FETCH RECIRD COUNT CHIGH)
SA33 De€O1 sul 1 3 DECREMENT IT
5435 32115D STA RECA 3SAVE IT
5A38 DA4S55A JC TD2 JEND 2F RECYORL It 255
SA3B C3215A JMP TD1 FJNEXT BYTE
SA3E 3A115D TDS: LbA RECA 3 FETCH RECIRD COUNT (HICH)
SA41 Bl JRA c 5SEE IF B3TH HIGH AND L3V = 0
5A42 C2215A Jnz TO1 JCINTINUE 1F N@T
3
3 END ¥F RECARD
3 PROCESS CHECKSUM aNL SEE IF END JF FILE
H
5A4S 78 TD23 MoV Asb 3 FETCH CHECKSUM

SA46 CDS15C CAL . TOUT JAUTPUT IT

TAPEMON 91

SA49 CD90SA CALL CEND JHOW MUCH 1S LEFT?
SA4C EI ORA C 3 ZEPRS?
SA4D CO RNZ 3 START NEXT RECORD
H
i END 4 PILE, JUTPUT L4F BYTE AND AUT@START ADDRESS
H
SA4E FI TDas PaP PSW 3RAISE STACK
SA4F 3E74 MVl A EZFC 3 END-dF-FILE MARK
SA51 CDS1sC CALL TUT 3QUTPUT IT
SAS4 El Pop H 3 FETCH AUTBSTART ADDRESS
SAS5S 7D Mav AL
SAS6 CD515C CALL ToUT 38UTPUT L3V HALF
SAS9 45 MaV B,L 3 START CHECKSUM WITH L
SASA 7C M3V AsH
SASB CDS15C CALL TUT 3@UTPUT HICH HALF
SASE 78 M3V AsB 3 FETCH CHECKSUM
SASF CDS1S5C CALL TAUT FJUTPUT IT
SA62 CD3ESC CALL LEADR 59UTPUT A TRAILER 3F NULLS
5A65 C39358 JMp RESTRT WEXT TASK
H
3 ROUTINE T4 DUMP RECIRDS LINGER THAN 25% BYTES
3
SA68 3ET7 DO UB: Mvl As LHEAD ;L4NG RECIRD-HEADER BYTE
SA6A CDSISC CALL TEUT 3J3UTPUT RECIRD HEADER
5A6D CD905A CALL CEND JHOW FAR T3 END?
SA70 ES PUSH H 3 SAVE HoL dN STACK
SAT71 2A0F5D LHLD RECLN 5 FETCH FULL RECJRD LENGTH
SA74 7D Mav sl 3 SUBTRACT REMAINING
5A75 91 SUB c 3 FRIM END OF
SA76 7C Mav AsH 3 FILE
SAT7 98 SEB B 3CARRY SET IF FULL REC LENGTH
S5A78 D27DSA JNC DO UBF 3 LONGER THAN REMAINING BYTES
SA7TB 4D M3V C,L 3C3PY FULL RECSRD LENGTH
SATC 44 MoV BsH 3 FR3M H.L T0 B.C
SATD €0 D8UBF: MOV H, B
SATE 79 Mav A C
SATF CDS1SC CaLL TIUT ;BUTPUT REC LEN (L3V BYTE)
5A82 7C M3V A H 3 FETCH HICH BYTE
SA83 32115b STA RECA 3 STORE HIGH HALF 3F REC LEN
5486 CDS515C CALL T3UT 38UTPUT REC LEN (HIGH BYTE)
56489 EI PoP H JRESTARE POINTER
ZABA CDI18SA CALL TD3 3@UTPUT H.L, DATA,» CHECKSWM
SABD C3685A JMP bDauB 3 START NEXT RECJRD
3
3 SUBROUTINE T3 FIND THE DIFFERENCE BETWEEN
3 DsE AND H,L AND PUT THE DIFFERENCE IN B, C
3 1F START ADDRESS » STOP ADDRESS PRINT 'WHAT?'
3
5A90 7B CEND1. M3V A E 3 COMPARE LAV STOP
5A%1 95 SUB L 3 T@ LOV POINTER
SA92 4F MOV CsA 3 SAVE DIFFERENCE IN C
5493 74 Mav A, D 3 COMPARE HIGH ST@P
SA94 9C SBB H 3 T@ HIGH POINTER
SA95 47 MB Y B, A 3 SAVE DIFFEREINCE IN B
SA9 6 DO RNC 38K 1F D,E > HoL
SA9T7 7A M@V As D JSEE IF DLE
S5A98 B3 ARA E 5 1S ZERS
S5A99 C28Ds9 JNZ ERRIR 3 IMPRBPER INPUT, HoL > D»E
SA9C C9 RET FUPPER LIMIT 1S FFFF HEX
H
3 SUBROUTINE Td INPUT A FILE-HAME 9R CEMMENT CHARACTER
3 FR3M THE KEYBBARD. DEL (RUB @UT) DELETES PRIOR
3 CHARACTER.
H
5A9D Cb2Cs9 RFILEs CALL READ 3 INPUT FRIM KEYBIARD
SAAQ0 FEOD CPI CR 3 CARRIAuE RLTURN
SAA2 C8 RZ JYESs RETURN
SAA3 FE20 Ccrl v 3CHECK FOR C@NTRIL CHARACTER
SAAS DA9DSA JC RFILE s REJECT CENTROL CHARACTER
SAA8 FETF CpPl DEL 3 DELETE (RUBBUT) CHAPACTER
SAAA CO RNZ
SAARB 79 MY AsC 3 FETCH CHAPACTER COUNT
SAAC FEQ9 Cr1 9 3PBINTER AT START @F BUFFER?
SAAE CA9DSA Jz RFILE iYES, 1GN@RE DEL
SABl 2B DCX H J DECREMEINT POINTER

92

5AB2
SAB3
SABS
SABS

SABB
SABC
SABF
SACO
SAC3
SACE
SACS
SACB
SACE
SAD}

SAD4
SAD7
SADA
SADD
SAEQ
SALEL

SAE2
SAE3
SAES
SAE6
SAET
SAEA
SAED
SAEF
SAF2
SAFE
SAFS
SAFB
SAFE

5B02
SBOS
$B07
SBOA
SBOB
SBOC
SBOE
5B11
SB12
SB1S
SB18
SBLIB

SBI1E
$B20

SB22

$B2S
$B27
sB29
5B2C
SB2F
£B32

ocC
JEOS
CDsBs9
C39DSA

57
3A0ASD
B7
CAEASA
cDp2Cs9
FE2D
CAD7SA
CDFS5SSC
CDDBSC
CDB5SC
C3FBSA
¢CB25C
C3E05A
CDASSC
AF

95

6F
3E00
9C

67
C3FBSA
cr2csy
FE2D
CADDSA
CD895sC
CD7BSC
CDABSC
220D5D
TA

320CsD

21B75D
OLO9
CD9DSA
77

23
FEOD
CA185B
oD
CA8DS59
C307SE
Jacosp
CDats9

DB12
E60!

CA1ESB

DB13
FESS
C21ESB
CD315C
21B7SD
7E

INR
MVL
CALL
JMP

Best of Interface Age/Volume 2

C 3 INCREMENT COUNT
A, BACKUP j BACKUP CHARACTEP
BUTT SPRINT IT

REILE 3NEXT CHARACTER

33333333333333333333335333533333333333333383333333333333

H

H

3 LOAD A TAPE AT OTHER THAN 1TS N&ORMAL ADDRESS

3 @FFSET VECTOP 1S ADDED T@ THE NORMAL H,L ADDRESS

FFST:

dFFas

OFF3:
@FFS:

aFF1s

BFF2:

Mav
LDA
2PA
Jz
CALL
CPI
Jz
CALL
CALL
CALL
JMP
CALL
JMP
CALL
XRA
SuB
Mav
MVI
SBB
MBYV
JMp
CALL
CPl
Jz
CaLL
CALL
CALL
SHLD
M3V

@R SUBTRACTED 1F PRECEEDED BY A MINUS SIGN

Ds A JSAVE '@' C3MMAND IN D
HEXFL 53 FETCH HEX/OCTAL INDICAT@R
A 31s IT ZER2?

GFFL SJUMP IF HEX INPUT

READ 3 INPUT A BYTE

- 3 CHECK FOP NEGATIVE @FFSET
OFF4 3JUMP IF NEGATIVE

acTi2 3CONTINUE WITH BCTAL ADDRESS
ROCT2

RHL32

8FF2

RDHL@ 3 INPUT NEGATIVE OCTAL BFFSET
BFFS

READHL 3 INPUT NEGATIVE HEX JFFSET

A 3GET A ZERJ

L 3 INVERT L

LsA 3SAVE IT

A O JZERM A WITHBUT RESETINC CARRY
H 3 INVERT H

HsA 3SAVE IT

BFF2

READ 3 INPUT A BYTE

- 3CHECK FOR NEGATIVE JFFSET

BFF3 5JUMP 1F NEGATIVE
HEX22 3CONTINUE WITH HEX ADDRESS
RDHX2

RHL2
@FSET 3 SAVE 3FFSET IN MEMORY
A D 3MBVE TASK T3 A

33333333333333533333333533335333335333533333333333333

H

3 ENTRY FOR L3AD, EXECUTE, AND VERIFY

3
TLBADs

o e o be

TLDI1:

TLDSs

H
3 LadK

H
TINN:

STA

Lx1
Ml
CALL
MOV
INX
CcrPl
Jz
DCR
Jz
JMP
STA
CALL

FdR FILE

IN
AN]
1F
JzZ
ELSE
JNZ
ENDI F
IN
cprl
JNZ
CALL
LX1
Mav

TASK 3 SAVE TASK IN MEM3RY

CHECK F@R INPUT @F FILE NAME (UP T@ EIGHT
CHARACTERS) FRIM KEYBAARD

H, FBUF 2 PJINT T2 FILE-NAME BUFFER

C,9 38-CHAPACTER FILE NAME
RFILE 3 INPUT FILE-NAME CHARACTER
Ms A 3 PUT IN BUFFER

H 3 INCREMENT BUFFER PJINTER
Cr 3<CR>» AT END @F FILE NAME
TLDS 3 END @F FILE NAME

C 3 DECREMENT FILE-NAME CBUNT
ERR3R 3 T8d MANY CHARACTERS

TLbY FNEXT CHARACTER

I1BUF 3PUT CARR RET IN BUFFER
LINE 3@UTPUT LINE FERD

HEADER AT BEGINNING &F TAPE

TAPES 3 CHECK STATUS
ACINM 3 TAPE-INPUT MASK
JMPZ 3L03P ON ZERG
TINN

3L83P NOT ZER
TINN JLA4P UNTIL READY

TAPLD 3 INPUT A BYTE

SBYTE 31S IT A FILE HEADER?

TINN JLUOP UWNTIL IT IS

BELL JRING BELL AT START

H, FBUF 3 POINT T® FILE-NAME BUFFER

AsM 3 FETCH FIRST CHAR 4}t FILE NaAME

TAPEMON 93

SB33 FLOD Crl CR 315 1T A CARRIAGE RETURN?
SB35 CA6BSE Jz T JSKIP BVER FILE NAME (IF ANY)
$B38 11C0SD LXxI D, IBUF P3INT T@ INPUT BUFFER

;

5 INPUT FILE NAME AND COMMENTS FRIM TAPE

H
SB3B CD43sC TLD2: CALL TIN 3 INPUT CHARACTER FROM TAPE
SB3E 12 STAX D }STARE IN INPUT BUFFER
SB3F 13 INX D 3 INCREM1ENT BUFFER
SB40 FEOD crl Cr 3 CARR RET AT END 3F FILE NAME
5B42 CA615B JZ TLD4 3END 3F FILE NAME
5B4S FE2C crl ! 3A COMMA SEPARATES FILE NAME
5B47 CAS7SB Jz TLD3 3 AND CIMMENTS
SB4A BE cMpP M 3SEE 1F FILE NAMES MATCH
SB4B 23 INX H 3 INCREMENT FILE~NAME PJINTER
SB4C CA3BSB Jz TLD2 3NEXT CHARACTER
SB4F 3JEFF MVI A, 255 3 ERRR, FILE NAMES D@N'T MATCH
5651 32135D STA LFLAG 3 SET ERRJIR FLAG
SBS4 C33BSB JHP TLD2 3 CUNTINUE INPUTTING FILE NAME
SBS7 CD435C TLD3: CALL TIN 3 INPUT COMMENT CHARACTER
SBSA 12 STAX D 3 STORE IN INPUT BUFFER
SBSE 13 Tax D 3 INCREMENT BUFFER POINTER
$BSC FEOD CPI CR 3 CARRIAGE RETURN ENDS COMMENT
SBSE C2575B JNZ TLD3 SNEXT COMMENT
SB61 AF TLDa: XRA A 3 GET A ZERO
SB62 1B bex D 3 INCR INPUT BUFFER PIINTER
SB63 12 STAX D JPUT ZERJ AT END 3F BUFFER
5B64 3A135D LDA LFLAG 3 FETCH LOAD~ERPIR FLAG
5B67 B7 BRA A 31S 1T ZER3?
5B68 C27ES9 JNZ FNERR 3JERRIR I1F NOT ZER3

3

3 LOBK FOR RECORD HEADER 3R END-@F-FILE BYTE

3
SB6B CD43sC TLO: CALL TIN 3 INPUT A EYTE
SBEE FET8 CPI EAF JEND @F FILE?
SB70 CALFSB Jz EXEC JYLES
SB73 FE74 crl EAFC 3ESF WITH CHECKSUM?
5B75 CAEFSB Jz EXEC
SB78 FET7 crl LHEAD SLONG RECORDS?
SB7A CAE1SB Jz DIN JYES
SB7D FEJC CpP1 RHEAD 3BEGINNING 9 F RECBRD?
SB7F C26BSE JNZ TLO iNd» TRY AGAIN

3
3 ROUTINE T@ INPUT RECORDS SHIRTER THAN 256 BYTES
H

5B82 CD43sC TLS: CALL TIN 3 INPUT RECARD LENGTH
SB8S 4F MoV C.A #SAVE IT IN C
SE86 B7 @RA A $RECARD LENGTH ZERS?
SB87 CAEBSB Jz TL4 FYES, MITS USES ZERd FBR 256
5BBA AF XRA A 3 GET A ZERD
SB8B 3212S5D TLS23 STA RECI 3ZERS HIGH BYTE OF REC LENGTH
SBSE CD94SE CALL e 3 INPUT REST 0F RECIRD
5B9t CI6BSB Jup TLO JINEXT REC&RD
3
3 RAUTINE T@ INPUT RECORD ADDRESS, DATA» AND
3 CHECKSWM, AND TEST FOR E3F
H
SB94 2A0DSD TL2: LHLD @FSET JPUT SFFSET IN H.L
$B97 CD43ISC CALL TIN 3 GET L@V BYTE 3F RECORD ADDR
5894 SF M3V EA JSAVE 1T IN E
SB9B 47 MeV BsA 3 START CHECKSUM WITH IT
SB9C CD43s5C CALL TIN 3 GET HIGH BYTE @F RECORD ADDR
SBOF 57 Mav DA JSAVE IT IN D
SBAO 19 DAD D 3ADD BFFSET T8 H,L ADDRESS
5BA} 3A0CSD LDA TASK 5 FETCH TASK
5BA4 S7 Mav D, A 3SAVE IT IN D
SBAS CD435C TL1: CALL TIN 3 INPUT DATA BYTE
SBA8 SF M3V bBA 3 SAVE BYTE
SBA9 7A Mov As D 3 CHECK TASK
SBAA FES CPl A 3SEE 1F VERIFYING
SBAC 7B M3V AL 3RESTORE DATA BYTE
SBAD CAB1SB JzZ SKIP JJUMP IF VERIFYING
SBBO 77 Mav M, A 3STGRE DATA IN MIM@RY
5BB1 BE SKIP: CMP ™ 3 CHECK MEMORY
SBB2 C26Cs9 JNZ MERRSR 3 BAD MEMIRY

SBBS 23 INX H 3 INCREMENT MEM@RY PZINTER

94

SBB6
5BB7
5BB9

SBBA
SBBD
SBCO
SBC3
SBCS
SBCS
SECB
SECE
SBD1

SBED2
S5BDS
SEDE
SBD9

5BDA

SBLB
SBDE

SBEI
SBE4
SBES
SBEB

SBEB
SBEC

SBEF
SBFO
SBF3
SEF4
SBFS
SBF8
5BF9
SBFA
SBFC
SEFF
SC00
5C03
SC04
5C07
5C08
sCoA

5C0D
5C10
sCi1
sCi3
sClé
sC19
s5C1C
SCiF

5€22
s5Ce3
5¢26
5C28
5C2B

79
Deo1
4F
CACESB
D2A55B
3A125D
D601
321280
DADS5SB
C3A55B
3A125D

1182580
C36k59

CD435C
4qF

CD435C
C38ESB

3c
C38BSB

4F
CDa3sC
6F

47
£D4a3sC
67

79
FE74
c207sC
48
CD43sC
B9
C2DBSB
T4
FE4S
CAE658

11Co5D
1A
FEOD
CAl1CSC
CDOOSD
CD6759
1195SD
C36F59

57
CDa3sc
FEF3
c223s5C
Cba1sC

TLSs

TL 33

PPINT

SERR:

MOV
sul
MAvV
Jz
Jine
LDA
sul
STA
JC
JMP
LDA
ARA
JNZ
Moy
CALL
CMP
RZ

A 'C’

Lx1t
JMP

AsC

C.a
TLS
TL1
RECI

RECI
TL3

REVI

TL1
C,P
TIN
C

Best of interface Age/Volume 2

3 GET REC@ORD COUNT (L3W)

3 DECREMEINT IT

JSAVE IT

31F ZER3, CHECK HIGH HALF
3CANTINUE IF N3T 255

3 FETCH RECORD COUNT (HIGH)
3 DECREMENT IT

3SAVE IT

3 END 3F RECIRD IF 255
JNEXT BYTE

3 FETCH PLC@RD COUNT (HIGH)
3SEE IF RECBPD COWNT IS ZERD
3CONTIUNE IF NB3T

JM@VE StM T3 C

3 INPUT CHEXSUM

3 CAMPARE T8 SUM

JRETURN I} 8K

FIR CHECKSUM ERROR

DsMESC 3 CHECKSUM EFFROFP

TERR

2 3 PPINT ERPAP MESSACE

3
3 RAUTINE T3 INPUT RECORDS LONGEP THAN 255 BYTES
H

H
H

N v

TLa:

. e v

EXECs

EXEC3:

EXEC2:

CALL
M3V
CALL
JMP

INF
JMP

Mav
CALL
Mav
Mev
CALL
MBY
MB YV
CPI
JNZ
Mav
CALL
CMP
JNZ
" AY
CpI
Jz

LXi
LDAX
crl
Jz
CALL
CALL
LXI
JMP

TIN
C.a
TIN
TLS2

TH

A
TLE2

C,a
TIN
LsA
BsA
TiN
Hs /A
A C
A FC
EXEC
C.B
TIN
c
CSER!
As D
"E"

3 INPUT REC LENGTH (LIW)
$SAVE IT IN C
3 INPUT REC LENGTH (HIGH)

MITS USES A RECORD LEINGTH 2F ZLR3 FOR A RECORL
5 LENGTH &F 2S6.
RECI S3 THAT SUCH TAPES ARE PRIPERLY READ.

IS SUBRAUTINE PUTS A UNE IN

3INCREMENT RECERD LENGTH T2 1
3 ST@PE IN RECI

END 8F FILE, INPUT AUTOSTART ADLRESS

3 SAVE END-@3F-FILE HEADEFR

3 INPUT L@V BYTE 3F ADDR.

3PUT INTS L

3 START CHECKSUM WITH L

53 GET HIGH BYTE 8} AUTASTART

3PUT INTS H

3 GET END-@F-FILE HEADER

3 CHECKSUMMED?
3 3JUMP 1F N@ CHECKSUM

3 PUT CHECKSUM IN C

3 INPUT CHECKSUM BYTE

3 CeMPARL Td S 3F H AND L
R 3JWMP 1F ERRER

3 CHECK TASK

5 SEE 1F EXECUTING

JPCHL JYES, G& T8 H/L

D, 1B
D

CR
EXEC

N@T EXECUTING
UF 3 PBINT T3 FILE NAME
3 FETCH FIRST CHARACTER
315 1T A CARRIAGE RLTURN?
2 3 SKIP FILE NAME LF S&

SENDM 3PRINT FILE NAME, COMMENTS
BLANK 3PRINT A BLANK
DsMESE 3 PIINT T °'STARTS AT'

TERR:

2 JPRINT IT

333333333533353335333333533533533333533333333333535333

H

3 ENTRY T@ SKIP @VER MITS CHECKSUM LJADER
3 AT BEGINNNING 3F TAPE

.
H

CL@ADR:
CLD2:

MOV

CALL

CP1
JNZ

CALL

D: A
TIN

3 SAVE TASK
3 INPUT A BYTE

OF3H 3 CHECK FIR DI 4PCADE

CLD2

BELL

3N@T YET» NEXT BYTE
JRING BELL T3 INDICATE

TAPEMON

SC2E

sCal
s$C33

5C36
5C39
SC3A
SC3B
SC3E
5C3F
5C42

£C43
€C45

sC47

sCaA
£C4C
5CAD
SC4E
5C4F
5C50

5C51
5Cs2
5C53
5CS4
5CS6

5C58

5CSE
5CSC
SCSE

SCSF
5C60
sCel

5Cé64
5C65
5C66
5C67
5C68
5C69
SC&C

5Ce6D
SC6F

C36BSB

3E07
C3s5Bs9

3A145D
4F
Al
CDS18C
oD
C23BsC
c9

DB12
E601

CA435C

DB13

80
47
F1l
co

Fs
80
a7
DB12
E602

CA545C

Fl
D313
ce

4c
CDe4sC
4D

9
1F
1F
1F
1}
CDéDSC
79

E€OF
C690

3 END @F CHECKSUM L@ADER
JMP TLO 3 START MAIN PR3 GRAM
3
3 RBUTINE T@ RING THE BELL
3
BELL: MVI A7
JMP auTT

SUBRBUTINE T¢ GUTPUT A LEADER dF NULLS F4FR
A LEADER AND A TRAILER

e v e N

LEADRt LDA NN UL 3 FETCH NUMBER JF NULLS
M3V C,A 3PUT IN C
XRA A 3 GET A NULL
LEAD2: CALL TAUT 33UTPUT A NULL
DCR C 5 DECREMENT COUNT
JINZ LEAD2 JNEXT NULL
RET
H
3 SUBRBUTINE T& INPUT A BYTE FR3M TAPE
3 AND ADD T2 CHECKsSuM
3
TIN: IN TAPES 3 CHECK STATUS
ANI ACINM ; TAPE-INPUT MASK
1F JMPZ 3LOOP 8N ZERD
Jz TIW
H.SE 3L34P NOT 2EPD
JNZ TIN JL34P 1F NAT READY
ENDIF
IN TAPED 3 INPUT A BYTE
PUSH Psw
ADD B 3ADD BYTE T3 CHECKSUM
M2 v B,A 3 SAVE CHECKSWM IN B
PIP PSW
RET
H
; QUTPUT A BYTE T@ TAPE AND ALD T3 CHECASWM
3
TEUT: PUSH PSSV
ADD B 3 ADD T3 CHECKSUM
" AY B, A 3SAVE IT IN B
TUTE: IN TAPLES 3 CHECK STATUS
ANI ACIM 3 TAPE-3UTPUT MASK
1F JMPZ ;LOJP OGN ZERZ
Jz TAUT!
ELSE ;LOJP NIT ZERD
JnNZ T3UTI 3L83P 1F N3T READY
INDIF
PIP PSSV
auT TAPLED 3JUTPUT A BYTE
RET

3

3 PRINT THE H/L REGISTER PAIR IN HEX

3

JUTHL: M3V C,H 3 FETCH H
CALL JdUTHEX JPRINT IT
MAvV C,L 3 FETCH L., PRINT IT

$333333533333333333333533333353333333533533333333

H

3 SUBROUTINE T4 CUNVERT A BINARY NUMBER IN C

3 T3 TWwd ASCI1 HEX CHARACTERS, AND PRINT THEM

H

4

UTHEX: M3V As C
RAR 5 RETATE UPPER
RAR
RAR 3 CHARACTER
RAR ;T LBVER
CALL HEX1 ;3UTPUT UPPER CHARACTER
MOV AC 3@UTPUT LOWER CHARACTER

SUBRIUTINE T SUTPUT A HEX CHARACTER
FR3M THE LOWER FBUR BITS

[,

HEX1: ANI OFH JMASK UPPER 4 BITS
ADL 90H

95

96 Best of Interface Age/Volume 2

5C71 27 DAA 3 INTEL DAA TRICK
5C72 CE4Q ACI 40H

5C74 27 DAA JONCE AGAIN

5C7S C35BS9 JMp auTT

H

3 SUBRSUTINL T3 CONVERT Twé KEYBAARD

3 HEX CHARACTERS T8 ONE BINARY BYTL IN B
3

5C78 CD86SC ROHEXs CALL HEX2 3 INPUT UPPER CHARACTLR
SC7B 07 RDHX2: RLC JRITATE TR
5C7C 07 RLC
$C7D 07 RLC 3 UPPER HALF
SC7E 07 RLC
SC7F a7 MAYV B, A JSAVE IT IN B
5C80 CD86sC CALL HEX2 3 INPUT LOWER CHARACTER
5C83 80 ADD B 3COMBINE B8TH PARTS
SC8a a7 Mav BsA 3SAVE B8TH IN B
sC8%5 C9 RET
5C8¢ CDaCs9 HEX2: CALL READ 3 {JPUT FROM KEYBOARD
5C89 D630 HEX22: sSul ‘0" 3 SUBTRACT ASCII BIAS
SC8B DA8DS9 Je ERRJR 3 ERRIR» LESS THAN ‘0'
5C8E FE17 cpl 23
$C90 D28DS9 JNC ERROR 3 ERRBR, GREATER THAN °'F°
5C93 FLOA crl 10
sC9s D8 RC #A NUMBER 0-9
5C9€6 De07? sul 7
5C98 FLOA crl 10
5C94 DABDS9 Jc ERROR 3 ERRJR, BETWLEN 9-A
sC9D C9 RET 3 A CHAPACTEP A-F
3
3 SUBRIUTINE Td CHECK HEX/OCTAL FLAG AND JIMP
5 T3 PRIPER INPUT ROUTINE
3
SC9E 3A0ASL INHL: LDA HEXH. s FETCH HEX/@CTAL FLAG
SCAl B7 BRA A 3 CHECK FAR 2ERS
SCA2 C2B2sC JNZ RDHL® ;8CTAL INPUT

ve

; SUBROUTINE T4 INPUT HoL FROM KEYBJARD (HEX FIRMAT)

H

5CAS CD785C READHL: CALL RDH EX 3READ HIGH BYTE
SCA8 60 RHL2: Mav HsB JPUT IT IN H
SCA9 CD785C CaLL RDHEX 3 1NPUT LW BYTL
SCAC 68 RDHL2: M3V L,B 3PUT IT IN L

;
SCAD 3E3A CaLanN: MVl VRS B 3OUTPUT A CJL3N T2
SCAF C35BS9 JHP SUTT 3 PRINTER

SUERJUTINE Td INPUT H/L FR3M KEYBJARD (JCTAL)

N v e

SCbB2 CDD8EC RDHLd: CALL RDECT 3 INPUT HIGH HALF 8F ADDRESS
SCBE €0 RHLJ2: MoV Hs B 3 PUT INTS H
£CB¢ CDDBSC CaLL PIMCT 3 INPUT LW HALF 3F ALDRESS
£CB9 C3ACSC JMP PDHL 2 3CONTINUE IN HEX RIUTINE
H
3 SUBRBUTINE T3 PRINT THE H/L RECISTER PAIR IN 3CTAL
H
SCBC 4C JUTHLYs MU C,H 3 FETCi n
»CBD CDC1SC Call JUTBCT 3 PRINT IT
5CCO 4D Mo\ C.L 3FETCH L
335333353333555553530333333353333383353333335538333333
;
7 SUDRIUTINE T3 CONVERT A BINARY NIMEER IN C
5 Td THREL ASCII BCTihl CHARACTERS AND PRINT THIM
H
sCC1 79 JUT3CT: M3V As C
scC2 07 RLC JRITATE LEFT TWd BITS
SCC3 07 RLC 3 Td B3ITTaM
5CC4 L603 AT 3 3 SELECT BOTTOM TWd BITS
5CCe¢ CbD3sC CALL dUTEO FOUTPUT LEFT CHAPACTER
£CC 79 Ay AsC
SCCa OF RFRC 3 ROTATE MIDDLE
SCCE OF RRC 3 BITS T8
5CCC OF RFC 3 BOTTTIM
ECCD CDD1SC CALL 8UT3 ;3UTPUT CENTER CHARACTER

sCDO0 719 Ma v A C J@UTPUT RIGHT CHARACTER

TAPEMON 97

5CC1 E607 QUTa: ANI 7 3 SELECT RIGHT THREE BITS
5CD3 Ce30 @UT60: ADI 606 3 ADD ASCIl BIAS
SCDS C35B59 JMPp JUTT JPRINT CHARACTEPR

SUBRAUTINE Td CONVERT THREEL KEYBJARD ASCI1
BCTAL DIGITS T@ O4L BINARY BYTE IN E

N v v we

SCD8 CLtesC RLACT: CALL 4CTIN 3 INPUT FIRST CHARACTLR
SCDB FEQ4 R3CT2: CPI1 4 3>a?

