

Context Information Security Research. Response. Assurance www.contextis.com 1 / 29

White paper

Pixel Perfect Timing

Attacks with HTML5

Paul Stone

whitepapers@contextis.co.uk

July 2013

Context Information Security Research. Response. Assurance www.contextis.com 2 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Contents

Abstract 3

Thinking in Frames - using requestAnimationFrame to time

browser operations 4

requestAnimationFrame and Timing Attacks 5

Rendering Links and Redraw Events 6

Detecting Redraw Events 7

Calibration 10

Results and Practicality 11

Visibility 11

Speed 11

Reliability 12

CSS, SVG and Filters 13

Timing Attacks with SVG Filters 14

Timing the speed of SVG filters 16

History Sniffing with SVG Filters 17

Reading Pixels 19

Reading Text with Pixel Perfect OCR 21

Conclusion 24

Security Bug Reports and Disclosure 25

About Context 26

Works Cited 27

Context Information Security Research. Response. Assurance www.contextis.com 3 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Abstract

This paper describes a number of timing attack techniques that can be used by a malicious

web page to steal sensitive data from a browser, breaking cross-origin restrictions. The new

requestAnimationFrame API can be used to time browser rendering operations and infer

sensitive data based on timing data. The first technique allows the browser history to be

sniffed by detecting redraw events. The second part of the paper shows how SVG filters are

vulnerable to a timing attack that can be used to read pixel values from a web page. This

allows pixels from cross-origin iframes to be read using an OCR-style technique to obtain

sensitive data from websites.

Context Information Security Research. Response. Assurance www.contextis.com 4 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Thinking in Frames - using requestAnimationFrame to time

browser operations

The requestAnimationFrame JavaScript API is a recent addition to browsers and was

designed to allow web pages to create smooth animations. requestAnimationFrame takes a

single parameter, a function that will be called back just before the next frame is painted to

screen [1]. The callback function will be passed a timestamp parameter that tells it when it

was called.

var handle = window.requestAnimationFrame(callback);

Figure 1

An example call to

requestAnimationFrame

The callback mechanism provides a way for developers to perform

necessary tasks between animation frames. Within each frame of

animation on a web page, a number of tasks may be carried out by the

browser. These include executing JavaScript code, calculating the

position of new and updated elements (known as layout or reflow) and

drawing elements to screen. Each of these tasks may take a variable

amount of time. For example, if the JavaScript code inserts a large

number of new elements into a page, then the layout step may take a

long time. If an element has complex styles applied to it, such as shadow

or transparency then the painting step may take more time than simple

operations such as moving an element across the screen.

The diagram on the right represents two consecutive frames of animation

in which the page layout is adjusted. The timestamp passed to the

requestAnimationFrame callback can be used to calculate t1 and t2, the

amount of time taken for both frames.

If called repeatedly, requestAnimationFrame will aim to paint up to 60

frames per second (i.e. every 16 milliseconds) and will schedule the

callback function accordingly. If the total time taken by the code

execution, layout and painting steps is longer than 16ms, then the next

frame will be delayed until these tasks have completed. This delay will be

measurable by requestAnimationFrame, allowing the frame rate to be

measured.

The following code shows how requestAnimationFrame can be used to calculate the ‘frame

rate’ of a web page, by calculating the time elapsed between each frame.

var lastTime = 0;

function loop(time) {

 var delay = time – lastTime;

 var fps = 1000/delay;

 console.log(delay + ‘ ms’ fps);

 updateAnimation();

 requestAnimationFrame(loop);

 lastTime = time;

}

requestAnimationFrame(loop);

Figure 3

Measuring frame rate with

requestAnimationFrame

Figure 2 - Browser rendering phases

Context Information Security Research. Response. Assurance www.contextis.com 5 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

requestAnimationFrame and Timing Attacks

By synchronising JavaScript code execution with the browser’s layout and rendering

routines, requestAnimationFrame allows a web page to measure browser performance in a

way that was previously difficult. In order for timing attacks to be viable certain criteria must

be met by the browser function under consideration. Specifically, these criteria are:

i) can be triggered from JavaScript

ii) must take place during the layout or painting steps

iii) should process sensitive data that is not directly readable by JavaScript

iv) must take a variable amount of time depending on the data it is provided

Any browser operation that satisfies these criteria may be susceptible to a timing attack that

could reveal sensitive information stored in a malicious web page.

