
Not-quite-so-broken TLS: lessons in re-engineering a security protocol
specification and implementation

David Kaloper-Meršinjak†, Hannes Mehnert†, Anil Madhavapeddy and Peter Sewell
University of Cambridge Computer Laboratory

first.last@cl.cam.ac.uk
† These authors contributed equally to this work

Abstract

Transport Layer Security (TLS) implementations have a
history of security flaws. The immediate causes of these
are often programming errors, e.g. in memory manage-
ment, but the root causes are more fundamental: the chal-
lenges of interpreting the ambiguous prose specification,
the complexities inherent in large APIs and code bases,
inherently unsafe programming choices, and the impos-
sibility of directly testing conformance between imple-
mentations and the specification.

We present nqsb-TLS, the result of our re-engineered
approach to security protocol specification and imple-
mentation that addresses these root causes. The same
code serves two roles: it is both a specification of TLS,
executable as a test oracle to check conformance of traces
from arbitrary implementations, and a usable implemen-
tation of TLS; a modular and declarative programming
style provides clean separation between its components.
Many security flaws are thus excluded by construction.

nqsb-TLS can be used in standalone Unix applica-
tions, which we demonstrate with a messaging client,
and can also be compiled into Xen unikernels (spe-
cialised virtual machine image) with a trusted comput-
ing base (TCB) that is 4% of a standalone system run-
ning a standard Linux/OpenSSL stack, with all network
traffic being handled in a memory-safe language; this
supports applications including HTTPS, IMAP, Git, and
Websocket clients and servers. Despite the dual-role de-
sign, the high-level implementation style, and the func-
tional programming language we still achieve reasonable
performance, with the same handshake performance as
OpenSSL and 73% – 84% for bulk throughput.

1 Introduction

Current mainstream engineering practices for specifying
and implementing security protocols are not fit for pur-
pose: as one can see from many recent compromises of

sensitive services, they are not providing the security we
need. Transport Layer Security (TLS) is the most widely
deployed security protocol on the Internet, used for au-
thentication and confidentiality, but a long history of ex-
ploits shows that its implementations have failed to guar-
antee either property. Analysis of these exploits typically
focusses on their immediate causes, e.g. errors in mem-
ory management or control flow, but we believe their root
causes are more fundamental:

Error-prone languages: historical choices of pro-
gramming language and programming style that tend to
lead to such errors rather than protecting against them.

Lack of separation: the complexities inherent in
working with large code bases, exacerbated by lack of
emphasis on clean separation of concerns and modular-
ity, and by poor language support for those.

Ambiguous and untestable specifications: the chal-
lenges of writing and interpreting the large and ambigu-
ous prose specifications, and the impossibility of di-
rectly testing conformance between implementations and
a prose specification.

In this paper we report on an experiment in developing
a practical and usable TLS stack, nqsb-TLS, using a new
approach designed to address each of these root-cause
problems. This re-engineering, of the development pro-
cess and of our concrete stack, aims to build in improved
security from the ground up.

We demonstrate the practicality of the result in sev-
eral ways: we show on-the-wire interoperability with ex-
isting stacks; we show reasonable performance, in both
bulk transfer and handshakes; we use it in a test oracle,
validating recorded packet traces which contain TLS ses-
sions between other implementations; and we use it as
part of a standalone instant-messaging client. In addition
to use in such traditional executables, nqsb-TLS is us-
able in applications compiled into unikernels – type-safe,
single-address-space VMs with TCBs that run directly



on a hypervisor [32]. This integration into a uniker-
nel stack lets us demonstrate a wide range of working
systems, including HTTPS, IMAP, Git, and Websocket
clients and servers, while sidestepping a further diffi-
culty with radical solutions in this area: the large body
of legacy code (in applications, operating systems, and
libraries) that existing TLS stacks are intertwined with.

We assess the security of nqsb-TLS also in several
ways: for each of the root causes above, we discuss why
our approach rules out certain classes of associated flaws,
with reference to an analysis of flaws found in previ-
ous TLS implementations; and we test our authentication
logic with a large corpus of certificate chains generated
by using the Frankencert fuzzer [8], which found flaws
in several previous implementations. We have also made
the system publically available for penetration testing, as
a Bitcoin Piñata, an example unikernel using nqsb-TLS.
This has a TCB size roughly 4% of that of a similar sys-
tem using OpenSSL on Linux.

We describe our overall approach in the remainder of
the introduction. We then briefly describe the TLS pro-
tocol (§2), analyse flaws previously found in TLS im-
plementations (§3), and the result of applying our ap-
proach, dubbed nqsb-TLS (§4). We demonstrate the du-
ality of nqsb-TLS next by using its specification to vali-
date recorded sessions (§5) and executing its implemen-
tation to provide concrete services (§6). We evaluate the
interoperability, performance, and security (§7) of nqsb-
TLS, describe related work (§8), and conclude (§9).

nqsb-TLS is freely available under a BSD license
(https://nqsb.io), and the data used in this paper is
openly accessible [27].

1.1 Approach

A precise and testable specification for TLS In prin-
ciple, a protocol specification should unambiguously de-
fine the set of all implementation behaviour that it allows,
and hence also what it does not allow: it should be pre-
cise. This should not be confused with the question of
whether a specification is loose or tight: a precise specifi-
cation might well allow a wide range of implementation
behaviour. It is also highly desirable for specifications
to be executable as test oracles: given an implementa-
tion behaviour (perhaps a trace captured from a particu-
lar execution), the specification should let one compute
whether it is in the allowed set or not.

In practice, the TLS specification is neither, but rather
a series of RFCs written in prose [13, 14, 15]. An ex-
plicit and precise description of the TLS state machine
is lacking, as are some security-critical preconditions of
its transitions, and there are ambiguities in various semi-
formal grammars. There is no way such prose documents
can be executed as a test oracle to directly test whether

Flow Entropy

ASN.1 Trust 
Anchors

Nocrypto

CSPRNGParse

Serialise TLS

Policy 
Config

X.509

Figure 1: nqsb-TLS is broken down into strongly sep-
arated modules. The main part, in bold boxes, has
pure value-passing interfaces and internals. The PRNG
maintains internal state, while Nocrypto includes C code
but has a pure effect-free interface. Arrows indicate
depends-on relationships.

implementation behaviour conforms to the specification.
TLS is not unique in this, of course, and many other
specifications are expressed in the same traditional prose
style, but its disadvantages are especially serious for se-
curity protocols.

For nqsb-TLS, we specify TLS as a collection of pure
functions over abstract datatypes. By avoiding I/O and
shared mutable state, these functions can be considered
in isolation and each is deterministic, with errors re-
turned as explicit values. The top-level function takes an
abstract protocol state and an incoming message, and cal-
culates the next state and any response messages. To do
so, it invokes subsidiary functions to parse the message,
drive the state machine, perform cryptographic opera-
tions, and construct the response. This top-level function
can be executed as a trace-checker, on traces both from
our implementation and from others, such as OpenSSL,
to decide whether they are allowed by our specification
or not. In building our specification, to resolve the RFC
ambiguities, we read other implementations and tested
interoperability with them; we thereby capture the prac-
tical de facto standard.

Reuse between specification and implementation
The same functions form the main part of our imple-
mentation, coupled with code for I/O and to provide en-
tropy. Note that this is not an “executable specification”
in the conventional sense: our specification is necessar-
ily somewhat loose, as the server must have the freedom
to choose a protocol version and cipher suite, and the
trace checker must admit that, while our implementation
makes particular choices.

Each version of the implementation (Unix, unikernel)
has a top-level Flow module that repeatedly performs I/O
and invokes the pure functional core; the trace-checker
has a top-level module of the same type that reads in a
trace to be checked offline.

2

https://nqsb.io


Separation and modular structure This focus on
pure functional descriptions also enables a decomposi-
tion of the system (both implementation and specifica-
tion) into strongly separated modules, with typed inter-
faces, that interact only by exchanging pure values, as
shown in Fig. 1. These modules and their interfaces are
arranged to ensure that localised concerns such as binary
protocol formats, ASN.1 grammars and certificate vali-
dation are not spread throughout the stack, with no im-
plicit dependencies via shared memory.

External resources are explicitly represented as mod-
ules, instead of being implicitly accessed, and each sat-
isfies a module type that describes collections of opera-
tions over an abstract type, and that can be instantiated
with any of several implementations. These include the
Nocrypto cryptography layer and our PRNG, which de-
pends on an external Entropy module type.

Communication with the outside world is factored out
into an I/O component, Flow, that passes a byte sequence
to the pure core, then transmits responses and handles
timeouts, and is used by the top-level but not by the TLS
engine itself. The pure TLS engine depends on some
external data, such as the policy config and trust anchors.

Choice of language and style The structure we de-
scribe above could be implemented in many different
programming languages, but guarantees of memory and
type safety are desirable to exclude many common secu-
rity flaws (lack of memory safety was the largest single
source of vulnerabilities in various TLS stacks through-
out 2014, as shown in our §3 vulnerability analysis), and
expressive statically checked type and module systems
help maintain the strongly separated structure that we
outlined. Our implementation of nqsb-TLS uses OCaml,
a memory-safe, statically typed programming language
that compiles to fast native code with a lightweight, em-
beddable runtime. OCaml supports (but does not man-
date) a pure programming style, and has a module sys-
tem which supports large-scale abstraction via ML func-
tors – modules that can depend on other modules’ types.
In OCaml, we can encode complex state machines (§4),
with lightweight invariants statically enforced by the
type checker (state machine problems were the second
largest source of vulnerabilities). Merely using OCaml
does not guarantee all the properties we need, of course
(one can write imperative and convoluted code in any
language); our specification and programming styles are
equally important.