SCLL D28DS9 JNC ERR2R 3YLES» ERRIR

SCE0 87 ALD A 3 SHIFT

S5CE1 87 ADD A 3 T80 THE LEFT

SCE2 87 ADL A ;5 THREER BITS

SCE3 47 MoV BsA 3 SAVE FIRST PART IN B
SCE4 CDF2sC CALL 3CTIN 5 lWPUT SECAND CHARACTER
SCE?7 BO 3RA B 3 COMBINE WITH FIRST PART
SCE8 87 ADD A 3 SHIFT

SCE9 87 ADD A 3 THREE BITS

SCEA 87 ADD A 5 LEFT

SCEB 47 MV Es A 3SAVE IN B

SCEC CDF2sC CaLL acrTiN 3 INPUT THIRD CHARACTEPR
SCEF BO @RA E 3 COMBINE ALL THREE

S5CFO 47 Ma v B, A i SAVE BYTE IN B

SCF1 C9 RET

-

7 SUBPAUTINE T@ INPUT AN JCTAL CHARACTER TJ A
3

sCr2 Cp2Cs9 JCTIN: CALL READ 3 INPUT FROM KEYBJARD
SCFS D630 #cT12: sul ‘0" 3 SUBTRACT ASCII BIAS
SCF7 DABDS9 Jce ERROR 3 ERRJR, LESS THAN ‘'¢°
SCFA FEO8 Ccrl 8 3 COMPARE 10 8
SCFC D28DS9 JNC ERROR 3 ERRYR» GREATER THAN 7
SCFF C9 RET
3
3} SUBRMUTINE T3 PRINT AN ASCIl MESSAGE PIINTED T2
3 BY DoE. ST@PS WHEN A BINARY ZERZ 1S FIUND.
3
SDO0 1A SENDM: LDAX D 3 FETCH CHARACTER
sDO1 13 INX V] SINCREMENT POINTER
sDo02 B? @RA A 318 CHAR A BINARY ZERJ?
$D03 C8 RZ JRETURN IF IT IS
SD04 CD5SBS9 CALL auTT JOTHERVISE PRINT IT
$DO7 C3005D JUP SENDM 3NEXT CHARACTER
3
SDOA 00 HEXFL: DB [JHEX/3CTAL M3DE FLAG, 0 = HEX
SDOE 00 SFLAG: DB o JINITIALIZATIIN FLAG
5DOC TASK1 DS ! 3 SAVE TASK HERE
SDOD 0000 JISET: DV [} 50FISET VECTOR FIR LBSAD
SDOF R} RECLN: DB RL EN 3 RECIRD LENGTH (L&VW BYTE)
sD10 00 RECL2: DB 0 3 RECARD LENGTH (HIGH EBYTE)
su1l 00 RECA: DB 0 JRECORD-LENGTH COUNT CINPUT)
£D12 00 RECI: Db [} 3 INPUT REC-LENGTH CAUNT (HICH)
sDi3 00 LILAG: LB [¢] 3 LOADL~ERRIR FLAG
sbiaq 01 NNULt uB i iNUMBER 4F NW.LS N LEADEP
SD15 484558204F1ESG: Db "HEX 9R 4CTAL INPUT? '»0
SD2A 2048455800MES1: LB ' HEX's0
SD2F 2041435441MES2: DB ' 8CTAL 'O
SD36 20494ES055SMES3s DB ' INPUT'
SD3C 0D0A020202 DB CRsLE,2,2,2
§Dal S245434FE2MESAs bB "RECORD LENGTH'»0
sDar 3F2000 DB ‘? ‘%0
5052 2032353500MESF: DB ' 285°,0
D57 2020574841MESW: DB ' WHAT? ',0 3 ERRER MESSAGE
SDSF 4D4AS4C4FS2MESHM: LE ‘MEM3RY ERRIR AT "0
SD70 20204C4S41MESN: DB ' LEADER LENGTH? *,0
D82 434845434BMESC: bB "CHECASUM ERRIR AT ‘40
SD95 £354415254MESEs DB 'STARTS AT '»0
SUAQ £7524F4EQTMESFs bB ‘WRONCG FILE NAME, TRY: ‘.0
SDET FBUF: Ds 9 3 PILE-NAME BUFFER
SLCo 1BUFs Ls BEUIL 3 INPUT BUFFER
£ob2 DS 24 3 SPACE HJR STACK
SDEA = STACK EqQu 3 ;TP 3F STACK

SDEA END

98 Best of Interface Age/Volume 2

CP/¥ MACRI ASSEM 2.0 #019 BINARY TAPE MINITIR

0001 ACINM 0002 ACIHM 0008 BACKUP SC31 BELL
£967 BLANK 0012 BUFL 5A90 CEND sC23 CLD2
£C22 CLOADR SCAD CZLON 000D CP 594A CRLF
EBDB CSERR 007F DEL SBEl DIN 5A68 DJUB
SATD D3UBF 0074 EJFC 0078 EIF 5980 EPRGR
EBEF EXEC 5C1C EXEC2 §C07 EXEC3 Q000 FALSE
SDB7 FBUF S9 7E FENERR S8LE3 Gd2 S93F €2
SC6D HEX1 5C89 HEX22 5C8 ¢ HEX2 EDO0A HEXFL
EDCO IBUF 5C9E INHL 582€¢ INITO S82E INITI
€834 INIT3 5845 INITS S88E INITE S8 7F INITH
0001 INMASK FFEF JMPZ S8E6 JPCHL SC3B LEAD2
€C36 LEADR 000A LF 5D13 LFLAC 0077 LHEAD
S94F LINE 59 6C MERRIFR 5D2A MES!E SD2F MES2
5D36 MES3 5D41 MES4 £082 MESC 5195 MESE
EDA0 MESF SD15 MESG SDSF MESM 5D70 MESN
SDS52 MESR SDS7 MESW S8L7 MIDE 58 F7 MADEL
SBFD rMidDE2 SAOE NEW2 S5D14 NNUL SCFS5 ©vCTI2
SCF2 ACTIN SAEA OFF1 SAFB 8Fk2 SADD 3FF3
EAD7 @tFa SAED &2FF5 SABB @FEST SDOD @ FSET
§CD3 2UT60 5C64 QUTHEX SCSF @ UTHL SCBC QUTHLO
0002 BUTMSK 5CDP1 3uTe SCC1 BUTACT 595SB QUTT
58 64 RDCR 5C78 RDHEX SCAC RDHL2 5CB2 RDHLJ
£C7B RDHX2 SCD8 RDACT §92C READ SCAS READHL
ED11 RECA 5D12 RECI SD10 RECL2 5DOF RECLN
$893 RESTRT SA9D RFILE 003C RHEAD 5CA8 RHL2
$CBS RHL@2 QOFF RLEN SCDB R3aCT2 0055 SBYTE
£DOO SENDM $90C SETN 591F SETN2 §922 SETN3
EDOB SFLAG SBBE1 SKIP 003C SNUL SDEA STACK
5800 START 0013 TAPED 0012 TAPES SDOC TASK
S9F7 TDO 5A21 TDI1 SA45 TD2 SA18 TD3
SA4E TD4g SAJE TDS S9B1 TDMP3 S9ES TDMP4
§9D7 TDMPS S9C7 TDMPG $9C9 TDMP7 £9CD TDMPS
£99D TDUMP $9 6F TERR2 5972 TERR3 5C43 TIN
€B1E TINN SB6B TLO SBAS TL1 $B94 TL2
SBDE TL3 SBEB TL4 SBCE TLS SBO7 TLDI
€B3B TLD2 5B57 TLD3 SBél TLD4 5618 TLDS
SAFF TL3AD SB82 TLS SBEB TLS2 5CS1 TIUT
5CS4 TAUTI FFFF TRUE 0011 TYDATA 0010. TYSTAT

€95C VAITO

Chapter 5

Complete Data Base
Management System

By Peter Reece

INTRODUCTION

One of the most common uses of a computer is the manipulation of
large amounts of data in a utilitarian task-determined manner. That is,
by selective manipulation or scanning of knowledge bases, the com-
puter can yield rapid summary information which is representative of
the complete data base. This manipulation, commonly known as data
base management, is unfortunately usually relegated to the large
computer only. The small system user who wishes to organize office
inventory, book lists, mailing labels, and the like, is usually left out in
the cold.

The IDMAS (interactive Data Base Manipulator And Summarizer)
system is a remedy to the problems of the small user who wishes
large system features. IDMAS allows the user to selectively scan,
summarize, total, count, change, enter, delete, and encode data from
a data base without any knowledge of the internal workings of the
computer or program. Commands are interpreted through an English
language parser which can be modified or augmented very easily to
enable the user to utilize the English language subset he prefers.
There may be as many data bases on the system as the user’s facility
allows. In addition, while the program is included here in direct ac-
cess disk mode (available in most micro-floppy software) modification
to a sequential access file structure is straightforward.

IDMAS Is written in PDP-10 BASIC—a BASIC dialect which is
widely accepted (see IDMAS listing). If the error message and ASCII
code in the program is minimized for a given application, the entire
source will fit into about 12K of core on the average small computer.
Further, since the various commands are modular, they may be re-
moved at will if not required in a given application, in order to drain
core even less.

100 Best of Interface Age/Volume 2

The code is The data portion
stored in the is stored in file #2
small file #1 1

p— Form #k (consists of one
block composed of n records.

PRODUCT: drive-shaft where each record is w2
characters long)
LOCATION c3-1a

COsT: 120 S Data tem (record)
number 5 of form #k
MAINTENANCE: 1
Code item #5 ot —T——TYPE: carmage ——————-——1—1The 1st record is the
form number k ‘key’ search item of
LIFE-YRS 20 the data form

ASMB-TIME N |
[—This is record number

DISTRIBUTION: general k*n+ 7 of the entire
data base.

CONVERSION none

Figure 1. A small annotated sample form from an assembly line
data base.

FILE STRUCTURE

There are two data files for every data base used by IDMAS. The
first is a small file containing the codes or “names” assigned by the
user to the various items in his data base. The second file contains
the actual data which corresponds to these names. This is the larger
of the two files. For example, suppose that the user is concerned with
the length of time it takes to assemble some automotive components
and wishes to store this information in a data base. As Figure 1
shows, the time, say 30 minutes, would be stored as data in file two
while the name of that data—asmb-time—would be stored in file one.

Each item of data and its name are stored in a single record in their
respective files. These records are always the same distance from the
start of this block of data. Thus, in our example, asmb-time is stored
at the seventh record of the block, and “30” is stored at the seventh
record of the block of file two.

A block consists of all records which correspond to a given item in
the data which is of particular importance. This is the “key” item, and
is usually the main item of interest in the data base. If we think of a
data base consisting of mailing lists, the key item might be postal
zone since it is the most general designation. The next most impor-
tant item might be state, then county, city, street, and so on. The key
item would be the first item in the hierarchy. All records following the
key will in some way be tied to the key. (Note that IDMAS does not re-
quire the key item be the main item in a block, but from a user stand-
point, and simply by convention, one item is usually designated as the
key.)

A “form” consists of the key plus its related records. There may be
one and only one code form per data base in IDMAS. This is because
all data in file two is assigned names through the code form of file
one. More code forms would lead to confusion, and the program

Complete Data Base Management System 101

automatically prevents the occurrence of two code forms. The number
of different codes per data base, however, is unlimited. A “form,” then
relates to the total structure enclosed in the box in Figure 1, while a
“block” refers to the physical grouping of the records in the data file.
(That is, “block” takes on the common meaning of data block on a
disk or tape file) The user may choose the length of each record
within a block by adjusting the parameter “w2.” Hence, if w2 =80,
each record in file two, the data file, will be 80 characters in length.
(Blanks are added if all 80 are not used.)

In performing a search, the program computes the length of a form
from the number of names in the list of codes in file one and adds to
this the distance of the user selected record from the key item. For ex-
ample, to search the data base for alt assembly times, as in Figure 1,
the program would read records 7, 16, 25, etc. In this way, only records
relevant to the search are read, thereby saving considerable read
time.

150

VIO}

REWIND
DATA
FiLE

{ 230

READ
COMMAND
STRING

270

UNKNOWN
PRINT
300 ERROR
MESSAGE

GO 10
APPROPRIATE
PROGRAM
BLOCK

Figure 2. The initializing loop of the program (numbers in single
brackets indicate line numbers in the program).

102 Best of Interface Age/Volume 2

THE SEARCH

The actual mechanics of this search is illustrated in flow form in
Figure 3. After deciding that a search has been requested (see Figure
2) the program reads the code table to compute the validity of the
names requested by the user input string. Such an input string is il-
lustrated in the example in the first three lines of Figure 6.

Once it has been determined that the input string contains valid re-
quests, the search is begun. Each search item of the input string is
compared to the information residing in the appropriate record as
computed by the method already outlined. For example, as illustrated
in Figure 6, three records would be read per form, and the information
in the seventh record, for example, would be checked to see if it is
greater than fifteen. Totals, detailed counts, etc. (see command list
outlined below) would be performed once it had been determined that
all of the requested information in this form had matched the user’s
input specifications (e.g., that there was not a cost of 10 in the form of
the example in Figure 6).

In this manner, the search would continue until each form in the
data file had been read. A summary according to the user's request
and previous commands would then be printed, and the program
would await the next command.

THE PARSER

IDMAS contains a table driven parser which is capable of encoding
English language user input into a form usable by the rest of the pro-
gram. The table consists of verbs and verb phrases, as well as “noise
words” —articles and adjectives which are used in English but are of
no use in the search. First the parser scans the input string searching
for a match between elements in the string and the table. When such
amatch is found, the matched characters in the string are replaced by
the appropriate verb code from the table. For example, in line 510 of
the program, it can be seen that the phrase “is not” is replaced by the
code “.not.”. That is, the tabie is composed of pairs—the first word in
the pair is the match item, the second is the replacement item. If the
replacement item is a “9”, the parser automatically replaces the
match item in the input string with blanks.

Note that the table may contain any verbs or phrases which the
user deems appropriate to his task. Hence, the input string has con-
siderable flexibility. The table may also be as long or short as the user
wishes.

The parser’s next step is to remove the blanks from the input string.
At this point, the input string will consist only of subjects, verbs, ob-
jects, and connectors. For example, if the input string is:

FIND AN ANSMB-TIME WHICH IS MORE THAN 15*t AND
WHOSE TYPE IS NOT A CARRIAGE AND WHICH SHOULD
HAVE A COST OF 100.
then at this point in the parsing procedure, the input string would ap-
pear as:

Complete Data Base Management System

ne

o)

PARSE c§
INTO CODES OF
VERBS AND
SENTENCES

CODE TABLE

GIVE

DETAILED
0R

PRINT DUT

f=rsy

PRINT RECH
AND DC SUM FOR
COUNT MATRIX

TOTAL ¥
OF RECORDS
A PRINT 2230
DETAIL OETAILS OF
o THIS RECORD 2040}
§
‘COUNT'?
“REC
~
€or?
0.
Y }
2810
PRINT
SUMMARY

Figure 3. The search loop.

103

104 Best of Interface Age/Volume 2

. o
Zae, {

e

1S CHNG
POSSIBLE

e
DISTANCE .

INTO FORM OF {’m
CHANGE ITEM

1 ane oo {uo
MESSAGE

} aeln
SULTS OF
4230 THE CHANGE

O

Figure 4. The ‘change’ command.

ASMB-TIME.GT.15*tANDTYPE.NOT.CARRIAGEAND
COST.18.100

The parser now creates a number of matrices which categorize the Iin-
formation in the above string. First the matrix q$(k) is created, where
each “k” contains one of the sentences in the input string. The matrix
qi{k) is then created and consists of numbers which represent the
verbs of the input string. The objects of each sentence—that is, the
sought items in the data—are contained in the matrix q1$(k). Finally,

Complete Data Base Management System

SET READ
POINTER TO

TABLE OF
LEGAL ENGLISH

v

REPLACE THE
VERBS IN
INPUT WITH
TABLE CODES

v

USE CODES
OF VERBS TO
DIVIDE INPUT

INTO SENTENCES

!

REPLACE

MATRIX q{k)

¥

STORE SENTENCE
SUBJECTS IN
MATRIX q2%

q3(k)=0
DELETE THE
“*t FROM

q25tk)

Figure 5.

P

360

{ 600

640

{ 800

820

{ 920

1000

{ 1240

1410

{ 1540

1550

{ 1640

Flow of the parser.

105

106 Best of Interface Age/Volume 2

FIND AN ASMB-TIME WHICH IS MORE THAN 15*t AND
WHOSE TYPE IS NOT A CARRIAGE AND WHICH
SHOULD HAVE A COST OF 100.

drive-shaft
c4-6a
formk *100

1

"CArMage mm——t— }rqil':duasmh-hme)
g9 (bad carnage type)
*9
special
none

action-b
c3
form k + 1 “100
2
“under-titl }a(:cepl q3(1)= a3(h) + 20 @asmb-time)
5

*20
custom
dble/v

action-b
c3-a
form k+ m “100
1
*under-till }accept Q31 = at teast 40
5
“20
custom
none

“The program computes which records are of use and reads only those records
— thereby speeding search time considerably.

The minimum output (i.e. if no additional forms where ac-
cepted. and no special program switches where in effect)
would be:

| HAVE FOUND 2 ITEMS.

TOTAL ASMB-TIME = 40.

Figure 6. Example of a simple search through data.

q2$(k) is loaded with the subjects of the sentences. To illustrate all of
this, using the above example, we might have the following:

qi(k) q1$(k) a23(k) a$(k)
K=1 3 15 assmb-time assmb-time.gt.15
K=2 2 carriage type type.not.carriage
K=3 1 100 cost cost.is.100

Complete Data Base Management System 107

The final task of the parser is to assign a subject to sentences
which lack one. This is done by assuming that the subject of the
previous sentence of the input string also applies to the present
sentence. If no previous message existed, an error message is
generated.

At this time too, the matrix q3(k) is loaded with a one or a zero per k
according to whether or not a total is desired for objects in q1$(k). For
example, in the input string illustrated above, q3(1)=0, q3(2)=1,
q3(3) =1, since a total of assembly times only was requested.

The general flow of the parser, as well as the program line numbers
which correspond to the various tasks, is illustrated in Figure 5.

COMMANDS

Below is a listing of command words accepted by IDMAS, with a
description of each. Each command may be abbreviated to the first
three letters if desired.

HELP: prints a list of commands.

DELETE: Deletes a particular form from the data base. Deletions
are always by key item. For example, using the illustration in Figure 6,
typing “DELETE ACTION-B” would delete form number k+1. To
delete form K+ m, “DELETE ACTION—B"” would have to be typed
again. This is a safety feature in the event that duplicte key items
exist (it is up to the user whether or not his key items are unique).

Suppose that form k+ 1 only had been deleted. The next time the
“ADD” command was issued by the user (see below) the space left
empty by form k + 1 would be filled. In this way IDMAS Prevents the
existence of holes in the data base, minimizing storage cost.

ADD: To add a form to the data base, the user need type only the
word “add” plus the name of the key item plus the data for the key
item. For example, to add the product “mud” to the data base, type
“ADD PRODUCT MUD”. IDMAS would then prompt the user for the
rest of the items in the form, e.g. the value of “location”, “cost”, and
SO on.

A switch exists in the program (see “add” subroutine) which allows
the user to have mulitiple key items of identical value should he wish
to do so. Otherwise the program will automatically produce an error
message if the user attempts to create forms with non-unique keys.
This feature therefore allows maximum versatility in the use of non- or
pure hierarchical data base form structures.

DONE: This command will terminate the action of any other com-
mand which is waiting for input. For example, if halfway through
“add”ing a form the user decides that he doesn’t wish to “add” this
form after all, typing “done” will terminate the add command and
return the user to his initial state prior to the “add” command.

CREATE: To create a new data base, simply type “create”. IDMAS

will then prompt for names of code items and internally assigned files
one and two for future use by this data base.

108 Best of Interface Age/Volume 2

CODE: This command allows the user to scan raw data as it actu-
ally exists in his data file by naming the specific records he wishes to
see. For example, if the user wishes to scan the contents of records
200-204, he need simply type “code”. IDMAS will then prompt for the
first and last record desired (200-204, respectively), then type the con-
tents of these records in their actual stored state.

RECORD: Typing “record” activates a program switch which
causes the record numbers of all key items activated during a search
(assuming the form matches the search specifications) to be printed.

NORECORD: Disables the “record” switch.

SHOW: This causes the chosen form to be printed as in Figure 1.
For exampie, to print the form whose key item is “mud”, type “SHOW
PRODUCT MUD"”.

CHANGE: Figure 4 illustrates the flow of the change command.
Suppose, for example, that the user wished to change the “type” in
Figure 1 from “carriage” to “unit/a”. To do this he need simply type
“CHANGE TYPE IN PRODUCT = DRIVE — SHAFT TO UNIT/A”. The pro-
gram would then search the data base for the key item named, then
perform the change. If the search and change were successful,
IDMAS would type:

“TYPE CHANGED FROM CARRIAGE TO UNIT/A in PROD-
UCT DRIVE—SHAFT".

TOTAL: This enables the facility whereby user designated numeric
items may be summed together during a search (assuming the condi-
tions of a search are met). The user specifies which items he wishes
IDMAS to sum by adding “*t” following the object(s) of a sentence or
sentences. Figure 6 illustrates an example of the use of the ‘‘total”
command. As many objects as the user wishes may be totaled per in-
put string.

REASSIGN: This allows the user to end (i.e., close) the data base he

is presently working with and proceed to a different data base. IDMAS
Prompts the user for the appropriate information.

COUNT: This command causes the total number of items found dur-
ing a search to be printed, regardiess of the status of any other
commands.

NOCOUNT: Disables the “count” command.

DISPLAY: If the user wishes to see the actual values of the items
which meet the conditions of a search, he must type “display” prior to
conducting the search.

NODISPLAY: Cancels the “display” switch.

WORD: Prints the first word of the word pairs in the English transla-
tion table used by the parser. in other words, this command lists the
words and phrases which are accepted by the parser.

LENGTH: This command causes the total number of records in the
data file of the active data base to be printed.

Complete Data Base Management System 109

SPECIAL: The “special” command allows the user to call a program
which he has written as though it were a subroutine of the IDMAS
Program.

Typing “special” causes the program to print a description of the
use of the special command. Typing ““special progx” causes IDMAS to
execute the user program “progx” as a subroutine.

FIND: The general format of the command to enable a data base
search is the word “find”, ‘‘suggest”, ““can”, or “match” followed by
sentences joined by the Boolian connective “and”.

A sample format might appear as follows:

FIND subject1 verb object1 AND article subject2 verb
phrase object 2. Or, using the form of Figure 1: FIND type
is carriage AND a cost which isn’t 120.

Searches are performed, as explained when the parser was discussed
above, by treating all the words between the “ands” as separate
sentences. A search is successful if and only if a given form meets the
conditions specified by each sentence in the input string. In other
words, the “AND"” is a logical, or Boolian “and”.

All searches will print as a minimum the total number of forms that
met all of the conditions of the search, if other switches have not been
set.

CONCLUSION

The appendix gives several examples of the use of IDMAS with a
very simple data base. It is hoped that by adapting IDMAS to your
system, and taking advantage of its versatility and flexibility you will
find that the task of data manipulation becomes easier, more useful
and enjoyable.

PROGRAM LISTING

1O FREM RRKAOKKAORKHKAOK K KKK K KK KKK KK K KKK ACK K KKK KK HOK K KKK KKK K
12 REM X
14 REM % ITOMAG: & [ATA RASE MANAGEMENT SYSTEM
16 REM %
40 REM % BY FETER REECE
42 REM X
60 REM %
70 LMo
80 DM
) M
)

X
x
X
X
X
X

KKK KK HOKOK SO K KKK KKK K 3 KOK KOK SKOK KKK 5 KOK K HOK 3K K KOK XK K K KKK KK K K K K
A6 C20) v QL C20) s QLS (20D

NUMBER OF COLUMNSG ALLOWED
TEM JOKXK

REWINDG DaTa FILES
1l

NT “REAINY: *§
REAL IN A COMMAND
190 FUT O
200 1 '
210 8

" THEN 3470

OOOESNODENDE X TRAWRECNORFIN
EXy LEFTCL,3))

250

220

110 Best of interface Age/Volume 2

N = INT(N/Z) 1}
ON N THEN

74280y 3080, 3080y 320r 507045100,
C 710
LDCHAUFDSHOWD

THEN GO THERE

35023509 2730,30905 367013670y

DONOT RECOGBNESE YOUR COMMOND Xk "

ERE TF NEW COMMANDS AF BEING DHERUGGEL
'!UMMANU NOF YET IMFLIMENTED, *

COHMANIT 0K 30K OK KK HOKOK KKK X

ERES AND INATE NOTGE WORDS
LBLE T HAY
P "Ny "CAN T
ETy TMARE "y "2y "M,
‘UMN‘;'V RN
420 uATA “ﬁl"y“.ﬁNU.'
430 LATA "WHO S"» "L 18, *y “WHOBE* y 49"
440 DATA "AND* » "2y "WAS NOT" " NOT .
450 DATA "SHOULD HAVE HAD" » * L 15, "y "SHOULD HAVE*»* . 15,
460 DATA " (H THAD® y TG Y T HAB e Y LSy THAVE "
470 DATA *FOR*, CWAST S Y LG e UL BEY ST g,y

"GHOLD R "

BATA “LF " s 2y "WHICH y "9 "THAT "9y "WHU "y "%y " THE o * 50
UarTa *18 GREATER THAN" ".Ui""y"lﬁ THAN" » * 1T

TR TR AN G TN TG NN,
“ARE Yyt L IS5 NOT*y .NUI.'v S NOT" " NOT "
DATA “WITH" s *AND" " " e " 17, "“'v".ﬁl y TLGNCT T o NEY
laTn “wﬁﬂN‘]“"eN“ral "HAUN CLNDT SHOUILGN T » " NOT L
BATA "1 " 18 "y "%y *aNl" y "+" YAND
aTa "NIIH" "~ﬁNU."y'TU"7"V"
nAaTa 4"y TN NHE " e L IS e TYE T s 9y

THAN" » " GT "

Gu

g

TCH" y 9% 2 Y 16 1T FOSSTBLE "y "

SROBEGING HERE H0KRXK0OKKK K

leThf' v
O THEN 440

nopny

(HEN $10
%)

730

= L THEN 260
lD%((%vli"

"9' THEN 790
(ChrdsN-12 + E$ +MIDS(CHoN+L?

$ o= MIDECCSE» LeiN-1) + MIDS(CHyN+1D
8600 le)HJ 6540

B0 WEM SO LSO ATL e INDLVIDUAL SENTENCES INTO Q% (k)

890 N%\I) MID$\(*7!;N 1
YOO U = MIDSCUEyN+L?

Complete Data Base Management System 111

Y10 GOTO 840

QIO QHCLY = O

130 [t 2 NOW CONTALNG
740 MONOW ELIMINATE ALl
PuHQ o d

419)

70 UlJ\)lJf(
80 QE(R)
T NEXT
1000

NTANCES TO BE
FROM THE

GTRINGS .

ATE THE VERES

1010

1020 1

1030 RS (R v * oI5
1040 O THEN 1080

1040

1060 MIOS CAB(K) »N+4)D
1070

1080 = STROAS Ry "o NOT %)
1090 N o= O THEN 11730

1100
1110
1120
1130

Texk ToDO NOT
‘IS(I\)"’ KK

THE WERR IN %35

= VERB CORES

1280 G (.J o 1410
1290 REM ROUTINE TO f
TNTER STRENG 07

ATE BLANKS FROM THE

1 70‘)

1330 || Ll

N 1380
Mlll‘b'l by
Lo

IS (CErd vt d-1) + MILG(CHyL1I+1D

H OSENTENGE SUR.

TS FOR
TERCE LACKS A SUBJECT
HMT .

TH
1430 REM

0 THE S CT O THE F

1440
14%0
1460
1470
1489
1490

NO SUE.

[ELRC ORI § &
GOTO 150

Q BB (KDY y 1Ly N-12

" THEN 15490

I)('\)

ARCH SUBJECTS FOR TTOTAL Y COMMANDS

112 Best of Interface Age/Volume 2

1890 N = INSTRCQ$(K) 9 *KT")

1600 FI'N = 0 THEN 1640

1610 MID (28 (R) vl yN-1)
1620
1630
440

R R R R A

TO THE

16460 REM NOW SEARCH & CODE TAR
HUR. TS IN Q2% (k)
THE RECORD

1670
1680
1690
1700
1710
1720 :
1730 \ I THEN 1890

N > Wl THEN 1840
ENDIL THEN 1840

1760 1IN

1790 INFUTIL2CH

1800 (QE$CR) 2 0$) = O THEN 1750

1810 Q2 N

1820 7T

1830 GOTO 1720

1840 & 3440

1850 .

1860 NT %% “"5Q28(K)5 "7 IS AN LLLEGAL SUBRJECT

FOR 7 5Q$ (KI5 *xx*
1870 NI = 999

1880
1890 THEN 1350
1900 sessescererrscesss BEGIN LR A AP P RN
1910 RECORD #1 OF T ONTALING WL’ THLIS
1920 A INT TTEM. THUSs IF THE
1930 RE S ITEM I8 Ry THE Nth KEY

WILL BE AT R + WIkN‘,

1940 T
1950
1960
1970
1980
199G IF
2000 INFUTI2,C

Wl = VAL (C$:
0

2350
1

* R4+ Q2(K)
1+ 1

T THEN 2350
INFUTI2,C8

GOSUK 2520

NEXT K

IF T
11
REM
(o
FRINT®

ECT 7
2180

+2

Ti2sC8
Rl T]
IN EFFECT 7

444 THEN 2320

2H(RIF "=t 0% '

Complete Data Base Management System 113

Q
R+ Wi
2030

3440

1 2410
IF 71 T 2410
FK[NI' [HAVE FOUND ONE FORM®

2460
1 O THEN 24350

444 THEN 2450

INT* T HAVE FOUND NO FORMS, "
TO 2440
INT*I HaV
’TUIAI‘

UND

FR2S(N)F " = “FQ3U0

3 ACTUAL LUMIAR

iDNS AR FORMETD
SENTENCES (QLI$0k)) ARE

BOr 2610264092670
2690

2690

AL$(K) THEN 2690
+ 1

2690

QI$(R) THEN 2690

TE COMMANL 3Rk IOKKOKKKOKKOKNOK KK

Uk 34490
NT ¥k WHEN YOU ARE- FINISHED, TYFE "DONE‘. xx*

M #"iN
THEN 2860
Yy *s

"HONE* THEN 29190

12C%
0

2940
2960
2960
2976
2980
2990
3000
3010

- COMMANIT 30KK KO KOOROKK KKK KK F

Kk

LAY ENIEXIT RAW *
COUNT TOTAL NQTOTAL

CATE CHANGE SHOW WORD LENGTH ASSIGN®

COMMANDS $ *

IND MAKE IS 1T FOSSIBELE SUGGEST *

3040

114 Best of Interface Age/Volume 2

J‘v‘ FOSSIRLE THAT"

3060
3070
3080

3G90
‘5 100

FAORAOEARAAAKAKA AT COMMAND AR KK KKK KOKAOIK K
MIDS(Chra)
“*PTHEN 3150

FRINT® ﬁLlIl WHAT ? (EXAMFILE! ALD M, BROWN) *
GOTO 150

3190

2 THEN 3280
INFUTS2, C1%
IF INSTR(C1$5C$) = O THEN 3200
3440
INT*Hk “*5C185%° ALKEADY EXISTS, %ok
) 150

J'.?‘?()
3300
‘53 l()

“DUNF“ THEN 150
3390 2
3400
3410
3420
3430
3440
3450
3460
3470
3480 REM ****************** COXE COMMAND 30K KKK KKK HOKKOK KKK K K
3490

¢ MESS

3AGES ' 3§

WHAT RECORD NUMBER SHAILLL I BEGIN "3

"LIUNI-" THEN 1350

[WHAT RECORI # SHALL I END *3

IF C$ = "DONE®* THEN
2 VAL (C$)

A TO B
THEN 1%50

34670 REM KIOKKKKKRK CHANGE COMMAND KKK KKKk X
34680 GUSUR 1290

3690 C$ = MIDS(CHs8)

IF C$ <="*THEN 3750

GOSUE 3440

NT "CHANGE WHAT 7*;

INT* CEXAMPLE? CHAGE DIET IN REC
1350

NETR(CEy "IN")

1 TO NUTRI

STRUCTURE?S "3

Complete Data Base Management System

3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
39260
3970
3980
3990
4000
4010

4020
4030

4040
4050
4060
4070
4080
4090
4100

4110 1

4160
AL70
4180

Q2% (1Y = MIDSL
C$ = MID$(C$y
N INSTR(CSy "
IF N = O THEN

Q22 MIDS(CErloN-1)
C$ = MIDS(CHrN+L)

N = INSTR(C$y"TO")

IF N 0 THEN 3780
Q2%(3) MIN$(C$r1yN-1)
Q2%¢4) MIDS (CEpN+2)
Q2% 2 Q2¢(3)

Q2%$(3) = Q2%(4)

] 31 THEN 4000
INFUT L%
] R(C%,02%(1)) = O THEN 3930

N1
GOTO 4030
UE 3440
PRINT**3d

DATARASE "
GOTO 150

REM HAVE SET N = FOINTER WITHIN A DATA FIELI,

IND THAT DATA FIELD
SET 231

INFUTIZ2,C%

W VAL (C$)

THEN 4140
119
R{CSy Q26 (20)
R+ uWl
GOTO 4080
GOSUB 3440
FRINT*E CANNOT FIND THE ENTRY/*502%4(2)35

YCOIN THE DATA."
GOTO 150
R

O THEN 4170

CHANGED

TO ‘Y3

KRKKK GHOW COMMAND XoKKKK
0

MIDS (C%95)

; “¢ THEN 4370

GOTO 150
NETR(CS, "
= 0 THEN 4330

MIDG (ChrLyN~1)
Q2% (2) MIDS(CHosN+L)
SETLHY

INFUTIL1,C%

IF INSTR(QR2$(1)3C$)
GOSUR 3440

FRINT* 2 *5Q2%(1)35* 7 1S NOT A KEY ITEM,®

- 0 THEN 4470

2815 IS AN TLLEGAL ITEM FOR THIS

PRINT*SHOW WHAT 7 (EG.! SHOW NAME = J.SMITH)."