Context Information Security Research. Response. Assurance www.contextis.com 6 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Browser History Sniffing

In the past it was possible to abuse a number of features in CSS and JavaScript to determine

whether a given URL had been previously visited by a user. For example, the

getComputedStyle function could be used to check the colour of a link, making it trivial for

a webpage to distinguish between a visited and unvisited link. By checking a large number

of URLs, a malicious website could 'sniff' a user's browsing history and build a list of previously

visited websites.

These techniques were shown to be very effective, enabling a malicious

site to check thousands of URLs per second to see if a user had visited them

[2]. Far from being theoretical, research showed that the technique was

being actively abused by number of websites to sniff the browsing history of

their users [3].

In 2010 David Baron published a proposal for preventing such attacks [4],

by restricting the styles that can be applied to visited links in CSS and

ensuring that JavaScript API calls that query element styles always behave

as if a link is unvisited. These fixes have since been implemented in all major

browsers.

Since then, a few techniques have been shown that work around the new

restrictions. These work by styling links in clever ways, such as CAPTCHAs or

game pieces and rely on the user to visually identify visited links by clicking

on them [5] [6]. While these can be effective, they require user interaction

and can be slow.

In this section we describe a number of new techniques that can

automatically sniff browser history and work without user interaction.

Rendering Links and Redraw Events

When a web page contains one or more links, the browser must determine

whether to render each link using the visited or unvisited visual style. Every

browser has a database of previously visited URLs (i.e. the browser history)

and will perform a lookup in this database to see if each URL has been visited before.

Both Internet Explorer and Firefox perform an asynchronous database lookup for each link. If

the database query has not completed before the link is rendered, the browser will first use

the ‘unvisited’ style to render the link. Once the database query has returned, the link will be

redrawn if the URL is found to have been previously visited. If this ‘redraw’ event can be

detected by a webpage, then it could tell if the link had been previously visited.

The Chrome web browser appears to perform synchronous database lookups when

rendering links. Unlike Firefox and Internet Explorer, Chrome will wait until the database URL

lookup has completed before rendering the link on-screen.

Aside from the initial rendering of a link, another time a browser may redraw a link is if its

target, i.e. href, is changed to point to a different URL by JavaScript on the web page.

Testing showed that this worked as expected in Firefox; changing a link’s href would re-

render the link if the ‘visited’ state had changed. This doesn’t work in Internet Explorer – once

a link has been created, changing its href will never cause the ‘visited’ state of the link to

change.

Figure 4 – the default styling of visited

and unvisited links. This information

should be visible to a user, but not to

the web page.

Context Information Security Research. Response. Assurance www.contextis.com 7 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

In Chrome, changing the href alone did not cause the link to be redrawn. However, by

changing the href and then ‘touching’ but not altering the style of the link element, the

browser would repaint the link if the new URL required caused the visited state to change.

############

<script>

var el = document.getElementById('link1');

el.href = 'http://www.yahoo.com';

// below lines are required for Chrome to force style update

el.style.color = 'red';

el.style.color = '';

</script>

Figure 5

Changing a link href in

Chrome and Firefox

The table below summarises how links are repainted in three major browsers:

Browser Asynchronous URL lookup Changing href of existing link

Chrome 27 ✓

Firefox 21 ✓ ✓

Internet Explorer 10 ✓

Table 1

Events that cause link

repainting

Detecting Redraw Events

In the past, Firefox allowed a web page to be directly notified of redraw events, via the

mozAfterPaint [7]. This event notified a page not only that a paint event had occurred, but

which regions had been painted too. mozAfterPaint was however disabled by default due

to the possibility of visited information leaking to web pages [8] [9].

