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Abstract 

This paper describes a number of timing attack techniques that can be used by a malicious 

web page to steal sensitive data from a browser, breaking cross-origin restrictions. The new 

requestAnimationFrame API can be used to time browser rendering operations and infer 

sensitive data based on timing data. The first technique allows the browser history to be 

sniffed by detecting redraw events. The second part of the paper shows how SVG filters are 

vulnerable to a timing attack that can be used to read pixel values from a web page. This 

allows pixels from cross-origin iframes to be read using an OCR-style technique to obtain 

sensitive data from websites. 
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Thinking in Frames - using requestAnimationFrame to time 

browser operations 

The requestAnimationFrame JavaScript API is a recent addition to browsers and was 

designed to allow web pages to create smooth animations. requestAnimationFrame takes a 

single parameter, a function that will be called back just before the next frame is painted to 

screen [1]. The callback function will be passed a timestamp parameter that tells it when it 

was called. 

 
var handle = window.requestAnimationFrame(callback); 

Figure 1 

An example call to 

requestAnimationFrame  

The callback mechanism provides a way for developers to perform 

necessary tasks between animation frames. Within each frame of 

animation on a web page, a number of tasks may be carried out by the 

browser. These include executing JavaScript code, calculating the 

position of new and updated elements (known as layout or reflow) and 

drawing elements to screen. Each of these tasks may take a variable 

amount of time. For example, if the JavaScript code inserts a large 

number of new elements into a page, then the layout step may take a 

long time. If an element has complex styles applied to it, such as shadow 

or transparency then the painting step may take more time than simple 

operations such as moving an element across the screen.  

The diagram on the right represents two consecutive frames of animation 

in which the page layout is adjusted. The timestamp passed to the 

requestAnimationFrame callback can be used to calculate t1 and t2, the 

amount of time taken for both frames. 

If called repeatedly, requestAnimationFrame will aim to paint up to 60 

frames per second (i.e. every 16 milliseconds) and will schedule the 

callback function accordingly. If the total time taken by the code 

execution, layout and painting steps is longer than 16ms, then the next 

frame will be delayed until these tasks have completed. This delay will be 

measurable by requestAnimationFrame, allowing the frame rate to be 

measured. 

The following code shows how requestAnimationFrame can be used to calculate the ‘frame 

rate’ of a web page, by calculating the time elapsed between each frame. 

var lastTime = 0; 

function loop(time) { 

  var delay = time – lastTime; 

  var fps = 1000/delay; 

  console.log(delay + ‘ ms’ fps); 

  updateAnimation(); 

  requestAnimationFrame(loop); 

  lastTime = time; 

} 

requestAnimationFrame(loop); 

Figure 3 

Measuring frame rate with 

requestAnimationFrame 

Figure 2 - Browser rendering phases 
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requestAnimationFrame and Timing Attacks 

By synchronising JavaScript code execution with the browser’s layout and rendering 

routines, requestAnimationFrame allows a web page to measure browser performance in a 

way that was previously difficult. In order for timing attacks to be viable certain criteria must 

be met by the browser function under consideration. Specifically, these criteria are: 

i) can be triggered from JavaScript 

ii) must take place during the layout or painting steps 

iii) should process sensitive data that is not directly readable by JavaScript 

iv) must take a variable amount of time depending on the data it is provided 

Any browser operation that satisfies these criteria may be susceptible to a timing attack that 

could reveal sensitive information stored in a malicious web page. 
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Browser History Sniffing 

In the past it was possible to abuse a number of features in CSS and JavaScript to determine 

whether a given URL had been previously visited by a user. For example, the 

getComputedStyle function could be used to check the colour of a link, making it trivial for 

a webpage to distinguish between a visited and unvisited link. By checking a large number 

of URLs, a malicious website could 'sniff' a user's browsing history and build a list of previously 

visited websites. 

These techniques were shown to be very effective, enabling a malicious 

site to check thousands of URLs per second to see if a user had visited them 

[2]. Far from being theoretical, research showed that the technique was 

being actively abused by number of websites to sniff the browsing history of 

their users [3]. 

In 2010 David Baron published a proposal for preventing such attacks [4], 

by restricting the styles that can be applied to visited links in CSS and 

ensuring that JavaScript API calls that query element styles always behave 

as if a link is unvisited. These fixes have since been implemented in all major 

browsers. 

Since then, a few techniques have been shown that work around the new 

restrictions. These work by styling links in clever ways, such as CAPTCHAs or 

game pieces and rely on the user to visually identify visited links by clicking 

on them [5] [6]. While these can be effective, they require user interaction 

and can be slow. 

In this section we describe a number of new techniques that can 

automatically sniff browser history and work without user interaction. 