This is a significant departure from normal practice, in
which systems software is typically written in C, but we
believe our evaluation shows that it is viable in at least
some compelling scenarios (§7).

Non-goals For nqsb-TLS we are focussed on the engi-
neering of TLS specifications and implementations, not

on the security protocol itself (as we recall in §3, some
vulnerabilities have been found there). We are also not
attempting to advance the state of the art in side-channel
defence, though we do follow current best practice. We
are focussed on making a stack that is usable in prac-
tice and on security improvements achievable with better
engineering processes, rather than trying to prove that a
specification or implementation is correct or secure (see
§8 for related work in that direction).

Current state The entire set of TLS RFCs [13, 14, 15]
are implemented in nqsb-TLS, apart from minor rarely
used features, such as DSS certificates and anon and
pre-shared keys ciphersuites. As we demonstrate in
§7.1, nqsb-TLS can interoperate with many contempo-
rary TLS implementations, but we are not attempting to
support legacy options or those of doubtful utility. We
neither support SSLv3 [1], nor use RC4 in the default
configuration [39]. The crypto wars are over: we have
not implemented ciphersuites to adhere to export restric-
tions, which gave rise to the FREAK and Logjam attacks.

nqsb-TLS is strict (see §7.2), which results in roughly
10% failing connections from legacy clients. But since
our main goal is to provide security, we are not willing to
make compromises for insecure implementations. In ad-
dition to TLS itself, we also implemented ASN.1, X.509
and crypto primitives. From a practical point of view, the
largest missing part is elliptic curve cryptography.

2 TLS Background

TLS provides the twin features of authentication and
confidentiality. Clients typically verify the server’s iden-
tity, the server can optionally verify the client’s identity,
while the two endpoints establish an encrypted commu-
nication channel. This channel should be immune from
eavesdropping, tampering and message forgery.

There have been three standardised versions of TLS,
1.0, 1.1 and 1.2, while the last SSL (version 3) is still in
wide usage. A key feature of TLS is algorithmic agility:
it allows the two endpoints to negotiate the key exchange
method, symmetric cipher and the message authentica-
tion mode upon connecting. This triple is called a cipher
suite, and there are around 160 cipher suites standard-
ised and widely supported. Together with a number of
standardised extensions to the protocol that can be nego-
tiated, this creates a large possible space of session pa-
rameters. This large variation in configuration options is
a marked characteristic of TLS, significantly contribut-
ing to the complexity of its state machine.

Only a handful implementations of TLS are in wide
use. The three major free or open-source implementa-
tions are OpenSSL, GnuTLS and Mozilla’s NSS. Mi-
crosoft supplies SChannel with their operating systems,

3



while Apple supplies Secure Transport with theirs, and
Oracle Java runtime comes bundled with JSSE.

Structurally, TLS is a two-layered protocol. The outer
layer preserves message boundaries and provides fram-
ing. It encapsulates one of five sub-protocols: hand-
shake, change cipher spec, alert, application data or
heartbeat. Both layers can contain fragmentation.

A TLS session is initiated by the client, which uses
the handshake protocol to signal the highest protocol ver-
sion, possible extensions, and a set of ciphersuites it sup-
ports. The server picks the highest protocol version it
shares with the client and a mutually supported cipher-
suite, or fails the handshake. The ciphersuite determines
whether the server authenticates itself, and depending on
the server configuration it requests the client to authenti-
cate itself. After the security parameters for the authenti-
cated encryption scheme are negotiated, the Change Ci-
pher Spec message activates these, and the last hand-
shake message authenticates the handshake. Either party
can renegotiate the session over the established channel
by initiating another handshake.

The handshake sub-protocol contains a complex state
machine, which must be successfully traversed at least
once. Handshake messages are independent of other sub-
protocols, but some other sub-protocols are dependent of
a successful handshake. For instance, it is not possible to
exchange application data before a session is established,
and it is impossible to affect the use of negotiated session
parameters while the negotiation is still in progress.

Server and client authentication is performed by
means of X.509 certificates. Usually path validation is
used: after one party presents a sequence of certificates
called the certificate chain, the other party needs to ver-
ify that a) each certificate in the chain is signed by the
next certificate; b) the last certificate is signed by one
of the trust anchors independent of connection; and c)
that the first party owns the private key associated with
the first certificate in the chain by transferring a signed
message containing session-specific data. For correct au-
thentication, the authenticating party also needs to verify
general semantic well-formedness of the involved certifi-
cates, and be able to deal with three version of X.509 and
a number of extensions.

X.509 certificates are described through ASN.1, a no-
tation for describing the abstract syntax of data, and en-
coded using Distinguished Encoding Rules (DER), one
of the several standard encodings ASN.1 defines. A par-
ticular description in the ASN.1 language coupled with
a choice of encoding defines both the shape the the data-
structures and their wire-level encoding. ASN.1 provides
a rich language for describing structure, with a number
of primitive elements, like INTEGER and BIT STRING,
and combining constructs, like SEQUENCE (a record of
sub-grammars) and CHOICE (a node joining alternative

grammars). The ASN.1 formalism can be used with a
compiler that derives parsing and serialisation code for
the target language, but TLS implementations more typi-
cally contain custom parsing code for dealing with X.509
certificates. As X.509 exercises much of ASN.1, this
parsing layer is non-trivial and significantly adds to the
implementation complexity.

3 Vulnerability Analysis

In the past 13 months (January 2014 to January 2015),
54 CVE security advisories have been published for 6
widely used TLS implementations (see Table 1): 22 for
OpenSSL, 6 for GnuTLS, 7 for NSS, 2 for SChannel, 2
for Secure Transport, 5 for JSSE, and 10 related to errors
in their usage in the client software (excluding vulnera-
bilities related to DTLS – TLS over UDP).

These vulnerabilities have a wide range of causes. We
classify them into broad families below, identifying root
causes for each and discussing how nqsb-TLS avoids
flaws of each kind.

General memory safety violations Most of these bugs,
15 in total, are memory safety issues: out-of-bounds
reads, out-of-bounds writes and NULL pointer derefer-
ences. A large group has only been demonstrated to
crash the hosting process, ending in denial-of-service,
but some lead to disclosure of sensitive information.

A now-notorious example of this class of bugs is
Heartbleed in OpenSSL (CVE-2014-0160). Upon re-
ceiving a heartbeat record, a TLS endpoint should re-
spond by sending back the payload of the record. The
record contains the payload and its length. In Heartbleed,
the TLS implementation did not check if the length of
the received heartbeat matched the length encoded in the
record, and responded by sending back as many bytes
as were requested on the record level. This resulted in
an out-of-bounds read, which lets a malicious client dis-
cover parts of server’s memory. In April 2014, Cloud-
flare posed a challenge of exploiting this bug to compro-
mise the private RSA key, which has been accomplished
by at least four independent researchers.

nqsb-TLS avoids this class of issues entirely by the
choice of a programming language with automated mem-
ory management and memory safety guarantees: in
OCaml, array bounds are always checked and it is not
possible to access raw memory; and our pure functional
programming style rules out reuse of mutable buffers.

Certificate parsing TLS implementations need to parse
ASN.1, primarily for decoding X.509 certificates. While
ASN.1 is a large and fairly complex standard, for the pur-
poses of TLS, it is sufficient to implement one of its en-
codings (DER), and only some of the primitives. Some
TLS implementations contain an ad-hoc ASN.1 parser,

4



Product CVE ID Issue source

OpenSSL 2013-4353, 2015-0206, 2014-[3567, 3512, 3569, 3508, 3470, 0198, 0160] Memory management
2015-0205, 2015-0204, 2014-3572, 2014-0224, 2014-3568, 2014-3511 State machine
2014-8275 Certificate parsing
2014-2234 Certificate validation
2014-3509, 2010-5298 Shared mutable state
2014-0076 Timing side-channel
2014-3570 Wrong sqrt

GnuTLS 2014-8564, 2014-3465, 2014-3466 Memory management
2014-1959, 2014-0092, 2009-5138 Certificate validation

NSS 2014-1544 Memory management
2013-1740 State machine
2014-1490 Shared mutable state
2014-1569, 2014-1568 Certificate parsing
2014-1492 Certificate validation
2014-1491 DH param validation

SChannel 2014-6321 Memory management
Secure Transport 2014-1266 State machine
JSSE 2014-6593, 2014-0626 State machine

2014-0625 Memory exhaustion
2014-0411 Timing side-channel

Applications 2014-2734 Memory management
2014-3694, 2014-0139, 2014-2522, 2014-8151, 2014-1263 Certificate validation
2013-7373, 2014-0016, 2014-0017, 2013-7295 RNG seeding

Protocol-level 2014-1771, 2014-1295, 2014-6457 Triple handshake
2014-3566 POODLE

Table 1: Vulnerabilities in TLS implementations in 2014.

combining the core ASN.1 parsing task with the defini-
tions of ASN.1 grammars, and this code operates as a
part of certificate validation.