115

116 Best of Interface Age/Volume 2

2 THEN 4150
C$
(C$7028(2)) = 0 THEN 4510
= 444 THEN 4940
4570 FOR T = 1 TO Wi
4580 SET 131
INFUTI1/C$
(NT L5%. *5C%3%: "5
2IR 4 I-]
Ti2,C$

JHRAAK COUNT COMMAND HK%%X
= 444

GOTO 150

4710 REM XXkkkkx SFECTAL COMMAND KKKXKKKK

4720 Ch = MIDS(CHs8)

4730 IF C% = “* THEN 4760

4740 CHAIN C$%

4750 GOTO 150

4760 GOSUR 3440

4770 FRINT * *

4780 FRINT YAH(J)?"TU USE YOUR OWN COMMANDS, YOU

Al FROGXy WHERE ‘FROGXY 18 THE NAME

DF A FROGRAM*
4800 FRINT"WHICH YOU WISH TO CALL FROM WITHIN THIS

ECOND LAST LINE OF ‘FROGX’ MUST KE*

4820 FRINT® CHAIN FR IN PROGX

NT*MAY RE IN THE K ~995 i.@. YOU MAY HAVE UF"

NT*TO ONE HUNDKED ROUTINES OF YOUR OWN, *

0 150

KHKKKARKKKK [IE
MIDS$ (C%r8)
444

COMMAND H0KKROKKIOKK 0K

“YOTHEN 4370
T Cesd, DELETE NAM = J,8MITH)*

4950 INFUTIZ2.Ce
4960 GOSUE 3440
4970 FRINT®I STE
4980 INFUT K$
49%0 lF HIU$(h$rlyl) = "N* THEN 1350

GOSUR 3440
5050 FRINT'FORM DELETED FOR KEY ITEMS *5C$

GOTO 150

MO0 RECORT . COMMAND A0000KKKK KKK %
= 444

TO 150

GOSUR 3440

5140 FRINT*THE FILE CONTAINS AROUT
S150 GOTO 150

G140 REM ****** WORD COMMAND X¥00kK0k

KEAD AyE
IF s = *999° THEN 5260
I+ 1

Complete Data Base Management System

FRINT A% "iTARCIX18) S
iF 1 3 THEN 5180

TO 150

MK TOTAL COMMANLT KKK 30000k X

r

A COSTXT WHICH 1§ | THAN 50
QUTXT OF MORE THAN TEN ANl*

CGENT SUMS
ZOUNT Y AND

OF THE VaLUE OF*"
Ty BUT NOT OF

MAY HAVE UF TO TEN DATA RABES XXX
TYPE THE NUMBER OF YOUR DATARASE®S

G420 ON N THEN G430y 54505 5470y 5490y
7095590595610
DEL1.BASS20", 12y “DATAL . BASEB0O "

Oy GH30y

5450 FILE ONEZ BAS$20" 5 125 "DATAZ, RASSE0*

GO

CODE3 BASS20"» 225 "DATAZ BAS$80"
OLE4,BAS$20"y 12y "DATA4 . BAGS80"

. P "CODES . BAS$20y 12y "DATAL . BASSEBO"
$520 GOTO 5620

S530 FILES1s"COLES.BAS$20"y 2y "IATAL.BASSEBO"
G540 GOTO 5620

SU50 FILEt1s"CODE7.BAS$20"y 12y "DATA7 .BAS$B0"
5560 GOTO 620

5570 FILEILy"CODES.BAS$20%y 12y *DATAB, RASHB0"
5580 GOTO 5620

G590 FILE: Ly "CODE? .BASS20"» 12y "IIATAY . BAS$BO
5600 GOTO 5620

$610 FILE:1s*"COUELQO.RASS20" 32y "IATAL0 . BAS$F0"
5620 GOTO 130

P000 REM Xxxkpokkkx REASSIGN COMMAND JokkoKK KKk K
9002 GOTO 110

9999 END

APPENDIX: EXAMPLES OF IDMAS USE

READY? create

*** WHEN FINISHED, TYPE '‘DONE’ ***
ITEM #1 (KEY)? product
ITEM #2? location
ITEM #3? cost
ITEM #4? maintenance
ITEM #57? type
ITEM #6? life-yrs
ITEM #7? asmb-time
ITEM #8? distribution?
ITEM #9? conversion
ITEM #10? done

READY? add drive-shaft
PRODUCT? drive-shaft
LOCATION? ¢3-1a
COST? 120
MAINTENANCE? 1
TYPE? carriage
LIFE—YRS? 20

117

118 Best of interface Age/Volume 2

ASMB-TIME? 30
DISTRIBUTION? general
CONVERSION? none

READY? add drive-shaft
** ‘DRIVE-SHAFT' ALREADY EXISTS **

READY? add unit1
PRODUCT? unit1
LOCATION? 1a

COST? 120
MAINTENANCE? 1
TYPE? carriage
LIFE-YRS? 10
ASMB-TIME? 15
DISTRIBUTION? general
CONVERSION? custom

READY? is there an asmb-time which is less than 30 and
a location that is in 1a?
** | HAVE FOUND ONE FORM **

READY? display
READY? find a cost which is less than 140"t and an asmb-time

which is greater than 10*t and a location which isn’t 1b.
PRODUCT = DRIVE-SHAFT COST=120 ASMB-TIME=30 LOCATION =C3-1A

PRODUCT = UNIT1 COST=120 ASMB-TIME=15 LOCATION=1A
** { HAVE FOUND 2 FORMS **
TOTAL COST =240 TOTAL ASMB-TIME = 45

READY? end

Chapter 6

The Computation
of Direction

By Gene Szymanski

In the daily pursuit of our affairs, we do not find it necessary to have
a knowledge of absolute direction, for we are able to find our way bout
through a recognition of familiar sights and sounds. Even when it is
necessary to travel beyond the conventional routes, there are
available a multitude of guides to help us reach our destination.

On those rare occasions when we find that we are “lost”, the feel-
ing of disorientation quickly subsides once a familiar landmark
comes into view, for then we quickly recover our sense of direction.

For our purposes, then, direction is thought of as it relates to some
recognized object or prominent feature, such as a structure, highway
intersection, or the skyline of a city. Sometimes we find it convenient
to extend the scope of our reference by descriptives, such as “to the
north, or east,” and so on.

The surveyor, navigator, and astronomer require a more precise
definition of direction in their work. They are concerned with the
measurement of exact positions, often separated by great distances.
For their purposes, the concept of direction is of fundamental
importance.

THE MEASUREMENT OF DIRECTION

Direction is the angular difference measured in degrees from a
reference. For most purposes, we are interested in “true direction”
whose reference is the geograhic north pole. True direction is
measured as an angle whose initial value is 0 degrees at north and
which increases in a clockwise direction to 360 degrees. In order to
measure true direction, then, it is first necessary to accurately deter-
mine the direction of the earth’s geographic poles.

For centuries, the magnetic compass has served as the principal in-
strument for providing a knowledge of direction. Unfortunately, the .

120 Best of Interface Age/Volume 2

compass indication of true north is subject to considerable error. The
directive force on the compass needle is the result of two forces, one
exerted by the earth’s magnetic field and the second exerted by iron
or steel which may be found in the vicinity of the compass.

The earth’s magnetic field is irregular; furthermore, the position of
the magnetic and geographic poles do not coincide. This gives rise to
error called variation in the direction of north indicated by the com-
pass needle. The amount of variation depends upon location and can
be found by consulting a map or chart of the locality. A chart of Long
Island Sound, for example, would show that the variation is 13
degrees west. This means that the compass needle is deflected 13
degrees to the west of true north so that a value of 13 degrees must be
subtracted from the compass reading to obtain the true direction.

Obviously, it is a simple matter to cope with variation. All that is
necessary is to determine its value from the chart, then apply it to the
compass reading by addition or subtraction.

The second source of compass error, caused by the presence of
iron and steel near the compass, is far more troublesome. The result
of this type of error, called “deviation,” must be carefully measured
for each compass installation before the instrument can be used with
confidence. Even then, after deviation errors have been measured and
recorded for reference, they are subject to gradual change as the
vehicle or ship in which the compass is installed is moved to other
locations. Obviously, if the compass is to serve as a reliable instru-
ment, its errors must be known under all conditions of use.

AZIMUTH OBSERVATIONS

Because of the regularity in which celestial bodies appear to move
overhead, we are able to observe their positions in the sky and, from
this, determine direction. In practicing this technique, we are said to
be performing an “‘azimuth observation,” following a procedure which
is used throughout the world to establish direction.

The azimuth of a celestial body is simply its direction from the
observer and is measured as a horizontal angle from the north
clockwise to 360 degrees. In facing the body, we are also facing the
point on the earth’s surface directly beneath the body. This point is
called the geographic position or “GP” of the celestial object, and, in
a strict sense, the term *“azimuth” refers to the direction of the GP.

If both the position of the observer and the GP of the celestial body
are known, the azimuth of the body can be computed. An accurate
direction is thus established which serves as an absolute reference
for determining any other direction quickly and simply. Azimuth obser-
vations enable us to survey the wilderness, allign launching pads in
the desert, and determine the error of the ship’s compass at sea.

In practice, one sights a celestial body, preferably when it is low in
the sky, using a suitable pointer. The pointer is then locked into posi-
tion, and the exact time is recorded. A celestial “timetable” or
almanac is then entered with the time and date of the observation to
extract the geographic position of the observed object. Combining

Computation of Direction 121

this with the position of the observation, the azimuth is computed.
This azimuth is the exact direction in which the locked pointer is
oriented. The direction of any other object is then found by measuring
its angular displacement horizontally from the reference pointer.

METHODS FOR COMPUTING AZIMUTH

The computation of azimuth requires the application of spherical
trigonometry. This is because we are dealing with a geometric figure
lying on the earth’s curved surface (see Figure 1). This figure is a
triangle formed by connecting the geographic positions of the
celestial body, the observer, and the north (or south) pole.

Although the equations for the computation of azimuth are well
established, the solution is tedious and prone to human error. For this
reason, many methods have been devised which attempt to ease the
burden of computation. These range from tables of logarithms to
volumes of ““pre-computed” solutions, to which the user must apply a
liberal amount of interpolation before arriving at the final resuit.

In dealing with logarithmic solutions, for example, it is necessary to
perform the addition and subtraction of at least a dozen 6-digit
numbers after they have been extracted from logarithmic tables. In
addition, the *‘labels” of various angles must be examined during in-
termediate steps in order to determine how the arithmetic is to
proceed.

The solution for azimuth is an ideal application for the small com-
puter, and in this role it replaces pages of mathematical tables. The
program can be designed to perform a multitude of preliminary
calculations which are necessary to establish the known parts of the
spherical triangle. The solution of the trigonometric equations then
proceeds rapidly.

The azimuth program shown here is written in MITS 8K BASIC. The
entering arguments consist of the observer’s latitude and longitude,
the Greenwich hour angle and declination of the observed celestial
body. Greenwich hour angle (GHA) and declination (DEC) are the
astronomical counterparts to longitude and latitude, respectively, and
define the GP of the celestial body.

Both GHA and DEC for all the prominent celestial bodies are ob-
tained from the “Nautical Alamanac,” a publication prepared by the
U.S. Naval Observatory and issued by the Government Printing Office
and its agents. Because of the earth’s motion, the GP of every
celestial body is constantly changing so the Nautical Almanac must
be entered with the exact date and time (to the nearest minute) of the
observation.

The azimuth program solves the spherical triangle (Figure 1) for the
angle AZ which is formed by the great circles connecting the observer,
the GP, and the nearest geographic pole. Because of the apparent mo-
tion of point GP, this triangle expands, then contracts as the celestial
body sets in the west, and eventually rises in the east.

The program first processes longitude and GHA to determine angle
T. The latitude and declination are then examined to establish two

122 Best of Interface Age/Volume 2

POLE

LATITUDE
~
DECLINIATION&
~
SIDE A - 90° + DECLINATION
SIDEB - 90 LATITUDE
T = GHA - LONGITUDE
AZ - COMPUTED INTERIOR ANGLE G_
ZN = AZIMUTH (360° AZ}
Figure 1. Geometry used by the Azimuth Program.
O SUN
— — —_— —
— N T e T e T e T e ——— —— . —
215¢ 3055

| -

9%305.5°- 215° * 90.5°

Figure 2. Azimuth indicator used in the example.

Computation of Direction 123

sides of the triangle; the interior angle AZ can then be computed.

Finally, the program converts AZ to angle ZN, the azimuth. This is of
great advantage when done by the program since one of four different
conversion rules must be selected. This is because the triangle may
be referenced to either the north or south pole, depending upon which
is nearest to the observer.

When started, the program prompts the user to enter input data in
the following format: first degrees, next minutes, then the “label.”
Degrees are always entered as an integer, while minutes are to be
entered to the nearest tenth. ‘“Label’ refers to the characteristic suffix
east or west (for longitude) and north or south (for latitude and
declination); there is no label for Greenwich hour angle, GHA.

A longitude, for example, whose value is 134 degrees, 15.7 minutes
west would be input to the program in the following format:

(degrees) 134
(minutes) 15.7
(label) w

At its conclusion, the program prints out the value of ZN. This is the
azimuth, or true direction of the celestial body from the observer, valid
for the instant of the observation.

MATHEMATICS USED FOR SOLUTION

First the input values, specified in degrees and fractional minutes
of ARC, are converted into a decimal degrees format (fractional
degrees).

“Local hour angle” (LHA) is now introduced as a parameter to ex-
pedite the calculation for meridian angle, T. LHA is found by adding
east logitudes to and subtracting west longitudes from Greenwich
hour angle, GHA.

Coefficient M has an absolute value of unity. its sign is now made
positive if latitude and declination are both north or both south; other-
wise, the sign of M is to be negative.

Side C of the spherical triangle (see Figure 1) is computed by the
following formula, derived from the Law of Cosines:

SIN C=SIN L*SIN D+ M(COS L*COS D*COS T)

The intermediate value S is not computed as:
S=(C+L+90-M*Dy2

The “haversine” function of angle AZ is computed as follows:

HAV AZ = SIN(S-L)* SIN(S-C)/(COS C*COS L)
Interior angle AZ can now be found according to the following
identity:

COS AZ=1-2"HAV AZ

Finally, the value of the azimuth ZN is determined by noting the
label specified for latitude and the label of angle T. Four different
label combinations are possible and angle ZN is derived from angle
AZ according to the following rule:

124 Best of Interface Age/Volume 2

Label of L Label of T ZN
N E ZN=AZ
N w ZN=360-AZ
S E ZN=180-AZ
S w ZN =180+ AZ

Note: Angle T is assigned the label “W” if LHA is less than 180
degrees; otherwise, the label “E” is assigned to angle T.

APPLICATIONS

The technique of celestial observation for azimuth can be employed
wherever there is a need to establish direction. Some typical ex-
amples are as follows:

1) Orientation of structures, highways, property lines.
2) Surveys and construction of maps.
3) Calibration of the magnetic compass or gyrocompass.

4) Orientation of solar energy receptors, directional antennas,
tracking devices, telescopes.

5) Predicting the position on the horizon at which the sun or any
other celestial body will appear to rise or set.

At sea, azimuth observations are performed daily in order to detect
any changes in magnetic compass deviations and to verify the ac-
curacy of the ship’s gyrocompass.

Professional compass adjusters, when calibrating a ship’s com-
pass for the first time, also rely on the azimuth technique for a direc-
tional reference. Their approach is to first compute the sun’s azimuth
for periodic time intervals, and from this draw a curve of azimuth
values as a function of time. The ship is then placed on various
headings and the sun’s azimuth, as measured by the compass, is
noted. By comparing the observed value of the azimuth with the
precomputed value, the residual deviation error in the compass can be
quickly determined.

Surveyors and mapmakers rely on azimuth observations to provide
them with the geographic orientation vital in their work. Once they
have obtained directional orientation, a baseline can be established
whose length and direction are well defined. The baseline may then be
used as a datum from which all other points of interest can be
established by triangulation.

EXAMPLE

The following example indicates how the azimuth program would
be applied to a practical situation:

A directional transmitting antenna is to be oriented such that it
points exactly towards a receiving antenna located several hundred
miles distant. Magnetic compass readings cannot be relied upon
because of the presence of electrical machinery and a large steel
cyclone fence surrounding the transmitter site.

Computation of Direction 125

As a first step, the required direction is determined. The transmitter
and receiver positions are marked on a great circie chart and the line
connecting them is found to have a direction of 215 degrees. A
suitable azimuth indicator is now set up next to the transmitting
antenna. A simple but effective indicator can consist of a flat sheet of
cardboard placed on a level surface, pierced by a rigid, vertical pin.

At a convenient hour, when the sun is low in the sky, a mark is made
on the cardboard to indicate the position of the shadow cast by the
pin, and the exact time is recorded.

The Nautical Almanac is now entered with the date and recorded
time of the observation, and the coordinates of the sun are found to
be:

GHA =81 degrees,-40.2 minutes.
DEC =22 degrees, 03.2 minutes, north.

The chart indicates that the position of the transmitter is:

Longitude = 20 degrees, 40.2 minutes, west.
Latitude =41 degrees, 00.0 minutes, south.

These values are entered into the computer azimuth program, and
the resulting print-out indicates the azimuth to be exactly 305.5
degrees. In other words, this is the direction which the shadow
described at the time of the observation.

A line drawn on the cardboard surface from the mark towards the
position of the vertical pin, therefore, points in the exact direction of
305.5 degrees. A second line can now be drawn, offset from this
reference ‘pointer” by an angle of 90.5 degrees to the left
(305.5 - 215 =90.5), to indicate the direction for the antenna.

PROGRAM LISTING

5 REM:PROGRAM"AZIMUTH RY CELESTIAL OBSERVATIONS",
6 REM:BY GFENE SZYMANSKI, JAN 3,1978

9 CLEAR 100

10 REM:DATA TINPUT MODULE

20 PRINT"ENTER L.ONGITUDE:"

22 INPUT"DEGREES™3A (1) INPUT"MINUTES 3B (1)
24 INPUT"LABEILL(E NR W)'"3AS%

25 PRINT:PRINT

37 PRINT"ENTER LATTTUDE:"

32 INPUT"DEGREES™3A(2): INPUT"MINUTES"3B(2)
34 INPUT"LABEL(N NR S)>";B$%

35 PRINT:PRINT

40 PRINT"ENTER DECLINATION:'

42 INPUT"DEGREES'3A(3): INPUT"MINJIES"3B(3)
44 INPUT"LABEL (N NR S$5)'";CS

45 PRINT:PRINT

50 PRINT"ENTER GHA:'

52 TNPUT"DEGREES™3A (4): INPUT"MINUTES 3B (4)
100 REM:CNNVERT INPUTS TN DECIMAL DEGREES
110 FORI=1TN4

120 BCI)=ACII+B(1)/60

130 NEXT 1

200 REM:COMPUTE L.OCAL HOUR AND MERIDIAN ANGLES & ™.
210 IF A$="W"THEN B(1)=-1*B(})

126 Best of Interface Age/Volume 2

220 1LH=B(4)+B (1)

230 TF 1.H<180 GOT0-250

240 T=360-1LH: TS=1: GOTD 260

250 T=LH: TS=-1

260 TF T>0) GNTN 2RD

270 T=-1%T:TS=-1x*TS

289 Tg="E"

290 IF TS<0 THEN T$="'W"

291 LET M=-|

292 IF B%=C$ THEN M=}

300 REM3:SNIL.VE FOR COMPUTED ALTITUDE
310 K=57.2958

320 A=SIN(B(2)/K)I*SIN(B(3)/K)

321 A1=M*COS(R(2)/K)tCOS(B(3)/K)*COS(T/K):A=A+A1
330 HC=(ATNC(A/SQR(1-At2)))*K

340 HC=ABS (HC)

500 REM:CNMPUTE INTERINR ANGLE A7
510 S=0.5%(HC+B(2)+90-M*B(3))

520 HI=STINC(S-B(2))/K)I*SINC(S-HC)I/K)
530 H2=H1 /(COS(HC/KI*COS(B(2)Y/1))
540 H3=1-2%H2

550 HA=ATM(SQR(1-H3+2)/H3)

540 A7=K*H4

561 TF AZ<N THen A7=180+A7

600 REM:COMPUTE 7N

A10 ILET X$=BS$+TS

K20 TF XS=""NE"THEN 7N=A7

630 IF X$=""NW'" THEN ZN=360-A7

640 TFX$=""SE" THEN ZN={R0N-A7

650 TF X$="SW" THEN ZN=180+AZ

AS51 ZN=INT(ZN*10+0.5)710

652 PRINT:PRINT

A60 PRINT "ZN='37ZN;3"DEGREES"

470 PRINT "DONE"

680 END

oK

RUN

ENTER LONGTTUDE:
DEGREES? 20
MINUTES? 4.2
LABEIL(E OR W)? W

ENTER LATITUDE:
DEGREES? 41
MINUTES? O
LABEL(N NR 5)? S

ENTER DFCLINATION:
DEGREES? 22
MTINUTES? 3.2
LABEL (N NR S)>? N

ENTER GHA:
DEGREFS? Rl
MINUTES? 4.2

7N= 305.5 DEGREES
DONE

Chapter 7

Random Files lllustrated

by Frederick E. La Plante, Jr.

INTRODUCTION

In the recent series on General Business Software by Shamburger, |
seem to detect an apology for not having used a truly random file ap-
proach in this design. This set me to thinking and try as | might, |
could not recall having seen a single software article in the
“hobbyist” literature which used random files. Since | had just re-
cently finished a small software package to maintain a program for a
membership file using random files with BASIC, the thought occurred
to me that others might be interested in a practical example of the
utility of such file structures.

DEFINITION OF FILES

Before we go any futher, we had better define just what sequential
and random files are and how they differ.

A sequential file is typified by a magnetic tape. Typically such a file
consists of a number of records end-to-end along the tape, usually in
the order in which they are most frequently needed. When access is
required to a particular record, the usual procedure is to rewind the
tape to assure that it is at the start of the file, then read each record in
turn, performing any necessary processing, and then read the next. If
the program should need to read only one record, say the recipe for
rhubarb pie, we must read through all of them until the desired record
is found. If we wish to insert a new record, say a newly hired employee
into a file ordered by employee number, and the new record must be
placed anywhere other than at the end (always, in accordance with
Murphy) then unless the file is small enough to fit into memory (never,
same reason) we must copy tape #1 to tape #2, from the start until we
reach the insertion point, write the new record on tape #2, then con-
tinue with the copy. Now, suppose instead of one new employee, we
have five scattered at random throughout the existing range of
employee numbers. We could simply process them one at a time at
random, each time rewinding the most recent copy, and then copying

128 Best of Interface Age/Volume 2

and inserting as above. This would be slow, and rough on the tape as
well. So, to do the job right, we first sort the insertions in employee
number order and then read tape #1 to the point of the first insertion,
write it, copy until reaching the place for the second, etc., until the up-
dates are made. We then end up with a back-up tape of “yesterday’s”
file, a new updated file, and if we save it somewhere, a sorted list of
the updates. The value of this file set will become obvious the first
time the boss wishes to inspect the file after you have added the new
employees, and you find the copy didn’t take.

A random file is typified by a library book shelf where you can
retrieve any book without disturbing any others on the shelf. Again, in-
dividual records are stored end to end, but the order may not be at all
obvious if you do not recognize the key (catalog code). This key is
probably some alphanumeric character sequence which the librarian
(programmer) found easy to generate for each record and is abso-
lutely unique. It may make no sense at all to anyone else but that
doesn’t matter. To find any record in the file, you must go to the index
and look for the record in a sequence of key names (author, title, etc.)
and get the corresponding record number (catalog code). You then go
directly to that record and retrieve it. Physical devices providing that
feature work much like normal computer memory in that you specify
an address and are presented with data. (In fact, except for speed of
access, it is frequently possible to treat them that way.) In order to
write a new record, simply add the new record to the end of the file,
and place its record number and keyword in the index in its proper
place. There is no need to copy the file at all, and if any sorting is to be
done, it will be the index which is usually very small compared to the
file. Should you wish to modify a record, you simply read the old ver-
sion into memory, change it, and write the new version over the old
with no copying required. Thus, there is never more than one copy of
the file and it is always current.

The accompanying program MARSBASE implements a com-
paratively crude database with 128 bytes allocated to each. Either or
both of these limits can be increased up to the limits of disc space
that the user wishes to commit. Since this is a random file, we can do
directly to any specific member’s record (assuming we know which
one it is) so response time is not significantly affected by the size of
the database. A little thought should result in a fairly large number of
applications for such an approach to data storage. No longer does
one have to read through most of the entire file of recipes in order to
look at the one for rhubarb pie (or how about the contest log checking
for radio amateurs). In fact, random file design allows one to get
significantly closer to real-time access to a specific item in a
voluminous data file.

MARSBASE PROGRAM

The program described here is written in a rather unusual form of
BASIC. It is called BASIC-E and was written by Gordon E. Eubanks, Jr.,
of the Naval Post Graduate School. This BASIC runs under the CPM

Random Files lllustrated 129

operating system written by Digital Research and takes advantage of
its rather complete file editing system and I/O package. The particular
version | used is that distributed by Imsai™ with their floppy disk.

Those familiar with BASIC will notice several peculiarities about
the program described here. Perhaps the most obvious are the lack of
line numbers and the absence of 2-character variable names. Less ob-
vious is the IF-THEN-ELSE statements and the line-continuation
symbol +-. In writing MARSBASE it was decided to make libera! use of
these features to determine if any significant improvements could be
made in the readability and understandability of this program as com-
pared to the usual BASIC program. In writing the program, | tried to
follow the structured programming precepts of no “GOTO”
statements and single entry and exit points from a block of code. |
was not altogether successful, but stiil | think the understandability
has been considerably enhanced.

One other aspect of BASIC-E has also affected the program and
that is the fact that BASIC-E is a compiler/interpreter similar in some
respects to the concepts of TINY BASIC. That is, the code you see
here is pre-processed by a compiler into an intermediate language
with all symbols reduced and all remarks, etc. removed. This inter-
mediate language is then interpreted by the run-time software. White
one has lost the rapid interactive features most beginners seem to
find appealing, one gains the ability to be somewhat verbose in the
source code while stiil retaining most of the advantages of compact
code for the interpreter.

PROGRAM FEATURES

The program breaks down functionally into six major segments:
The main program, four processing modules, and a set of support sub-
routines.

The main program defines variables, establishes array space,
creates the database index, and allows the user to select from the
functions available. The important thing to notice here is the index,
for this is the heart of random file access. Whenever some part of the
program wishes to access a particular member's data record, a
search is made of the index to determine the record number and the
program then asks the operating system for that specific record. The
method used for searching the index is a simple sequential one of
comparing each entry in turn. If the database were much larger than it
is, a faster method of locating the key would be appropriate, but was
not used in this case since the response time of the disc system
seems to mask any search time.

Note that the index is nothing more than an array containing the
“key” words, in this case the member’s amateur call sign. However,
the array is organized in exactly the same order as the database so
that if the desired key is found in the 25th place in the array, then the
desired record is number 25 in the file. While we are still performing a
sequential search, we are now doing it in core at the maximum rate of
the interpreter and also we only search through the keys. While

130 Best of Interface Age/Volume 2

smaller files of 10-15 records would barely show the difference be-
tween normal sequential and random files, the advantages become
very obvious as the number of records increases and individual record
size increases.

The functional modules perform as follows:

ADD—Get information from the operator concerning a new member,
format it and insert it into the database. One search is made to insure
that a duplicate entry is not being made and another to find the first
empty record. If no empty record is found, the new record is added to
the end of the database and a new end-of-file flag is written. When the
user indicates there are no more additions to be made, he is advised
of the current size of the database and returned to the main program.

CHANGE—Get a new item entry from the operator and insert it into
the proper place in the database for the specified member. After the
member to be altered is stated, the record is read into the core. The
operator is asked to specify the item to change and its new value.
Items may be changed in any order. When the operator has no further
changes for that member, he is given a copy of the member’s record
as it appears on the disc with all changes made. When no further
members are to be changed, control is passed back to the main
program.

FILE
SEQUENTIAL ACCESS

1
RANDOM ACCESS
é AB7IDY SEARCH
@
INDEX E 2
. AB7HOH
SEARCH AB7IDY
AB7HOH 2 AcMedYs
ACMBJYJ 3
L] "ME
AB7ICW
AB7ICW 56 v
DESIRED
RECCRD —9 ACM1DLZ 57 —L’ [2. DESIRED
ACM1DL. RECORD
AB7ICJ 58 ‘
AB7YQL s Lz}
AB7ICJ
59
AB7YQL

N

Search array of equivalent 1. Read 57 records
57 7-character strings times of 128 bytes

. Read record pointed to 2. Compare keyword
by position of key in index In 57 records

Figure 1. Comparison of random and sequential access
methods.

Random Files lllustrated 131

DELETE—Remove a member from the database as specified by the
operator. Locate member specified by the operator and replace key in
both index and record with a zero, thus marking the space as available
for new additions.

LIST—Print record for a specified member. If a call sign of “all” is
specified, the entire database will be listed in the same order in which
it exists on the disc.

Support subroutines are provided to perform most of the actual
mechanics of database maintenance. Routines are provided to read
and write a member record to a particular disc record; to fetch
member data from the operator; to locate a member in the index and
return the record number; and to print a member’s entire record at the
terminal.

Presumably, the functions provided by this database maintenance
program could be extended indefinitely by adding sorting modules,
mailing label printers, etc. However, it is usually more appropriate to
keep the maintenance functions in a program separate from the data
retrieval programs to minimize the danger of inadvertently changing
the contents of the file. Consequently, such functions which only
need to read the data will be kept separate and optimized for their par-
ticular functions.

It is seriously doubted that this program is of direct use to any
reader in its present form, especially in light of the peculiarities of
BASIC-E. Hopefully, though, it will serve as an illustration of the utility
of random file access for record keeping. Such methods have uses in
almost all fields of data processing, from engineering to bookkeeping
systems to home recipe files to stamp collecting.