Rendering Links and Redraw Events 

When a web page contains one or more links, the browser must determine 

whether to render each link using the visited or unvisited visual style. Every 

browser has a database of previously visited URLs (i.e. the browser history) 

and will perform a lookup in this database to see if each URL has been visited before. 

Both Internet Explorer and Firefox perform an asynchronous database lookup for each link. If 

the database query has not completed before the link is rendered, the browser will first use 

the ‘unvisited’ style to render the link. Once the database query has returned, the link will be 

redrawn if the URL is found to have been previously visited. If this ‘redraw’ event can be 

detected by a webpage, then it could tell if the link had been previously visited. 

The Chrome web browser appears to perform synchronous database lookups when 

rendering links. Unlike Firefox and Internet Explorer, Chrome will wait until the database URL 

lookup has completed before rendering the link on-screen. 

Aside from the initial rendering of a link, another time a browser may redraw a link is if its 

target, i.e. href, is changed to point to a different URL by JavaScript on the web page. 

Testing showed that this worked as expected in Firefox; changing a link’s href would re-

render the link if the ‘visited’ state had changed. This doesn’t work in Internet Explorer – once 

a link has been created, changing its href will never cause the ‘visited’ state of the link to 

change. 

Figure 4 – the default styling of visited 

and unvisited links. This information 

should be visible to a user, but not to 

the web page. 
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In Chrome, changing the href alone did not cause the link to be redrawn. However, by 

changing the href and then ‘touching’ but not altering the style of the link element, the 

browser would repaint the link if the new URL required caused the visited state to change. 

<a href="http://www.google.com" id="link1">############</a> 

 

<script> 

var el = document.getElementById('link1'); 

el.href = 'http://www.yahoo.com'; 

// below lines are required for Chrome to force style update 

el.style.color = 'red'; 

el.style.color = ''; 

</script> 

Figure 5 

Changing a link href in 

Chrome and Firefox 

The table below summarises how links are repainted in three major browsers: 

Browser Asynchronous URL lookup Changing href of existing link 

Chrome 27  ✓ 

Firefox 21 ✓ ✓ 

Internet Explorer 10 ✓  
 

Table 1 

Events that cause link 

repainting 

 

 

Detecting Redraw Events 

In the past, Firefox allowed a web page to be directly notified of redraw events, via the 

mozAfterPaint [7]. This event notified a page not only that a paint event had occurred, but 

which regions had been painted too. mozAfterPaint was however disabled by default due 

to the possibility of visited information leaking to web pages [8] [9]. 

 

Figure 6  

Animation and Paint 

events shown in Chrome’s 

web inspector 
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By using the requestAnimationFrame API, it is possible to detect when links are repainted. 

However, today’s browsers are highly optimised, with many graphical operations offloaded 

to the GPU. If a repaint event takes less than 16ms to complete, then the period between 

callbacks will not change (i.e. the frame rate will not drop below 60fps). We therefore need 

to find a way to slow down link rendering to make redraws detectable. 

The CSS text-shadow property [10] allows various effects to be applied to text on a web 

page, including drop shadows, glows and embossing. The amount of time to render an 

element with text-shadow applied is proportional to the value of the blur-radius property. 

Rendering can be further slowed down by applying multiple shadows to text and increasing 

the amount of text rendered. Experimentation has shown that this is an effective technique 

in Chrome, Firefox and Internet Explorer. 

The below table compares rendering times of elements with text-shadow applied in different 

browsers. For the purposes of the test, 50 link elements were drawn, each pointing to the 

same URL. The test was run on an Intel i5-2520M processor. 

blur-radius Firefox 21 Internet Explorer 10 Chrome 27 

5px 65ms 155ms 35ms 

10px 70ms 170ms 50ms 

20px 81ms 200ms 66ms 

30px 102ms 260ms 83ms 

40px 120ms 310ms 110ms 
 

Table 2 

Timings of redraw events 

for links with  text-shadow 

applied 

 

 

Figure 7 

Graph showing redraw 

times for various blur-

radius values 

By applying our knowledge of how link repaints occur in Firefox and Internet Explorer, the 

following steps can be used to detect visited links: 
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Method 1 - Asynchronous URL Lookup 

 Insert a number of links on page with text-shadow applied, all pointing to same URL 

 Time the next N frames using requestAnimationFrame 

 Analyse captured frames to determine if redraw occurred 

The following screenshot from Internet Explorer shows a demo of the redraw timing 

technique. For each URL a number of links were inserted onto the page, with text-shadow 

applied. The numbers show the number of milliseconds that each of the 5 subsequent 

frames took to draw, according to requestAnimationFrame. The timing of the first frames 

shows the links being drawn in their ‘unvisited’ state. The highlighted frames show when the 

redraws occur for visited links: 

 

Figure 8 

Timing repaints in Internet 

Explorer 

The green ticks show that our demo code has detected a link redraw, indicating that the 

links have been visited. 