Unsurprisingly, ASN.1 parsing is a recurrent source of
vulnerabilities in TLS and related software, dating back
at least to 2004 (MS04-007, a remote code execution vul-
nerability), and 3 vulnerabilities in 2014 (CVEs 2014-
8275, 2014-1568 and 2014-1569). Two examples are
CVE-2015-1182, the use of uninitialised memory during
parsing in PolarSSL, which could lead to remote code
execution, and CVE-2014-1568, a case of insufficiently
selective parsing in NSS, which allowed the attacker to
construct a fake signed certificate from a large space of
byte sequences interpreted as the same certificate.

This class of errors is due to ambiguity in the specifi-
cation, and ad-hoc parsers in most TLS implementations.
nqsb-TLS avoids this class of issues entirely by separat-
ing parsing from the grammar description (§4.4).

Certificate validation Closely related to ASN.1 pars-
ing is certificate validation. X.509 certificates are nested
data structures standardised in three versions and with
various optional extensions, so validation involves pars-
ing, traversing, and extracting information from complex
compound data. This opens up the potential for errors
both in the control-flow logic of this task and in the in-
terpretation of certificates (multiple GnuTLS vulnerabil-

ities are related to lax interpretation of the structures).
In 2014, there were 5 issues related to certificate val-

idation. A prominent example in the control-flow logic
is GnuTLS (CVE-2014-0092), where a misplaced goto

statement lead to certificate validation being skipped if
any intermediate certificate was of X.509 version 1.

Many implementations interleave the complicated
X.509 certificate validation with parsing the ASN.1
grammar, leading to a complex control flow with sub-
tle call chains. This illustrates another way in which the
choice of programming language and style can lead to
errors: the normal C idiom for error handling uses goto
and negative return values, while in nqsb-TLS we return
errors explicitly as values and have to handle all possi-
ble variants. OCaml’s typechecker and pattern-match ex-
haustiveness checker ensures this at compile time (§4.3).

State machine errors TLS consists of several sub-
protocols that are multiplexed at the record level: (i) the
handshake that initially establishes the secure connection
and subsequently renegotiates it; (ii) alerts that signal
out-of-band conditions; (iii) cipher spec activation notifi-
cations; (iv) heartbeats; and (v) application data. The ma-
jority of the TLS protocol specification covers the hand-
shake state machine. The path to a successful negotia-
tion is determined during the handshake and depends on
the ciphersuite, protocol version, negotiated options, and

5



configuration, such as client authentication. Errors in the
handshake logic often lead to a security breach, allowing
attackers to perform active man-in-the-middle (MITM)
insertion, or to passively gain knowledge over the nego-
tiated security parameters.

There were 10 vulnerabilities in this class. Some led
to denial-of-service conditions caused (for example) by
NULL-pointer dereferences on receipt of an unexpected
message, while others lead to a breakdown of the TLS
security guarantees. An extensive study of problems in
TLS state machine implementations has been done in the
literature [2, 11].

A prominent example is Apple’s “goto fail” (CVE-
2014-1266), caused by a repetition of a goto state-
ment targeting the cleanup block of the procedure re-
sponsible for verifying the digital signature of the
ServerKeyExchange message. This caused the proce-
dure to skip the subsequent logic and return the value
registered in the output variable. As this variable was
initialised to “success”, the signature was never verified.

Another typical example is the CCS Injection in
OpenSSL (CVE-2014-0224). ChangeCipherSpec is
the message signalling that the just negotiated security
parameters are activated. In the TLS state machine, it is
legal only as the penultimate message in the handshake
sequence. However, both OpenSSL (CVE-2014-0224)
and JSSE (CVE-2014-6593) allowed a CCS message be-
fore the actual key exchange took place, which activated
predictable initial security parameters. A MITM attacker
can exploit this by sending a CCS during handshake,
causing two parties to establish a deterministic session
key and defeating encryption.

Some of these errors are due to missing preconditions
of state machine transitions in the specification. In nqsb-
TLS, our code structure (§4.1) makes the need to con-
sider each of these clear. We encode the state machine
explicitly, while state transitions default to failure.

Protocol bugs In 2014, two separate issues in the pro-
tocol itself were described: POODLE and triple hand-
shakes. POODLE is an attack on SSL version 3, which
does not specify the value of padding bytes in CBC
mode. Triple handshake [3] is a MITM attack where one
negotiates sessions with the same security parameters
and resumes. We do not claim to prevent nor solve those
protocol bugs in nqsb-TLS, we mitigate triple handshake
by resuming sessions only if the extended master se-
cret [4] was used. Furthermore, we focus on a modern
subset of the protocol, not including SSL version 3, so
neither attack is applicable.

Timing side-channel leaks Two vulnerabilities were re-
lated to timing side-channel leaks, where the observable
duration of cryptographic operations depended on cryp-
tographic secrets. These were implementation issues,

related to the use of variable-duration arithmetic oper-
ations. The PKCS1.5 padding of the premaster secret
is transmitted during an RSA key exchange. If the un-
padding fails, there is computationally no need to de-
crypt the received secret material. But omitting this step
leaks the information on whether the padding was cor-
rect through the time signature, and this can be used to
obtain the secret. A similar issue was discovered in 2014
in various TLS implementations [34].

nqsb-TLS mitigates this attack by always computing
the RSA operation, on padding failure with a fake value.
To mitigate timing side-channels, which a memory man-
aged programming language might further expose, we
use C implementations of the low level primitives (§4.2).

Usage of the libraries Of the examined bugs, 10 were
not in TLS implementations themselves, but in the way
the client software used them. These included the high-
profile anonymisation software Tor [16], the instant mes-
senger Pidgin and the widely used multi-protocol data
transfer tool cURL.

TLS libraries typically have complicated APIs due to
implementing a protocol with a large parameter space.
For example, OpenSSL 1.0.2 documents 243 symbols in
its protocol alone, not counting the cryptographic parts of
the API. Parts of its API are used by registering callbacks
with the library that get invoked upon certain events. A
well-documented example of the difficulty in correctly
using these APIs is the OpenSSL certificate validation
callback. The library does not implement the full logic
that is commonly needed (it omits name validation), so
the client needs to construct a function to perform cer-
tificate validation using a mix of custom code and calls
to OpenSSL, and supply it to the library. This step is a
common pitfall: a recent survey [23] showed that it is
common for OpenSSL clients in the wild to do this in-
correctly. We counted 6 individual advisories stemming
from improper usage of certificate validation API, which
is a large number given that improper certificate valida-
tion undermines the authentication property of TLS and
completely undermines its security.

The root cause of this error class is the large and com-
plex legacy APIs of contemporary TLS stacks. nqsb-TLS
does not mirror those APIs, but provides a minimal API
with strict validation by default. This small API is suf-
ficient for various applications we developed. OpenBSD
uses a similar approach with their libtls API.

4 The nqsb-TLS stack

We now describe how we structure and develop the nqsb-
TLS stack, following the approach outlined in the intro-
duction to avoid a range of security pitfalls.

6



4.1 TLS Core

The heart of our TLS stack is the core protocol imple-
mentation. By using pure, composable functions to ex-
press the protocol handling, we deal with TLS as a data-
transformation pipeline, independent of how the data is
obtained or transmitted.

Accordingly, our core revolves around two functions.
One (handle tls) takes the sequence of bytes seen on
the wire and a value denoting the previous state, and
produces, as new values, the bytes to reply with or
to transfer to the application, and the subsequent state.
Our state type encapsulates all the information about
a TLS session in progress, including the state of the
handshake, the cryptographic state for both directions
of communication, and the incomplete frames previ-
ously received, as an immutable value. The other one
(send application data) takes a sequence of bytes
that the application wishes to send and the previous state,
and produces the sequence ready to be sent and the sub-
sequent state. Coupled with a few operations to extract
session information from the state, these form the entire
interface to the core protocol implementation.

Below the entry points, we segment the records, de-
crypt and authenticate them, and dispatch to the appro-
priate protocol handler. One of the places where OCaml
helps most prominently is in handling of the combined
state machine of handshake and its interdependent sub-
protocols. We use algebraic data types to encode each
possible handshake state as a distinct type variant, that
symbolically denotes the state it represents and contains
all of the data accumulated so far. The overall state
type is simply the discriminated union of these variants.
Every operation that extracts information from state

needs to scrutinise its value through a form of multi-way
branching known as pattern match. This syntactic con-
struct combines branching on the particular variant of
the state present with extraction of components. The
resulting dispatch leads to equation-like code: branches
that deal with distinct states follow directly from the val-
ues representing them, process the state data locally, and
remain fully independent in the sense of control flow and
access to values they operate on. Finally, each separately
materialises the output and subsequent state.

This construction and the explicit encoding of state-
machine is central to maintaining the state-machine in-
variants and preserving the coherence of state represen-
tation. It is impossible to enter a branch dedicated to a
particular transition without the pair of values represent-
ing the appropriate state and appropriate input message,
and, as intermediate data is directly obtained from the
state value, it is impossible to process it without at the
same time requiring that the state-machine is in the ap-
propriate state. It is also impossible to manufacture a

state-representation ahead of time, as it needs to contain
all of the relevant data.

The benefit of this encoding is most clearly seen in
CCS-injection-like vulnerabilities. They depend on ses-
sion parameters being stored in locations visible through-
out the handshake code, which are activated on receipt
of the appropriate message. In the OpenSSL case (CVE-
2014-0224), the dispatch code failed to verify whether
all of these locations were populated, which implies that
the handshake progressed to the appropriate phase. In
our case, the only way to refer to the session parameters
is to deconstruct a state-value containing them, and it is
impossible to create this value without having collected
the appropriate session parameters.