Figure 6

Animation and Paint

events shown in Chrome’s

web inspector

Context Information Security Research. Response. Assurance www.contextis.com 8 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

By using the requestAnimationFrame API, it is possible to detect when links are repainted.

However, today’s browsers are highly optimised, with many graphical operations offloaded

to the GPU. If a repaint event takes less than 16ms to complete, then the period between

callbacks will not change (i.e. the frame rate will not drop below 60fps). We therefore need

to find a way to slow down link rendering to make redraws detectable.

The CSS text-shadow property [10] allows various effects to be applied to text on a web

page, including drop shadows, glows and embossing. The amount of time to render an

element with text-shadow applied is proportional to the value of the blur-radius property.

Rendering can be further slowed down by applying multiple shadows to text and increasing

the amount of text rendered. Experimentation has shown that this is an effective technique

in Chrome, Firefox and Internet Explorer.

The below table compares rendering times of elements with text-shadow applied in different

browsers. For the purposes of the test, 50 link elements were drawn, each pointing to the

same URL. The test was run on an Intel i5-2520M processor.

blur-radius Firefox 21 Internet Explorer 10 Chrome 27

5px 65ms 155ms 35ms

10px 70ms 170ms 50ms

20px 81ms 200ms 66ms

30px 102ms 260ms 83ms

40px 120ms 310ms 110ms

Table 2

Timings of redraw events

for links with text-shadow

applied

Figure 7

Graph showing redraw

times for various blur-

radius values

By applying our knowledge of how link repaints occur in Firefox and Internet Explorer, the

following steps can be used to detect visited links:

0

50

100

150

200

250

300

350

5px 10px 20px 30px 40px

Ti
m

e
 (

m
s)

blur-radius

Firefox 21

IE 10

Chrome 27

Context Information Security Research. Response. Assurance www.contextis.com 9 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Method 1 - Asynchronous URL Lookup

 Insert a number of links on page with text-shadow applied, all pointing to same URL

 Time the next N frames using requestAnimationFrame

 Analyse captured frames to determine if redraw occurred

The following screenshot from Internet Explorer shows a demo of the redraw timing

technique. For each URL a number of links were inserted onto the page, with text-shadow

applied. The numbers show the number of milliseconds that each of the 5 subsequent

frames took to draw, according to requestAnimationFrame. The timing of the first frames

shows the links being drawn in their ‘unvisited’ state. The highlighted frames show when the

redraws occur for visited links:

Figure 8

Timing repaints in Internet

Explorer

The green ticks show that our demo code has detected a link redraw, indicating that the

links have been visited.

The same technique works almost identically in Firefox. This time the first two frames are slow,

with a third slow frame indicating a repaint of visited frames.

Figure 9

Timing repaints in Firefox

In Chrome, the links are not repainted after they are initially drawn, as shown by the same

demo running in that browser. The first frame after links are inserted takes the same amount

of time regardless of whether a link is visited.

Figure 10

Timing repaints in Chrome

Context Information Security Research. Response. Assurance www.contextis.com 10 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

The algorithm can be modified however to take advantage of the behaviour in Chrome

when a link is target is changed:

Method 2 - Changing Link Target

 Place a number of link elements on the web page, pointing to a known-unvisited URL

 Update the links to point to the URL to be tested.

 Time the next frame using requestAnimationFrame

Because history lookups are not asynchronous in Chrome only a single frame needs to be

timed with requestAnimationFrame. The repaint will occur immediately after the link is

changed if the new URL is visited.