PROGRAM LISTING

REWRKX U,S, ARW -A1ASKA "ARS MEMBERSHIP FILE SYSTEN

RIMARK

REMARK THIS 1S 4 COYPLETEZ MEMBERSHI® FILE MINTEVANCE SYSTEM
REMRX ROUTINVES ART AVATIABLE TO ADD, CHANGE, DELETE OR
REMARX LIST ALL 2R 2ARTS OF THE MEMBERSHIP FILE

REMARK

RE¥ARK FILE IS OF RANDIM READ/WRITE DISIGN, FACY MEMBER IS
EMARK ASSIGNEC 4 SEPFRATE RECORD AS FOLLOWS:

RE¥

Q¥

RZ¥ FIRST Na¥E FIRSTS
RTY ¥IDDLE INI T Tt

35 v LaST W¥E 1ASTS
REY ;L. Sy SN
REX ADIRESS AR,
REY Y CITY 3
7% ST TE STATSS
REY ZIP Cons z1P
REY HOME PUgNT YFINES
REY WORY PHINE YFINES
REY LICENSE CIASS ClASS
RE¥ XPIRATION XPIRE
REY

REY

132 Best of Interface Age/Volume 2

REN - - STATEVINT FUNCTIONS USED IN PRINT ROUTINES

4 CONVERT ZIPCODE T2 STRIN3Z NF THE FRY "XXXXX"
F FNZIP 3(X)=¥IDICSTR $(X),1 ,5)

(o=,
21

CONVERT PHINE NUMBER TO STRING OF FORM "XXX =XXXY"

¥
F PN FOVES(X O sLEFTS(X 3,) +" " 4RI GHT8(X ¢, 4)

w
131 1<}

Y CONVERT ™MTI T) STRING OF FORM "XX /XX /XX"
F PN DATESX) =M DSCSTR $(X) ,1 ,2) 4" /" + \
MDSCSTR 3(X) ,3,2)+" /" + \
M DFCSTR $(X) ,5.2)
REM ANNJUNCE PROZRAM TO OPPERATCR
PRINT TaB(12):"U.S. ARMW -ALASXA MARS MIMBERSMIT FILE SYSTEY"
PRINT ¢ PRINT ¢ PRINT : PRINT : PRINT

[
[

REM - - ARRAY DEFINI TION

MAX JMEMBFRS =172
JIM CALLT(™MX MIMBRS+]) ,CIDES(S)

REM - - CLEAR T DEY ARRAY
FOR 1=t TD vAY ,MIMBEIRS
CALLE(I)="2"
NEXT I

REM -

OPEIN MEM3ER FILE
MEMB TR $2" BevEMBFRE LIB”
FILZ MEB R (129

REM - - (REATE INDEX IN CORT
IF IND #1 TYEN 11
FOR I=1 T) YaX.vMEMBERS
NE Y;E?D #1,1:DUME DUMS DUME ,CALLSCT) ,DUYE ,DUME ,DUMS ,DYW Dive
X

11 SIZ==1 -1
PRINT ™ SI7Z OF MEM3YR FILE IS CURRENTLY ";SIzZE®

REY = = DITIRMINE FUNCTION TD BE PERFORMED
CODES(I) =" aDD™
CODZB(2) =" Ma™
CODES(3) ="1EL"
CODES(4y =" LIS"
CODE%(5) =" STOP™

1z FOR J=1 TC 1 STEP 2
PRINT
PRINT "TUNCTION (ADD,CHA DEL,LIS,STOP)" 3
INPUT TUNCE
FOR I:1 TO 5
IF TUNCS:= CODESC(IY TMEN \
ON'1I 30T0 27,3¢,47,52 ,67
NEXT I
NEXT J
52 STOP

REM - - ADDITIONS TO ™ TaBaSE

22 FOR 1=1 TO 1| STEP ¢
PRINT
PRINT " ®LLSIGN OF NEW ¥EMBER (7 T0 QUIT)"
INPUT SIGNE
IF SISNG="2" THEN \

PRINT I\
PRINT " "IRRENT MEMBER FILE SIZE IS ";SIZE N\
PRINT N\

3070 12

Random Files lllustrated 133

NEXT I

CHECK FOR DIPLICATE ENTRY
50SWB 32
IF J>2 ™EN \
PRINT SI3N%:" ALRTADY ON FILE™ N\
3070 222

33 3ET »TA
30SWB 12

FIND EYMPTY SPACE IN FILE
FOR J=l TO YAX ,MEMBERS
IT QALLEy ="e" THEN 221
NEXT J
PRINT "8 MORE ROOM IN DIRECTORY™
3270 222

WRITE NEW ENTRY T9 FILE
CALLE(J) =SI GV
G0SiE 7S

IF SILE SI7% EXPANDS, WRITE NI§ EOF
IF J>SI7% THEN N\
S1ze = N\
PRINT #1 ((SIZE+1) sTHR (28)

CHAN3ES T0O DATABASE

FOR I=1 TJ3 1 STErP 2

p)
n
=

PRINT
PRINT * CALL SIGN OF MEMBER(Z2 TO QUIT)™
INPUT SIGNE
IF SIGNE:="?" THEN I\
PRINT 2\
3Tt

1OZATE CALL IN DIRECTORY, IF NOT SAUND J:=2
30SUR 27

IF J=7 THEN

PRINT SI3N$:” NOT ON FILE,” N\

30T 272

3ET C'RRENT RECORD FOR MEMBER
3058 235

3T NEW INTRIES FROM OPTRATOR

PRINT "<0R =aCHM CORRECTI IN RESPIND T2 PROw¥OT™
PRINT "wITH - ITEYM NYENZW ENTRY - (7,2 To 21D
INPUT TTEME ENTRY &

1= THEN 322

IF "E1T TYEN FIRSTE:-UNTRY § ¢+ 3070 371
IF THEN ¥ 3 ZENTRY 3 ¢+ 29T 37

IF ITE NAMEZ" THEN 1ASTE -ENTRY T ¢ 30Tn 371
IF ITEMe-" CALL" THEN SIGNS -TNTRY § : 67T 25y
I 17T "8DR” THEN ADRS :zENTRY S : 3772 2%
IFITE TTY" THEN CITY S -SNTRY T ¢ 30TO 321
IFITE FTATE” THEN STATES :ENTRY S : G2TD 27y
I7 ITEMT:"ZIP™ THEN ZIP =VALCTNTRY 3) ¢ 32T 32
[F ITEVS:"YFONE™ THEN HFONES:zENTRY 3 @ G0TH 271
TF ITEXE:="WFINE™ THEN JFONES:ZENTRY 7 ¢ 30T9 27|
I7 ITE¥t:" C1ASS" THEV CLASE =ENTRY T : 30T) 27y
IF ITEZ="DaTI" THEIV EXPIRE VALCEINTRY §) : 30T 27
PRINT “INVALID ITEM ‘A YE"

3272 37

WRTTI NSW "Ta T2 FILE
3388 7135

CONFIRY NTY I S¥ CONTENTS
WMSIR 35
305 22

134 Best of Interface Age/Volume 2

REX TINT, 30 ™M ANOTUER
RN NEXT T

RZM -~ - DELETS A RZCORD

42 FOR 1:1 TO 1 STE® 2
PRINT
PRINT "R LL SIGN OF MEM3TR TC DELETECZ2 Tn QUITH"
INPUT SIGNS
IF SIGNgz"2" THIN \

PRINT T\
3070 12
REM FIND CALL IN DIRECTORY , IF NOT FOUND J:?
30SB 30

17 J=2 ™™MEN \
PRINT SISNE3" NOT ON FILZT,” N\
30T0 47y

REWM CLEAP C2Ll) SI3N FROM TMZ RECORD
T- S1EN2 H SIGNg="2"
3288 75
REw CLEAR COLL FROM DIRECTORY
CALLE(I)Y z A"
REM NCTIFY OPTRATOR OF SUCCEISFUL REXIVAL
PRINT TIMP 33" REMOVED FRON¥ RECORD 4”30
&1 NEXT 1

2L

RE¥ - - LIST DaTaBASEK CONTENTS

REY EITHIP ONT YEBER R ALL ¥EMBTRS CAN BE WISTSH
52 FOR I=1 TO | STz> 2
PRINT

PRINT " RLLSIGN OF MEMBER TO PRINT (¢ TC ST¥®)O"
INPUT SIGNS
IF SIGNE="2" THEN N\

PRINT N\

80T 17

REY "ALL® WILL 1IST ENTIRE FILE
IF SIGN%=" 2LL” ™EN \
PRINT CHR $(12) ;TAB(15) 3" = EAN
FOR J=1 TO SIZE N\
ZOR'B 35 ¢\
3058 92 N\

NEXT g N\
PRINT CYR§(12):TAB(IS) ™ » A\
3270 17
REM FIND MEMBER IN NIRECTORY
30518 82

IF =2 THEN \
PRINT SIGN$:™ NOT ON FILE," A\
30TO s22

REw PRINT CONTENTS OF ¥EMZER RECORD
30518 25
0SB 97
02 NEXT I

REM - - SUBROUTINES
RE¥ - - COLLECT ™MTe TROF TERMIMAL

73 PRINT " LAST NAaME,FIRST M DDLT INI T";
INPUT LASTE FIRSTI M §

PRINT " STREET 4DDRESS (R PD BOX™;
INPIT ADR S

Random Files lllustrated 135

PRINT ™ CITY ,STATE,7IPCODE” 3
INPUT CITY 3,5TATES,7IP

PRINT "HOME TONFS WORK FIONES™;
INPUT HFOUES WEONTE

PRINT "LICENSE ClASS,SXPIRATYON DaTE";
INPUT CLASE,ZXPIRT

RETRY

e

2l

K3
'
'

WRITZ "ATA TC “EMBER ST LE

73 PRINT #1 ,J3FIRST* M ¢,LAST$,SIGNS,ADRS$,CITY 3,STATES Z1° ,
YFONEZE,WFONES ,CIASS ,EXPIRE

RETIRY

REM - - LOCATZ YEMBFR IN DIRECTORY
%2 FOR J:1 TO SIZ®
IF SIGN¥zCALLS(J) THEN <)

@ NEXT o

J=? RENM CNOT FOUND® FLAG
31 RETIRN
REM - - 33 REaD ~EMBFRS RECORD
35 READ #1 ,J;"IRSTE," $,LASTS,SIGNS ADRS,CITY 7,STATES,

ZIP HFONES WFONES,0LASS EXPIRE
RETIRN

<

1

=
]
'

Rz PRINT MEMEER MATA

92 PRINT
PRINT '8STE¢" " sFIRSTE:"," oM $3" - - - "3$SIGNS
PRINT " {1ASS - 1AS$,"EXPIRES -~ " :FN,DATE$(EYPIRE)
PRINT "PHONE NMBRS : HOME ™ iFN,FONES(YFONES)
PRINT TAB(19) :"WIRX " ;FN,FONESC(WFONES)
PRINT " ADDRESS : ":ATRS
PRINT TAB (11> T TY $5" ," :STATES:™ ," tFN.ZIP 3(ZIP)
PRINT

U.S. ARM -ALASKA WARS VEVBIRSHI? FILE SYSTCTY

F7E OF YEMRER FILE IS CIRRENTLY 3%
FUNCTION (ADD,CHA DEL,LIS STOP)? LIS

ALLSI 3V JF YEVBER TN PRINT (2 T9 ST®)
? ACMIDLZ

WAPIANTEF ,E - - - AZY N7
CIASS - ADV XPIRTS - q3/12/92
PYONZ NMBRS ¢ HOYZ 243-2057
WORY 274-7253
ADDRESS ¢ 7141 Tall SPRUCE R
ANCHIRAST AK 39522

QLLSIGN OF MEMB IR 19 PRINT (2 T2 STOP)
72

136 Best of Interface Age/Volume 2

FUNCTION (ADD.C48 DEL,LIS STOP)? DEL
®LL SIGN OF &M IR T3 TEZLETE(Z TOQUID
7 XLIXY 7

XL7XY? REMOVED FRON RECORD #22

ALL SGN OF YEMBER T0 DSLETE(Z2 TOQUITD
7?2
FUNCTI ON (ADD,CHA DEL,LIS,STOP)? 20D

GLLSIGN OF NEW YEMBTR (2 TOQUIT)

? ABTXY?

LAST NAME FIRST,YI DOLE INIT? JONES,JOHN,D
STREET ADDRESS OR PO B80X? PO BOSSX 1234-2
QTYy, STATE,ZIPCODT? ANCHORASE,AK ,995¢]
HOME FONES WORX TIONES? 1234547,74654321
LICENSE CLASS ,EXPIRATION M TE? UNK,R1123]

PLLSIGN OF NEW YEMBER (2 TO QUIT
7?2

CRRENT MEMBTR FILT SIZ7 IS 38
FUNCTION (£DD,CHA ,DTL,LIS,STOP)? CHA

ALL S35V OF MEMBER(Z TO QUID
72

FUNCTIOW (ADD,CMA DEL,LIS STO®)? LIS

(ALLSIGN OF MEYBER TO PRINT (2 10 STOP)
! AB IX{7

JONES ,JO4N,D - - - ABTXY?
CIASS - UNK DAPIRES - 81 /12/3)
P{INT NYBRS ¢ HOME 123-2567
WORW 7685-432)
ADDRESS : PO BOX 1234-A
ANCHORA ST ,AX ,29571

G LLSIGN OF ¥YEMBER T3 PRINT (2 T0 ST¥)
?2

FUNCTION (AD2,0M6 DEL LIS STOP)? CHa

RLL SIGN OF MIVERR(? TOQUIT

? ABIXY7Z

FCR ZACM CORRZECTION REUS®OMD T3 PRCOMPT
WITH - ITE™ NAaYE NTW ENTRY - (2,7 T eUI D)
? HFINE,321 74854

77,2
JINES JOHN,D - - - ABTVYY
CASS - UV DXPIRES - 2| /12/3t

PUONT NMARS ¢ UAME 221-7454
WIRY 753-4321

ADDRES32: 20 BOY 1224-
ANCXORE 3T ,6% 37571

L SI3V OF “EMBER(Z2 T2 31D

~Q

L
d
FUNCTION (ADD,.(HA DEL,LIS STH?)H? DEL
GLL SISN OF ¥IMB=R T3 TILITE(? TO QUIT
? XLTXYZ

KL7XY 7 NJT ON FILZ.

GLL SI3N OF ¥EMRIR 9 DELET(? TC QUITY
? ABTXY7

ARTXY 7 REYIVID FROM REUCORD #32

GRLL SI3N OF MEMBTR T2 TILITR(? TOQUI T

73

FUNCTION (ADD,042 DFL,LIS STO?)? STO?

Chapter 8

It’s Not a Big Miracle

by Mathew Tekulsky

When Ryan Faber was 13 months old, he was admitted to the
hospital for what appeared to be a normal viral disease. His condition
worsened, however, and by the time his ailment was identified he was
close to going into a coma. Then lab reports came back revealing an
extremely high level of sugar and ketones in his urine and blood.

“This was a red flag for diabetes,” recalls Dr. Clifford Rubin. The
child was saved, but he was in the hospital for eight days. During that
time, while sitting at his son’s bedside, Steven Faber developed a
remarkable and original computer program that monitors Ryan’s
blood sugar level and thus helps maintain better control over his
disease.

How remarkable and original Is it?

“Using the computer in this way is a new aspect in the medical care
of diabetes,” states Dr. Rubin, “and other doctors have shown a great
deal of interest in following this up in the future. But it doesn’t have
any meaning unless it benefits many cases and many people. It could
eventually be a routine type of thing in the next ten years.”

There’s nothing routine, however, about diabetes, an inherited
disease that prevents the body from using sugar by blocking the pro-
duction of insulin in the pancreas. Insulin is what enables blood sugar
(glucose) to enter the cells. When glucose can’t enter the cells, it
builds up in the bloodstream.

But since the cells are still not receiving sugar, the body turns to
stored sugar (glycogen) in the liver and muscle. When the level of
glycogen is low, energy is then derived from the breakdown of body
fat. Some of this fat is turned into toxins called ketones, which also
build up in the blood. If too much sugar and ketones are in the blood,
the individual can become extremely ill and may require hospitaliza-
tion. This is what happened to Ryan.

Now 23 months old, Ryan takes daily injections of insulin to keep
his blood sugar level under control. But contrary to popular belief, in-
sulin is not a cure for diabetes. In fact, its use is dangerous in and of
itself.

138 Best of Interface Age/Volume 2

Insulin must be administered extremely carefully in relation to the
diabetic’s food intake and exercise. If too much food is eaten, the in-
sulin is quickly used up and the blood sugar and ketone levels rise.
While this abnormal blood chemistry presents an immediate danger,
even moderate excesses of sugar in the blood, over a long period of
time, can shorten life spans, cause blindness, circulatory diseases,
arteriosclerosis, kidney failure and other disorders.

On the other hand, if not enough food is eaten or if too much exer-
cise is had, the insulin will deplete the available sugar and unless
more sugar is administered, an insulin reaction can occur, which
causes anything from dizziness to a coma and convulsions.

So while he’s too young to realize it now, Ryan Faber is in a very
precarious position. This is why it's so important to accurately
monitor the level of blood sugar and the amount of insulin he has in
his system at all times.

And that's exactly what the computer does. It not only charts
Ryan’s urine sugar by the hour on a daily basis and produces an
average for the week, but it charts the two types of insulin (regular, or
short-term and longer-acting NPH) he uses on the same graph so that
the amount of insulin in the blood can be compared to the amount of
urine sugar. When the insulin level is high, the urine sugar should be
low.

Why test urine sugar? Basically because urine sugar represents the
blood condition of an hour earlier. Normal blood sugar is 80-120 mg.
per 100 milliliters. But if the level goes over 140 mg%, sugar spills out
in the urine. By calculating the concentration of sugar in the urine, the

RYAN FARER: Ct INITEST RESULTS FOR WEEK OF: 8/27/78 TO 9/2/78

RESULTS FOR SUNDAY

REFERENUE CURVE
HHOK 20KHOK K IOK KKK

++ +H4
+ 4+ + +
+ + +
* + TIML. OF INJECTLON! /45
+ + + + LOSAGED © UNITS REGULAR
+ + + 7 UNITS NPH
+ + + +
+ 4+ +
+ + + +
+ + +
+ + + +
+ + + +
+ 4 + e+
600 800 1000 1200 1400 1600 1800 2000 2200 2400 200 400 500
- x --5
--4
x --3
E * -2
: x !
1-- -1
! x ;
T-- --T
0 * 0
600 800 1000 1200 1400 1600 1800 2000 2200 2400 200 400 500

Figure 1

It's Not a Big Miracle 139

SAMPLE RUN

READY
RUN

STARTING UATE FOR RUNT B/27/78

CLOSING DATE FOR RUNT v/2/78

DATA FOR SUNDAY
TIME OF INJECTIONT 745

LOSAGE (REGULARSNFH)? 247
600

700 *?

800 * 0

700 7 2

1000 7

1100 7
1200 7 3
1300 7
1400 ?
1500 7 1.5
1600 7
1700 7
1800 7
1900 7
2000 @
2100 7@
2200 7
2300 7
2400 7
100 *
200 7
30 7
400 ¢
500 ¢

degree of excess sugar in the blood can be determined. This is
measured on the Clinitest scale, which goes from zero (negative, or no
sugar) to five.

The significance of doing this for a diabetic can be explained very
simply. it's like watching a dam and trying to determine how much
water is on the other side. If there’s no water coming over the dam, the
reservoir could be almost full or almost empty. Similarly, when there’s
no sugar in a diabetic’s urine, he could be almost normal or have so lit-
tle sugar in his blood that he's setting himselif up for an insulin reac-
tion. Conversely, while a constant stream of water over the top of the
dam indicates that the water level is too high, a constant stream of
sugar in a diabetic’s urine indicates that his blood sugar level is too
high.

However, if there were a tiny trickle of water coming over the top of
the dam, it would indicate that the water level was just up to the top.
Likewise, if just a tiny bit of sugar spills out into the urine, it can be in-
ferred that the blood sugar is just above normal, which is where it
should be.

140 Best of Interface Age/Volume 2

“You want to walk that thin line,” explains Faber, “of spilling the
absolute minimum excess sugars in the urine to protect against in-
sulin shock and not be so high as to contribute to the deterioration of
the body. What the computer does is make it easy for us to perceive
what kind of control he’s in so we can adjust for changes in insulin
needs earlier and more accurately. For example, if he’s spilling
negative when he should be spilling positive, we just give him a little
more food.”

The use of the computer is a joint effort between Faber and his wife
Debby. During the day, Debby takes about eight urine samples from
Ryan and marks down the percentage of sugar in the urine for each
hour that a sample was taken. At the end of the week, a full sheet of
numbers is brought into the computer room. Steven then loads the
program and the computer interrogates for each day and every hour
during that day.

“If no tests were taken,” he says, ““the carriage return is hit without
any number being entered. If a test was made, the results of the test
are entered as a number at that hour. If the test is negative, zero is
entered. If there is a trace of sugar, it’s attributed to be a quarter of
one percent. One percent is the number one, up to five percent.

‘At the end of seven days, the computer prints out individual charts
automatically for each day, averages the results for each hour during
the week and prints an average chart which gives us a trend projection
of what the average day looks like. This is taken to our physician every
two months, and a major part of the checkup is going through the
book of charts.”

The charts themselves are arranged with two insulin curves on top
and the urine samples (represented by asterisks), with their respective
times when taken, on the bottom. The numbers 0-5 in the vertical col-
umn (the letter “T"” means a trace of sugar) represent the Clinitest
results. High urine sugar levels occur around 1000 and 1800 hours
because a meal has just been eaten. But if they were to occur at an
unexpected time, it would be cause for alarm. Conversely, too many
asterisks in the zero column would mean more sugar should be taken
to protect against an insulin reaction. Iin order to walk that “thin line,”
therefore, there should be some negative results, some that show a
slight spill of sugar (traces, 1’s or 2's) and few, if any, 3's, 4's and 5’s.

What is the value of charting these statistics, as opposed to simply
relying on numerical data?

“Look in the newspaper at the stock market page,” says Faber,
“and tell me whether the market went up or down and by how much.
It’s impossible to tell by looking at the individual stocks. But if you
look at a chart of the Dow Jones industrials, you an tell at a glance.
It’s the same with this program.”

The basic value is that in a glance it forms a picture of the
diabetic’s day in terms of his metabolic processes from hour to hour.
So instead of having to look at a page full of numbers, it makes it
graphically obvious when there’s too much or too little sugar in the
urine. The second, and more important value is that by averaging the

It’s Not a Big Miracle 141

results each week, trends that don’t show up in day to day testing do
show up before they become obvious.

For example, it's extremely dangerous for Ryan to get sick. Since
running a high fever is like exercising, his sugar is used up and an in-
sulin reaction could occur. If he vomits, his supply of sugar is
drastically reduced while the flow of insulin continues, so the same
thing could happen.

However, if Ryan has an infection, it will attack the insulin before
any symptoms of sickness occur. Therefore, sugar and ketones will
appear in his urine. When this happens, the Fabers increase the
dosage of insulin and prepare for an impending iliness.

It is because of benefits like this that the charts give Debby Faber
more confidence in her ability to deal with Ryan’s condition.

“It makes me feel that when | go to the doctor, ’'m giving him the
most information about my child that | could possibly get,” she says. -
“With a child this young, you want the doctor to be as knowledgeable
about his condition as possible and to be in touch with every detail.
So when | walk into my doctor’s office, I'm confident that he can see
really quickly what’s going on.

“| don’t have to say, ‘Well, this week he was a little bit high on sugar
one day and little bit low the next and I'm not really sure how the
whole week averaged out.’ This way I’m sure that he can look at these
charts and say, ‘| know exactly what to do with your son. | know ex-
actly how much control he has.’ It's making my relationship with my
doctor really comfortable and I'm much more secure knowing he can
track down a problem in a second.”

Dr. Rubin says that “Ryan has been doing so well that I've had very
little contact with the Fabers other than their normal visits. This is my
first experience with the computer in this respect and it's been a
learning experience for me. Although juvenile diabetics are notorious
for being in and out of control, the computer helps me to evaluate how
much in control Ryan has been.” Rubin adds that by knowing what’s
going on with the patient, medical costs can be reduced by avoiding
unnecessary tests.

Although Steven Faber is currently the only person using this com-
puter program for diabetes, that could change soon. it may have been
created for a juvenile diabetic, but it can also be used for adults,
especially those who are new diabetics or are having difficulty keep-
ing in control. in addition, hospitals that have diabetic floors could
make use of it.

However, it’s difficult to predict when the use of this technique will
become, as Dr. Rubin says, “routine.”

“Nobody is going to run out and buy a computer to keep track of
their diabetes,” says Faber, “but we’re now moving towards that
period of time so long predicted when the computer will become a
commonplace appliance in everybody’s home.

“Now how far along that road we are | don’t know. | do not believe
that we are at the point yet when someone who hears about this,
knows nothing about computers and has had no predisposition

142 Best of Interface Age/Volume 2

towards buying a computer will go out and buy a system to do this.
Those whose natural bent in this direction has put them on a fence
and are thinking about getting a computer might find the impetus to
go out and do it. But once you have a computer, it's a simple process.”

Faber sees the computer as “one of the few generalized tools that
have been available in the history of man,” and contends that as uses
of the computer become more widespread, diabetics who own com-
puters for a variety of reasons will incorporate this application into
their systems.

“Fire is a generalized tool,” he says. “It was no more designed to be
a cooker of meat than a power of rockets. Because of the nature of the
computer and the fact that software can be created to produce
desired results, in my way of thinking it’s a generalized tool.

“In fact, if the computer weren't there [he’s had his for three years], |
wouldn’t have thought of going out and getting a computer to make a
diabetes chart. People should consider the computer as a tool in their
lives, a generalized tool that they can mold to their specific needs.
And this program just shows that when the tool is there, it’s instantly
of great use.”

Faber’s program is a simple one. It's written to lead the user along
and can be modified to an individual’s needs with a minimum of effort
or expertise. The hardware necessary is a microcomputer with 4.5
bytes of memory on top of BASIC and a 132 character printer for the
charts.

But despite its value, Faber is quick to point out that “the computer
at this point does not keep diabetics in control. Diabetics and parents
of diabetics keep diabetics in control. The computer is only an aid to
make that easier. And since the urine test is an hour behind, the com-
puter is better at predicting trends than handling emergencies, in
which a minute can make a big difference.”

But even the computer’'s predictive potential has some enormous
implications.

“Because Ryan’s so young,” says Faber, “and is going to have to lie
with diabetes for so long, we're trying to avoid that long-term damage
to his blood vessels that would show up later in life. That's the value
of the program for us.”

How much value will it have for other diabetics? Only time will tell.
But for now, Faber, who donated this program to Interface Age, is
pleased with what he’s done and with the opportunity to make his
discovery available to others who need it.

“Obviously | can’t do anything about curing diabetes,” he says, “so
I've just made my contribution this way and I'm doing everything in my
power to make it available to the greatest number of people.”

It’s Not a Big Miracle 143

PROGRAM LISTING

1 REM PROGRAM T0O FLOT CHARTS OF URINE SUGAR WITH INSULIN CURVES

2 REM FOR REFEREN = PROGRAM WRITTEN IN MICROFOLIS BRASIC VERS. 3.0
3 REM FROGRAM DEDLCATED TO CLIFFORD RUBINy M.y SIR "RICK BANTING»
4 REM J. J+ R MACLEOD, C. H. BESTy AND COWS AND PIGSH ERYWHERE
LODIMIN(T7 24Xy T(792) s WE (75 40)

15DIMDS(2540)

20DATASUNDAY y MONDAY » TUESDAY » WEDNESDAY » THURSDAY » FRIDAY » SATURDAY
23DIMUC?)
JOFURI“'TO/ZFEAHUi(f):NEXTI
A0FORI=0QTO7 IFC TO240CLy
GOCE="0T! 1.2!31 B
LOOFRINTCHARS (12) IFRINTIINFUT*STARTING DATE FOR RUN"#D$C1)
L1OFRINTLINFUT"CLOSING DATE FOR RUN"FD$(2)
120FORI=1TO7IFRINTCHARS (12) IFRINTIPRINT"DATA FOR "fW$ (1) IFRINT
130INFUT"TIME OF INJECTION®FI(Is0)FRINT

L140INFUT " DOSAGE (REGULARYNPH) *3I(L»31),1(I,2)

150FORJ=1TOR24

L60XF 19 THENL®O

170FRINT (J100)+5005 INFUTD (I) IGOTO200
L1POFRINT(J%100)~19005 L INFUTD(Iy)

200NEXTJINEXTI

210GOSURA0Q00IPRINTIFRINT*RYAN FAKER?: CLINITEST RESULTS FOR WEEK QF: *3
QA20FRINTOSCLY 3" TO "FD$ (2 IFORI=1TOGIFRINT INEXTI
A3OFORI=LTOZIFRINT"RESULTS FOR *SWs (D) IFRINT

235U=6003U1=-1

260TFU=1(150) THEN2BS
270U=U+15U01=U1+1 S TF (UL+1) Z74=INT ((U1+1)/4) THENU=U+40

280GOTO260

283U =U1

290FRINTTAR(AS) "REFERENCE CURVE" IFRINTTAR(65) " doksokdokkiookkokkkk
JOOFPRINTTARCLA+UL) “++ " s TARCASZHUL) "+44 " # L IFI=0THENPRINT ! GOTO310
JOSPRINTTARCLO0) "TIME OF INJECTION:®*3ICIO)

==L INEXTJENEXTI

J1OPRINTTARCL34+UL) "+ +'3iTAR(414+UL) "+ + P LIFI=0THENFRINTIGOTO330
J20FRINTTAECLO0) "NOSAGE I "#1<(I» 1) i "UNITS REGULAR"
J30PRINTTARCLI24UL) "+ +USTARCIBHUL) "+ s TARCSLHUL) “+ " § S IF I=0THENFRINT

J3SIFI=0THEN3S0

340FRINTTAEBCLO7) T (Ty2) F "UNITS NFH®

JEGOFRINTTAR(BSHUL) "+

S6OFRINTTARCLIAHUL) “+ +R S TARCI2HUL) “+* s TAR(SSHUL) "+
B70FRINTTABCLOHULY "+ S TARC29+UL) "+ 5 TARCHZ+ULY "+
JGOFRINTTAR(PHUL) 4+ s TARC204UL Y “+" 3 TARC26HUIL) "+ S TAR(H0+ULY " 4"
JI90PRINTTAR(GHUL) *+* s TAR(214UL) "+ + " PTAR(L3+UL) "+
AQOFRINTTARCZHUL) “+" s TARC204UL) "+ +* s TAR(LL+HUL)Y "4
INTTARCLIZ+UL) *+" 3§ TARCIBHUL) "+ i TAR (&P UL " 4 °
INTTARBCHFUL) "+ " 3 TARCLALUL) "+ s TARC244U1) "+ 5 TAR(734U1) " 4"
NTTARCS+UL) "+ +"§TQH(“6#U1)"+'§TAB(/9+U1) +*
INTTARCAHUL) "+ +* s TARCR74UL) 4" 5 TAR (B
A50F0ORT Q= . : RINT "+ § INEXTIOFRINT
Bk 05UH460‘)

EXTEOIFRINT
INEXTIOIFRINT

)
60 () "y
RIO=800TO240
RIO=200T04008

INTTABCCCCIO-600) /1000 %4)+2) 03 INEXTIO
)O FRINTTAR(74+ (C1O/2003%4)) 105 INEXTLO

~'.’FI\JNIMIII$((“|'r 10y1)5

J/OFOR.
S7SFRINTTARCC(JX4)~1) 3

SBOIFDC(Iy J)<=C(10-~2) /2ANDUCT y U2 = (1O-3) Z2THENFRINT X5 :GOTO600
SP0FRINT® "5
SOONEXTULIFIO/2=INTCIO/2) THENFRINT Y <=5 3GUTY620

S1OFRINT® "

A20FRINTMIDG (CH» 10y 1)

144 Best of Interface Age/Volume 2

6BONEXTIO
440FDORIO=3TO1STEF-1FRINTMIDS(C$r»I10s1)5 S IFTO/25INT (10/2) THENFRINT b -
650FORJ=1T0O24 FRINTTAR((.JK4)~1)

S60IFI(Iy) <=¢10~1) /AANDDI(Ty)+ (10~2) /ATHENFRINT "X " § $GOTU680
670FRINT" "3

680NEXTJIIFIO/2=INT(I10/2) THENFRINT *<~~* :GOTO700

S90PRINT® *}

7O00FRINTMID$ (C$r1051)

71ONEXTIO

720G0SUB460 ¢ FRINT tFRINT $FRINT {FRINT tFRINT

722IFI=1 THENFRINT :FRINT

72SPRINTSPRINTSFRINTSPRINTSIFI=1THEN730

726FRINT {PRINT (FRINT SFRINT SFRINT
730FORIO=1TO132/3¢FRINT <" 5 {NEXTIOIPRINT

735IF I=0THENBOO

736FRINTIFRINT $FRINTSFRINT (IF =1 THEN740
737PRINT SFRINTSFRINT SERINT (FRINT
740PRINTSFRINT SFRINT $PRINT $FRINT INEXTI
750FORJ=1TO243K=02A=0FORI=1TO7 3 1FG(TyJ
760NEXTI$IFK=0THEN745

76200y J)=A/K

76SNEXT IS I=0
770U1=03FORAP=1TO7 :UL=01+U(QP) INEXTRF IUL=INT ({UL/7)+.5)
780FRINT*AVERAGED RESULTS FOR WEEK OF *3D$(1)5* TO *5U$(2)
790FRINT$GOTO290

800GOSUE30000

810END

30000ASSIGN(2,2)

30010RETURN

40000ASSIGN(2 1) tRETURN

=1THENA=A4D(]y J) IK=K+1

Due to the importance of this article, we recommend
that it be copied and used as often as needed. However,
proper credit must be given to: INTERFACE AGE, Mat
Tekulsky and Steve Faber.