All of core’s inner workings adhere to a predictable,
restricted coding style. Information is always communi-
cated through parameters and result values. Error prop-
agation is achieved exclusively through results, without
the use of exceptions. We explicitly encode errors dis-
tinct from successful results, instead of overloading the
result’s domain to mean error in some parts of its range.
The type checker verifies both that each code path is
dealing with exactly one possibility, and – through the
exhaustiveness checker – that both forms have been ac-
counted for. The repetitive logic of testing for error re-
sults and deciding whether to propagate the error or pro-
ceed is then abstracted away in a few higher-order func-
tions and does not re-appear throughout the code.

This approach has also proven convenient when main-
taining a growing code-base: when we had to add sig-
nificant new capabilities, e.g. extending the TLS version
support to versions 1.1 and 1.2 or implementing client
authentication, the scope of changes was localised and
the effects they had on other modules were flagged by
the type checker.

4.2 Nocrypto

TLS cryptography is provided by Nocrypto, a separate
library we developed for that purpose. It supports ba-
sic modular public-key primitives like RSA, DSA and
DH; the two most commonly used symmetric block ci-
phers, AES and 3DES; the most important hash func-
tions, MD5, SHA and the SHA2 family; and an imple-
mentation of the cryptographically strong pseudorandom
number generator, Fortuna [20].

One of the fundamental design decisions was to use
block-level symmetric encryption and hash cores written
in C. For hashing, DES, and the portable version of AES,
we use widely available public domain code. In addition,
we wrote our own AES core using the Intel AES-NI in-
structions.

There are two reasons for using C at this level. Firstly,
symmetric encryption and hashing are the most CPU-

7



intensive operations in TLS. Therefore, performance
concerns motivate the use of C. Secondly, the security
impact of writing cryptography in a garbage-collected
environment is unclear. Performing computations over
secret material in this context is a potential attack vector.
The garbage collector pauses might act as an amplifier to
any existing timing side-channel leaks, revealing infor-
mation about the allocation rate. We side-step this issue
by leaving the secret material used by symmetric encryp-
tion opaque to the OCaml runtime.

Such treatment creates a potential safety problem in
turn: even if we manage to prevent certain classes of bugs
in OCaml, they could occur in our C code. Our strategy
to contain this is to restrict the scope of C code: we em-
ploy simple control flow and never manage memory in
the C layer. C functions receive pre-allocated buffers,
tracked by the runtime, and write their results there. The
most complex control flow in these are driving loops that
call the compression function (in the case of hashes), or
the block transform (in the case of ciphers), over the con-
tents of the input buffer. AES-NI instructions are partic-
ularly simplifying in this respect, as the code consists of
a sequence of calls to compiler intrinsics.

Presently, only the AES-NI implementation of AES
is protected from timing side-channel leaks, since the
bulk of the cipher is implemented via constant-time ded-
icated instructions. The generic code path is yet to be
augmented with code to pre-load substitution tables in a
non-data-dependent manner.

More complex cryptographic constructions, like ci-
pher modes (CBC, CTR, GCM and CCM) and HMAC
are implemented in OCaml on top of C-level primitives.
We benefit from OCaml’s safety and expressive power in
these more complex parts of the code, but at the same
time preserve the property that secret material is not di-
rectly exposed to the managed runtime.

Public key cryptography is treated differently. It is not
block-oriented and is not easily expressed in straight-
line code, while the numeric operations it relies on are
less amenable to C-level optimisation. At the same time,
there are known techniques for mitigating timing leaks
at the algorithmic level [28], unlike in the symmetric
case. We therefore implement these directly in OCaml
using GMP as our bignum backend and employ the stan-
dard blinding countermeasures to compensate for poten-
tial sources of timing side-channels.

Our Fortuna CSPRNG uses AES-CTR with a self-
rekeying regime and a system of entropy accumulators.
Instead of entropy estimation, it employs exponential
lagging of accumulators, a scheme that has been shown
to asymptotically optimally recover from state compro-
mise under a constant input of entropy of unknown qual-
ity [17]. To retain purity of the system and facilitate de-
terministic runs, entropy itself is required from the sys-

tem as an external service, as shown later in §6.
For the sake of reducing complexity in the upper lay-

ers, the API of Nocrypto is concise and retains the ap-
plicative style, mapping inputs to outputs. We did make
two concessions to further simplify it: first, we use
OCaml exceptions to signal programming errors of ap-
plying cyptographic operations to malformed input (such
as buffers which are not a multiple of the block size in
CBC mode, or the use of RSA keys unsuitably small for
a message). Secondly, we employ a global and changing
RNG state, because operations involving it are pervasive
throughout interactions with the library and the style of
explicit passing would complicate the dependent code.

4.3 X.509

X.509 certificates are rich tree-like data structures whose
semantics changes with the presence of several optional
extensions. Although the core of the path-validation pro-
cess is checking of the signature, a cryptographic oper-
ation, the correct validation required by the standard in-
cludes extensive checking of the entire data structure.

For example, each extension must be present at most
once, the key usage extension can further constrain
which exact operations a certificate is authorised for, and
a certificate can specify the maximal chain length which
is allowed to follow. There are several ways in which a
certificate can express its own identity and the identity of
its signing certificate. After parsing, a correct validation
procedure must take all these possibilities into account.

The ground encoding of certificates again benefits
from algebraic data types, as the control flow of func-
tions that navigate this structure is directed by the type-
checker. On a level above, we separate the validation
process into a series of functions computing individual
predicates, such as the certificate being self-signed, its
validity period matching the provided time or confor-
mance of the present extensions to the certificate ver-
sion. The conjunction of these is clearly grouped into
single top-level functions validating certificates in differ-
ent roles, which describe the high-level constraints we
impose upon the certificates. The entire validation logic
amounts to 314 lines of easily reviewable code.

This is in contrast to 7 000 lines of text in the RFC [9],
which go into detail to explain extensions – such as poli-
cies and name constraints – that are rarely seen in the
wild. For the typical HTTPS setting, the RFC fails to
clarify how to search for a trust anchor, and assumes in-
stead the presence of exactly one. Due to cross sign-
ing there can be multiple chains with different properties
which are not covered by the RFC.

nqsb-TLS initially strictly followed the RFC, but was
not able to validate many HTTPS endpoints on the In-
ternet. It currently follows the RFC augmented with

8



Mozilla’s guidelines and provides a self-contained con-
densation of these which can be used to clarify, or even
supplant, the specification. We created an extensive test
suite with full code coverage, the code has been evalu-
ated (see §7.2) with the Frankencert tool, and it success-
fully parses most of ZMap’s certificate repositories. In
addition, we also support signing and serialising to PEM.

The interface to this logic is deterministic (it is made
so by requiring the current time as an input). Our X.509
library provides operations to construct a full authenti-
cator, by combining the validation logic with the current
time at the moment of construction, which the TLS core
can be parametrised with. We do not leave validation to
the user of the library, unlike other TLS libraries [23].
Instead, we have full implementations of path validation
with name checking [42] and fingerprint-based valida-
tion, and we use the type system to force the user to in-
stantiate one of them and provide it to the TLS layer.

4.4 ASN.1

ASN.1 parsing creates a tension in TLS implementa-
tions: TLS critically relies on ASN.1, but it requires only
a subset of DER encoding, and, since certificates are usu-
ally pre-generated, needs very little in the way of writing.
For the purposes of TLS, it is therefore sufficient to im-
plement just a partial parser.

When implementing ASN.1, a decision has to be made
on how to encode the actual abstract grammar that will
drive the parsing process, given by various TLS and
X.509-related standards. OpenSSL, PolarSSL, JSSE and
others, with the notable exception of GnuTLS, do not
make any attempts to separate the grammar definition
from the parsing process. The leaf rules of ASN.1 are
implemented as subroutines, which are exercised in the
order required by the grammar in every routine that acts
as parser. In other words, they implement the parsers as
ad-hoc procedures that interleave the code that performs
the actual parsing with the encoding of the grammar to be
parsed. Therefore the code that describes the high-level
structure of data also contains details of invocation of
low-lever parsers and, in the case of C, memory manage-
ment. Unsurprisingly, ASN.1 parsers provide a steady
stream of exploits in popular TLS implementations.

We retain the full separation of the abstract syntax rep-
resentation from the parsing code, avoiding the complex-
ity of the code that fuses the two. At the same time, we
avoid parser generators which output source code that is
hard to understand.

Instead, we created a library for declaratively describ-
ing ASN.1 grammars in OCaml, using a functional tech-
nique known as combinatory parsing [21]. It exposes
an opaque data type that describes ASN.1 grammar in-
stances and provides a set of constants (corresponding

to terminals) and functions over them (corresponding to
productions). Nested applications of these functions to
create data that describes ASN.1 grammars follow the
shape of the actual ASN.1 grammar definitions. Inter-
nally, this tree-like type is traversed at initialisation-time
to construct the parsing and serialisation functions.