The same technique works almost identically in Firefox. This time the first two frames are slow, 

with a third slow frame indicating a repaint of visited frames. 

 

Figure 9 

Timing repaints in Firefox 

 

In Chrome, the links are not repainted after they are initially drawn, as shown by the same 

demo running in that browser. The first frame after links are inserted takes the same amount 

of time regardless of whether a link is visited. 

 

Figure 10 

Timing repaints in Chrome 
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The algorithm can be modified however to take advantage of the behaviour in Chrome 

when a link is target is changed: 

Method 2 - Changing Link Target 

 Place a number of link elements on the web page, pointing to a known-unvisited URL  

 Update the links to point to the URL to be tested.  

 Time the next frame using requestAnimationFrame 

Because history lookups are not asynchronous in Chrome only a single frame needs to be 

timed with requestAnimationFrame. The repaint will occur immediately after the link is 

changed if the new URL is visited. 

 

Calibration 

The timing of the redraws will differ depending on the speed of the hardware on which the 

browser is running. To allow the same history sniffing code to run on different hardware with 

good results, a calibration step must first be done. In this step, the code attempts to find 

suitable values for the following variables: 

 A blur-radius value for the text-shadow property (B) 

 The number of links to draw (N) 

The aim is to find values that cause the link painting to be slow enough to time with 

requestAnimationFrame, but quick enough to allow a large number of links to be checked.  

The following algorithm can be used in Chrome. Firefox and IE would require slightly more 

complex steps due to the asynchronous database lookups in those browsers. 

 

Method 3 – Calibrating text-shadow 

 Start with small values for B and N (e.g. a 10px blur and 20 links) 

 Time 10 frames with links that are visited 

 Time 10 frames with unvisited links 

 If the average timing difference between the visited and unvisited frames is under a 

certain threshold (e.g. 50ms) increase B and N, then repeat calibration 

 Once the desired timing has been reached, calibration is complete. 
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The following screenshot shows the results of the calibration steps in the demo code in 

Chrome: 

 

Figure 11 

Results of automatic 

calibration in Chrome 

 

Results and Practicality 

Visibility 

A real-world malicious page that wished to perform this history sniffing attack would not 

want to display the links as shown in the above screenshot. However, actually showing the 

links is not necessary. CSS Transforms [11] allow web page elements to be scaled and 

rotated. As transforms are applied after an element has been drawn off-screen, they do not 

affect the speed that effects such as text-shadow take to apply. The following CSS can be 

applied to the links used to perform the timing attack, making them effectively invisible. 

 

#link-container { transform-origin: 0 0; transform: scale(0.01) } 

Figure 12 

Hiding elements with CSS 

Transforms 

Speed 

The speed of this technique is limited by the maximum frame rate of the browser as we must 

wait for a frame to be drawn before it can be timed with requestAnimationFrame. In Firefox 

and Internet Explorer, due to the asynchronous history lookups, we must wait between 3 and 

5 frames to see if links are redrawn. This gives a rough limit of between 13 and 20 URL checks 

per second. 

In Chrome, a URL can be tested by every other frame, putting the theoretical limit at 30 URL 

checks per second. However, each frame in which a visited URL is found will be slower to 

render, reducing the overall frame rate.  

There are a number of optimisations and improvements that could be made to these basic 

algorithms. One such optimisation is to check a large number of different URLs at once; if a 
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redraw is detected then we know that at least one of these URLs is visited. This leads us to 

the following algorithm: 

 

Method 4 – Binary chop history sniffing 

 Place a large number of different URLs (e.g. 1000) on the page at once 

 If a redraw is detected, divide the URLs into two sets 

 To each set add dummy unvisited URLs to keep the total number at 1000. This will 

ensure the timing remains constant. 

 Separately test each new set of URLs for redraws. If no redraw is detected, discard 

the URL set. 

 Continue testing, dividing and discarding until unique URLs are found. 

This method will work best with a large set of URLs in which only a small portion are actually 

visited. This technique was implemented in Internet Explorer. A simple test of 1000 URLs with 

10 visited links completed in 17 seconds, a speed of 58 URLs tested per second. 