Those of you interested in getting in contact with
Steve Faber can write to him at P.O. Box 69200, Los
Angeles, CA 90069.

—editor

Chapter 9

Heart Attack:
How You Can Predict It
and Some Things
You Can Do About It

by Leo P. Biese, M.D., F.C.A.P.

Heart disease is the number one killer in the United States, and one
form, the acute myocardial infarct, or “coronary,” is the most frequent
cause of sudden unexpected death. The facts are that by the age of 70
at least one out of every five readers of this book will be dead of a
heart attack. Such loss of life is not “preordained” but is a conse-
quence of the way we live.

In recent years, we have been accustomed to reading that eggs, but-
ter, smoking, and all sorts of other things are bad for our hearts.
Sometimes we are even given some sort of vague figures about how
bad these things are for us. This program will calculate your risk of a
heart attack, but far more importantly, it will show the improvement
that can be achieved by reducing the factors over which you have
some control.

BACKGROUND

For twenty-eight years the Heart and Lung Institute of the National
Institutes of Health, U.S. Public Health Service, has been closely
studying the population of Framingham, Massachusetts, in an effort
to determine the incidence and factors that influence heart and
vascular diseases of all types. From a massive program of multi-
variate regression analysis, seven factors have been isolated as
clearly influencing the probability of heart disease. Numerous studies
by other research groups in various parts of the country have substan-

146 Best of Interface Age/Volume 2

tiated the validity of this data applied to the general population of the
U.S. as a whole.

An eighteen-year follow-up of the Framingham population was
published by the U.S. Government Printing Office in 1974. Dr. Kammel
of the Framingham Project and D. McGee of the Biometrics Research
Branch kindly provided copies of the statistical data. Neither these
researchers nor the Nationai Institutes of Health is in any way respon-
sible for the use to which the author has put this data.

The statistical base is only valid for the ages of 35-65 (45-65 for
women) and the accuracy of the program outside these ages has not
been determined. It will be noted that the author has “fudged” a bit on
the lower age limits. The data, furthermore, applies only to those free
of known heart disease at the time the program is run. A previous
heart attack, for example, would make the program completely invalid.
The data of HDL is further qualified below.

THE PROGRAM

The program is written in MITS 4.0 Disk BASIC and is largely self-
explanatory. Formatting and console-switching program lines for the
production of a professional report have largely been eliminated in
the interest of brevity. Double precision arithmetic is declared in Line
380 and is redundant since the “#” appendage and the D-exponent
also signify double precision arithmetic in the MITS format; they are
retained only for clarity. The program takes only about two seconds to
compute probability in this format and does not constitute a signifi-
cant time delay. For clarity, the actual published NIH regression coet-
ficients are shown in a Remark statement (‘.) as well as the alter-
nates for all heart and vascular diseases beginning in Line 760.

The only other problems that may occur in translating this program
into other versions of BASIC are as follows: In Line 1010 EXP(X)
returns e to the power X. The formula for probability is:

S
T 14e™m

where sum is the total of all the coefficients times their multipliers
plus the intercept.

Lines 1380 and 1400 have a PRINT USING statement to avoid print-
ing out the fourteen-place double precision number. If your BASIC
does not have this, an appropriate rounding procedure must be used.
Finally, multi-letter variables have been used for clarity and you may
need to change these to single letters. The inputs have been assigned
single letters so they can be recalled for the printout in their original
form.

THE RISK FACTORS

Age is the single most important factor, since it is a high multiplier.
Unfortunately, it—along with sex—is one that is not under our con-
trol. A2 is used as a correction factor for the non-linearity of age with
risk, which is actually a quadratic term in the original equations.

Heart Attack 147

Cholesterol is the value of your blood cholesterol in mg/100 mi, and
can easily be obtained from your doctor if you don't already know it.
The factor is correct for most modern automated and semi-automated
laboratory methods, but your result may have to be lowered five to ten
percent if an older, manual method was used. Ask your doctor to find
out the comparison of his laboratory’s value with the “ABELL-
KENDAL” reference procedure if there is some doubt. Like age,
cholesterol is a non-linear function and CXA is the correction factor
for a cross-product term in the original equations.

BP is the resting systolic blood pressure. This is the higher of the
two numbers you are usually given as ‘“something over something,”
and is the peak pressure during the heart’s contraction. (The other
number is the diastolic pressure when the heart is relaxed.)

ECG refers primarily to evidence of left heart (the side that does
most of the work) enlargement as shown on your electrocardiogram.
Any other abnormalities in the ECG would also qualify, as would any
other evidence of enlargement, such as an x-ray. Heart enlargement is
an important indication that your heart may have to work too hard
pushing the blood around your body (a bigger pump for a bigger job)
and as such is an important indicator of risk. It is, however, often a
reversible change.

CIG refers to the history of smoking regularly within the past year.it
is a one-time additive factor (0 or 1) to the risk rather than a multiplier.
Note that the data is not available for increased risk based on how
long or how much you smoke, just whether you do or don’t. Strangely,
the data on smoking in women gave a negative correlation, sug-
gesting that they are better off (though only slightly) for it. This is
believed to be an artifact of the population (it is not negative, for ex-
ample, in the overall heart-vascular risk), but has been retained as
given.

GLU refers to glucose intolerance as manifested by a “high blood
sugar,” sugar in the urine, or a known diagnosis of diabetes. Like
smoking and ECG, it is a one-time additive factor rather than a
multiplier. It is not known if correction of diabetes reduces the risk.

GLU and ECG are probably the factors which the reader may have
the most difficulty in determining, though this information should be
readily available from your doctor. If you do not know these, and set
them to zero, the probability will be low (if you really did have them) by
somewhere between three and ten percent for each factor, and you
may want to run the program with various possibilities.

IN is in the X-intercept for the statistical data, the point at which all
risk factors in the probability equation would be zero.

HDL, or High Density Lipoprotein, has been very much in the news
recently as “the fat that's good for you.” This protein and its
associated cholesterol seem to protect the heart and indeed, very
high levels (over 85) are associated with longevity, often occurring in
families of people who customarily live to 90 or 100 without evidence
of heart disease.

148 Best of Interface Age/Volume 2

HDL was not part of the original Framingham criteria, but was from
later studies on an older population and was based on an eight-year
projection rather than a six-year one. For these reasons, it is not part
of the “official” U.S. Government criteria. The figures appear,
however, quite reliable. Unlike the other factors, it is a multiplier of the
previously determined risk above. A value of 45 (55 in women) means
that your overall risk is unchanged. Below this, the overall risk is
multiplied up to approximately three times, depending upon the level.
Values above this decrease your risk progressively. It is quite a new
test, and if you have not had yours measured yet, a zero will bypass
this part of the program. An exciting prospect is that it may be con-
trollable in the near future. As of yet, however, only alcohol (and fish,
to a very slight degree) have been shown to have any significant effect
in raising your HDL. Alcoho! does indeed raise HDL, but since cir-
rhosis is also a prominent cause of death, the reader is cautioned to
wait until further research has clarified the prospects of controlling
HDL before going off on a toot.

COM is your risk compared to the same age group (without regard
to HDL), in which BP = 105, CHO = 185, and CIG, GLU, and ECG are all
zero. This is the part of the program that will pointedly show you the
decrease in risks that can be obtained by a little clean living. It was
programmed as a simple table based on overall heart and vascular
disease to avoid introducing seven more variables and repeating the
calculations.

CONCLUSIONS

Put out the cigarette, switch to margarine, exercise a little, lose a
little weight, and OFF THE KLINGONS for a good many years to come.

PROGRAM LISTING

10 ‘HEART! PREDICTS THE PROBABILITY OF CORONARY HEART DISEASE WITHIN
20 ‘6 YEARS COMPARED TO A CONTROL FOFULATION AND MAY BE RERUN TO SHOW
30 ‘A DECREASED RISK OBTAINABLE BY REDUCING THE ‘CORRECTABLE’ VARIABLES
40 ‘'SMOKINGyBLOOD PRESSURE AND' CHOLESTEROL. COMPARISON IS TO A SAME AGE
50 ‘GROUP WITHOUT OTHER RISK FACTORS AND IS BASED ON THE DATA FROM THE
60’28+ YEAR ONGOING STUDY OF THE FOPULATION OF FRAMINGHAMsMASS. RY THE
70 ‘NATIONAL INSTITUTES OF HEALTH AND PUBLISHED BY THE U.S.GOVERNMENT
80 ‘PRINTING OFFICE IN 1974. ADDITIONAL DATA ON THE HDL FACTOR IS FROM
?0 ‘FROM LATER PUBLICATIONS AND CORRESPONDENCE (1977)

100

110 ‘PROGRAMED IN MITS 4,0 DISC BASIC BY:

120 ’ LEO P. BIESE» MD» FCAF

130 ‘ NEW ENGLAND CLINICAL LABORATORIES

140 ‘ 183 MAIN STREET

150 ‘ TILTONs N.H., (03274)

160

170 ’LIST OF VARIABLES FOR RISK CORELATION FACTORS!

180 -

190 ‘AGE IN YEARSs DIRECTLY CORELATED FOR 35-74 ONLY

200 ‘A2 A CORRECTION FACTOR FOR THE NON-LINEARITY OF AGE

210 ‘CHO FASTING BLOOD CHOLESTEROL IN MG./100ML.

220 ‘BP MEAN SYSTOLIC RESTING BLODD PRESSURE IN MM.HG.

230 ‘AVE TABLE OF MINIMAL RISK PROB FOR AGE GROUP

240 ‘COM COMPARISON WITH THE MINIMAL RISK GROUFP

250 ‘SUM SUM OF THE INDIVIDUAL RISK COEFFICIENTS

260 ‘CI1G SMOKING HISTORY (NON-SMOKER IS ONE ABSTAINING >1 YEAR)# O OR 1
270 ‘EC6 EVIDENCE OF LEFT HEART ENLARGEMENT IN THE ECG (0 OR 1)

280 ‘GLU GLUCOSE INTOLERANCE=1ys NONE=0

Heart Attack 149

290
300
310
320
330
340
350

360

370
380
390
400
410
420
430
440
450
460
470
480
490

500

510
520
330
540
550
560
570
580
590
4600
610
620
630
640
650
660
670
680
690
700
710

720
730
740
750
760
770
780
790
800
810
820
830
840
850
860

870
880
890
900
210

920

930
40
950
960

‘CXA CHOLESTEROL X AGEy» A CORRECTION FACTOR FOR NON-LINEARITY
IN THE REGRESSION ANALYSIS INTERCEPT

‘HDL HIGH DENSITY LIPOFROTEIN LEVEL IN MG/100 ML

‘SEX$ °M* OR °F*

‘PROB THE PROBABILITY OF CORONARY LDISEASE

‘CoM COMPARISON WITH THE MINIMAL RISK GROUP

‘SUM SUX OF THE RISK COEFFICIENTS

‘ DATA INPUT MODULE

PRINTIPRINTIPRINTIPRINT

DEFDBL A-Z

INPUT *NANME "iNS

INPUT*"SEX (M OR F) *$SEXS$

INPUT*AGE (IN YEARS) A

LINEINPUT"DATE "iDAYS

INPUT*DOCTOR/CLINIC ‘#DR$

INPUT *COLESTEROL 'ic

INPUT*BLOOD PRESSURE "sB

INPUT*"ABNORMAL ECG (YES=1sNO=Q) "SE

INPUT*SMOKER (YES=1,N0=0) 2]

INPUT*GLUCOSE INTOLERANCE (YES=1,NO=0) *i6

INPUT *HDL " #HDL

‘ CALCULATION MODULE (AS PRINTED BY MITS BASIC
AND AS GIVEN RY NIH)

IF BEX$ = *F" THEN 630

AGE = AX,3754941%° 0.3754941 MALES

A2 = AXAX -2,2165D-03 = 0.0022165

CHO = Cx ,0271697%° 0.0271697

BP = BX ,0118041#%" 0.0118041

CIG = Sx ,43891698%° 0.,4389169

ECG = EX ,3219494%" 0.52196%94

GLU = G% .2312953#%’ 0.2312953

EXA = CkAX -3.718D-04" - 0.0003718

IN = -19.4532586%" ~ 19,4532586

GOTO 870

AGE = AX ,37469988%' 0.3769988 FEMALES

A2 = AXAX -2,325D-037 - 0.0023250

CHO = CX.0185534%" 0.0185534

BP = BX,0132024%/ 0.0132024

CIG = S%-.17795784%° - 0.1779578

ECG = EX.71876594%" 0.7187659

GLU = GX.5602516%" 0.5602516

CXA = CXAX -2,288D-04° - 0.0002288

IN = -19.9537134%' - 19.9537134

THE ABOVE COEFFICIENTS ARE SPECIFIC FOR CORONARY HEART DISEASE.
FOR OVERALL RISK OF HEART DISEASE OF ANY KINDs INCLUDING STROKEr
SUBSTITUTE THE FOLLOWING COEFFICIENTS:

’,
’ t

‘ !

‘ H

‘]

‘ t AGE 0.3743307 MALES 0.,264635693 FEMALES
‘ { A2 - 0.0021165 - 0.0012655

‘ { CHO 0.,0258102 0.0160593

’ { BP 0.0156953 0.0144265

’ i CI6 0.5583013 0.0395348

’ { ECG 1.0529656 0.8745090

‘ { GLU 0.6020336 0.46821258

‘ } CXA - 0.00035619 - 0.,0002157

: P IN ~19.7709560 - 16.4598427

SUM = CXA+AZ+AGE+CHO+BP+CIGH+ECGHGLU+IN

PROB= (1/(1+EXP(-SUM))X100)

IF HDL=Q THEN 920

IF SEX$=°M* THEN PROB=PROBX(&XEXP{(-.04 %HDL)):{GOTO 920
IF SEX$=°F" THEN PROB=PROEX(11XEXP(-.043%HDL))

COMPARISON WITH MINIMAL RISK GROUF

IF SEX$="F* THEN 1030

IF A>33 AND A<=37 THEN P=.6
IF A>38 AND A<=42 THEN P= 1,1
IF A>42 AND A<=47 THEN P= 2

150 Best of Interface Age/Volume 2

970 IF A>47 AND A<=52 THEN P= 3.3
280 IF A>32 AND A<=57 THEN P= 4.6
990 IF A>57 AND A<=62 THEN P= 5.9
1000 IF A>62 THEN P= 4.8

1010 GOTO 1090

1020

1030 IF A>42 AND A<=47 THEN P= .8
1040 IF A>48 AND A<=52 THEN P= 1.5
1050 IF A>S3 AND A<=57 THEN P= 2,3
1060 IF A>S7 AND A<=462 THEN P= 3.2
1070 IF A>62 THEN P= 3,9

1090 COMwPROB/P

1180 PRINTOUT MODULE

1190 PRINTIPRINT

1200 PRINT"PATIENT? "NSTAB(50) "DOCTOR/CLINIC: * i DR$

1210 PRINTIPRINT*DATE :®;DAY$

1220 PRINT!PRINT

1230 PRINT®AGE*#AS: IF SEX$="M* THEN PRINT® MALE®#: ELSE PRINT* FEMALE®}
1240 PRINT TAB(40):!IF S=1 THEN PRINT®XX SMOKER %%* ELSE PRINT*NONSMOKER®
1250 PRINT*CHOLESTEROL =*3C#°"MG/100 ML®3TAB(40)4

1260 IF B6=1 THEN PRINT*GLUOSE INTOLERANT®ELSE PRINT*NO GLUCOSE INTOLERANCE®
1270 PRINT®SYSTOLIC BP =°#B}"MM, HG."$TAB(40)}

1280 IF E=1 THEN PRINT®ABNORMAL®) ELSE PRINT®NORMAL"$

1290 PRINT® ECG"

1300 IF HDL=0 THEN PRINT®HDL NOT EVALUATED®:180TO 1320

1310 PRINT*HDL = "HDL*MG/100 ML*®

1320 PRINTtPRINT !PRINT

1330 PRINT® BASED ON THE ABOVE DATA» THE PROBABILITY OF CORONARY HEART*
1340 PRINT® DISEASE WITHIN & YEARS IS "}

1350 PRINT USING “##.$"3FPROB}

1360 PRINT*X OR "3

1370 PRINT USING *##.#°3COM$

1380 PRINT® TIMES THAT OF THE®

1390 PRINT® SAME AGE GROUP WITHOUT OTHER RISK FACTORS.®:PRINT

oK

SAMPLE RUN

NAME 7 JOHN DOE

SEX (M OR F) M

AGE (IN YEARS) 7 35

DATE 4/28/78
DOCTOR/CLINIC T ANY CLINIC USA
COLESTEROL ? 185

BLOOD PRESSURE 105

ABNORMAL. ECG (YES=1,N0=0)

SMOKER (YES=1,N0=0)

3536095 INTOLERANCE (YES=1yN0=0)

e Y N
[-2-N -]

PATIENT: JOHN DOE DOCTOR/CLINIC:ANY CLINIC USA

DATE :4/28/78

AGE 35 MALE NONSMOKER

CHOLESTEROL = 185 MG/100 ML NO GLUCOSE INTOLERANCE
SYSTOLIC BP = 105 MM. HG. NORMAL ECG

HDL NOT EVALUATED

BASED ON THE ABOVE DATAy THE PROBABILITY OF CORONARY HEART
DISEASE WITHIN &6 YEARS IS 0.6%X OR 0.9 TIMES THAT OF THE
SAME AGE GROUF WITHOUT OTHER RISK FACTORS.

oK
RUN

Heart Attack 151
NAME ? FATHER DOE

SEX (M OR F) M

ABGE (IN YEARS) ? 65

DATE 4/28/778

DOCTOR/CLINIC 7 THE SAME

COLESTEROL 335

%
BLOOD PRESSURE ?
ABNORMAL ECG (YES=1,NO=0) ?
SMOKER (YES=1,NO=0) T
GLUCOSE INTOLERANCE (YES=1,NO=0) ?
HDL 7

PATIENT? FATHER DOE

DATE t14/28/78

AGE 635 MALE

CHOLESTEROL = 335 MG/100 ML
SYSTOLIC BP = 195 MM. HG.
HDL = 45 MG/100 ML

DOCTOR/CLINIC:THE SAME

X% SMOKER XX
GLUGSE INTOLERANT
ABNORMAL ECG

BASED ON THE ABOVE DATAy THE FPROBABILITY OF CORONARY HEART
DISEASE WITHIN é YEARS IS 51,8% OR 7.4 TIMES THAT OF THE
SAME AGE GROUP WITHOUT OTHER RISK FACTORS.

oK

152 Best of Interface Age/Volume 2

Chapter 10
Shooting Stars
By H. DeMonstoy

INTRODUCTION

This game was written to run on my SWTP 6800 with the CT-1024
terminal. The BASIC program is Tom Pittman’s “TINY BASIC 6800”
from Itty Bitty Computers. Tom Pittman’s Tiny BASIC takes about 2K
of memory.

The idea for this game came from BYTE’s May 76 issue, but | have
seen it in several forms from high level language to a game for the
calculator. | wrote this program to fit my needs with the Tiny BASIC
and TV terminal.

RULES OF THE GAME

The game is played in a “universe” of stars (x) and black holes ()
that is arranged in a 3 x 3 matrix. Each position has its own number
from one to nine. Position 1, 2 and 3 are across the top, with 4, 5 and 6
through the center and 7, 8 and 9 across the bottom. The first print out
has a star in the center (position 5) with black holes all around it. The
idea is to shoot stars only, never a black hole, and change the
“universe” into eight stars surrounding one black hole.

Each star has its own “galaxy,” and when a star is hit, every posi-
tion in that galaxy changes: all stars become black holes, and all
black holes become stars. The first shot must be position 5, the only
star in the universe. When this is done, position 5 becomes a black
hole and position 2 (above), position 4 (left), position 6 (right), and posi-
tion 8 (below) all become stars. So it goes on and on. The best score is
eleven shots, but watch out for the all black hole “universe” because
it is a loser; no stars left to shoot.

The instruction subroutine has a “galaxy” map to follow. Each one
is different, which makes for an interesting challenge.

154 Best of Interface Age/Volume 2

FRAME NUMBERS DISPLAYED FOR ADDED INTEREST

For added interest the frame number is printed in the first line of
each frame to keep a running count of the tries. The record here is 56
tries before a win. By the way, | think the quickest loss is in 5 tries, but
| may be proven wrong.

CRT TERMINAL CONTROL

As | mentioned before this program was written for the CT-1024 TV
terminal and so has some special statements to control the cursor. In
my system the ““Home Up” is a CONTROL P (DEL), and “Erase to EOL"”
is a CONTROL U (NAK), but may be different in your system. These do
not show in the written program, but are used 4 times. The first is line
149 where, after 3 frames, a new start is made at the top of the screen.
The control signals are located in the quotation marks after the PRINT
statement. Lines 900, 919 and 939 are similar, and start the three in-
struction frames.

TTY TERMINAL CONTROL

If you are running this on the TTY terminal, then there will be no use
for the control statements used as cursor control. There are three sets
of statements at the end of each instruction frame designed to hold
that frame until the next one is wanted. These statements and the
INPUT Z statements that follow will have no use with a TTY terminal.

RUNNING SHOOTING STARS WITH 4K MEMORY

By removing the instructions, this could be run on a machine with
only 4K of memory.
| hope you enjoy Shooting Stars.

PROGRAM LISTING

2NB KEM SHONTING STAKS IN TRX

2t RFEM RY HFERMAN DFMANSTNY

a2 wkFm DATFE: 12-1K-T74

AA3 REM MICROCOMPUITER: SWTP'S &x2A0

AAA KFM SUPPORT SNFTWAKF: TNM PITTMAN'S TRX
MRS KFM MEMORY RFOUIRFD: 2K FNk TRX & GAME
AA6 RFM TFRMINAL : CT~1024 KFEYROARD-CKT OR TTY
WAT KFM

NAE KFM

MR PRINT “INSTRHCTIONS (1=YFS$, #=NN)";
a2a INPUT 7

a3A JF Z=1 GOSIIB 904

172 A==}

131 B=-}

1902 C=~-1t

1?3 D=-1

104 F=t

15 F=-1

N6 R=-1

127 H=-1

18 I=-1

199 J=a

148 PRINT

149 1F J73*3=J PRINT "*;

15@ IF A=l PRINT "= 3

1581 IF A==1 PRINT "= *;

Shooting Stars

155

PROGRAM FLOW DIAGRAM

START

SETUP
UNIVERSE

HAVE

HOM
3 FRAMES v
PASSED? ERASE EOF

PRINT
“UNIVERSE"”

Flow Chart—Part 1. Shooting Stars

15 Best of Interface Age/Volume 2

o

YES
“YOU WIN"
NO
YES
@ “YOU LOSE”
NO
ssHoOT!” [
INPUT Y
NO “SHOOT”
“STARS ONLY"
YES
CHANGE
Y GALAXY
¥
COUNT
SHOTS

Flow Chart—Part 2. Shooting Stars

Shooting Stars 157

185 IF PRINT " '3
156 IF 1 PRINT "=
1A TF PRINT %

TA1 IF 1 PRINT *w
16S TF PRINT % '3
166 TF 1 PRINT "3
170 IF PRINT "% '3
171 1F 1 PRINT ' s
175 IF PRINT

176 IF I PRINT

1RA 1F PRINT "%

151 IF 1 PRINT *= 3
185 IF PRINT *x 3
164 TF 1 PRINT !]
1994 IF PRINT "=*

191 IF I PRINT '~ "3

250 1F F=) GNTN 39@

P60 TF A+H+CHN+F+G+H+ 1=K GOTN =AY

2T TF A+R+C+N+F+G+H+T=-% GNTN &R20

393 PRINT "SHANT':

91 INPUT Y

395 ANSHR 499+Y*1R

397 J=J+1

400 GNTN 14r

499 PRINT YOI GAVF 1P ON 5 43 TkyS t11»
SAA 6(NTN K3A

SA9 TF A=~{ GNTN RAY
510 A=-A

511 BR=-R

512 D=-h

513 F=-F

S1é RFTURN

519 IF B=-1 GNTN RO
524 A=-A

521 R
522 C=-C

526 KETURN

529 IF C=-1 GNTO RAD

539 R=-B

531 C=-C

532 F=-F

533 F=-F

536 PFTUKN

S39 IF D=-1 6G0OTN KAA
S49 Az=A

841 ==-D

542 G=-6

S4é RETHKRN

549 IF F=-1 GNTN &KUA
S50 R=-R

551 P=-p

552 F=-F

553 F=-F

554 H=-H

556 KETUMN

559 [F F=-1 GNTN KuY
S6# C=-C

561 F=~F

562 I=-1

S6A RFETURN
569 IF G=-1 GOTN RAA

570 D=-D

571 F==F

572 6G=-G

573 H=-H

S76 RFETIIKN

579 IF H=-1 GNTO KAA
S8 G=-G

SRl H==H

582 I=-1

S86 KETURN

589 IF I==1 6GNTO RKAA
599 F=-F

591 F=-F

992 H=-H

593 I=-1

158

596 RFETURN
599 KETUKN
RAA PKINT
BAl PKRINT
rM2 GOTN 3
BA9 PKINT
R1@ PRINT
RIS 0T R
R2A PRINT
834 PRINT
#31 PRINT
832 INPUT
B33 IF X=1
834 IF X=0
835 PRINT
#36 GOTN 8
894 PKRINT
RIS END
899 kKFM IN
AN PRINT
941 PKINT
92 PKINT
9A3 PKINT
9234 PRINT
NS PRINT
996 PKINT
947 PKINT
9K PKINT
91 PRINT
911 PKINT
912 PRINT
913 PRINT
914 PRINT
915 PRINT
916 INPUT
922 PRINT
921 PKRINT
923 PRINT
924 PRINT
925 PKINT
926 PRINT
927 PRINT
928 PKINT
929 PKINT
939 PRINT
931 PKRINT
932 PKINT
933 PKRINT
934 PRINT
935 PRINT
936 INPUT
940 PRINT
941 PRINT
942 PRINT
943 PRINT
945 PKINT
946 PRINT
947 PRINT
948 PKRINT
949 PRINT
958 PRINT
951 PKRINT
952 INPUT
999 KFTURN
10908 END

Best of interface Age/Volume 2

HEY !! YNit CAN ONLY SHOONT"
"STARS, NNT BLACK HOLES.”
92

YO NON WITH *“5d3"™ SHOTS"™
39
Y0P LOST YITH 305 TRYS.

“TKY AGAIN C(i=YFS, A=NN)";
X
GOTN 100
GOTH K92
"FOLLOW INSTRUCTIONS
31
"HOPE YOU HAD FUN"

STRUCTINN SHBKROUTINE
“* % % THFRF AKF STAKS™
- - - AND BLACK HOLFS"
“x x x [N THE (NIVERSF™

1.2 3 YO SHNNT A STAK *
*a S 6 NOT A BLACK HNLF -
"7 8 9 RBY TYPING ITS NUMBFR™

“FACH STAR IS IN A GALAXY."
TWHEN YNORE SHODT A STAKs, FUWEkY-"
“THING IN ITS GALAXY CHANGES.™
*ALL STAKS RFECOME BLACX HOLES,™
"ALL BLACK HOLFS RFCNOWME STAKRS."
“TYPF *2' TO GN NN."3

z

“"GALAXY MAPS:"™

"] % - *x 2 x - x® 3"
e x - - - - - % %"
Ve = - - - - - - et
T e - - ® - - - %"
R I Y A
R L A 1
Ve - - - - - P —
Yk ox - - - - - % %'
"7 % - * H x - %= 9"

“TYPE *3' TO G0 ON'3
4
“PATTFRENS TO LOOK FOK:'™

"START N LOSE"

:
*
'
* % *
* b o»
L
'
1

“TYPF *A' TN FND GAMF"

“TYPE '4' TO GN ON'3
z

Shooting Stars 159

SHAOTING STARS BY He DEMONSTOY

RUN
INSTHRUCTINNG C1=YFS, 0=NG)? O

--=- 0
- -

- - - SHOOT? 5
- % - 1

* o~ x

- ¥ - SHUOT? 2
* - x D

* - %

-k - SHOOT? K
* - % 3

* - *

* - ¥ SHOOT?]
- % % 4

-k &

* o=k SKOIT? 9
- % % 5

* ok - SHNGT? 3
- - - 5

- %

* ¥ - SHOOT? 5
- % - 7

* - - SHOGT? 7
- % = 3

- % -

- % - SHOOT? 2
* - 9

- % -

- r - SHOOT? &
* - 10

- % -

* - % SHOGT? &

* ¥ 3 11

* - X

* ¥

YOU VON WITH 1) SHOTS

TRY ACAIN (1=YFS5, 0U=N5)? O
HiPE YO HAD FUN

160 Best of Interface Age/Volume 2

Chapter 11

European Roulette
in Color

By W. C. Hoffer

Fortunes have been made and lost at the roulette tables of the
world, but after an initial investment for the hardware, you can play
roulette without fear of losing your fortune. The game, European
Roulette in Color, runs on the Compucolor microcomputer and re-
quires a minimum of 16K bytes of user random access memory.

The original program was written in Dartmouth BASIC. The conver-
sion to a non-pictorial version for Compucolor BASIC was not dif-
ficult. The time-consuming effort was animating the game and adding
color. Currently, the “wheel” consists of a ball which rolls counter-
clockwise on one circle, then clockwise on a smaller circle simulating
how the ball falls into the winning number.

| have dispersed REMARK statements throughout the program to
help the reader determine what happens in each section.

Operating instructions and playing rules are available at the begin-
ning of each game. New players are urged to read them in order to
avoid confusion.

However, the program is completely self-instructing and prompts
the player for each input as required. Player inputs are checked for
validity. Invalid plays are politely refused and the player is asked to
play again.

After the playing surface appears on the screen, you will be
prompted to PLACE YOUR BETS. The cursor will be positioned where
a question is being asked, and the player must respond with either a
YES or a NO each time the cursor points to a word. After YES answers
are given to the ODD or EVEN, RED or BLACK dispiay, a “$” will ap-
pear asking for the bet in dollars. A YES to the COLUMN question will
result in a *“1-2-3?” display, asking for the column of your choice and
your bet. A YES to the NUMBER question will prompt “0-367?", asking
for the number and your bet.

162 Best of Interface Age/Volume 2

When all the bets have been placed, the ball will begin to roll just
above the playing surface. When the ball stops, the winning number
will appear on the left of the screen, and the BETTING RESULTS sign
on the right. The actual results for each of your bets will follow that.
Losses are displayed in RED and winnings in GREEN. The cumulative
total for the games is kept for you and is constantly displayed on the
right of the screen.