This approach allows us to create “grammar ex-
pressions” which encode ASN.1 grammars, and derive
parsers and serialisers. As the ASN.1-language we cre-
ate is a fragment of OCaml, we retain all the bene-
fits of its static type checking. Types of functions over
grammar representations correspond to restrictions in the
production rules, so type-checking grammar expressions
amounts to checking their well-formedness without writ-
ing a separate parser for the grammar formalism. More-
over, type inference automatically derives the OCaml
representation of the types defined by ASN.1 grammars.

Such an approach also makes testing much easier. The
grammar type is traversed to generate random inhabi-
tants of the particular grammar, which can be serialised
and parsed back to check that the two directions match
in their interpretation of the underlying ASN.1 encoding
and to exercise all of the code paths in both.

A derived parsing function does not interpret the
grammar data, but as its connections to component pars-
ing functions are known only when synthesis takes place
at run-time, we do not retain the benefit of inlining
and inter-function optimisation a truly compiled parser
would have. Nonetheless, given that it parses roughly
50 000 certificates per second, this approach does not
create a major performance bottleneck. The result is
a significant reduction in code complexity: the ASN.1
parsing logic amounts to 620 lines of OCaml, and the
ASN.1 grammar code for X.509 certificates and signa-
tures is around 1 000 lines. For comparison, PolarSSL
1.3.7 needs around 7 500 lines to parse ASN.1, while
OpenSSL 1.0.1h has around 25 000 in its ASN.1 parser.

5 Using nqsb-TLS as a test oracle

One use of nqsb-TLS is as an executable test oracle,
an application which reads a recorded TLS session trace
and checks whether it (together with some configuration
information) adheres to the specification that nqsb-TLS
embodies. This recorded session can be a packet capture
(using tcpdump) of a TLS session between various im-
plementations (e.g. OpenSSL, PolarSSL, nqsb-TLS), or,
for basic testing, a trace generated by nqsb-TLS itself.

To do this we must deal with the looseness of the TLS
specification: a TLS client chooses its random nonce, set
of ciphersuites, protocol version, and handshake exten-
sions, while a TLS server picks its random nonce, the
protocol version, the ciphersuite, possibly the DH group,
and possibly extensions. Our test oracle does not make

9



ASN.1 Nocrypto

TLS

X.509

Trace Checker

Trace
Checker

OpenSSL
Packet 
Traces

pcap

nqsb-TLS
Config Config CertsCerts

Predictable 
RNG

Figure 2: nqsb-TLS acts as a trace checker: the RNG
is predictable, configuration and certificates are inputs,
driven by packet traces from OpenSSL (or other stacks).

those decisions, but rather takes the parameters recorded
in the given session. To make this possible, given the on-
the-wire encryption, some configuration information has
to be provided to the trace checker, including private key
material. In addition, both records and sub-protocols can
be fragmented; our test oracle normalises the records to
not contain any fragmentation for comparison.

Figure 2 shows how nqsb-TLS can be used to build
such a test oracle (note that it does not instantiate the
entropy source for this usage). The test oracle produces
its initial protocol state from the given session. It cal-
culates handle tls with its state and the record input
of the given session, together with the particular selec-
tion of protocol version, etc., resulting in an output state,
potentially an output record, and potentially decrypted
application data. It then compares equality of the out-
put record and the given session. If successful, it uses
the output state and next recorded input of the given ses-
sion to evaluate handle tls again, and repeats to the
end of the trace. It thus terminates either when the entire
trace has been accepted, which means success; or with a
discrepancy between the nqsb-TLS specification and the
recorded session, which means failure and needs further
investigation. Such a discrepancy might indicate an error
in the TLS stack being tested, an error in the nqsb-TLS
specification, or an ambiguity in what TLS actually is.

A first test of this infrastructure was to use a recorded
session of the change cipher spec injection (CVE-2014-
0224): our test oracle correctly denied this session, iden-
tifying an unexpected message. We ran our test ora-
cle and validated our 30 000 interoperability traces (see
§7.1) and our Piñata traces (see §7.2), and also validated
recorded TLS sessions between various implementations
(OpenSSL, PolarSSL, nqsb-TLS) using tcpdump.

While running the test oracle we discovered interest-
ingly varied choices in fragmentation of messages among
existing stacks, which may be useful in fingerprinting.

TCP/IP

Xentropyd

ASN.1

TLSFlow

TLS

Logger

X.509

NetFront

NetBackXenconsoled

domU

dom0

Certs

Config

CrunchFS

Protocols

HTTP

Conduit

IMAP
XMPP

CSPRNG
Nocrypto

Figure 3: nqsb-TLS as a unikernel domU VM on Xen: a
dom0 Xentropyd proxies host entropy, config and certifi-
cates are compiled in, various protocols run over TLS.

The test oracle opens up the prospect of extensive test-
ing of the behaviour of different TLS implementations,
especially if combined with automated test generation.

6 Using nqsb-TLS in applications

Another use of nqsb-TLS is as a TLS implementation in
applications. We ported nqsb-TLS to two distinct envi-
ronments and developed a series of applications, some
for demonstration purposes, others for regular use.

6.1 Porting nqsb-TLS
To use nqsb-TLS as an executable implementation, we
have to provide it with implementations of entropy and
flow (see Figure 1), and an effectful piece of code that
communicates via the network and drives the core.

We pay special attention to prevent common client
bugs which arise from complexity of configuring TLS
stacks and correspondingly large APIs. In each instance,
there is only one function to construct a TLS config-
uration which can be turned into an I/O interface, the
function does extensive validation of the requested pa-
rameters, and the resulting configuration object is im-
mutable. This restricts potentially error-prone interac-
tions that configure TLS to a single API point.

Unix Porting nqsb-TLS to Unix was straightforward;
we use the POSIX sockets API to build a flow and
/dev/urandom as the entropy source. The exposed
interface provides convenience functions to read cer-
tificates and private keys from files, and analogues of
listen, connect, accept, read, write, and close

for communication.

MirageOS The MirageOS variant allows nqsb-TLS to
be compiled into a unikernel VM (see Figure 3). It uses
the MirageOS OCaml TCP/IP library [31] to provide the

10



I/O flow, which is in turn coupled to Xen device drivers
that communicate with the backend physical network de-
vice via shared memory rings [44]. The logger outputs
directly to the VM console, and the certificates and the
secret keys are compiled into OCaml data structures at
build time and become part of the VM image. A key
challenge when running in a virtualised environment is
providing a suitable entropy source [18], especially in the
common case of a VM having no access to physical hard-
ware. Since specialised unikernels have very determin-
istic boot-sequences that make sources of entropy even
scarcer, we had to extend MirageOS and Xen to avoid
cryptographic weaknesses [25].

One way in which we solve this is by relying on dom0
to provide cross-domain entropy injection. We devel-
oped Xentropyd, a dom0 daemon which reads bytes from
/dev/urandom and makes them available to VMs via
an inter-VM shared memory channel. The entropy de-
vice is plugged in as a standard Xen device driver via
Xenstore [22], and MirageOS has a frontend library that
periodically injects entropy into the nqsb-TLS CSPRNG.

To avoid being fully reliant on dom0, we implement
additional entropy harvesting within the unikernel itself.
We do this by trapping the MirageOS event loop and us-
ing RDTSCP instruction to read the Time Stamp Counter
(TSC) register on each external event. This provides us
with the unpredictability inherent in the ambient events.
This source is augmented with readings from the CPU
RNG where available: we feed the results of RDSEED (or
RDRAND) instruction into the entropy pool on each event.

To make the RNG more resilient, we do extra entropy
harvesting at boot time. Following Whirlwind RNG [18],
we employ a timing loop early in the boot phase, de-
signed to take advantage of nondeterminism inherent in
the CPU by way of internal races in the CPU state. This
provides an initial entropy boost in the absence of Xen-
tropyd and helps mitigate resumption-based attacks [18].

In an ideal scenario the entropy would be provided
through both mechanisms, but we expect the usage to
rely on one or the other, depending on deployment: on
an ARM board lacking high-resolution timing and CPU
RNG, the user is likely to have control over the hypervi-
sor and be able to install Xentropyd. Conversely, in com-
mercial hosting scenarios where the assistance of dom0
might not be available but the extra CPU features are, we
expect the user to rely on the internal entropy harvesting.

6.2 Applications

An example application using the Unix interface is the
terminal-based instant messaging client jackline using
XMPP. The XMPP protocol negotiates features, such as
TLS, over a plaintext TCP connection. Jackline performs
an upgrade to TLS via the STARTTLS mechanism before

authentication credentials are exchanged. The Unix port
of nqsb-TLS contains an API that supports upgrading an
already established TCP connection to TLS. Jackline can
use either of the authentication APIs (path and fingerprint
validation) depending on user configuration.

tlstunnel also runs on Unix and accepts a TLS connec-
tion, forwards the application data to another service via
TCP, similar to stud and stunnel. This has been deployed
since months on some websites.

The Unix application certify generates RSA private
keys, self-signed certificates, and certificate signing re-
quests in PEM format. It uses nocrypto and X.509.

The OCaml Conduit library (also illustrated in Fig. 3)
supports communication transports that include TCP,
inter-VM shared memory rings. It provides a high-level
API that maps URIs into specific transport mechanisms.
We added nqsb-TLS support to Conduit so that any appli-
cation that links to it can choose between the use of nqsb-
TLS or OpenSSL, depending on an environment vari-
able. As of February 2015, 42 different libraries (both
client and server) use Conduit and its provided API and
can thus indirectly use nqsb-TLS for secure connections.
The OPAM package manager uses nqsb-TLS as part of
its mirror infrastructure to fetch 2 500 distribution files,
with no HTTPS-related regressions encountered.