Reliability 

As with any timing attack, the reliability of this exploit is highly dependent on the quality of 

the gathered timing data. Any background tasks that are running such as other processes or 

tabs can slow down the rendering of the page performing the timing attack, leading to 

false positives. A real world attack could use requestAnimationFrame to measure the frame 

rate of the current web page, to detect when the user’s computer has become idle. For 

example, when a web page is initially loading, the frame rate will drop as network resources 

are loaded and the page is rendered. When the frame rate stabilises at 60fps, the malicious 

page could begin the timing attack. 
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CSS, SVG and Filters 

Modern browsers are continually gaining features that allow web pages to create rich 

interactive graphics. As seen in previously with text-shadow, complex graphics features can 

be a good place to look for timing vulnerabilities. Filter Effects [12] is a relatively new 

specification that allows visual effects to be applied to web pages using CSS properties. It is 

actually a combination of three quite separate features: 

 

 

 

 

 

 

SVG Filters originate from an earlier specification [13] that allowed visual effects to be 

applied to SVG drawings. The Filter Effects specification incorporates SVG Filters and allows 

them to be applied to any HTML element using CSS. The SVG filter specification defines 16 

basic operations (known as filter primitives) including convolution, colour transforms and 

image composition. Each of these filter primitives has a number of input parameters that 

can be set, and primitives can be combined to produce more complex effects such as 

drop shadows and bump mapping [14] [15]. 

<filter id="greyscale"> 
  <feColorMatrix type="matrix" values="0.3333 0.3333 0.3333 0 0 
                                       0.3333 0.3333 9.3333 0 0 
                                       0.3333 0.3333 0.3333 0 0 
                                       0      0      0      1 0"/> 
</filter> 

<style>.f1 { filter: url(#greyscale) }</style> 

<div class="f1"><img src="cat.jpg"> Hello World</div> 

Figure 13 

Applying a simple SVG 

filter to an HTML element 

A number of simple pre-defined filters are also defined by the specification. These allow 

effects such as greyscale, brightness, contrast and drop shadows to be applied without 

needing to write out complex SVG filters. 

<style>.f2 { filter: grayscale(100%) }</style> 

<div class="f2"><img src="cat.jpg"> Hello World</div> 

Figure 14 

Pre-defined CSS Filters 

The Filter Effects specification also incorporates the GLSL ES-based shader language from 

WebGL. This allows complex pixel and vertex shaders to be applied to HTML elements via 

CSS. Timing attacks using WebGL shaders have been demonstrated by Context previously 

[16] , allowing cross-origin images to be read by a malicious web page. Recent research has 

showed how a similar technique could be applied to CSS shaders to read cross-origin HTML 

content [17]. 

CSS Filter Effects 

SVG Filters 
WebGL 
Shaders 

Predefined 
CSS Filters 
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Currently no browser ships with CSS shader support enabled by default. SVG Filters are the 

most widely supported part of the Filter Effects specification, being supported by the latest 

versions of Firefox, Chrome and Internet Explorer. Therefore SVG filters are a good place to 

look for timing vulnerabilities. 

  
SVG Filter 

Support 

WebGL 

Shader 

Filter 

Support 

Pre-defined 

CSS Filter 

Support 

Can apply 

filters to link 

elements? 

Can apply 

filters to any 

HTML 

element? 

Firefox  Yes No No Yes Yes 

IE10  Yes No No Yes No ŧ 

Chrome  Yes No* Yes Yes Yes 

 

Table 3 

Browser support for the 

Filter Effects specification 

  

 * Experimental support can be enabled via chrome://flags  

  ŧ IE only allows filters can only be applied to SVG content 

 

Timing Attacks with SVG Filters 

Filters are interesting from a security perspective because they can be applied to arbitrary 

HTML content, including cross-origin iframes and links. Although the latest revision of the Filter 

Effects specification advises against allowing filters to be applied to cross-origin content, 

both Firefox and Chrome currently allow it. If an SVG filter (or combination of filters) can be 

found that take a variable amount of time to apply depending on their input, then a timing 

attack may be possible. 

SVG filters in Internet Explorer are hardware accelerated, and run on the GPU. In Firefox and 

Chrome filters are implemented C++ code; they run relatively slowly as they don’t take 

currently advantage of the GPU1. To speed up filter rendering a number of software 

optimisations are used in these browsers. Most software optimisations attempt to speed up 

common cases but will often perform slowly in less-common edge cases. By studying the 

Firefox source code, a number of filters were identified that would perform quicker on 

certain types of image. 

One filter of particular interest in Firefox was the morphology filter. This filter supports two 

operations – erosion and dilation. These are typically used in image processing to make 

edges and lines thinner or thicker. This is implemented by passing a ‘kernel’ of a certain size 

(e.g. 3x3 or 5x5) over each pixel of the input image. In a dilation operation, each pixel will 

be set to the darkest pixel found in its surrounding kernel. The size of the kernel in the SVG 

morphology filter can be controlled through the radius parameter (r). In a naïve 

implementation, an input image of w * h pixels in size will require x * h * r * r pixels to be 

scanned in total. 