The HOUSE wishes you the best of luck and reminds you that you
may pick up your winnings at the same location you deposited your
losses.

PROGRAM LISTING

1°¢ RY FUROPFAN POULTTTF

11¢ REM CONVEPTFD FROM DARTMOUTH PASIC RY:

115 R¥™ W.C.HOFFER-2721 N. WANDA-SIMI VALLFY,CA-C30€5

11€ IV PFQUIRFS 16K OF USER RAV

11F RE~ DISPLAY THF INTRODUCTION

12¢ PLOTE:PLOT32:PLOT12:PLOT27:PLOT11:PLOT14

12¢ PIOTZ:PLOT21:PLOTE

14¢ PLOTE:PLOT2E)

15¢ PRINT"COMPGCOLOR PRESENTS FUROPFAN ROJLETTF

1”@ PLOTZ:PLOTRC:PLOTY

170 GOSUE 12000

12¢ PLOTE:PLOT?7:PLOT1Z

21¢ ¥=¢

22¢ PRINT "WELCOMF TC THF COMPUCOLOP CASINO AND OUR *UROP"&N 20ULETTF TATTF.
2%p PRINT "WE WISH YOU THE REST OF LUCK!.

24¢ PRINT:PRINT:PRINT

2€¢ FRINT'DO YOU WANT INSTRUCTIONS";

265 PRINT

27¢ IN®UT 7%

28¢ IF 25="NO" TUFN 4£@

20¢ IF 28="YFS" THEV 322

2¢¢ rOSUT 10€Q

71¢ 50TO 24¢

22¢ PLOTA:PLCT7:PLOT12

225 PPINT” THIS IS A GAMF OF RQULETTF. Y0J A&F ALLCWED T0 B
230 PRINT ANY (OR ALL) OF THF FOLLOWING: WHETHER A NUMBF3 IS 0
24¢ PRINT CSLOP (RED OR BLACX) OF "1E NUMRER, A COLUMY OF NUMBE2S
25¢ PRINT"A NUMTFR ITSFLF. NUMBRERS RANGH: FXOM 2 TO *2. IF A 2 A2PF
3€¢ PRINT"TFE EANK COLLECTS ALL EETS FXCEPT THOSE R#®0 ON P3F {UMBEF

62 PRINT:PRINT

265 PRINT'THT PAYOFFS ATE AS FOLLOWS:"
27¢ PRINT"OIL OF EVEN 1 70 1"

3¢ PRINT'RED OR BLACK 1 70 17

2q@ PRINT'A COLUMN cizon;

40¢ PRINT A NUMRER 3579 1

405 PPINT

41¢ PRINT YOU AR® ALLOWED TO BET FROM $1 T2 $12,200, U1 T8%"
42¢ PRINT"TARLE yILL ONLY ACCFPT BFIS 0F WHOLF DOLLARS.

425 PRINT
43¢ PPINT"(IF YOI WANT TO EET CHANGE--GO USE THE SLO1 MAlHINT®)”
4¢¢ PRINT "HIT THE SPACE FAR ¥4EN Y0U ARE RYALY

47¢ P1=FNT(1):1F INP(1)<>GE TIRN 47¢ ///’/

40¢ 30SUE @7 :REM DRA4 THE TABLF

EP@ REM TAYF THF BFTS

%1 FIOT3:PLOT@:PLOT1¢:FLOTE :PLOT?
Eg2 PRINT™ ;
EPZ GOSUR 2302

=4 GOSUR €520

5¢5 PIOT14

51¢ PLOTE:PLOT?S

52¢ PIOT?:PLOTZ:PLOT2¢

£2¢ PRINT 'PLACE YOU® BETS

£4¢ FOR J1=1 TC SEC:NEXT J1

552 PLOTR:PLOT2

S6¢ PLOTZ:PLOTE:PLOT2¢

European Roulette

572 PRINT PLACF YOUR PETS”
58¢ REM ODD?

500 PLOTE:PLOT1

Foe PLom‘-Pp0T4-°L0124
£10 INPUT ="jA%

£2¢ IF ns-nno JTHEN 76e
2@ IF A$="YES" THEN €60¢
€4¢ COSUR 19€€

£42 PLOTZ:PLOT4:PLOT24
F44 PRINT H

§5¢ £NTO €00

£E@ RE¥ GE™ AMOUNT

FfE5 pe="OND"

£7¢ PLOT3:PLOTO:PLOT24
€Rg INPUT"$":iH

0@ 1F H<¢=10200 THEN 720
7@¢ GOSUR 198¢

722 PLOTZ :PLOTO:PLOT24
774 PRINT H

71¢ COTO E7¢

72¢ IF B<@ TEIN 740

7%@ IF H=INT(H) THEN 95€
74¢ COSUR 2010

75¢ GOTO 7e2

77@ PFM FVEN?

77¢ PLOTZ :PLOTS:PLOT2E
780 INPUT -";E$

70€ IF R$="NC" THEN 63¢
2@ TF B$="YEs" TPEN 82
£1¢ GOSUR 12€@

€12 PLOT"°LOT"PLOT2=
214 PRINT'

FP€ GOTO 772

£2¢ FEVM GWT AMOUNT

£35 Pé="FVEN

£40 PIOTZ:PLOT1¢7:PLOT28
e5¢ INPUT"&";H

FAP IF B(=1Q0C0 THEN £89¢
870 GOSUR 196¢

€72 PLOT3:PLCT1Z: prorvs
€74 PPINT'

£80 GOTO €40

RO@ IF HCE THEN 91¢

e7¢ 1F B=INT(H) THEN 95¢
©1¢ GOSUR z21@

2@ GOTO 872

€2¢ RFM NO OTD/FVEN EFT
040 H=0

95@ REM RED?

€8¢ PLOTZ;PLOT4:PLOT32
c7¢ INPUT -":C4

oe@ IF C4="NO" THEY 1120
0@ IF C$="YFS" TUFN 1022
1200 GOSTR 19€¢

1022 °L0’1'9L0T4'°L0T32
10@4 PRINT’

121¢ 5070 ©€@

1020 REM_GFT AMOUNT

125 D$="PED"

122¢ PLOTZ :PLOT°'FLOT‘2
174@ INPUT

125¢ IF 1(-1oaco THFN 1280
10€Q GOSUR 196¢

10€2 PLOT3:;PLOTO:PLOT32
10€4 FRINT" H
127¢ GOTO 1e2¢

178¢ IF 1<0 THEN 1100
1¢¢¢ IF I=INT(I) THFN 1240
110¢ GOSUE 2e1@

111¢ GOTO 1€A2

112¢ REM PLACK?

1122 PLOTR:PLOTE:FLOT3S
1124 INPUT"="5C4

1126 IF C$="NO" THTN 122¢
112€ IF C$="YES" THEN 112€

163

164

113@
1131
1132
1134
11 2€
1128
1142
1142
115¢
1160
11ge
11€4
117e
11F@
119¢
12e¢
121¢
122¢
123¢
1240
1250
12€e
127¢
12¢ee
1290
1292
1294
120¢
121e
122¢
1230
1740
1345
125¢
1280
122re
1280
1200
1298
1400
1410
142¢
1430
1442
1442
1444
1450
14€0
147¢
1480
1482
1400
1502
151¢
18202
1530
154¢
155@
1560
15682
1564
157¢
15ee
1500
1€ee
1610
1£20
1630
1€38
1F4¢
1652
1652
1€54
1656
1€
1872

Best of Interface Age/Volume 2

GOSUE 196@
PIOT3:PLOTE: PLOT36
PRINT” H

60T0 1122

RFM GET AMOUNT
D$="RLACK"
PLOT?:PLOT11:PLOT2E
INPUT"S$"5 T

IF I<=10@¢e THEN 11£0
5O0SUR 1982
PIOTZ:PLOT11:PLOT35
PRINT"

GOTO 1142

IF I<¢ THEN 1ze¢

IF I=INT(I) THEN 1240
GOSUR 2¢1¢

60TO 1162

REM NO RED/RLACK RET
1=0

REM COLUMN?
PLOTZ:PLOT7: PLOT4L

" THEN 1400
IF B1$="YES" TYEN 121¢
GOSUB 1°€0
PIOT3:PLOT?: PLOTa?
PRINT’
50TO 1250
PLIOT3:PLOT?: PLOT4¢
INPUT"1-2 OR 227;B2
IF B2>0 THEN IF B2<4 THEN 1400€
PIOT2:PLOT?: PLOT40
PIOTE:;PLOT7Y
PRINT"1-2 OR ??
FOR J1=1 70 5€€:NEYT J1
PLOTZ:PLOT?:PLOT42
FLOTF:PLOT1
PRINT
GNTO 1210
REM GFT AMOUNT
PLOT3: PLOT17 PLOT42
INPUT" &7
IF Re<= 120@2 TYEN 14€0
GOSUP 198¢
PLOT3;PLOT19: PLOTJZ
PRINT"
GOTC 1410
IF Be<@ TEEN 1480
IF BE=INT(B8) THFN 1512
GOSUR 2010
GOTO 1442
REM NO COLUMN RET
BE=Q
REM NUMEER BET?
PLOT3:PLOT7:PLOT44
INPUT"-"5 B¢
IF E$="NO" THEN 179¢

IF F$="YES" THFN 1580
tOSUR 1060
PLOT2:PLOT?: PLOT44
PRINT"

GOTO 152¢
PLOT2:PLOT12:PLOT44
INPUT @-362";F

IF F<@ THEN 153@

IF F>2€ THEN 1632

IF F=INT(F) THEN 1£7@
PIOT3:PLOT12: PLOT44
PIOTE;PLOT?S

PRINT @-3€2

FOR J1=1 TO 5@¢:NFXT J1
PLOT2:PLOT12:PLOT44
PLOTF:PLOT2

PRINT"

GOTO 158¢

REM GET AMOUNT

European Roulette 165

170¢
171e¢
1720
173¢
1732
1734
1740
175¢
17ee
177
17ee
170¢
1°ee
181¢
10€2
1¢662
10€4
19€8
1ao7¢
1072
1074
1976
19¢ee
1982
19R4
1988
1988
109¢
1992
2eee
201
°e12
2014
2016
2e1v
2¢1R
°rze
2030
204¢
205¢
2ene
2020
229
2291
2¢92
2eg2
2094
21ee
2110
212e
212¢
2140
215@
21€0
217¢
21€0
2100
zz200
22190
222¢
223¢
2240
22%5@
22€0
2270
2260
229¢
2z2ee
2%1e
2320
2230
2742
225¢
2260
Py

2ree

PIOT3:PLOTZ@: PLOT44
INPUT"$";6

IF G<=1002Q@ THEN 1750
GOSUE 190

PLOTZ:PLOT2€: PLOT44

PRINT’

noToO 172¢

IF G<@ TEEN 177¢

IF G=INT(G) THEN 2040
fOSUR zele

GOTO 1722

REM NO NUMRER BET

6=¢

GOTO 2¢5¢

PLOT3:PLOTQ: PLOT4
PIOTE:FLOT?9 %
PRINT"PLEASE!! YFS OR N2O";
FOR J1=1 70 5@@:NEXT J1
PI0T3:PLOTZ: PLOT4
PLOTE:PLOT1

PRINT"

RFTURN

PLOT3:PLOTQ:PLOT4
PLOTE:PLOT7O

PRINT "HOUSF LIMIT IS 517 eeet!”
FOR J1=1 TO 52@:NEXT
PLOT3:PLOTO: PLOTA

PIOTZ:PLOT1

PRINT’

RETURN

PIOT2:PLOTR:PLOT4

PLOTE:PLOT?O

PRINT FULL DOLLAR BETS ONLY PLFASE"

FOR J1=1 TO 5@2:NFXT J1

PIOTZ:PLOTA:PLOT4

PLOTF;PLOT1

PRINT'

RETURN

REM

REM

T=INT (27%RND (F+E+I +BR+EZ24G))

REM THE NUMBFR IS

T1=INT(T/12)+1

f1=1

GOSUR ozoe

1=11

PLOTZ:PLOTE:PLOT1@: PLOTE:PLOT1S

ON T1 GNT0 2110@,2120,2130,2140

ON T+1 G0TO 23¢@,221€,229¢,2252 ,227¢,2232,231¢,2212 ,2202,2252

ON T-9 GOTO 2270,2250,219¢,23302,2170,227¢,215€ ,235¢,219¢,221¢

ON T-10 GCTO 2200,225€,227¢,223¢,271%,221@,2178,2370,227¢ , 235057 0P
ON T-2¢ GOTO 219€,223¢,217¢,237¢,215¢,2352,2190

PRINTT; " RED,EVEN,COLUMN 1

G0OTO 2420 ;

PPINTT; " PED,EVEN,COLUMN 2"

GOTO 2400

PRINTT; " PED,EVFN,COLUMN 2
3070 2400

PRINTT; " RED,ODD,COLUMN 3
50T0 242€

PPINTT;" RFD,O0DD,COIUMN 2
GOTO 2420

PRINTT; " RED,ODD,CCTUMN 2
6070 2420

PRINTT; " BLACK,EVEN,COLUMN 1
60T 2400

PRINTT;" RLACK,FVEN,COLUMN 2
6OTO 24¢¢

PRINTT; " RLACK,FVEN,COLUMN 2
GOTO 24¢¢ :
PRINTT; " ELACK,OID,COLUMN 1
50T0 2420

PRINTT; " BLACK,ODD,COIUMN 2
GOTO 2420

PRINTT; BLACK,NDD,COLUMN 3"
6OTC 24¢¢

166 Best of Interface Age/Volume 2

270¢ PRINT"THE NUMEFF IS ¢
240¢ PLOTZ:PLOTEZ:PLCT22
2401 PIOTS:PLOT7O

2402 PRINT"RFTTING RFSULTS”
243 FOR £O=1 TO 522Z:\NFYT GO

2404 PLOTE:PLOT2:PLOTZ:PLOTER:PLOT2C
240% PRINT"RFTTING PESTLTS

240c IF G=¢ THEN 247¢

241¢ IF T=F THEN 245¢

247¢ G=-G

244¢ ANTO 247¢

245¢ PFM

P4FQ G=REXG

247¢ 1F u=¢ TEFN 25€¢

745¢ IF T=¢ THEN 257¢

240¢ 1F Re="EVFN" THFN 2540

25¢¢ ¥OF Y=1 TC 35 STFP 2

251¢ IF T=Y THEN 2£17

PE2 NEYT Y

253¢ 1070 ZE%@

2540 FOP X1=2 TO 3£ STE® 2

PRER IF T=Y1 THEN 2F1¢

ZEEP NEXT Y1

287¢ DEM

2500 K=-H

2f1¢ PFF

262¢ IF R4="IVFN" TEFN &40

2F3¢ PLOT?:PLOTE3:TLOT24

PRZ5 [OTO 2F42

2247 PIOTZ:PLOTF4:PLOTZE

2F42 IF H<C THPN 264F

2F44 TIQTF:PLOT?

PE45 GOTO 2€5¢

2746 PLOTS:PLOT1

2650 PRINT ™ §3F

2E€7 IF I=¢ THIN 2540

2F7¢ IF T=C THEN 294¢

2FRP TOR A1=1 TO © STFP 2

2507 IF T=A1 TFEN 2637

27¢¢ NFYT A1

271¢ ¥OP A2=12 T2 1P STEP 2

272¢ IF T=A2 TFEN 263¢

272¢ NFYT A2

274¢ FOF A2=10 70 25 STWP 2

275¢ IF T=AZ THEN 202¢

276¢ NFXT A3

277¢ FOR A4=3@ TO 38 STTP 2

278¢ IF T=A4 TEEN 2R32

270¢ NEXT A4

2P@¢ IF T=2f THFN 2°3¢

2217 IF D$="BLACK"™ THEN 2RE¢

2920 60TO 2740

2p3¢ 1F D$="RED" THIN 286¢

2240 REM

2060 1=-1

2°8¢ PEM

2P9@ IF L$="FLACK" THEN 292¢

20¢¢ PLOTR:PLOTF2:PLCT22
201¢ nNTO 293¢

202¢ PIOT3:PLOTES:FLOT3E
202¢ IF 140 THEY 207¢
2022 PLOTE:PLOT2

2034 GNTO 297f

20%¢ PLOTF;PLOT1

2038 PRINT" $731

2040 IF BP=¢ THFN 2212
205@ IF T=¢ THEV *1€¢
20F@ FOR R3=1 TC 24 STFF
2a7¢ IF T=B2 TYEN 205¢
20£¢ NEYT B3

2002 FO® Pa=z TH 2& ST
2¢@e¢ IF T=E4 TEEN 3277
3¢1¢ NEYT R4

3@2¢ FQ© R5=Z TQ 3F STVP
2¢2¢ IF T=BS THEN 2287
20402 NEXT RS

(e

TF 3

(&)

European Roulette

325
20€0
ldrd 4
azee
2eae
2120
2110
r13e
140
315¢
S1EQ
219e
xzee
22e2
204
32¢¢
aree
210
3212
3212
2214
32185
21
3215
321¢
2220
22320
23235
2240
2250
3260
2270
328¢
x29¢
4060
4028
40¢¢
soee
se1e
5040
sote
EeFQ
seee
seoe
£12e
£12¢
5142
s1e0
f180
ezee
§22¢
£22

5238
240
F2Re
5280
£r0¢
s32e
240
FREQ
F2ee
g400
5a2¢
G440
FaFp
eeldg
552¢
5540
SREP
500
559¢
ceoe
8R1€Q
€15
ﬂﬂza
et 1

IF P2=1 TUFRN 211¢

IF F2¢>1 THEN Z21€¢

IF P2-2 THEV 7112

I® P2<>2 TUFN 3160

IF E2=3 THEN Z11¢

IF BR24>® THEN 21€e

REM

PEM

RE=2*BE

nnTo 320

REM

RE=-P8

IF PECE THEN 22¢5
PLOTE:PLOT2

507T0 32¢Q

PIOTA:PLOT1
PLOTZ:PLQTEC: F10T42
PRINT" ¢":mR

IF G=¢ THUFN 322¢

IF G<e THEN 221f€
PLOTE:PLOT2

cOTO 3218

PIOTE:PIOTL
DLO*"PLOTFG-DTCT44
PRINT" §
P[OT“PLOTFC'PIOTIZ
PEINT

XC=KO+G+H+I+RR

IF K9¢2 THEN Z227e
PLOTF:PLOT2

GOTO 22€¢

PLOTE:PLOT1

PLOTE: PLOTEL:PLOT1C
PRINT" $7;K9

FIR I1=1 TC 220@:NFIT I1
G0T0 52

PND

RE™ LRAW THE BOARD
PLOTF:PLOT?: PLOT15:2L0OT12
PIOTE:PLOTSE
PIOTZ:PLOT35: PLOT47

FOR I=1 70 11:PLOT32:NEXT
FOP I=44 TCQ 22 STF® -2
PLOT2:PIOTIS:PLOT I

FOR J=1 72 11:PLOT32:NEXT
NFXT I
PLOTZ:PLOTZS:FLOT17

FOR I=1 TO 11:PLCT32:NF(T
FOR I=2¢ TN 44 STFP 12
PLOTZ:PLOT29:PLOT I

FOR J=1 T 22:PLOT32:NFYT .

NEXT T

FOR I=2& mC 52 STEP 24 :REM STAR

FOR J=44 T7 2@ STFP-1
PIOTE:PLOT I:PLOT J
PLOT3Z :NEXT J

NEYT I

FOP I=24 TC 46 STEP 12
FOR J=17 TO 47
PLOT3:PLOT I:PLOT J
PIOT32:N¥XT J:NFXT 1
FOR I=2° TO 42 STSF 4
FOR J=20 T" 47
PIOTZ:PLOT I:PLOT J
PLOT32:NEXT J:NFXT I
RFM LABFL THE BOARD
PIOTE:PLOT20

FOR 1=28 T0 47 STFF 1R
FOR J=21 Tn 31
PIOT3:PLOTI:PLOTJ

FOR K=1 TO 5:PLOT32:NFXT K
NEXT J:NEYT I

¥0® 1=1F Tn 19
PLOTZ:PLOT35:PLOTI

FOR J=1 T0 11
PIOTE2:NEXT J:NFXT I

1

J

1

»

167

168 Best of Interface Age/Volume 2

S€5¢ FOF I=45 T0 4€

SFEC FOR J=7E T0) 42 STEP 4

§47¢ PIOT3:PLOTJ:PLOTI

5£8¢ FOR K=1 TO 3:PLOT32:NEXT K

5690 NFXT J:VEXT I

£7@¢¢ PIOT2:PLOT4@:PLOT1Q:PRINT 2"
5712 PLOT2:PLOT2¢:PLOT25:PRINT ETEN"
572¢ PLOTZ:PLOT42:PLOT28:PRINT ODD
§73¢ FOP 1=35 TO 43 STEP 4

574¢ PLOTZ;PLOTI:PLOT45

£75¢ PRINT COL™ :NEXT I

§76¢ PIOT3:FLOT36:PLOT4S

87€5 K=¢

€77¢ FOR I=35 T7 42 STEP 4

5780 K=K+1

579¢ P1OTZ:PLOTI:PLCT4E

£20¢ PRINTK

5610 NEXT I

£22¢ PIOTE:PLOT?

£83¢ PLOT3;PLOT2Q:PLOT3E

524¢ PRINT RLACK'

§85¢ PLOTE:PLOT15

ER€Q FOR I=33 T0 42

567¢ PIOT3:PLOT47:PLOTI

5PE¢ FOR J=1 TO 5:PLOT22:NEXTJ

£90¢ NPXT I U
§07@ PIOTE:PLOT4E:PLOT3S:PRINT FED
501¢ PLOT3:PLOT35:PLOT21:PRINT
8912 PLOT2:PLOT43:PLOT21:PRINT
5014 PIOT3:PLOT39:PLOT23:PRINT.
£Q1€ PIOT3:PLOT35:PLOT25:PRINT "
5018 PLOT3:PLOT43:PLOT25 :PRINT .
502¢ TI0T2:PLOT43:PLOT27:PRINT 12
5022 PLOTZ:PLOT29:FLOT29:PRINT 14
5024 PLOTA:PLOT35:PLOT31:PRINT 1F
5026 PIOTZ:PLOT43:PLOT31:PPINT 18
£92€ PIOTZ:PLOT3E:PLOT3C: PRINT 19
£03@ PLOTZ:PLOT43:PLOT3Z:PRINT 21
5032 PIOTZ:PIOT30:PLOT3E :PRINT Z3 N
€034 PLOT3:FLOT35:PLOT27:PRINT 25
SO3F PLOT2:PLOT39:PLOT37 :PRINT 2¢€
5038 FICT3:PLOT43:PLOT3Q:PRINT 22
£04¢ PLOT3:PLOT29:PLOT41:PRINT 32
5042 PLOT3:PLOTAS:PLOT43:PRINT 24
5044 PLOT3:PLOT43:PLOT43:PRINT "Z€
504€ PIOTE:PLOT? S
£08¢ PLOT3:PLOT39:PLOT21:PRINT. 2.
5052 PIQTI:PLOT35:PLOT23:PRINT. 4.
5054 PLOT3:PLOT43:PLOT23:PFINT €7
S0S€ PLOTI:PLOTZ0:PLOT25:PRINT, &7
5068 PLOTZ:PLOT35:PLOT27 :PRINT 12"
Sa€¢ PIOTZ:PLOTZ9:PLOTZ7: PRINT 117
€898 PLOT3:PLOT3E:PLOT29:PRINT 12
5064 PIOT3:PLOT43:PLOTZS:PRINT 15"
£Q€€ PLOTI:PLOT39:PLOT31:PRINT "17”
50F8 PLOT3:PLOT39:PLOT33:PRINT 20
507¢ PLOT3:PLOT35:PLOT35:PRINT 22"
5072 PLOTZ:PLOT43:PLOT3E :PRINT "24”
5074 PLOT?:PLOT43:PLOTZ7 :PRINT 27
5975 PIOTZ:PLOT35: PLOT39:PRINT 22"
597€ PLOT3:PLOT39:PLOT30:PRINT 2O
£978 PLOT3:PLOT35:PLOT41:PRINT 21"
59€@ PIOTZ:PLOT43:PLOT41:PRINT 23"
5062 PLOT3:PLOT29:PLOT4Z:PRINT 25
509¢ RFM FND OF BOARD

£¢Ce REM PLACF TEXT

€012 PLOTE:PLOT2

£015 PLOT14€

37390 3:PLOTA:PLOT20 .

€@4¢ PRINT PLACE YCUR BETS ":PRINT
FS@ PRINT.ODD":PRINT

EF@ PRINT TVEN™:PRINT

€¢7¢ PRINT RED":PRINT

£@8¢ PRINT BLACK :PRINT

£p9@ PRINT"COLUMN":PRINT

A -

0O

European Roulette

€1¢@ PRINT NUMBER”

€110 PLOT3:PLOTER:PLOT2C
£12¢ PRINT"RETTING PESULTS
£13¢ PLOT3:PLOTS@:PLOT24
£14¢ PRINT QDD

£15¢ PLOT3:PLOTEQ: PLOT2FP
€1€0 PRINT"EVEN

F17¢ PLOT3:PLOTE@: PLOT32
€160 PRINT RED

£19¢ PLOT2:PLOTZQ:PLOT3E
€2@¢ PRINT BLACY

£21¢ PIOT3:PLOTER: PLOT4Q
€220 prNT "COLUMN *

F222 PLOTZ:PLOTE@;: PLOT44
£224 PRINT NUMEFR"

£23¢ PLOT2:PLOT@:FLOT1®
F25¢ PLOTZ:PLOTFO:PLOT1E
€26¢ PRINT PALANCF $¢

€27¢ PLOT1E:PLOTE:PLOT?
F28¢ RFTURN

€30¢ RFM CLEAR THF RET AREA
€21¢ FLOTE:PLOT?

£32¢ PLOT3:PLOT3:PLOT24
£33¢ PRINT

£240 PLOTZ:PLOT4:PLOTZS
£25¢ PRINT

£36¢ PIOT3:PLOT3:PLOT32
€27¢ PRINT

300 PLOTS&PLOTS:PLOTSE
£39¢ PPINT

€400 “[OT"PLOT :PLOT4Q
£410 PRINT'

£42¢ PIOT3:PLOTS:PLOT44
€42¢ PRINT

€447 RETURN

650¢ RFM CLEAR THF RESULTS AREA
€51¢ PLOTF:PLOT?

€520 PLOT3;PLOTE3:PLOT24
€530 PPINT

€54¢ PLOT3:PLOTE4:PLOT2E
€550 PRINT'

6560 PLOTS :PLOTES: PLOT32
657¢ PRIN

€580 PLOT"PLOTE5:PnOTES e
€590 PRINT

€€e¢ PLOTA:PLOTES:PLOT4A
fE1¢ PRINT'

£62¢ PIOTZ:PLOTES:PLOT44
EEZQ PRINT

€F4¢ RETURN

9¢e@ REM SPIN THF RALL COUNTFR CLOCKWISE

02¢S PIOTZ:PLOTEC:PLOTO

©01@ PLOT2:PLOT252:PLCTY :PLOTY
0Q2¢ FOR I=1 TO 2

o237 FOR K=1 TO Ka

7235 RF¥ PLOT THE WHITE EALL

©04¢ PLOT255:PLOTS:PLOT7:PLOT2:PLOT2E3

o75@ PLOT X1(K):PLOT Y1(X}
CeEA REM PLOT THF BLACK FALL

€e7¢ PIOT255:PLOTE: PLOT?:FLOT2:PLOTZE2

o@e¢ PLOT X1(K):PLOT Y1(K)

o¢9@ NFYT K:NEYT I

©PQ% RFM FND OF CCw SPIN

0100 REM SPIN ONCE W

©11¢ PLOT255:PLOT2:PLCTER: PLOTE
€112 PIOTF:PLOT?

©115 PLOTZ:PLOT252:PLOTX :PLOTY
©12¢ FOR I=X4 TH 1 ST%P-1

©14¢ PIOT255:PLOTE:PLOT7:FLOT2:7LOT253

©1€€ PLOTX2(I)
9179 PLOTY2(I)

C©1E¢ PLOT255:PLOT6:PLOTP:FLOT2:PLOT253

919¢ PIOTX2(I)
o2¢¢ PLOTY2(I)
©21¢ NEXT I

169

170 Best of Interface Age/Volume 2

022¢ PLOT25E:PLOTE:FLOTY
©23¢ REM FEND OF SPIN

€242 RETUPN

16¢eg REM CALCULATY THE PATH OF T3F BALL
17212 DIM X1(¢4),Y1(€4)

1¢@15 DIM Y2(84),V2(¢4)

12020 S1=10:K1=@:Kz=158:X3=81:K4=0

1P@2¢ YX=2¢:7Y=3¢

10035 X3=17:Y3=27

10@40 REM CENTER OF WHEFL

10€5€¢ Y=80:V=1FQ

10¢5¢ FOP ¥K=1 TO 4

12e7¢ IF KK<>Z THEN 10@S@

10087 XX=-XX:K1=15Q:K2=€ :XKZ==-51

12065 X3=-X3

1202¢ IF KK<>2 THEN 12110

1010¢ YY=-YY:K1=0:K2=158:%2=51

10105 Y3=-Y3

12116 IF KK<>4 TIFN 12130

1012¢ XX=-XX:K1=18R:K2=¢:K3=-51

1¢125 X3=-Y3

12138 FOR I=K1 T0O KZ STFP X3

12140 A=I*.¢1

17150 X4=¥4+1

12160 X1 (K4)=X+YX*C0S(A
10179 Y1 (X4)=Y+YY*SIN(A
10172 X2 (K4)=X+X3*COS(A
10174 Y2 (K& '=Y+V2*CSIN(A
1019¢ NEXT I

1¢#19¢ NFXT KK

1¢192 RETURN

12195 REM ¥ND OF CALCULATION

)
)
)
)

Chapter 12

Child’s Play Number
Game for Beginning
Micro-Bugs

By Karen S. Wolfe

Anyone with the remotest knowledge of computers realizes their
great educational possibilities. But you seldom see an elementary
program for just that purpose-~to educate the young. So here’'s a
quick program that serves two purposes: to provide a mathematical
game for youngsters just learning about numbers, and to provide a
short, easy program with which beginning programmers can
experiment.

WHAT DOES IT DO?

The program initially asks the child to enter a number between 1
and 10. Of course, most children won't be able to read the question
right away. You must guide their way through the game the first few
times. You'll probably be surprised how quickly the child catches on
to the questions and the feedback. So another purpose is served:
teaching the child the necessity of learning to read.

Now numbers other than those between T and 10 can be entered,
but it is best to start with small numbers. Suppose the child enters a 4.
The program will then display four stars («) on the monitor, followed
by the number “4"". Then, on the first pass through the program, one
star followed by a “1” will appear below the four stars. This provides
the child with a visual display of a set of “4” objects and a set of “1”
object.

Next, the program asks the child to enter the answer for

4+1=7 in algebraic form and also

4

1 in column addition form.
?

172 Best of Interface Age/Volume 2

The visual set of stars is still on the screen, so the child will initially
count all the stars to arrive at an answer. As the child begins to
associate numerals with the concept of so many objects, you can
rewrite the program so that the stars are no longer printed (see the
section on experimentation following).

When the child enters an answer, the program checks to see it is
the right answer. If it is right a series of stars is printed and the
message “YOU ARE CORRECT—YOU WIN!'!!”. If the answer is wrong,
the feedback is “SORRY, THE ANSWER IS NOT CORRECT, TRY
AGAIN!” Even if the child cannot yet read, he or she soon learns these
responses and their meanings with just a little help from you.