7 Evaluation

We now assess the interoperability, security, and perfor-
mance of nqsb-TLS.

7.1 Interoperability

We assess the interoperability of nqsb-TLS in several
ways: testing against OpenSSL and PolarSSL on every
commit; successfully connecting to most of the Fortune
500 web sites; testing X.509 certificates from ZMap; and
by running a web server.

This web server, running since mid 2014, displays the
live sequence diagram of a successful TLS session es-
tablished via HTTPS. A user can press a button on the
website which let the server initiate a renegotiation. The
server configuration includes all three TLS protocol ver-
sions and eight different ciphersuites, picking a proto-
col version and ciphersuite at random. Roughly 30 000
traces were recorded from roughly 350 different client
stacks (6230 unique user agent identifiers).

Of these, around 27% resulted in a connection estab-
lishment failure. Our implementation is strict, and does
not allow e.g. duplicated advertised ciphersuites. Also,
several accesses came from automated tools which eval-
uate the quality of a TLS server by trying each defined
ciphersuite separately.

11



Roughly 50% of the failed connections did not share
a ciphersuite with nqsb-TLS. Another 20% started with
bytes which were not interpretable by nqsb-TLS. 12% of
the failed connections did not contain the secure renego-
tiation extension, which our server requires. 5% of the
failed traces were attempts to send an early change ci-
pher spec. Another 4% tried to negotiate SSL version 3.
2.5% contained a ciphersuite with null (iOS6).

We parse more than 99% of ZMap’s HTTPS
(20150615) and IMAP (20150604) certificate repository.
The remaining failures are RSASSA-PSS signatures, re-
quiring an explicit NULL as parameter, and unknown
and outdated algorithm identifiers.

This four-fold evaluation shows that our TLS imple-
mentation is broadly interoperable with a large number
of other TLS implementations, which also indicates that
we are capturing the de facto standard reasonably well.

Specification mismatches While evaluating nqsb-
TLS we discovered several inconsistencies between the
RFC and other TLS implementations:

• Apple’s SecureTransport and Microsoft’s SChannel
deny application data records while a renegotiation
is in process, while the RFC allows interleaving.
• OpenSSL (1.0.1i) accepts any X.509v3 certificate

which contains either digitalSignature or keyEnci-
pherment in keyUsage. RFC [15] mandates digi-
talSignature for DHE, keyEncipherment for RSA.
• Some unknown TLS implementation starts the

padding data [29] (must be 0) with 16 bit length.
• A TLS 1.1 stack sends the unregistered alert 0x80.

7.2 Security
We assess the security of nqsb-TLS in several ways: the
discussion of the root causes of many classic vulnerabil-
ities and how we avoid them; mitigation of other specific
issues; our state machine was tested [11]; random testing
with the Frankencert [8] fuzzing tool; a public integrated
system protecting a bitcoin reward; and analysis of the
TCB size of that compared with a similar system built
using a conventional stack.

Avoidance of classic vulnerability root causes In
Sections 3 and 4 we described how the nqsb-TLS struc-
ture and development process exclude the root causes of
many vulnerabilities that have been found in previous
TLS implementations.

Additional mitigations The TLS RFC [15] includes
a section on implementation pitfalls, which contains a
list of known protocol issues and common failures when
implementing cryptographic operations. nqsb-TLS miti-
gates all of these.

Further issues that nqsb-TLS addresses include:

• Interleaving of sub-protocols, except between
change of cipher spec and finished.
• Each TLS 1.0 application data is prepended by an

empty fragment to randomise the IV (BEAST).
• Secure renegotiation [40] is required.
• SCSV extension [35] is supported.
• Best practices against attacks arising from mac-

then-encrypt in CBC mode are followed (no miti-
gation of Lucky13 [19])
• No support for export restricted ciphersuites, thus

no downgrade to weak RSA keys and small DH
groups (FREAK and Logjam).
• Requiring extended master secret [4] to resume a

session.

State machine fuzzing Researchers fuzzed [11] nqsb-
TLS and found a minor issue: alerts we send are not en-
crypted. This issue was fixed within a day after discov-
ery, and it is unlikely that it was security-relevant.

Frankencert Frankencert is a fuzzing tool which gen-
erates syntactically valid X.509 certificate chains by ran-
domly mixing valid certificates and random data. We
generated 10 000 X.509 certificate chains, and compared
the verification result of OpenSSL (1.0.1i) and nqsb-TLS
The result is that nqsb-TLS accepted 120 certificates, a
strict subset of the 192 OpenSSL accepted.

Of these 72 accepted by OpenSSL but not by nqsb-
TLS, 57 certificate chains contain arbitrary data in
X.509v3 extensions where our implementation allows
only restricted values. An example is the key usage ex-
tension, which specifies a sequence of OIDs. In the RFC,
9 different OIDs are defined. Our X.509v3 grammar re-
stricts the value of the key usage extension to those 9
OIDs. 12 certificate chains included an X.509v3 exten-
sion marked critical but not supported by nqsb-TLS.

Two server certificates are certificate authority certifi-
cates. While not required by the path validation, best
practices from Mozilla recommend to not accept a server
certificate which can act as certificate authority. The last
certificate is valid for a Diffie-Hellman key exchange,
but not for RSA. Our experimental setup used RSA, thus
nqsb-TLS denied the certificate appropriately.

Exposure to new vulnerabilities Building nqsb-TLS
in a managed language potentially opens us up to vul-
nerabilities that would not affect stacks written in C.
Algorithmic complexity attacks are a low-bandwidth
class of denial-of-service attacks that exploit deficien-
cies in many common default data structure implementa-
tions [10]. The modular structure of nqsb-TLS makes it
easy to audit the implementations used within each com-
ponent. The French computer security governmental of-
fice [37] assessed the security of the OCaml runtime in

12



2013, which lead to several changes (such as distinction
between immutable strings and mutable byte arrays).

The Bitcoin Piñata To demonstrate the use of nqsb-
TLS in an integrated system based on MirageOS, and
to encourage external code-review and penetration test-
ing, we set up a public bounty, the Bitcoin Piñata. This
is a standalone MirageOS unikernel containing the se-
cret key to a bitcoin address, which it transmits upon es-
tablishing a successfully authenticated TLS connection.
The service exposes both TLS client and server on differ-
ent ports, and it is possible to bridge the traffic between
the two and observe a successful handshake and the en-
crypted exchange of the secret.

The attack surface encompasses the entire system,
from the the underlying operating system and its TCP/IP
stack, to TLS and the cryptographic level. The system
will only accept connections authenticated by the cus-
tom certificate authority that we set up for this purpose.
Reward is public and automated, because if an attacker
manages to access the private bitcoin key, they can trans-
fer the bitcoins to an address of their choosing, which is
attestable through the blockchain.

While this setup cannot prove the absence of security
issues in our stack, it motivated several people to read
through our code and experiment with the service.

At the end of June 2015, there were 230 000 accesses
to the website from more than 50 000 unique IP ad-
dresses. More than 9 600 failed and 12 000 successful
TLS connections from 1000 unique IPs were present. Al-
though we cannot directly verify that all successful con-
nection resulted from the service being short-circuited
to connect to itself, there have been no outgoing trans-
actions registered in the blockchain. The breakdown of
failed connections is similar to §7.1. We collected 42 cer-
tificates which were tried for authentication, but failed
(not well formatted, not signed, not signed by our trust
anchor, private key not present). A detailed analysis of
the captured traces showed that most of the flaws in other
stacks have been attempted against the Piñata.

Trusted computing base The TCB size is a rough
quantification of the attack surface of a system. We as-
sess the TCB of our Piñata, compared to a similar tradi-
tional system using Linux and OpenSSL. Both systems
are executed on the same hardware and the Xen hyper-
visor, which we do not consider here. The TCB sizes of
the two systems are shown in Table 2 (using cloc).

The traditional system contains the Linux kernel (ex-
cluding device drivers and assembly code), glibc, and
OpenSSL. In comparison, our Piñata uses a minimal op-
erating system, the OCaml runtime, and several OCaml
libraries (including GMP). While the traditional sys-
tem uses a C compiler, our Piñata additionally uses the
OCaml compiler (roughly 40 000 lines of code).

Linux/OpenSSL Unikernel/nqsb-TLS
Kernel 1600 48 (36)
Runtime 689 25 (6)
Crypto 230 23 (14)
TLS 41 6 (0)
Total 2560 102 (56)

Table 2: TCB (in kloc); portion of C code in parens

nqsb-TLS OpenSSL PolarSSL
RSA 698 hs/s 723 hs/s 672 hs/s

DHE-RSA 601 hs/s 515 hs/s 367 hs/s

Table 3: Handshake performance of nqsb-TLS,
OpenSSL and PolarSSL, using 1024-bit RSA certificate
and 1024-bit DH group.

The trusted computing base of the traditional system
is 25 times larger than ours. Both systems provide the
same service to the outside world and are hardly distin-
guishable for an external observer.

7.3 Performance
We evaluate the performance of nqsb-TLS, comparing it
to OpenSSL 1.0.2c and PolarSSL 1.3.11. We use a single
machine to avoid network effects. In the case of nqsb-
TLS, we compile the test application as a Unix binary to
limit the comparison to TLS itself.