                                                      

1 Experimental hardware-accelerated SVG filters are implemented in Chrome. But are 

turned off by default 
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However, the Firefox code has an optimisation. As the kernel is moved over the input image 

from left to right, the algorithm remembers the location of the darkest pixel (D). As long as D 

remains within the kernel, only the rightmost column of pixels in the kernel need to be 

scanned for darker pixels - a total of r pixels. If a pixel is found that is equal to or darker than 

D then D is updated to the location of that pixel. Once the kernel moves beyond D, the 

entire r * r kernel must be scanned again. 

This algorithm will perform quickest on an 

image of uniform colour, since D will always 

be updated to be on the right hand side of 

the kernel, and the whole kernel will never 

need to be scanned in full. This means that in 

the best possible case, only w * h * r pixels will 

need to be scanned in total. For example, if 

an erosion filter with a radius of 15 is applied 

to an image 320x240 in size, then the best 

case is 1,152,000 comparisons. The worst 

possible case would be an image where the 

darkest pixel was always on the leftmost 

column of the kernel (e.g. a gradient). In this 

case, 17,280,000 comparisons would be 

needed in total - 15 times slower.  

The diagram to the right shows how the 

optimised algorithm works. 

 

 

 

Figure 15 - Applying a dilation 

morphology operation thickens lines  

 

Figure 16 - Applying a dilation with a 

3x3 kernel (radius 3) 

Figure 17 - The optimised morphology algorithm in Firefox 
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Timing the speed of SVG filters 

To test the performance of SVG filters in a web browser, requestAnimationFrame can again 

be used. The following code shows how a simple test harness can be set up to time how 

long a filter takes to apply to an image: 

<style>.f { filter: url(#morphology) } </style> 

<img src="input.png" id="e"> 

<svg> 

  <filter id="morphology"> 

    <feMorphology operator="erode" radius="30"> 

  </filter> 

</svg> 

<script> 

var element= document.getElementById('e'); 

var count = 10; 

var times = []; 

var lastTime = 0; 

loop(t) { 

var diff = lastTime – t; 

lastTime = t; 

if (element.classList.contains('f')) 

     times.push(diff); 

element.classList.toggle('f'); 

if (count--) 

    requestAnimationFrame(loop); 

} 

requestAnimationFrame(loop); 
</script> 

Figure 18 

Timing the performance of 

an SVG filter 

 

The above code works by repeatedly toggling the SVG filter on and off in each frame of 

animation. Each time the filter is turned on, the duration of that frame is recorded. After 10 

frames, 5 timings of the filter code will have been recorded. An average can then be 

calculated.  

To compare the performance of the morphology filter, two different input images were 

provided and then timed with the above code – an image of random noise and an image 

of flat colour. 

By experimenting with the filter parameters and different sized input images a timing 

difference of over 89ms between the two images was achieved – an average of 35ms for 

the black image and 124ms for the noisy image. feMorphology filter in Chrome was also 

found to have timing differences, though to a lesser extent. Now that this variable timing has 

been established, the next step is to use this in some useful way in a timing attack. 
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Figure 19 

Two different inputs with 

the erode filter applied 

 

History Sniffing with SVG Filters 

The example above shows how a noisy image takes longer to filter than a flat image. If we 

could make a link element appear as a black square if it is unvisited, and a noisy square if it 

is visited, then we could use the morphology filter to tell the difference. Unfortunately, due to 

the restrictions on what styles can be applied to visited links, only a few CSS properties can 

be changed using the :visited selector, including color and background-color. However, we 

can use the following CSS to make a link element appear as either a black square or a white 

square: 

<style> 

a         { width: 100px; height: 100px; background-color: black } 

a:visited { background-color: white } 

</style> 

<a href="http://www.google.com"> </a> 

<a href="http://notvisited.asd"> </a> 

Figure 20 

Making links appear as 

black or white squares 

Since visited and unvisited links now differ only in colour, the morphology filter will take the 

same amount of time on both inputs. However, SVG filters can help us to overcome this. The 

following SVG filter multiplies the source image with an image of random noise, using the 

feImage and feComposite filter primitives. An erosion filter is then applied to the resulting 

image. The feComposite filter takes each pixel in the input image and multiplies its value 

with the corresponding pixel of the noise image. If the input is black (i.e. 0) the output image 

will also be black. If the input image is white, the result will be the noisy image. 
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<filter id="timingfilter1" filterRes="172"> 

  <feImage xlink:href="noise.png">            

  <feComposite in2="SourceGraphic" operator="arithmetic" k1="1"> 

  <feMorphology operator="erode" radius="30"> 

</filter> 

Figure 21  

A timing attack filter using 

feMorphology 

 

There are three parameters to this filter that can be adjusted to affect its timing – the erode 

radius, the value of the filterRes parameter and the size of the input the filter is applied to. 