When the child’s answer is wrong, the problem is repeated. When
the answer is correct, the program automatically forms a new problem
if the child wishes to play another game. The program continues to
use the 4 which was originally input, but on the second pass through
it asks the child to add a “2” to the 4. On the third pass it adds a “3”
and so on through six passes. At that point, the program will ask the
child if he or she wants a different input number and if he wants to
play another game.

EXPERIMENTATION

The accompanying program is short and uses a number of “FOR-
TO” loops, “IF-THEN’S” and “GOTO’s” to accomplish its objectives.
The beginning programmer should be able to follow the steps with
just a little study and then be ready for some experimentation of their
own.

First of all, this program was written for North Star BASIC in which
multiple line statements are separated by “\”. In this program, they
are used only to separate PRINT statements which are used for spac-
ing the screen displays.

The C variable is the number entered by the child. The K variable is
the internal number which is added to C. When the program is first
started, K is set at zero (line 20). In line 60, K is increased by 1. in each
successive pass through, the program is cycled back to line 60. When
K finally equals 6, the program jumps out of that loop at line 360 and
goes to line 400. Now the child is asked if he wants to enter another
number for a new game. If he answers yes (Y), the program goes back
to line 20 where K is again set at zero.

The beginning programmer can start trying his own ideas for chang-
ing this fundamental program. For instance, suppose you want to
eliminate the stars from the display. You could simply delete lines 70
through 150. Perhaps you wish to change lines 190 and 200\:/hich
form the column addition format in the North Star BASIC. Maybe your
BASIC has a different format procedure such as a PRINTUSING
statement.

Another possibility is to change the mathematical operation from
addition to subtraction, multiplication or division. You must make
several changes throughout the program. You'll have to make the ap-

Child’s Play Number Game 173

propriate operational sign changes in lines 170 and 220. You’ll prob-
ably also wish to eliminate the stars, tines 70 through 150.

If you really want to get playful, you can devise a scoring system
with a new variable, call it S, and set it initially at 100. Then each time
the child answers a problem correctly, 10 is added to S and for each
wrong answer, 10 is deducted. This might be done by adding the
following statements:

15 LET S=100; 253 LET S=S-10;318 LET S=s+10;
352PRINT;353PRINT“YOUR CURRENT SCORE IS NOW” S,

You may have a better way of setting up a scoring routine. Go
ahead, experiment. It's the best way to learn programming. But do let
your youngster have a crack at playing this number game once in a
while. Remember, micro-bugs come in all sizes.

SAMPLE RUN

THEE TH A NUMEER GAME

ENTER & NUMEER FROM L 70 o '!) 4

X K K K “

X 1

ENTER THE ANSWER FORT 4 + 1 = %
4.00

1.00

wE

HOKX KX HOKK MOKK WK IOKX KX ROKK

KM MUK AKX WM KKK MK AKX

YO} Al

ECORRECT---YOU W 0
HHK KUK KK KKK KKK XK KK HHOK

MK MO RAOK MK K MOKK WAK MK

DO YOHT WANT ANOTHER GAME (Y/N)' Y

X K X X 4

X K 4

FNTER THE ANGWER FOR: 4 + 2 = 9
4,00

Z,00

4

SORRY» THAT ANSWER TS NOT CORRECT: TRY AGAIM!

X K K X 4

* ™ 4

ENTER THE ANGWER FORS 4 + 2 = 7P
4,00

2,00

?6

174 Best of Interface Age/Volume 2

WK MK NOKOK KNOK MK MK MK XN

BAOK KWK A KAOK KNOK MK XK KKK

YOL ARE CORRECT---YOU WIN | 1 1
HAK KKK WK KKK MK KWK MHK KKK

HAOK KKK HOKOK KXEK KA MK WK WX

DO YOE WANT ANOTHER GAME? (Y/N) M

DO YOU WANT TO EN

FOOANOTHER NUMEBER AND FLAY AGAIN?

(Y/N) M
READY

PROGRAM LISTING

LIST 1

THE Fonee

ANGWE R

oo+ K
Al THEN 270

THAT ANSWER 15 NOT COR

CTy TRY AGATM!®

WOKX KWK NN KM MOKX NN MK KWK ¢

Y YOU WIn oo

XK KK NOKNK KAOK KNOK AN KX WK ¢

THEN 4060

DO YO WANT ANDTHER GAME? (Y/N) *.7%
= *Y* THEN &0

400 FRINTN PRINTN FRINTN FPRINT

AND LAY AGATND®

410 PRINT *DO YOU WANT TO ENTEFR ANOTHEFR NU
20 FRINT

YLYS/NY e 7%
=YY CTHEN 20

Chapter 13

On A Bi-Lingual
Math Tutoring Program

By Marvin Mallon

All forms of programming are challenging and unquestionably, if
success follows, create a strong feeling of accomplishment. There is
a special sense of gratification, however, that can be identified with
writing educational programs. The thought of making the computer
serve as a tutoring appliance for the school child is quite inspiring.
We are certainly on the threshhold of having the microcomputer serve
the needs of the business community as it never has before. We will
also soon see the influx of personal computers in the home in
numbers undreamed of five years ago. Surely then, one of the more
worthy causes to be served will be the teaching of the young.

Of course, a lot has happened in this area already, most notably in
school districts in Northern California, due to the prodding and
patience of Albrecht, Verplank, et al. The proximity of Hewlett-
Packard, Digital Equipment Corporation and IBM has not been wasted
in the San Jose-Palo Alto school districts, and Los Angeles teachers,
if not in fact the rest of the country, look in envy to their achievements.
Hopefully, it is only a matter of time before educators everywhere find
the means to enhance classroom activities with the aid of the small
computer.

A specific area worthy of extra attention is in dealing with minority
students. The Los Angeles Unified School District is responsible for
the formative education of thousands of such children, and it en-
counters special problems where language is a barrier. The computer
can help. This article demonstrates that a start has been made and
urges greater participation elsewhere to produce constructive pro-
grams aimed at overcoming language differences as an obstacle.

Specifically, | wrote a Math Tutoring program which helped my
daughter and her friends practice basic arithmetic problems. Some
time later | sold and installed a number of microcomputers into Los

176 Best of Interface Age/Volume 2

Angeles high schools. At one of these schoois, San Fernando High, |
met and worked with Alan Samow who is on the staff of the
mathematics department. He was delighted to have a copy of my
tutoring program and in short order, translated it for use by the
Spanish-speaking students in his classes. This simply required re-
phrasing the prompt messages, but he went on to enhance the
original program with some fine touches of his own. Following this ar-
ticle is a listing of both the English and Spanish versions with a
typical run of the Spanish program included as well.

The program opens with a personalized introduction that sets the
mood for the intercourse to follow. It then offers ten problems in
either addition, subtraction, multiplication or division. The student
also limits the largest numbers he or she will work with based on his
or her educational level. Multiplication problems have the further op-
tion of being created with the same repetitive muitiplier should the
student wish to practice his “times table””. An option of the division
choice is the selection of problems with or without odd remainders.

Answers are greeted with either criticism or praise dependent, of
course, on the correctness of the response. These are randomized so
as to enhance the “personal touch” of the lesson. The student is given
three chances at the right answer before the program moves on to the
next question. At the end of the exercise a summary is printed of the
score and all missed or troublesome problems are recapped. This
tends to enforce the lesson and hopefully encourages the user to
repeat difficult areas or go on to larger numbers.

The reader Is not only encouraged to use these programs as they
appear here, but Mr. Samow and | would be especially gratified if
others followed our example and translated new or existing programs
so as to make them suitably usable by a broader group of students.
Surely nothing can be of greater consequence than the promotion of
the computer as a learning tool for children of all ages and
background.

SAMPLE RUN

RUN
HOLA, GUAL ES TU NOMERE 7?7 GFAADD
GUETC EN CONOCERTF GERADD, VAMOS A PRACTICAR
MATEMATICAS JUNTOS.
PCDEMOS HACER SUNAS, RESTAS
MULTIPLICACION Y DIVISTONES,
ESCRIPE UN SIMROLO Y HAREMOS 1P PROPLEMAS

+ - X DR /
CUAL EJEHCICIOD 27 +
VAMOS A TRAFAJOR CON 2 NUMFROS RIFFRENTES
CUAL SERA LA CANTIDAR DEL PRIMFR NUMERQ 77 9Py
CUAL SERA LA CANTIPAD OFL SEGUNDC NUMERQ?
ATUT HAY UN PROPLENA DE BUMAR ///Pﬁ

#1 499
+ a

? 502
MUY ETENY! CONTINUA AST,
w2 562

+ &3

Bi-lingual Math Tutoring Program

? £25
FGTA CCPRECTO GFRARC, TRATA OTR(O----
43 892
+ 65
? 34
ESTA INCCRRECTC CGERAND,
43 592
+ 65
? 70s
ESTA INCORRECTO GERALCO.
43 597
+ £5
? 325
TUS 3. PREPAS TEBMINAADN-—I.C STFENTO!!
44 271
+ £
? 232
ESTA INCORRECTC GERADD.
¥ 271
+ A1
? 332
YUY BIEN!! CDNTINUA AST.
s 35
+ 71
? 376
ERES MUY INTELFGNETE GERACO., ACUT TEMNENOS RTRC,
46 Aew
+ di
? 936
MUY RIEN!Y! CONTINUA AST,
47 543
+ a7
? 597

ERES MUY JINTELEGNETE CFRADC, ARUI TENEMOS OTRO

“ 8 274
+ &N
? 931
MUY PIEN!! CUNTTNUA AST,
4 9 qrR
+ an
? 746
ERRASTE GEAACO. TRATA OTPA VFZ,
%9 ara
+ 3r
? 546
FSTA INCORRECTO GERADNO.
9 agn
+ 34
? 446 - o

FRTA COPRECTD GERADD, TRATA OTRPew--
17

2492 T
EXCELERTE-£JFRCICIO COMPLETO.

SUvAR
GEPACO TIFNFS 9 CRRAFCTN Y 1 INCORRFRTCS

TEINES PROELEMAS CON 3 PHCPRLEWMAS
T CRADC ES Af

177

178 Best of Interface Age/Volume 2

TUVISTE CIFICULTA CON [0S STRUTFNMTES PPORLFIAS
291 4 61 = 332
arn + 3P = 446

HIZISTE YAl ESTNS PROFLFMAS
592 + €5 = €57

TRATAMODS MAS PROFLFMAS 7 ST
ESCRICE UN STMPOLC Y HAREKDS 17 PAnNFLEMAS
+ - X rCRr/
CUAL FJFRCICIC 27 /
VANDS £ TRAPAYNR CON 2 NUNMERQS NTFERFMTFS
CUAL SERA LA CANTIDAD DFL PRIMER PUMERC 27 £9P
CUAL SERA LA CANTICAD DEL SECUNEG NUFERG? ©
RUIEPES PACPLEMAS OCN RESIPUDR (SORRANTES)
? hO
AOUT HAY LN PROFLFYA NE OTVYICTON
1 CUANTC ES 342 CIVIDIRD POR &
7 57
MUY CIENT! COMTINUA AST,
A 2 CUANTC ES 119 DIVIRIFC PCR 7

? 17

FRED PUY INTFLFONFTE GERAMQ, ACUT TENEMDS CTOQ,
3 CUANTC FE 740 DIVIRTING PrR

2 1en

MUY DTENUE CONTINUA AST,

4 CUANTC ES 723 DIVIRIPD POR 2

? 281

YUY PTIENIY DONTINMUA AOT,

5 CUANTC ES 167 DIVINIPD PR A

? 28

FRFS MUY TNTFLEGNFTE GERADC. ANUT TENEMOS DTRO,
& CUANTD £S5 P16 DIVIDIND POR €

7 136

MUY BIEN!T CONTINUA AST,

7 CUANTQ ES 387 CIVIDIDD POR 3

? 129

ESTA CORRECTO CGERANO, TRATA OTRC-—--
8 CUANTD ES 24P DIVIDIND POS 4

? 6@

MUY BIEN!! CONTINUA AST,

9 CUANTO FS 747 CIVIRIPD POR 3

? 249

ESTA CORRECTO GERADO., TRATA OTRO--ww
12 CUANTO €8 57¢ DIVIDING PR 5

? 114

EXCELENTF-EJFRCICIN COMPLETO.

OIVICTON

GERADD TIENES 1@ CORRECTD Y M INCORRECTOS
TEINES PROSLEYAS CON # PROPLEMAS
T4y CGRADD FS ang

NTNGUN FRROR,,.TE FELTCTITO

TRATANOS MAS POQORLEMAS ? NO
HASTA LUEGD POR AHORA, TF VEC PRONT(Y

oK

PROGRAM 1

10 REM = MATH TUTOR PROSGRAM

20 REM - WRITTEN BY M. MALLON

30 REZM - AUGUST, 1976

100 REM = OPENING/DIALOG

110 INPUT "HELLO/ WHAT'S YOUR NAME":;AS$

120 PRINT"GLAD TO MELT YUU "“;A$3". LET'S PRACTICE"
130 PRINT"SOME MATHEMATICS TOGETHER."

200 RaM - WHICH DRILL?

210 PRINT"WE CAN DO ADDITION, SUBTRACTION®

Bi-lingual Math Tutoring Program

220
230
232
234
235
237
238
240
250
270
300
310
320
332
340
352
360
380
385
399
400
410
420
430
449
600
615
520
625
630
635
640
650
650
665
670
700
710
715
718
720
740
750
760
770
780
790
795
797
800
815
816
817
818
819
820
822
830
850
855
860
870
8175
880
885
887
890
900
910
912
913
914
915
916
920

PRINT"MULTIPLICATION, OR DIVISION«"

PRINT”TYPE A SYMBOL AND WE WILL DO 10 PROBLEMS:"
FOR L=1TO10:P(L)=Q:E(L)=0:2(L)=0:NEXT

L=0Q

C=0:N=0:R=0:T=0

FOR K=1 TO 19:F(K)=0:G(K)=0:H(KI=0INEXT

K=0

PRINT TABC10):3*+ - X 0% 2*

INPUT "WHICH WILL IT Be*;33

IF BS<>"+"AND BS<>"~"aNU B$<>"X"AND BS$<>"2" THEN 2490
REM - PICKING THE NUMBERS

PRINT"WE'LL WORK WITH TWO DIFFZRENT NUMBERS™
INPUT"HOW BIG CAN THZ FIRST ONZ BE"INI

IF N1=<3J OR Wl >1000 THZ~N 383

INPUT"HOW 316 CAN TdAZ OTHER WUMBER BE'";N2

IF N2=<0 OR N2 >1000 THEN 380

GUTU 400

PRINT"THE NUMBZRS HAVZ TO BE BETWEEN 1 AnD 1000

PRINTLET'S TRY AGAlIN==-=-="

GOTO 320

REM - GOTO DRILL ROUTINE

IF 3=""+" THEN 500

IF 8% THEN 700

IF B$= THEN 800

GOTO 900

REM - ADDITION

S$="PLUS": I$="ADDITION"

PRINT"HERE'S AN ADDITION PROBLEM FOR YQ!=-=-="
GOSUB 1500

GOsSuB 1000

W=A+B

IF X=W THEW GOSUB 30920

IF x=W THEN 625

GUSUs 4000

IF X<>A+8 AND T=3 TH&nN 625

GOTO 630

REM - SUBTRACTION

PRINT"HERE'S A PROBLEM IN SUSTRACTION."
S$="MINUS"

R$="SUBTRACTION"

GOsuB 1500

IF B>A THEN Y=A:A=Bi1B=Y

GOsuB 1000

V=A-B

IF X=W THEN GOSUB 3000

IF x=W THEN 720

GOsSuUB 4000

IF X<>W AND T=3 THEN 720

GOTO 750

REM - MULTIPLICATION

S$3"TIMES": R$="MULTIPLICATION"

PRINT"DO YOU WANT TO PRACTICE WITH A SPECIAL NUMBER™;
INPUT C$

IF C$="YES" THEN INPUT "WHAT IS THE NUMBER";A
IF C3="YES'" THEN GOSUB 1510

IF C$="YES" THEN GUTO 850

PRINT"HERE'S A MULTIPLICATION PROBLENM FOR YBU."
GUSU3 15900

GOsus 1000

W=AsB

IF X=W TdhEN GOSUB 3000

IF X=W AND C3$="YES™ THEN GUTO 819

IF X=W AND C3<>"YES" THEN GOTO 830

GOSUB 4000

IF X<>W AND T=3 AND C$="YES" THEN GOTO 819
IF X<>YW AND T=3 AND C$<>"YES™ THEN GOTO 830
GOTO 850

REM - DIVISION

S$="DIVIDED BY"™

RE="DIVISION"

U=0

PRINT DO YOU WANT PRUBLEMS WITH REMAINDERS™;
INPUT V3§

IF Us='"YES™ THEN U=l

PRINT“HERE®S A PROBLEM IN DIVISIOW."

179

Best of Interface Age/Volume 2

GOSUs 1500

IF 3>A THEN Y=A:A=B:B=Y

IF U=1 THEN 970
Z=INTC(A/B)sA=B%2

IF A=8 THEN 930
GOosus 1000
W=INT(C(A/B)*1003/100

IF X>(W=+.01)AND X<(W+.01)>THEN GOSUS3 3000

IF X>(W=<01)AND X<(W+<01)THEN 930
GUSUB 4000

IF X<>W AND T=3 THEN 930
GOTO 970

REM - ASK THE QUESTION

PRINT "3N+15 HOW MUCH IS"3AZSS:Bs:INDUT X
RETURN

REM ~ CREATE RANDOM NUMBERS
ASINTC((N1=-2)*RND(I1)+2)
B=INT((N2-2)4RND(1)+2)

T=0:RETURN

REM - EXERCISE CONCLUDED

POKE 2020,223:POKE 1234, 1

PRINT

PRINTTAB(6);R$:PRINT

PRINTA®:™ YOU GOT";C;"RIGHT AND";N-C3"WRONG."
PRINT"YOU HAD TROUBLE WITH";L+K;“PROBLEMS."
PRINT"YOUR SCORE IS"F;INTC(C/N®100)-(5%L)>
PRINT:S=L

IFHC1)=0ANDL=0THENPRINT"NO MISTAKES=--CONGRATULATIONS!":GOT02055
PRINT"YOU HAD DIFFICULTY WITH THESE PROBLEMS:™
FOR L=1 TO §

PRINTTABC(6)3P(L)5 S$SE(L);"=""3Q(L)

NEXT

L=0:PRINT

IF H(1)=0 THEN GOTO 2062

PRINT"YOU MISSED THESE PROBLEMS:"

FOR K=1 TO N=-C
PRINTTAB(6);F (KI5 S53GCKI; =" H(K)

NEXT XK

K=0

PRINT

POKE 1234,0:P0KE 2020,0

INPUT *“SHALL WE TRY SOME MORE*;D$

IF D$="YES" THEN 230

IF D$ ="NO'" THEN 9000

PRINT"YOU MUST ANSWER YES OR NO PLEASE.":30TO0 2070
REM - CORRECT ANSWER!

T=0:C=C+1:N=i+1

M=0

IF N=10 THEN PRINT"EXCELLENT--EXERCISE IS COMPLETE!"™:GOT01990
R=INTC((4~1)*RNDC1)+1)

ON R GOTU 3050,3070,3090

PRINT"THAT'S RIGHT ";A3#;". TRY ANOTHER---"
RETURN

PRINT"THAT'S VERY GOOD! KEEP IT UP.*"

RETURN

PRINT"YOU'RE SURE SMART ";A$;'". HERE'S ANOTHE®--*
RETURN

REM - WRONG ANSWER

T=T+1

IF T=2 THEN 4030

IF T=3 THEN 5000

M=

L=L+1:P(L)=AE(L)=8:1¢L)=V
R=INTC(C(4=-1)*RNDC1D+1)

ON R GOTO 4050,4070,4990

PRINT"YQU GOUFED ":A%;". TRY AGAIN."

RETURN

PRINT"THAT'S WRONG ";A$:"."

RETURN

PRINT"THI AGAIN=-=="

RETURN

REM - 3 MISSE

PRINT"YOUR 3 TRIES ARE UP----TOU BAD."
N=N+1:K=K+]

IF M=] THEN L=L-1

Bi-lingual Math Tutoring Program

504

0 F(K)=A:G(K)>=B

5042 HC(K)=W

504
505
900

PR

1
20
25
27
3n
100
117
120
137
2ae
21¢
227
230
232
234
235
237
238
2ag
259
270
372
317
32¢
332
349
352
360
3ng
3PS
39¢
aga
a1g
azg¢
432
a4¢
6ap
615
620
625
638
635
6ae
650
667
665
678
ads
718
715
718
722
749
752
767
77¢
788
79¢
79%
797

ane
15
216
817

5 IF N<10Q THEN RETURN

0 GOTO 199%0

0 PRINT"GOODBYE FOR NOW. SEE Y01} SOON, 1 HOPE!"
0K

OGRAM 2

REN - MATH TUTQR PPAGRAM

REN ORTGINAL PROGRAM RY MARVIN MALLON
REN RF-YAITTEN AND PRFPAPFD BY ALAN SAMOW SFHS
REM TRANSLATION BY LACS
REM - AUGUST, 1978

PENM - OPENTNG DIALCG

INPUT “HOLA, CUAL FS TII NOVERE ?" ;A%

PRINT "GUSTO EN COMGCERTE ";A%:". VAMOS A PRACTICAR™
PRINT"MATEMATICAS JUNTOS,™

REV - WHICH DRILL?

PRIMT"PORENDS HACER SUMAS, RESTAS”

PRINT "MULTIPLICACION Y DIVISTONES.™

PRINT "EGCAIBE UN SIVPOLD Y HAREMOS 1¢ PRORLEWAS”
FOR L=1TQ1P:P(L)=P:F{L)=:Q{L)=M:NEXT

L=f

CoP:N=P;R=?:Tul

FOP Ka1 TO 17:F(K)=#:G{K)=P:H{K) =P NEXT
K=f

PRINT TAP(1R):" + - x or /"

IMPUT “CUAL FJUERCICID 77 ;E¢

IF Fhe> "+"AND PR<>"="AND BS<>"X"AND PH<>"/" THEN 247
REN - PICKING THF NUMPRERS

PRINT"VAMOS A TRARAJNDR COM 2 NUMERDS DIFERENTES”
INPUT "CUAL SERA LA CANTIDAD DEL PRIMER NUMERO ?" ;N1
IF N1=<P CR N1 >100% THEN 397

INPUT"CUAL SEPA LA CANTIDAD CEL SEGUNDO NUNMERQ™ ;N2
IF M2=<f OR N? >187F THEN 3Ra

GOTC APp

PRINT”LOS NUMERDS TIFNES RUE ESTAR ENTRE DRFL 1 A 1700
PRINT "VAMOS A TRATAR"

GOTC 32¢

REM - GOTO DRILL ROUTINE

IF P%="4+" THEN 670

IF ET="-" THEN 700

IF PH="X" THEN Bpf¢

GOTO 9pp

REM - ADDITION

Sha="+" :RE="SUNMAR"

PRINT "AQUI HAY UK PROBLFMA DE SUMAR™

GOSUB 15012

GOSUR 12p0

WaA+B

IF X=W THEN GDSUR 3PAaQ

IF X=W THEN 625

GOSUR 4fpe

IF X<>A+B AND Ta3 THEN 625

GOTO 630

REM ~ SURTRACTION

PAINT "AQUI HAY UN PROBLFMA DE RESTAR"
56"

a8 ="RESTAR"

GOSUR 157¢

IF B>A THFN Y=xA:A=R:B=Y

GOSuUB 1pee

WeA-f

IF Xx=W THEN GDSUB 37@¢
IF X=W THEN 7220

GOSUB anfg

IF X<>W AND T=3 THEN 720
GOT0 750

REM - MULTIPLICATION

SF="X" ;RE="MULTIPLICACTON"

PRINT "QUIERES PRACTICAR CON NUMEROS ESPECIALES”
INPUT C$

181

182 Best of Interface Age/Volume 2

818 IF CF«="SI" THEN INPUT "CUAL ES EL NUMERQ":A
819 IF CE="SI" THEN GOSUE 151¢

82¢ IF C5="STI" THEN GOTO 852

822 PRINT "AOUI HAY UN PROPLEMA DE MULTIPLICACION"
838 GOSUF 15mp

858 GOSUEB 1787

855 waA*p

86F IF X=w THEN GOSUE 3p0n

878 IF X=¥ AND C$="SI" THEN 6OTO 819

B75 IF X=¢ AND CH%@'SI" THEN GOTO A3¢

88¢ GOSUR ares

BB5 IF X<>®'AND T=3 AND CE&="SI" THEN GOTQ A19
BR7 IF X<>W AND T=3 AND M&Q'STI" THEN GOTQ P37
8927 GOTO 854

9A¢ REM - DIVISION

918 S®="DIVIDINC PCB”

912 RE="NIVICION"

913 U=P

914 PRINT "QUIERES PROBLEMAS CON RESTDUD (SOPRANTES)”
915 TINPUT V%

916 IF VS«"SI" THEN U=1

920 PRINT “ANUT HAY UN PROPLEVA DE DIVICTON"

937 GOSuUR 15¢A

952 IF E>A THEN Y=A:AaR:B=Y

955 IF U=1 THEN 970

968 Z=INT(A/R):A=E*Z

965 IF A=E THEN 93¢

97¢ GOSUR 11a7

988 wW=INT((A/B)*172)/ 100

982 IF X>{w-.¢1)AND X<(W+,B1)THEN GOSUE 3¢n0

984 IF X>{(W-.B1)AND X<(W+,P1)THEN 930

986 GOSUB 4828

988 IF X<>W AND T=3 THEN 93¢

999 GOTO 97¢#

12F2 REM ASK THE QUFSTINN

1081 IF A<1P THEN Z=22:G0TL 1245

1882 IF A<12f THEN Z=21:G0TQ 1995

1003 Z=2p

18£S IF B<1# THEN C=22:G0T0C 181¢

18¢6 IF P<1AP THEN C=21:G0T0 1718

1827 C=27

1210 PRINT " #" iNs1;

1712 PRINT TAE(Z) ;A
1844 PRINT TAG(15);
1715 PRINT TAB(15):"
1216 INPUT X
1020 PETURN

112¢ REV ASK DIVISION AUESTION

111¢ PRINT "#" :N+1:"CUANTD ES “A;S%;R:INPUT X

1115 RETURN

149¢ REF - CREATE AANDOM NUMBFRS

1580 A=TNT({(N1-P)*RAND{1)+2)

1517 B=INT((N2-2)*RND(1)+2)

152F T=[:RETURN

199¢ PEN - EXFPCISE CONCLUDED

1993 PRINT

1995 PRINTTAR(E) ;RT :PRINT

208¢ PPINT AT:" TIENES":C:"CORRECTC Y ;M= ;" INCORRECTOS”
285 PRINT "TFINES PROPLENAS CCN" ;L+K;"PROPLEMAS”

2017 PRINT “TU GRADC ES ";INT(C/N*10A)=(5*L)

2720 PRINT :Sal

2022 IFH(1)=PANDL=PTHEN PRINT “NINGUN FRRCR,,,TF FFLICITC!!™
2223 IFH(1)=AAND L=0 THEMN 2762

2026 PRINT"TUVISTE CIFICULTA CON LOS SICUTENTES PRORLEMAS”
2027 FOR L=1T0 S

2028 PRINTTAR(E) ;P(L):ST:E(L):"="0(1)

2029 NEXT

203¢ L=P:PRINT

2732 1IF H(1)=¢ THFN GOTD 2762

2038 PRINT “"HIZISTF MAL ESTOS PROELFMAS"

284¢ FOR K=1 TC N-C

2258 PRINTTAR(6) :F(K) :88:G(x):"=";H(K)

PPEP NEXT K

2062 K=p

2766 PRINT

1SPC(0~-1¢) ;B

Bi-lingual Math Tutoring Program 183

2e70
2¢ree
2e9r
2095
3eee
3rae
3¢12
3r15
3r2¢
3ean
3¢5¢
3s60
3e7¢
3een
329¢
311¢
aeee
491¢
4815
ag2g
ap22
4r2s
an3g
apap
agse
4760
a279
apap
ae9e
4995
saee
Se1e
582¢
sA3¢
sear
5042
5@45
SpsP
seer

INPUT "TRATAMDS MAS PROPLEMAS

IF DE="SI" THEN 237

IF DS="NC" THEN 9nRP

FRINT"YOU WMUST ANSWFR YES OR NO PLEASF,”:GCTC 2077

AEM — CORRECT ANSWER!

T=f:C=0+1:N=N+ 1

Kufl

TIFN=1f THEN PRINT"EXCELENTE-EJERACICIC CCOMPLETO." :60T01990

A=INT({4-1)*RND{ 1)+ 1)

ON R GOTD 3¢57, 387, 309p

PRINT “ESTA CORRFCTO ":AT:"., TRATA QTRQ----"

PETURN

PAINT "MUY RIEN!! CONTINUA ASI.”

RETURN

PRINT “ERES MUY INTELEGNETE " :A%:"., AQUI TENEMOS CTRO,”

RETURN

REM - WRCONG ANSWER

TuT41

IF Tw=2 THEN 4037

IF T=3 THEN SepnQ

Y=

Lat41:P(L) =AE(L) =B :R(L) =W

RuIMT((4=1)*RAND(1)+1)

ON R GOTO 4FSR,4R77, 4097

PRINT "ERRASTE ":A%$:". TRATA OTRA VEZ.”

RETURN

PRINT "ESTA INCORRECTO ";A%:;".,"

RETURN

PHINT "PIENSA OTRA VFZ"

RETURN

REM -~ 3 MISSES

PRINT "TUS 3 PRAFRAS TERMIMARON--1.0 STENTOI!”

N=N+1:K=K+ 1

IFf M=t THEN La=L-t

F{K)=A:B{K)=B

H{K) =W

IF N<tf THEN RETURN

GOTO 199¢

PRINT "HASTA LUEGO POR AHDPA, TE VEC PRONTO!!"
oK

HIn

184 Best of Interface Age/Volume 2

Chapter 14

The Personal
Management Program

by Carl Townsend

Now that you have got your computer going you have probably
found yourself with dozens of projects that need to be done. The com-
puter has multiplied your effectiveness, but how can it manage your
time and projects?

Why not use the computer itself to manage the projects? The com-
puter can monitor an inventory of all your existing projects, the
relative priority and any deadline dates. This little managing program
performs a sort each time the projects are listed, sorting the list in
priority and date order.

EASY AS A-B-C

Control begins with planning. What are your long term goals? How
do you plan to accomplish these? Can you define some short term
goals that would be steps to the larger goals?

1. What resources do you need? (people and materiais)
2. What education will you need?

You should try to translate the larger blue sky goals to smaller,
realizable and specific subgoals. List these subgoals as projects on a
sheet of paper without assigning any priorities. List any relevant
deadline dates (income taxes, for example, may have to be mailed
before the fifteenth of April). Then go over this list and mark an A" by
those that will give you the most value or need most immediate atten-
tion. Those next in order should get a “B,” and the next a “C.” These
values are relative based on your goals and the rewards you envision.
For more help on this, read Alan Lakein’s How to Get Control of Your
Time and Your Life." This list will be used as the input to the computer
program and should be updated weekly. A sample list is shown in
Figure 1.

186 Best of Interface Age/Volume 2

PROJECT LIST —

MAILOUT PROGRAM — Build Module — A
Sort Module — B
List Module — B
Extraction Module — B
Update Module — B
Documentation — A

Build system for delivery: New Book — A
Letters — A
Next Newsletter — A
Church Proposal — A
Business Proposal — A

Read: Winter's Book — A
Magazines — A
Software: Nutrition Program — C

Figure 1. initial Project List

USING THE PROGRAM

The program as listed runs in the new commercial BASIC with 24K
of memory. It can easily be modified for BASIC-E, Microsoft BASIC, or
North Star BASIC. The sort is performed on random files on the disk,
so only enough memory is needed for two strings at a time. The sort
using a PerSci disk and CP/M takes only a few seconds and the disk
head will not drop from the disk during the entire sort. The flow
diagram is shown in Figure 2. The program is in Program 1.