The test machine has an Intel i7-5600 Broadwell CPU
and runs Linux 4.0.5 and glibc 2.21. Throughput is mea-
sured by connecting the command line tool socat, linked
against OpenSSL, to a server running the tested imple-
mentation, and transferring 100 MB of data from the
client to the server. This test is repeated for various
transmission block sizes. Handshakes are measured by
running 20 parallel processes in a continuous connecting
loop and measuring the maximum number of successful
connection within 1 second; the purpose of parallelism is
to negate the network latency.

Throughput rates are summarized in Figure 4. With
16 byte blocks, processing is dominated by the protocol
overhead. This helps us gauge the performance impact
of using OCaml relative to C, as nqsb-TLS implements
protocol logic entirely in OCaml. At this size, we run at
about 78% of OpenSSL’s speed.

At 8196 bytes, performance becomes almost entirely
dominated by cryptographic processing. All three im-
plementations use AES-NI, giving them roughly compa-
rable speed. OpenSSL’s performance lead is likely due
to its extensive use of assembly, and in particular the
technique of stitching, combining parts the of the cipher
mode of operation and hashing function to saturate the
CPU pipeline. PolarSSL’s performance drop compared

13



16 64 256 1024 8192
Block size (bytes)

0

50

100

150

200

250

300

350
T
h
o
u
g
h
p
u
t 

(M
B

/s
)

OpenSSL
PolarSSL
nqsb-tls

Figure 4: Scaling of throughput with application
data size for nqsb-TLS, OpenSSL and PolarSSL, using
AES 256 CBC SHA.

to nqsb-TLS is likely a consequence of our usage of sim-
ple software pipelining in the AES-NI code. nqsb-TLS
reaches about 84% of OpenSSL’s speed in this scenario.

Handshake performance, summarized in Table 3, is
roughly similar. We attribute OpenSSL’s advantage to
their use of C in the protocol handling, and PolarSSL’s
disadvantage to our use of faster bignum routines pro-
vided by GMP. The comparatively smaller cost nqsb-
TLS pays for DH is a result of picking shorter exponents,
matched to the security strength of the group modulus.

We ran miTLS 0.8.1 through Mono 4.0.1.44 on the
same test machine. Using the bundled HTTP server, we
achieve a peak throughput of 19 MB/s for a file transfer
using the same cipher suite. As the Mono cryptography
provider only contains C# AES implementations, we ex-
clude this implementation from further analysis. We do
note, however, that the throughput ratio between miTLS
and OpenSSL is similar to the one its authors report [5].

The exact numbers are likely to vary with the choice of
cipher suite, which places different weights on hashing
and cipher performance, the CPU generation, which is
utilised to a fuller extent by OpenSSL, and the testing
scenario. The broad picture is that our usage of OCaml
for all but the lowest-level cryptographic primitives is, in
itself, not taking a prohibitive toll on performance.

8 Related Work

Security proofs Several research groups [36, 26, 24,
12, 38] have modelled and formally verified security
properties of TLS. Because TLS is a complex protocol,
most models use a simplified core, and formalising even
these subsets is challenging work which is not very ac-
cessible to an implementer audience. Additionally, these

models need to be validated with actual implementations,
to relate to the de facto standard, but this is rarely done
(to do so, some kind of trace checker or executable needs
to be developed). Some of these models formalised the
handshake protocol, but omitted renegotiation, in which
a security flaw was present until discovered in 2009.

miTLS The miTLS [5] stack is developed in F7 with
the possibility to extract executable F# code. It is both
a formalisation of the TLS protocol and a runnable im-
plementation. This formalisation allowed its developers
to discover two protocol-level issues: alert fragmentation
and triple handshake. As an implementation, it depends
on the Common Language Runtime for execution, and
uses its services for cryptographic operations and X.509
treatment (including ASN.1 parsing). In contrast, nqsb-
TLS cannot be used for verifying security properties of
TLS, but provides a test oracle and a fast runnable imple-
mentation which is easily deployable. It compiles to na-
tive code and implements the entire stack from scratch,
making it self-contained. It can be used e.g. in Mira-
geOS, which only provides the bare TCP/IP interfaces
and has no POSIX layer or cryptographic services.

Language-oriented approach to security Mettler et
al. propose Joe-E [33], a subset of Java designed to sup-
port the development of secure software systems. They
strongly argue in favour of a particular programming
style to facilitate ease of security reviews.

Our approach shares some of the ideas in Joe-E. By
disallowing mutable static fields of Java classes, they ef-
fectively prohibit globally visible mutable state and en-
force explicit propagation of references to objects, which
serve as object capabilities. They also emphasise im-
mutability to restrict the flows of data and achieve better
modularity and separation of concerns.

The difference in our approach is that we use im-
mutability and explicit data-passing not only on the mod-
ule (or class) boundaries but pervasively throughout the
code, aiming to facilitate code-review and reasoning on
all levels. A further difference is that Joe-E focusses the
proposed changes in style on security reviews only, aim-
ing to help the reader of the code ascertain that the code
does not contain unforeseen interactions and faithfully
implements the desired logic. In contrast, we employ a
fully declarative style. Our goals go beyond code review,
as large portions of our implementation are accessible as
a clarification to the specification, and we have an exe-
cutable test oracle.

Finally, there is the difference between host languages.
Java lacks some of the features we found to be most sig-
nificant in simplifying the implementation, chiefly the
ability to encode deeply nested data structures and tra-
verse them via pattern-matching, and to express local op-
erations in a pure fashion.

14



Brittle implementations of cryptography systems
Schneier et al.’s work [43] discovered several root causes
for software implementing cryptographic systems, which
explicitly mentions incorrect error handling and flawed
API usage. We agree with their principles for software
engineering for cryptography, and extend this further by
proposing our approach: immutable data, value-passing
interfaces, explicit error handling, small API footprint.

TLS implementations in high-level languages Sev-
eral high-level languages contain their own TLS stack.
Oracle Java ships with JSEE, a memory-safe implemen-
tation. However its overall structure closely resembles
the C implementations. For example, the state machine
is built around accumulating state by mutations of shared
memory locations, the parsing and validation of certifi-
cates are not clearly separated, and the certificate vali-
dation logic includes non-trivial control flow. This re-
sulted in high-level vulnerabilities similar in nature to the
ones found in C implementations, such as CCS Injection
(CVE-2014-0626), and its unmanaged exception system
led to several further vulnerabilities [34].

There are at least two more TLS implementations in
functional languages, one in Isabelle [30] and one in
Haskell. Interestingly, both implementations experiment
with their respective languages’ expressivity to give the
implementations an essentially imperative formulation.
The Isabelle development uses a coroutine-like monad to
directly interleave I/O operations with the TLS process-
ing, while the Haskell development uses a monad stack
to both interleave I/O and to implicitly propagate the ses-
sion state through the code. In this way both implementa-
tions lose the clear description of data-dependencies and
strong separation of layers nqsb-TLS has.

Protocol specification and testing There is an ex-
tensive literature on protocol specification and testing in
general (not tied to a security context). We build in par-
ticular on ideas from Bishop et al.’s work on TCP [6, 41],
in which they developed a precise specification for TCP
and the Sockets API in a form that could be used as a
trace-checker, characterising the de facto standard. TCP
has a great deal of internal nondeterminism, and so
Bishop et al. resorted to a general-purpose higher-order
logic for their specification and symbolic evaluation over
that for their trace-checker. In contrast, the internal non-
determinism needed for TLS can be bounded as we de-
scribe in §5, and so we have been able to use simple pure
functional programming, and to arrange the specification
so that it is simultaneously usable as an implementation.
We differ also in focussing on an on-the-wire specifi-
cation rather than the endpoint-behaviour or end-to-end
API behaviour specifications of that work. In contrast to
the Sockets API specified in POSIX, there is no API for
TLS. Every implementation defines its custom API, and

many have a compatibility layer for the OpenSSL API.

9 Conclusion

We have described an experiment in engineering critical
security-protocol software using what may be perceived
as a radical approach. We focus throughout on struc-
turing the system into modules and pure functions that
can each be understood in isolation, serving dual roles
as test-oracle specification and as implementation, rather
than traditional prose specifications and code driven en-
tirely by implementation concerns.

Our evaluation suggests that it is a successful exper-
iment: nqsb-TLS is usable in multiple contexts, as test
oracle and in Unix and unikernel applications, it has rea-
sonable performance, and it is a very concise body of
code. Our security assessment suggests that, while it is
by no means guaranteed secure, it does not suffer from
several classes of flaws that have been important in pre-
vious TLS implementations. In this sense, it is at least
not quite so broken as some secure software has been.

In turn, this indicates that our approach has value.
As further evidence of that, we applied the same ap-
proach to the off-the-record [7] security protocol, used
for end-to-end encryption in instant messaging proto-
cols. We engineered a usable implementation and re-
ported several inconsistencies in the prose specification.
The XMPP client mentioned earlier uses nqsb-TLS for
transport layer encryption, and our OTR implementation
for end-to-end encryption.