The filterRes property can be applied to any SVG filter and sets the resolution at which the 

filter is applied to the input – the larger the value, the longer the filter will take to compute. 

 

 

 

The timing filter can now be used to tell if a link is visited. To do this, the following method 

can be used to perform a history sniffing attack. 

Method 5 – SVG filter history sniffing timing attack 

 Apply the filter to a known visited link Ncalib times, and calculate the average time Tpos 

 Apply the filter to a known unvisited link Ncalib times, and calculate average time Tneg 

 Apply the filter to an unknown link L1, Ntest times, and calculate the average time T1 

 If T1 is closer to Tpos than Tneg then the link is visited 

 Repeat for all links to be tested – T2, T3 … 

Figure 22 - black and white inputs will take different amounts of time Figure 23 – The internal steps of the timing filter 
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The first two steps are calibration steps. Ncalib can be set to something like 10. Once 

calibration has been completed, then Ntest can be set to a lower number (e.g. 2 or 3). A 

lower number for Ntest will speed up the sniffing attack at the cost of accuracy – the lower 

the number tests, the higher the number of false positives or negatives will be. 

When developing a history sniffing proof of concept using SVG filters, it was found that the 

timing was being affected by the link repainting behaviour, described in the first part of this 

paper. Each time the filter was applied and removed Firefox would perform a lookup of the 

link URL and restyle the link if it was visited. This caused the filter to be repainted more often 

than expected, meaning that the timings were not accurate. 

To overcome this, a custom Firefox CSS property called -moz-element was used [18].  -moz-

eelment allows a ‘snapshot’ of an HTML element on a page to be used as the background 

image for another element on the web page. Essentially, one element can copy the 

appearance of another, but not its behaviour. -moz-element can be used to ‘reflect’ the 

appearance of the original link. The SVG filter can then be applied to this reflection, 

preventing Firefox from redrawing the original link element and also preventing any URL 

lookups that may affect the timing of the filter2. 

<style> 

a         { background-color: black; width: 100px; height: 100px  } 

a:visited { background-color: white } 

#reflect  { background: -moz-element(#link); width: 100px; height: 100px; } 

</style> 

<a id="link" href="http://www.google.com"> </a> 

<div id="reflect"></div> 

Figure 24 

Using -moz-element to 

reflect another element 

 

Reading Pixels  

Now that SVG filters can be used to distinguish a black square from a white square, could 

this technique be used to read arbitrary pixel values – for example pixels from a cross-origin 

iframe? In theory, a malicious website could load a site that the user is logged into in an 

iframe. It could then use the feMorphology timing attack to read one pixel at a time from 

the iframe, building up an entire image of it. There are, however, a number of obstacles to 

this: 

 Most websites don’t just have black and white pixels. 

 Filtering a single pixel probably won’t be slow enough to time – we want a square of 

around 100x100 to apply the filter to. 

The first obstacle can be solved by applying an SVG filter to the iframe to perform a 

‘threshold’ operation, converting the iframe to monochrome. The following code shows an 

SVG filter that will perform a threshold operation, making all pixels either white or black. 

 

                                                      

2 Chrome does not support -moz-element, however it does support the SVG <pattern> 

element which does essentially the same thing for SVG content. 
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<filter id="threshold" color-interpolation-filters="sRGB"> 

  <feColorMatrix type="matrix"  

    values="0.333 0.333 0.333 0 -.16 

            0.333 0.333 0.333 0 -.16 

            0.333 0.333 0.333 0 -.16 

            0     0     0     0 1" /> 

  <feComponentTransfer> 

    <feFuncR type="discrete" tableValues="1 0" /> 

    <feFuncG type="discrete" tableValues="1 0" /> 

    <feFuncB type="discrete" tableValues="1 0" /> 

  </feCompnentTransfer> 

</filter> 

Figure 25 

Threshold SVG filter 

To enlarge pixels from the iframe, CSS transforms can be used. Normally when transforms are 

used to scale up an image, the resulting image is smoothed to prevent pixellation. However, 

pixels are exactly what is needed – the input to the timing filter must be either a black or 

white square. Fortunately, another CSS property helps here - image-rendering [19] allows a 

web page to select the scaling algorithm used for on elements. Specifying image-rendering: 

crisp-edges instructs the browser to turn off any smooth scaling algorithms. 