GOING TO LARGER PROJECTS

Once the program is mastered, visit your local library and locate
books on critical path charting, Ghant charts, and PERT charts. Study
up on these and find the methods that seem best for your projects.
Use the project codes in this program listing to flag phases of larger
projects and you will find this program can monitor progress on your
larger projects. Always list the larger project name as well as the
name of the particular phase, as:

A 12/20/77 MAILOUT—Build Module

B 12/31/77 MAILOUT—Sort Module

C 12/31/77 MAILOUT—List Module

D 01/15/77 MAILOUT—Extraction Module
E 01/15/77 MAILOUT—Search Module

Start the program and the program will request on operation mode:

| —sort and list the current file

p—sort and print the current file

u—update the current file

e—exit

The “I” and “p’’ mode use the same routine, with the only difference
being the output device. Both output the project list (see Figure 3). The

Personal Management Program

START

INITIALIZE AND
OPEN FILE

SWITCH OUTPUT
DEVICE TC
PRINTER

LIsT

RETURN
d QUTPUT TO
CONSOLE

SORT
PROJECT
FILE

'

OUTRUT
PROJECT
LIST

INPUT PROJECT
DATE

PRIORITY

:

STORE AT
END OF FILE

:

UPDATE
OF TASKS

ADD

Sy

OPTION
SELECT

PRIORITY
ALTER

REQUEST ITEM
NUMBER

PRINT TASK
AND OLD
PRIORITY

INPUT NEW
PRIQRITY AND
UPDATE FILE

UPDATE

DELETE

187

REQUEST (TEM
NUMBER

:

UDELETE. MOVE
REMAINING
PRQUJECTS UP

I

UPDATE
NUMBER OF
TASKS .

Figure 2. Personal Management Program Flow Diagram

188 Best of Interface Age/Volume 2

crun task

CRUN VER 1.01

Personal Management Program
Create a New File? n

Option (update,list,print or exit): p
Date: 01/16/78

Personal Task Schedule
Date: 01/16/78

1 A 01/14/78 Write letters (Center)
2 A 01/14/78 Next Patterns
3 A 01/18/78 Continue writing book
4 A 01/18/78 Document Personal Management Program
5 A 01/18/78 Mallout — Sort Module
6 A 01/25/78 Do coordinate maps
7 A 01/18/78 Repair tape recorder for church
8 A 01/21/78 Read Winter's Book
9 A 02/15/78 Church information System — Proposal
10 B 01/25/78 Mailout — Update Module
11 B 01/25/78 Mailout — Extraction Module
12 B 01/31/78 Read — Corporation Books
13 B 01/31/78 Read — book on volunteer organizations
14 B 01/25/78 Business Proposal
15 B 02/15/78 Assemble 2Si0 and Floppy Disk Interface
16 C 02/28/78 Income Tax — Calculate
17 C 02/28/78 Nutrition Program
18 C 02/15/78 Checkout 2SI0 and interface

Option (update,list,print or exit): e

Figure 3. Sample Project Listing

exit mode returns the user to the operating system. The update mode,
when requested, asks the user for the type of update option desired:

p—alter priority of specified item
a—add an item

d—delete an item

e—exit update mode

The “a” option in the update mode permits the user to add any proj-
ect to the current list. The project is appended to the end of the cur-
rent file (see Figure 4). The first record on the file always Is in-
cremented by one as each project is added. The file is not sorted until
the next list or print mode. As each project is added a project
“number” is assigned to the project automatically based on its order
in the file. This number Is used to later priority on the project or for
deletions.

The “d” option (delete) permits the user to delete any project from
the file. The “item number” is requested, and the user inputs the cur-

Personal Management Program 189

crun task
CRUN VER 1.01

Personal Management Program

Create a New File? n

Option (update, list, print or exit): u
Priority alter,delete,add or exit: a

Job Description: Accounting Program
Priority: B

Date: 01/31/78

19 B 01/31/78 Accounting Program
Priority alter,delete,add or exit: d

Item # : 12

Priority alter,delete,add or exit: p

Item #:5

Job: A 01/18/78 Mailout — Sort Module
New Priority: B

Priority alter,delete,add or exit: e

Option (update,list,print or exit): |

Date: 01/17/78

Personal Task Schedule
Date: 01/17/78

1 A 01/14/78 Write letters (Center)

2 A 01/14/78 Next Patterns

3 A 01/18/78 Continue writing book

4 A 01/18/78 Document Personal Management Program
5 A 01/25/78 Do coordinate maps

6 A 01/18/78 Repair tape recorder for church

7 A 01/21/78 Read Winter's Book

8 A 02/15/78 Church Information System — Proposal
9 B 01/18/78 Mailout — Sort Module

10 B 01/25/78 Mailout — Update Module

11 B 01/25/78 Mailout — Extraction Module

12 B 01/31/78 Read — book on volunteer organizations
13 B 01/25/78 Business Proposal

14 B 02/15/78 Assemble 2510 and Floppy Disk Interface
15 B 01/31/78 Accounting Program
16 C 02/28/78 Income Tax — Calculate
17 C 02/28/78 Nutrition Program
18 C 02/15/78 Checkout 2SIO and interface

Option (update,list,print or exit): e

Figure 4. Sample of Update

190 Best of Interface Age/Volume 2

rent project number for the project to be deleted. The project is
deleted from the file, and all subsequent projects “moved up” to
recover the lost space. The first record on the file that indicates the
total number of projects is decremented by one. This alters the project
numbers for all subsequent projects in the file, and in multiple delete
operations the user should start from the bottom of the listing and
work up.

The “p” option alters the priority of any project in the file. The cur-
rent project number is entered and the project priority date, and name
printed. The user enters the new priority. The file is then updated.

The “e” or exit option returns the user from the update mode. No
sorts are made until the next tist or print mode select.

PROGRAM APPLICATIONS

Notice that the program, as written, does not request the name of
the input file with the projects. This is because each person can have
their own disk, personal management program, and project file. The
management program is stored as TASK, with the project file contain-
ing the name of the person who uses the disk. Everybody has their
own list of projects, and even the project priorities will vary among
family members.

The bubble sort of this program will help you to keep the progress of
the project in order. The sort will also keep all phases of a particular
program together if they have the same priority and deadline date.

PROGRAM LISTING

CBASIC COMPILER VER 1.00
1: Rem Personal Management Program

: rem by Carl Townsend
: rem last edit date: 1/15/78
carl.asc$="carl.asc"
print '"Personal Management Program':print
true = -1
Input ""Create a New File? ";i$§
if left§(is,1)=""y" then goto 80
open carl.asc$ recl 80 as 1
: 10 n=]
if end # 1 then 90
read # 1,1;q
input "Option (update,list,print or exit): ";i$
if left§(i$,1)="1" then goto 21
if left$(i$,1)="p" then goto 20
if left$(i$,1)="u" then goto 30
if left$(if,1)="e'" then goto 90
goto 10
: 20 rem print mode
lprinter
¢ 2] rem list mode
input "Date: ";d$
print:print "Personal Task Schedule":print
print "Date: ';d§
print
flag = true
if end # 1 then 25
while flag = true

n=2

flag = false

read # 1,n;i$

while q-n

—
LN OU B WN

0B RN N NI RO RO N R ot bt b bt s b
O @RV E NN OO U S LN

w o
—-a

w
o

Personal Management Program

94:
PEH
96:
97:
98:

1 25

127

¢ 30 rem

: 40 rem

: 50 rem

¢ 60 rem

¢ 80 rem

90 rem

read # 1,n+1;j$

if left$(if,1)>1eft§(j$,1) then

k$=i$:i$=j$:j$=k$:flag = true

print # 1,n;i$

i$=j%
n=n+l
wend
print # 1,n ;j$
wend
n=2

if end # 1 then 10

read # 1,n;i$

i§=" "ei§

print using "##';n-1; :print i$
n=n+]

if (n-1) <> q then goto 27
console

goto 10

update mode

read # 1,1;q

input "Priority alter,delete,add or exit:
if left§(i$,1)="p" then goto 40
if left§(i$,1)="d" then goto 50
if left$(i$,1)="a" then goto 60
if left$(i$,1)="e" then goto 10
goto 30

priority alter option

input "Item # :';n

if n»(q-1) then goto 30

read # 1,n+1;i$

print "Job: ";i$

input "New Priority: '";p$
i§=left$(p$,1)+mid$ (i$,2,len(i§)-1)
print # 1,n+l;i$

goto 30

delete option

input “Item # :';n

if n»(q-1) then goto 30

if n=q-1 then print # 1,1;q-1:goto 30
for s=n+l to gq-1

read # 1,n+2;i$

print # 1,n+1;i$

n=n+l

next s

read # 1,1;s

print # 1,1;s-1

goto 30

add option

input "Job Description: ";j$
input "Priority: ";p$

input “Date: ";d$
i$=left$(p§, 1)+ '"+left§(d§,8)+" "&j$
=q+1

if len(i$)>78 then if=left$(i$,78)
print g-1;" ";i$

print # 1,q;i$

print # 1,1;q

goto 30

create new file

create carl.asc$ recl 80 as]
n=l:print # 1,1;n

goto 10

close files

close 1

stop

end

NO ERROKS DETECTED

" a8

191

192 Best of Interface Age/Volume 2

Appendix A

8080 Instruction Set

Some of the instructions include references to specific registers. For instance,
the MOV, r, instruction takes the value stored in register r, (called the source
register) and stores it in register 7 (called the destination register). The three
bit value used to identify the source is shown as SSS in the op code; the
three bit value used to identify the destination is shown as DDD. The corre-
spondences between registers and three bit values are

S§8S

register or DDD

11
000
001
010
011
100
101

(accumulator)

FTITMOOD>

Thus, the op code for MOV A, B is
DDD

ot
01111000
v~
SSS

The 8080 (and the 8085) has five status flags (also called condition flags
or condition codes).

status flag abbreviation meaning for instructions which affect the flag

zero z if the result of an instruction is zero (all bits 0),
zero = 1, otherwise zero = 0.

sign S if the leftmost bit of the result is 1, sign = 1, elise
0.

carry cY if an arithmetic operation resulted in a carry or a
borrow out of the leftmost bit, carry = 1.

parity P if there is an even number of 1's in the result,
parity = 1.

auxiliary carry AC carry out of bit 3. Used when dealing with binary

coded decimal values (see DAA instruction).
Other abbreviations

The second and third bytes of multibyte instructions are identified as byte,
and byte,.

pc — the program counter (a 16-bit register)
r — aregister, one of A, B,C, D, E, H, L
sp — the stack pointer (a 16-bit register)

*Thanks to Intel Corp. for permission to include this material.

Best of Interface Age/Volume 2

194

peBueyoun ulewas
() pue (y) ‘() - () jo anjea uo paseq sbBepy snieis 10s

pabueyoun uewss (y) pue ‘()
"(H) (1) (H)) - {v) J0 anjea ays uo paseq sbe)y smess j1as

{Aued) — (Aued)

BSI9A 9N
pue s, | awodaq s,0 ||e 9’ (y) jo Juswejdwod sauo —{y)

uo 0B asimiaylo | = (ubss) 1 1Y) se swes
(€ + (od) — (2d) "9°1) asuenbes
Ul aNUNUOD asIMIBYIo | = (Aed) §I 71v) Se swes

(*a14q) “a1Aq)
0} paiejsuely si [043u0d ‘¥oels ayy uo paysnd st (od) 91
(r014q) (alhq) — (od)
Z - (ds) — (ds)
(od j0 a1Aq 18pio mo|) - (g - (ds)
(2d 30 @1Aq s8pio ybBiy) — (| - (ds))
(‘8149) v (v)~(v)
0) vivl—=(v)
{MH) V(W) —=(w)
(FAq) + (v)—(v)
0 + (v—~(v)
) (H) + (V)—~(w)
(Aued) +) + (W)—(v)
(Ased) + (OMHY + (W)—(v)
(Aued) + (81Aq) + (v)—(v)

Buiueaw yibuey

- - - N+~ N M

4

L/t

L1711

™~
p

I S O LT N

L
s8]j0A2
%90]0

JVAD d

peoaye sbejy

s Z

SSSLLLO0L

OLLLLLIOL
LLLLLLOO

11110100
QoLLLLLL

ooLLioLl

10LI0OL L
oLL00L L1
SSS00101
0L100101
01100011
SSS00001¢
10100001
SSS10001
oLL10001

oLiL0011
apoa do

v Yum Jaisibas asedwo)

v yim Alowaw auedwo?)
Ased yuswa|dwo)

v wawajdwo)

snuliw uo yed

Aiied uo jen

|euonipuodun ||}

VY Yiam erelpawilll puy

V¥ Yyum Jsisibas puy

Vv Yyum Asowsw puy

Vv 01 ajepswiw ppy

v 01 13181631 0y ppy

v 01 Ajowsw ppy

Aised yum y o} aaisibas ppy
Asied yum y 0} Azowaw ppy

A11IED YlIM Yy O} deIpawiWI ppy
uonduosep

4 dWD

W dND
JNWD

VNI
W3

20

1Ivo
INV

4 YNV
W VNV
1av

4 aav
W aav
40av
W oav

1oV
sluoweuw

195

8080 Instruction Set

‘suononasul Jayuny Aue no Aued juop ‘e’ ‘dojs
uo mou woJy sysanbai 1dnusiut 01 puodsas
uo mou woy sisanbas 1dnisalul asoubi
L - (ds)— (ds)
L - ONHY=(H)
L - 3a)—=ENa)
L - (O)a)—~()a)
-0
- AONHD—= (R
(s} + (OH) ~()(H)
H) + VH—-OHRH)
@Na@ + OKHI—=(HH)
OXa) + OH~=(NH)
senjeA)g uo suonippe iaye
pasn ‘(v uy) suBip g2g Z 0wl v Ul 8njeA UG- Y3 LAAUOD
uo of esimioyio '} = (0s82) §1 1Ty se awes
uo of asimiayio ‘0 = (Aaued) i 11y se awes

paBueyoun suiewsi
(v} "(*914q) - (v) o anjea uo peseq sbey smeis jos

uo of asmieyio ‘| = (Aiued) §i T1yD se awes
uo ob asimiayio ‘g = (ubrs)) TvD se swes
uo o asimisyio ‘0 = (0482 Ji 1TyD se swes
uo 06 asimusylo ‘g = (Aved) i 1y se swes

Buiuesw Bue)

— e v e e e e e e e o = v

—

(3

™M ™M MmN

€

N ww w < T~

ot
oL
oL
ol

L1/t
LI/l

L
LL/1l
LI/
Li/tl
LL/L)

8010A9 OYAD d § Z

3o0)9

peloaye sbey

oiioLtL1Lo
LioLLLLL
L100LLLL
11011100
11010100
11011000
11010000
101Aaaaoo
10101100
10011100
10010100
1001 1000
10010000

L1100100
0011001
00100111

OoLtLiiLrt
00LLOLLL
00L0LLLL
00100011

00101011
epoo do

NeH
sidnuaul sjgeuy
sidnuaul aygesig

Jautod Xoers yuawasdsg

71 % H luswaidag

3 B Q wewaideq

O B g wawaleq

19181604 Juswaideqg
Asowsw juswessag

71 8 H 01 J83uod yoers ppy
T8 HOIT B HPPY

T8 HO3RQAPPY

TR HOJ®RYPPY

v 1snipe jewidag
019z U0 |je)
ppo Awed uo jje)

Vv Yim aleipswu asedwo)
uaas Aled uo fje)
salusod uo jjen

048z 10U UO ({e)

Alies ou uo ey
uonduosep

22
042

1dD
342
d0
ZNJ

IND
oluoweuw

Best of Interface Age/Volume 2

196

1 + (214g) (14G) (1)
(*a24q) (24 g)) (1)

{(2149) Carhq))—(v)
uo ob asmiaylo ‘| = (0s02) 1 JWI Se awes
uo ob asimmiaylo ‘g = (Aased)) JWIr se awes

uo ob asimiayio ‘| = (Aased) 1 JNr se auwes

uo ob asimiayio ‘g = (ubis) B JWI se awes

uo ob asimsao ‘g = (0402)) JWI Se awes

uo ob asimiaylo ‘0 = (Aued) jI JINr se awes

(‘024q) (*a14q) — (20)

uo ob asimiaylo ‘| = (ubis) p JWr se swes

aouanbas ul uo ob asimuaylo ‘| + {Aued) §I JINIr se awes

L

{(3Ma) —~(v)
((O)g) (v}

L + (ds)— {ds)
L+ (H) —~ONH)
1 + 3@ -@NHaQ)
1+ (ONg)—~0lg)

L+ W=
+ () =)

e e e - MM MMM MmO M -m

v ui (*814q) Aq payidads pod indul ayl woiy anjea e aoeyd Z

Buiueews yibuey

91

€l
ot
ot
ol
ot
oL
oL
oL
ot
ol

S
S
ol

0l
[-C TR Y)

»o0[

IVAD d § Z
payoaye sbey

01010100
0L0L 1000
01010000
0L01L1100
0i010011t
0L000L 11
oLoLol 1Lt
0100LLLL
01000011
01001011
11000011
oLoLtLiLL
OL0L10LL
11001100
11000100
11001000
1 1000000
001aggoo
00101100

11011011
apoo do

1094p 1 R H peoq
131pUl y pec

alipul y peoq

10841p ¥ peo

0132 uo dwngp

ppo Aied uo dwnp

uand Ajued uo dwnp
aamsod uo dwnp

018z Jou uo dwnp

Aues ou uo dwnp
jeuompuodun dwnp
snuiw uo dwnp

Aiied uo dwnp

sauiod soers Juswalou|
siaisibas 1 g H luswasou|
siasibas 3 g @ 1WaWaIDUY|
sigisibas 9 g g Wawaiou|
131s16a1 wawenu|
Alowaw Juaweduyl

wnduy
uonduosep

g

a xXval
8 xXvai
val
zr

odr
3dr

dr

ZNT
ONr
diNr
WP

ar

dS XNI
H XNi
Q XNI
8 XNI
4 UNI
W UNi

NI
Sucweuw

197

8080 Instruction Set

T + (ds) > (ds) "(1 + (ds)) - (H) "(tds)) = (0
Z + (ds)—(ds) (1 + (ds)— (@) "((ds}) — ()
z + (ds) = (ds) "(1 + (ds)) — (@) "((ds))— (D)
(1) (H) o1 dwnl ‘a1 (7} (H) - (2d)

("a14q) Aq paywads wod ay o) (y) puas
(‘a14q) Alv)—>(v)

WA () —~(v)

(HH) A (W) =)

uonaNAsul
xau ayi 196 0} (2d) yawsaiour 1daoxs BuiylAue op 3 uop

8324N0s 8yl st 4
uoneunsep ays st 4 () — (4)
((HHD—~)
“)—((MHY
(arhq) =)
(*a14g)— ((D(H)
("a14q) (Fa14q) — (ds)
(‘a14q) > (1)
(‘a14q) — (H)
(‘0149) ~ (3)
(fa149) —~ (@)
(‘a14q) > ()
(fa14q) — (Q)

Buiuesws yibusy

- - NN v e =

M N N~ -

€

€

ot
ot
ol

ol

ol

ot

[¢]3

S8ppAd JYAD d S Z

%2019

olol-}-1]-
olo!l-}-1]-
olod-1-1]-

paloaye sbey

100001 11
10001011
1000001 L
100L0L L
L100101L1
oiLLoLLtt
SSSoiiot
oLL0ti0lL

00000000

$55QAadio
oLLgaaio
SSS0ii 10
01143Qaoo0
01101100
1000t L 00

10000100
10001000

10000000
apod do

#oels Jj0 1 B H 4ied uaisibas doy
soels yo 3 g g sred saisiBas dog
yoeis o 3 g g Jied saysibas doy
J91unod wesboud 01 1R H
nding

V Yum aietpawiwit 10

v yum saisibas 10

v yum Alowaw 10

uoilesado-oN

19151601 0y 13151631 anopy
1a1s16a1 0} Alowsw anopy
Asowaw 01 13151631 anoW
1ais1bau sreIpaIWIl aAOKy
Alowaw ajeipawIwl dAOK
Jajutod soels arelpawiwl peo

TR H led
Ja1s1631 areIpawwi peo

3B Qg ned
sasibal aleipawul peo

2% g ied
13151691 are1pawun peoq
uonduasep

H d40d
a d40d
g9 d0d
THOd
ino
140

1 vY4d0
W vdHO

dON

¥ AOW
W/ AOW
I'W ANOW
7AW
W IAW
ds 1xXa

H X
a

8 I1X1
suoweuw

Best of Interface Age/Volume 2

198

uo ob esimiayio ‘Q = (A1ued) J1 1 3Y se awes
uo oB ssimusyio ‘| = (A1ed) j | Y se awes
uo of asimiayio ‘Q = (ubirs) B 13y se swes
uo 0B asimiaylo ‘Q = (0/82) j1 |JH se awes
uo oB asimiaylo ‘0 = (Awued) JI |3 Se awes
uo of asimueyio ‘| = (ubrs) 1 1Y se awes
v Aued

bl L

3OB1S 8yl jo dol 8y} uo pasois
ssauppe ol dwn{ a1 ‘g + {(ds) —(ds) ‘((ds)) (1L + (ds)) — (od)

@ouanbas ul uo ob asmIBYIO ‘| = (Aued) § 1Y Se awes
v Aued

S 5

(sBey sners) - (z - (ds)) “(v) — (1 - (ds))

T - (ds) > (ds) (1) = (Z - (ds)) “(H)— (1 - (ds))

T - (ds)— (ds) “(3) — (z - (@9)) "(@)— (1 - (ds))

T - (ds) — (ds) “(0) — (T - (ds)) ‘(@) — (1 - (ds))

T + (@)= (ds) (I + (ds)) — (v) '((ds)) — (sBey sniezs)

Bujueew YiBuey

- e o o

— = e e o e

LL/S
LL/9
LL/S
LL/8
LL/S
L1/

ol
LL/S

14

14
L
Ll
il
Ll
0oL

sepAd JVAD d

no0[0

s z

peloeye sbey

000001 11
00010111
0000L1L1LL
0000001 L
00001011
000LLLLL

11100000

10010011
00011011

11111000

11101000
10101111
101001 L1
LoL0101L1L
LOL000L L

L0001 LLL
epod do

ppo Alued uo uimey
uane Alsed uo uiniay
aanisod uo uimay
019Z 10U UO WiNlay
Alies ou uo uinjay

sSNUIW uo wmay
3| y arejoy

uinjey
Adied uo wmsy

Ased ybnosyy 1ybu v areloy

Asied ybBnoayl Yya| v ajeloy
yoeis uo sbey pue y ysnyg
doels uo | g H Jed Jasibas ysng
Noeys uo 3 | (Jted seisiBas ysnyg
Noels uo) B g Jieq Jaisibas ysng

oels jo sbely pue y dog
uondisosep

OdH
3dy
dy
ZNY
ONY
WY

o

134
oy

yvy

vy

MSd HSNd
H HSNd

a HSNd

8 HSNd

MSd dOd
sjuoweuw

199

8080 Instruction Set

——r—
m_ —y n
(‘8149) - (v)—(v)

W - (V)—>(w)

) (H) - (W) —=(w)

| = (Aued)

v) —(3) (@)

(v)—=((0) (a)}
(v) — {(2314q) (Fa14q))
(1) (H) —~ (ds)

(H) = (1 + (*a14q) (%a34q))
() = (Fea4q) (814q))

Wued) - (aiAq) - (V)—~(v)
(Aed) - () - (9)—>(v)
(Auzed) - () (H) - (v)—(w)

uo 06 asimiayio ‘| = (0482) JI 13Y Se awes

(sidnuaiul oy Buipuodsal ioy)
000VYYV0000000000 — (2d)
uayl "oels ays uo (od) ysnd

v Aued

Eded 5

- - - - N -

l
yiBuey

~N S S S

€l

gl

14

S8PPA3 IJYAD d S Z

o0

paloaye sbey

LLoLoL Lt
oLL0l011L
SSS01L001
0L101001
11101100
01001000

01000000
01001100
LooLLLLL

01000100
oiLiioLt

SSSHLO00!L
OL1L11l00L

00010011

LLIVVVLL

11110000
apod do

ssaisifioy 1@ H '3 B g 9bueyoxy
Y WOy} 9jeIipalwl 12e5gng

v woyy Jaisibal engng

v woy Alowaw pengng

Aued jog

193J1pul Y 91015

108JIpuUt Y 31015
19941p Y 84015
Jauiod yoeis 01 1 R H

10811p 1 B H 210§

moLI0q
YlUM ¥ WOy 2leIpawwy 10enqng

mouioq
yhm v woyy Jaisibas 1eagng

mouoq
YUM ¢ woyy AJowaw pengng

0192 UO LINBY
ueisay

1ybu vy aeloy
uonduasep

DHIX
NS
449ns
W ans
218

a Xvis

g XV1S
v1lS
THdS

Q7HS

198

4 94s

W g8s

Z4d

1syd

J4Y
osluoweuws

Best of Interface Age/Volume 2

(v) (ysew idnusyui) 1
(ysew jdnusiul) — (y) L

v
v

:210W oM snjd suonINASU!

(L + (ds)—~(H) " ({as) - 1)
(0149) @ (v) — v}

U @ —w

QW) DWW —=(w) l

Buiueews y31Bue)

- N -

81
L
v
L

©c o o
© O O

$0PAS OV AD d

#3015

00001100
00000100

ysew 1dnusaul jas

jysew dnuaul peas

anoge ays ||e sey 10ss2001d0osdIW GEOY Jamau ay 210N

[e]

4

peoaje sbeyy

110001 LL
oiLLOLLL
SSS10L01
otlL1010l
epod do

18 H "yoers jo doy abueyox3
v YlM Bleipawsiul 10 8AISN|oX]
Vv yum soisibas 1o eaisnjoxy

v pim AJowaw 10 8AISNjoxgz
uondussep

WIS
Wiy

TH1X

[£-) ¢

4 vHX

W vyX
Suoweuw

200

Appendix B

Available Back Issues

April 1976 2.25
October 1976 2.25
November 1976 2.25
March 1977 2.25
May 1977

June 1977 2.50
July 1977 2.50
August 1977 2.50
September 1977 2.50
October 1977 2.50
November 1977 2.50
February 1978 2.75
April 1978 2.75
July 1978 2.75
August 1978 2.75
September 1978 2.75
October 1978 2.75
November 1978 2.75

December 1978 2.75

202 Best of Interface Age/Volume 2

March 1979 2.75
April 1979 2.75
May 1979 2.75
June 1979 2.75
July 1979 2.75
August/September 1979 2.75

INTERFACE AGE MAGAZINE Dept. BI P.O. Box 1234,
Cerritos, CA 90701

Name (print)
Address
City State Zip

Price includes 50¢ for postage and handling.

VISA# M/C#

Exp.Date____ Signature

ALGOL, 4
ANSI, 48
APL, 22
ASCIL, 1
azimuth, 120

BASIC, 3, 18, 22, 67

card hole patterns, 24
CBEMA, 49
CHECKSUM, 77
COBOL, 19

code extension, 34
codes, 25

collating, 13
communications, 26
control-Z, 68
controls, 41

cross assembler, 51
currency, 5

cyrillic sets, 39

DBMS, 99
DEL, 75
delete, 4
diabetes, 137
direction, 111
dot matrix, 33

file structure, 100
FORTRAN, 3, 20, 22

Index

games, 153, 161, 171
geographic position, 120
graphics, 8

heart disease, 145
human-readable, 67

IDMAS commands, 107
insulin, 138
I1SO, 1

katakana sets, 39
keyboard, 29

lower case letters, 8

magnetic tape, 26
MARSBASE, 128
metric system, 27
MODE, 75

noise word, 102

OCR, 31
OPCODE, 51

parser, 102
planning, 185
PL/t, 21,22
primary usage, 2

programming languages, 17

204 Best of Interface Age/Volume 2

programs, 56, 69, 85, 109, 125,
131, 143, 148, 154, 162, 174,
178, 181, 190

prompt, 74

punch cards, 22

QWERTY, 30
random file, 128

search, 102

secondary usage, 3

sequential file, 127

source program, TAPEMON, 77
sticks, 1

TAPEMON, verification, 76
Tiny BASIC, 153

upper case letters, 7

amsrmrsasr

INTERTSCE &BE MAGAZINE

For Businessmen...
Professionals...
Students...
You...

Happiness is...a computer magazine you can understand

Step into the exciting world of computing with INTERFACE AGE
Magazine. Written and edited expressly for those who want to get
more out of their life and business through the use of computers. Join
the 85,000 plus who make reading INTERFACE AGE a priority
each month. Enjoy articles that not only tell you how, but show you
how. Each issue of INTERFACE AGE contains projects, programs,
games and reports on and about people and their computers.

Learn how easy it is to own and operate your own computer
system at home or in your business. Explore the many ways a com-
puter can make money for you. Keep up to date with the latest new
products and developments. Only INTERFACE AGE brings you all
this plus much, much more.

The magazine leading the way. . .
bringing people and technology together

Please enter my subscription to INTERFACE AGE for: \
0O 1 year d.S. $18.00 O 2 years U.8. $30.00
[0 1 year Canada/Mexico $20.00 [0 2 years Canada/Mexico $34.00
O 1 year International Surface Mail $28.00 O 1 year International Air Mail $50.00

Make Check or Money Order ({.S. Funds drawn on {.S. Bank) payable to:
INTERFACE AGE Magazine P.O. Box 1234, Dept. IA 4 Cerritos, CA 90701
Charge my: (I VisaCard [J Master Charge 0 American Express

Card No. Expiration Date Signature

Name (Print) Title
C L of 24

Address

City State Zip

- _J

	Best of Interface Age, Volume 2: General Purpose Software (Front Cover)

	Copyright Page

	Preface

	Table of Contents

	Chapters 1-14

	Section 1: Useful Ideas

	Chapter 1: Inside ASCII, By R.W. Bemer (May, June, and July 1978)

	Chapter 2: BASIC Cross Assembler for the 8080, By Peter Reece (February 1978)

	Chapter 3: TLABEL: An 8080 Program to Punch Human-Readable Labels on Paper Tape, By Alan R. Miller (January 1979)

	Chapter 4: TAPEMON: An 8080 Binary Tape Monitor, By Alan R. Miller (February 1978)

	Chapter 5: Complete Data Base Management System, By Peter Reece (August 1978)

	Chapter 6: The Computation of Direction, By Gene Szymanski (August 1978)

	Chapter 7: Random Files Illustrated, By Frank E. La Plante, Jr. (February 1978)

	Section 2: Some Medical Software

	Chapter 8: It's Not a Big Miracle, By Mathew Tekulsky (December 1978)

	Chapter 9: Heart Attack: How You Can Predict It and Some Things You Can Do About It, By Leo P. Biese, MD., F.C.A.P. (July 1978)

	Section 3: Games, Education and Personal Finance

	Chapter 10: Shooting Stars, By H. DeMonstoy (April 1977)

	Chapter 11: European Roulette in Color, By W.C. Hoffer (August 1978)

	Chapter 12: Child's Play Number Game for Beginning Micro-Bugs, By Karen S. Wolfe (September 1978)

	Chapter 13: On A Bi-Lingual Math Tutoring Program, By Marvin Mallon (September 1978)

	Chapter 14: The Personal Management Program, By Carl Townsend (August 1978)

	Appendices

	Appendix A: 8080 Instruction Set

	Appendix B: Available Back Issues

	Index

	Interface Age Magazine Subscription Form

	Back Cover