The approach cannot be applied everywhere. The two
obvious limitations are (1) that we rely on a language
runtime to remove the need for manual memory manage-
ment, and (2) that our specification and implementation
style, while precise and concise, is relatively unusual in
the wider engineering community. But the benefits sug-
gest that, where it can be applied, it will be well worth
doing so.
Acknowledgements Parts of this work were sup-
ported by EPSRC Programme Grant EP/K008528/1
(REMS: Rigorous Engineering for Mainstream Systems)
and by the European Unions Seventh Framework Pro-
gramme FP7/20072013 under the User Centric Network-
ing project (no. 611001). We also thank IPredator
(https://ipredator.se) for lending bitcoins for our
Piñata and hosting it, and the MirageOS team and the
anonymous reviewers for their valuable feedback.

References
[1] BARNES, R., THOMSON, M., PIRONTI, A., AND LANGLEY, A.

Deprecating secure sockets layer version 3.0. RFC 7568, 2015.

[2] BEURDOUCHE, B., BHARGAVAN, K., DELIGNAT-LAVAUD, A.,
FOURNET, C., KOHLWEISS, M., PIRONTI, A., STRUB, P.-Y.,

15

https://ipredator.se


AND ZINZINDOHOUE, J. K. A messy state of the union: Taming
the composite state machines of TLS. In Security and Privacy
(2015), IEEE.

[3] BHARGAVAN, K., DELIGNAT-LAVAUD, A., FOURNET, C.,
PIRONTI, A., AND STRUB, P.-Y. Triple handshakes and cookie
cutters: Breaking and fixing authentication over TLS. In Security
and Privacy (2014), IEEE.

[4] BHARGAVAN, K., DELIGNAT-LAVAUD, A., PIRONTI, A., LAN-
GLEY, A., AND RAY, M. Transport Layer Security (TLS) Session
Hash and Extended Master Secret Extension, Apr. 2015.

[5] BHARGAVAN, K., FOURNET, C., KOHLWEISS, M., PIRONTI,
A., AND STRUB, P.-Y. Implementing TLS with verified crypto-
graphic security. In Security and Privacy (2013).

[6] BISHOP, S., FAIRBAIRN, M., NORRISH, M., SEWELL, P.,
SMITH, M., AND WANSBROUGH, K. Rigorous specification and
conformance testing techniques for network protocols, as applied
to TCP, UDP, and Sockets. In SIGCOMM (Aug. 2005).

[7] BORISOV, N., GOLDBERG, I., AND BREWER, E. Off-the-record
communication, or, why not to use PGP. In WPES (2004), ACM.

[8] BRUBAKER, C., JANA, S., RAY, B., KHURSHID, S., AND
SHMATIKOV, V. Using Frankencerts for automated adversarial
testing of certificate validation in SSL/TLS implementations. In
Security and Privacy (2014), IEEE.

[9] COOPER, D., SANTESSON, S., FARRELL, S., BOEYEN, S.,
HOUSLEY, R., AND POLK, W. Internet X.509 Public Key Infras-
tructure Certificate and Certificate Revocation List (CRL) Profile.
RFC 5280, May 2008.

[10] CROSBY, S. A., AND WALLACH, D. S. Denial of service via
algorithmic complexity attacks. In USENIX Security (2003).

[11] DE RUITER, J., AND POLL, E. Protocol state fuzzing of TLS
implementations. In USENIX Security (2015).

[12] D ÍAZ, G., CUARTERO, F., VALERO, V., AND PELAYO, F. Auto-
matic verification of the TLS handshake protocol. In Symposium
on Applied Computing (2004), ACM.

[13] DIERKS, T., AND ALLEN, C. The TLS Protocol Version 1.0.
RFC 2246, Jan. 1999. Obsoleted by RFC 4346.

[14] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) Protocol Version 1.1. RFC 4346, Apr. 2006. Obsoleted by
RFC 5246.

[15] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246, Aug. 2008.

[16] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. In USENIX Security (2004).

[17] DODIS, Y., SHAMIR, A., STEPHENS-DAVIDOWITZ, N., AND
WICHS, D. How to eat your entropy and have it too – optimal
recovery strategies for compromised RNGs. Cryptology ePrint
Archive, Report 2014/167, 2014.

[18] EVERSPAUGH, A., ZHAI, Y., JELLINEK, R., RISTENPART, T.,
AND SWIFT, M. Not-so-random numbers in virtualized Linux
and the Whirlwind RNG. In Security and Privacy (2014), IEEE.

[19] FARDAN, N. J. A., AND PATERSON, K. G. Lucky thirteen:
Breaking the TLS and DTLS record protocols. In Security and
Privacy (2013), IEEE.

[20] FERGUSON, N., AND SCHNEIER, B. Practical Cryptography,
1 ed. John Wiley & Sons, Inc., 2003.

[21] FROST, R., AND LAUNCHBURY, J. Constructing natural lan-
guage interpreters in a lazy functional language. The Computer
Journal (Apr. 1989).

[22] GAZAGNAIRE, T., AND HANQUEZ, V. OXenstored: An efficient
hierarchical and transactional database using functional program-
ming with reference cell comparisons. In ICFP (2009), ACM.

[23] GEORGIEV, M., IYENGAR, S., JANA, S., ANUBHAI, R.,
BONEH, D., AND SHMATIKOV, V. The most dangerous code in
the world: Validating SSL certificates in non-browser software.
In CCS (2012), ACM.

[24] HE, C., SUNDARARAJAN, M., DATTA, A., DEREK, A., AND
MITCHELL, J. C. A modular correctness proof of IEEE 802.11I
and TLS. In CCS (2005), ACM.

[25] HENINGER, N., DURUMERIC, Z., WUSTROW, E., AND HAL-
DERMAN, J. A. Mining your Ps and Qs: Detection of widespread
weak keys in network devices. In USENIX Security (2012).

[26] JAGER, T., KOHLAR, F., SCHÄGE, S., AND SCHWENK, J. On
the security of TLS-DHE in the standard model. In CRYPTO
(2012).

[27] KALOPER-MERŠINJAK, D., MEHNERT, H., MADHAVAPEDDY,
A., AND SEWELL, P. Supplementary material doi: 10.5281/zen-
odo.19160, June 2015.

[28] KOCHER, P. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In CRYPTO. 1996.

[29] LANGLEY, A. A TLS ClientHello padding extension, Feb. 2015.
[30] LOCHBIHLER, A., AND ZÜST, M. Programming TLS in Is-

abelle/HOL. In Isabelle (2014).
[31] MADHAVAPEDDY, A., MORTIER, R., ROTSOS, C., SCOTT, D.,

SINGH, B., GAZAGNAIRE, T., SMITH, S., HAND, S., AND
CROWCROFT, J. Unikernels: Library operating systems for the
cloud. In ASPLOS (2013), ACM.

[32] MADHAVAPEDDY, A., AND SCOTT, D. J. Unikernels: The rise
of the virtual library operating system. Commun. ACM 57, 1 (Jan.
2014), 61–69.

[33] METTLER, A., WAGNER, D., AND CLOSE, T. Joe-e: A security-
oriented subset of Java. In NDSS (2010).

[34] MEYER, C., SOMOROVSKY, J., WEISS, E., SCHWENK, J.,
SCHINZEL, S., AND TEWS, E. Revisiting SSL/TLS implementa-
tions: New Bleichenbacher side channels and attacks. In USENIX
Security (2014).

[35] MOELLER, B., AND LANGLEY, A. TLS Fallback Signaling Ci-
pher Suite Value (SCSV) for Preventing Protocol Downgrade At-
tacks. RFC 7507, Apr. 2015.

[36] MORRISSEY, P., SMART, N. P., AND WARINSCHI, B. A mod-
ular security analysis of the TLS handshake protocol. In ASI-
ACRYPT (2008).

[37] NATIONALE DE LA SÉCURITÉ DES SYSTÈMES
D’INFORMATION, A. Étude de la sécurité intrinséque des
langages fonctionnels, 2013.

[38] PAULSON, L. C. Inductive analysis of the internet protocol TLS.
ACM Transactions on Information and System Security 2 (1999).

[39] POPOV, A. Prohibiting RC4 Cipher Suites. RFC 7465, Feb. 2015.
[40] RESCORLA, E., RAY, M., DISPENSA, S., AND OSKOV, N.

Transport Layer Security (TLS) Renegotiation Indication Exten-
sion. RFC 5746, Feb. 2010.

[41] RIDGE, T., NORRISH, M., AND SEWELL, P. A rigorous ap-
proach to networking: TCP, from implementation to protocol to
service. In FM (May 2008).

[42] SAINT-ANDRE, P., AND HODGES, J. Representation and Verifi-
cation of Domain-Based Application Service Identity within In-
ternet Public Key Infrastructure Using X.509 (PKIX) Certificates
in the Context of Transport Layer Security (TLS). RFC 6125,
Mar. 2011.

[43] SCHNEIER, B., FREDRIKSON, M., KOHNO, T., AND RIS-
TENPART, T. Surreptitiously weakening cryptographic systems.
Cryptology ePrint Archive, Report 2015/097, 2015.

[44] WARFIELD, A., HAND, S., FRASER, K., AND DEEGAN, T. Fa-
cilitating the development of soft devices. In USENIX Annual
Technical Conference (2005).

16


	Introduction
	Approach

	TLS Background
	Vulnerability Analysis
	The nqsb-TLS stack
	TLS Core
	Nocrypto
	X.509
	ASN.1

	Using nqsb-TLS as a test oracle
	Using nqsb-TLS in applications
	Porting nqsb-TLS
	Applications

	Evaluation
	Interoperability
	Security
	Performance

	Related Work
	Conclusion