<style> 
#f { border: none } 
#zoom {  
  background: -moz-element(#f); 
  transform: scale(8); 
  transform-origin: 0 0; 
  image-rendering: -moz-crisp-edges; 
} 
</style> 

<iframe src="http://example.org" id="f"></iframe> 
<div id="zoom"></div> 

Figure 26 

Enlarging pixels in an 

iframe 

These techniques, combined with the feMorphology filter timing attack allow a webpage in 

Firefox to read pixels from an iframe. The following method can be used: 

 

Method 6 – Reading pixels from an iframe 

 Apply the filter to a known white pixel Ncalib times, and calculate average time Twhite 

 Apply the filter to a known black pixel Ncalib times, and calculate average time Tblack 

 Load target site into an iframe 

 Apply the threshold SVG filter 

 Crop the iframe to the first pixel to be read and enlarge 100x 

 Apply the filter to the pixel, Ntest times, and calculate the average time T1 

 Calculate the colour of the pixel by comparing T1 to Tblack and Twhite 

 Repeat for each pixel in the desired area of the iframe to build up the stolen image 
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Figure 27 

Top left: Original iframe  

Top right:  Iframe enlarged 8x 

Bottom left: Threshold applied 

Bottom right: A single enlarged 

pixel from the iframe 

The -moz-element reflection method is again required for the timing to be accurate. 

Applying the filter directly to the iframe results in the contents of the iframe being redrawn 

before the filter is applied, which can give inaccurate results. Using -moz-element to make a 

visual copy of the iframe, means that the filter is only applied to a static bitmap, preventing 

any additional rendering from taking place.  

Shown below is the resulting image that was built up by reading pixels from a cross-domain 

iframe using this technique. The image was built up in around 60 seconds. A few pixels have 

been read incorrectly but most are correct. 

 

Figure 28 

Resulting image that was 

read using the timing 

attack 

 

Reading Text with Pixel Perfect OCR 

Building up a picture of an iframe makes for an interesting demo, but it is relatively slow. The 

example above required hundreds of pixel to be read, and only created an image of a few 

characters of text. Furthermore, an attacker isn’t necessarily interested in stealing a picture. 

Most sensitive information that would be of interest to an attacker is textual – for example 

usernames or security tokens. Could an information-stealing technique be created that 

would recognise text and require fewer pixels to be read? In theory text could be read by 

only looking at a few pixels of each character, provided enough is known about the font 

used to display the text. 

It is possible to construct a text-recognising algorithm that can efficiently steal data from 

cross-origin iframes, if a few constraints are applied: 

 The font face and size of the text to be read must be known 
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 The location of the text on the page must be known (e.g. the location of username 

or email address on a profile page) 

 The set characters to be recognised must be limited and known (e.g. is the data to 

be read numeric, hexadecimal or alphabetic) 

A good example of text that is a known font and size is the view-source view in Firefox.  A 

quirk in Firefox allows the source code of a web page to be loaded in an iframe instead of 

the page itself. It is also possible to automatically scroll to a given line number in the source 

code, by specifying it in the URL hash: 

 

 
<iframe src=”view-source:http://example.com#line28”></iframe> 

Figure 29 

Loading a page’s source 

in an iframe in Firefox 

 

The source code of authenticated web pages often contain information that is sensitive. In 

addition to a user’s personal information, such as their name or email address, the source 

may also contain security tokens such as CSRF or authentication tokens. 

 

 

Figure 30 

The source code of a 

Google+ comments 

widget, displayed in an 

iframe. The source 

contains the currently 

authenticated user’s 

Google ID and other 

profile information. 

 

On Windows, the default font for view source in Firefox is 13px Courier. By analysing this font, 

an algorithm could determine which pixels must be read in order to recognise a character.  

We created a JavaScript-based algorithm to analyse a character set and determine which 

pixels differentiate each character. The algorithm starts with a given character set in the 

target font, with the threshold filter applied. In the example below, the character set is lower 

case hex: 

 

 

Figure 31 

The target character set, 

in the default font used by 

Firefox in view-source on 

Windows 7. The same 

threshold filter has been 

applied to match how the 

characters are read in the 

timing attack. 
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Next, the algorithm builds up a heat map by stacking the characters on top of each other, 

counting how many characters use each pixel. In the image below, the red pixels are those 

used by exactly half of the characters. The highlighted red pixel in the first heat map is used 

only by characters 4, 7, a, b, c, d, e and f. The second heat map shows the accumulation of 

those characters and again highlights a pixel that can be read to halve the search space. 

The algorithm builds up a binary search tree that allows a set of 16 characters to be 

recognised by reading only 4 unique pixels for each character. 

 

Figure 32 

Character heat maps for 

13px Courier. 

 

The first heat map shows 

all 16 characters 

combined. The red pixels 

are those that are set by 

exactly half of the 

characters.  

 

The last heat map shows a 

pixel that can be used to 

distinguish between 

characters 7 and f. 

 

In general a text from a character set of size N can be read by testing only log2 N pixels for 

each character. For example a base 64 encoded token could be read by testing 6 pixels for 

each character. 

A proof of concept using this OCR data stealing technique was constructed that could read 

around 1 hex character per second. Unlike the image reading technique where a few 

incorrectly read pixels can still give a usable result, the OCR technique requires each pixel 

read to be correct. If a single pixel is read incorrectly then the wrong path through the 

binary tree will be taken, resulting in an incorrect character being read. This can be 

prevented by taking several readings for each pixel, improving the accuracy of the read 

text. 
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Conclusion 

This paper has demonstrated how a malicious website can use the timing of browser 

graphics operations to steal sensitive user data. Fortunately for users, timing attacks that are 

easily demonstrated in a controlled environment can prove tricky to implement reliably in 

the wild. However, this does not mean that browser vendors should not fix these holes. The 

basic techniques described in this paper will inevitably be improved upon to increase their 

speed, reliability and real-world usefulness. 

Browser vendors have a difficult task in finding and preventing timing vulnerabilities. Such 

issues are not easy to identify from a code review perspective and may be found only 

through testing and experimentation. Fixing these timing holes can also have an effect on 

performance. Browser vendors are in a constant race to improve the speed of their 

browsers. The asynchronous URL lookups and filter optimisations that make these timing 

attacks possible were intended to increase browser performance. Fixing them could involve 

a trade-off between privacy and performance. 

Website owners can protect themselves from the pixel reading attacks described in this 

paper by disallowing framing of their sites. This can be done by setting the following HTTP 

header: 

 

X-Frame-Options: Deny 

Figure 33 

Setting the X-Frame-

Options header to prevent 

framing 

This header is primarily intended to prevent clickjacking attacks, but it is effective at 

mitigating any attack technique that involves a malicious site loading a victim site in an 

iframe. Any website that allows users to log in, or handles sensitive data should have this 

header set. 

Firefox users who wish to protect themselves against the history sniffing attack can disable 

visited link styling. This can be done by following these steps: 

 Type ‘about:config’ in the location bar and press enter 

 Find the ‘layout.css.visited_links_enabled’ setting using the search bar 

 Double click the setting to toggle it to false 

Users of all browsers can also reduce the risk of history sniffing attacks by regularly clearing 

their history. This can be done by using the Ctrl-Shift-Del keyboard shortcut in Firefox, Chrome 

and Internet Explorer. 
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Security Bug Reports and Disclosure 

Context has reported all of the security related findings detailed in this paper to the relevant 

browser vendors. Our original SVG filter timing attack research was done against Firefox and 

was reported to Mozilla in December 2011.  

All the other findings in this paper were researched in 2013 and were reported to vendors in 

June 2013. 

Listed below are links to the bug reports for Chrome and Firefox. At the time of writing, these 

links are not public, though it is expected that they will be opened shortly: 

Firefox 22 updated the feMorphology filter to remove the timing differences described in this 

paper. However, other filters may still be vulnerable. 

SVG Filter Timing Attack: 

 Firefox bug report: https://bugzilla.mozilla.org/show_bug.cgi?id=711043 

 Mozilla advisory: http://www.mozilla.org/security/announce/2013/mfsa2013-55.html 

 Chrome bug report:  https://code.google.com/p/chromium/issues/detail?id=251711 

 

Link Repainting Attack: 

 Firefox bug report: https://bugzilla.mozilla.org/show_bug.cgi?id=884270 

 Chrome bug report: https://code.google.com/p/chromium/issues/detail?id=252165 

 

 

 

 

 

 

 

https://bugzilla.mozilla.org/show_bug.cgi?id=711043
http://www.mozilla.org/security/announce/2013/mfsa2013-55.html
https://code.google.com/p/chromium/issues/detail?id=251711
https://bugzilla.mozilla.org/show_bug.cgi?id=884270
https://code.google.com/p/chromium/issues/detail?id=252165
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About Context 

Context Information Security is an independent security consultancy specialising in both 

technical security and information assurance services. 

The company was founded in 1998. Its client base has grown steadily over the years, thanks 

in large part to personal recommendations from existing clients who value us as business 

partners. We believe our success is based on the value our clients place on our product-

agnostic, holistic approach; the way we work closely with them to develop a tailored 

service; and to the independence, integrity and technical skills of our consultants. 

The company’s client base now includes some of the most prestigious blue chip companies 

in the world, as well as government organisations. 

The best security experts need to bring a broad portfolio of skills to the job, so Context has 

always sought to recruit staff with extensive business experience as well as technical 

expertise. Our aim is to provide effective and practical solutions, advice and support: when 

we report back to clients we always communicate our findings and recommendations in 

plain terms at a business level as well as in the form of an in-depth technical report. 
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