Calibration

The timing of the redraws will differ depending on the speed of the hardware on which the

browser is running. To allow the same history sniffing code to run on different hardware with

good results, a calibration step must first be done. In this step, the code attempts to find

suitable values for the following variables:

 A blur-radius value for the text-shadow property (B)

 The number of links to draw (N)

The aim is to find values that cause the link painting to be slow enough to time with

requestAnimationFrame, but quick enough to allow a large number of links to be checked.

The following algorithm can be used in Chrome. Firefox and IE would require slightly more

complex steps due to the asynchronous database lookups in those browsers.

Method 3 – Calibrating text-shadow

 Start with small values for B and N (e.g. a 10px blur and 20 links)

 Time 10 frames with links that are visited

 Time 10 frames with unvisited links

 If the average timing difference between the visited and unvisited frames is under a

certain threshold (e.g. 50ms) increase B and N, then repeat calibration

 Once the desired timing has been reached, calibration is complete.

Context Information Security Research. Response. Assurance www.contextis.com 11 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

The following screenshot shows the results of the calibration steps in the demo code in

Chrome:

Figure 11

Results of automatic

calibration in Chrome

Results and Practicality

Visibility

A real-world malicious page that wished to perform this history sniffing attack would not

want to display the links as shown in the above screenshot. However, actually showing the

links is not necessary. CSS Transforms [11] allow web page elements to be scaled and

rotated. As transforms are applied after an element has been drawn off-screen, they do not

affect the speed that effects such as text-shadow take to apply. The following CSS can be

applied to the links used to perform the timing attack, making them effectively invisible.

#link-container { transform-origin: 0 0; transform: scale(0.01) }

Figure 12

Hiding elements with CSS

Transforms

Speed

The speed of this technique is limited by the maximum frame rate of the browser as we must

wait for a frame to be drawn before it can be timed with requestAnimationFrame. In Firefox

and Internet Explorer, due to the asynchronous history lookups, we must wait between 3 and

5 frames to see if links are redrawn. This gives a rough limit of between 13 and 20 URL checks

per second.

In Chrome, a URL can be tested by every other frame, putting the theoretical limit at 30 URL

checks per second. However, each frame in which a visited URL is found will be slower to

render, reducing the overall frame rate.

There are a number of optimisations and improvements that could be made to these basic

algorithms. One such optimisation is to check a large number of different URLs at once; if a

Context Information Security Research. Response. Assurance www.contextis.com 12 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

redraw is detected then we know that at least one of these URLs is visited. This leads us to

the following algorithm:

Method 4 – Binary chop history sniffing

 Place a large number of different URLs (e.g. 1000) on the page at once

 If a redraw is detected, divide the URLs into two sets

 To each set add dummy unvisited URLs to keep the total number at 1000. This will

ensure the timing remains constant.

 Separately test each new set of URLs for redraws. If no redraw is detected, discard

the URL set.

 Continue testing, dividing and discarding until unique URLs are found.

This method will work best with a large set of URLs in which only a small portion are actually

visited. This technique was implemented in Internet Explorer. A simple test of 1000 URLs with

10 visited links completed in 17 seconds, a speed of 58 URLs tested per second.

Reliability

As with any timing attack, the reliability of this exploit is highly dependent on the quality of

the gathered timing data. Any background tasks that are running such as other processes or

tabs can slow down the rendering of the page performing the timing attack, leading to

false positives. A real world attack could use requestAnimationFrame to measure the frame

rate of the current web page, to detect when the user’s computer has become idle. For

example, when a web page is initially loading, the frame rate will drop as network resources

are loaded and the page is rendered. When the frame rate stabilises at 60fps, the malicious

page could begin the timing attack.

Context Information Security Research. Response. Assurance www.contextis.com 13 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

CSS, SVG and Filters

Modern browsers are continually gaining features that allow web pages to create rich

interactive graphics. As seen in previously with text-shadow, complex graphics features can

be a good place to look for timing vulnerabilities. Filter Effects [12] is a relatively new

specification that allows visual effects to be applied to web pages using CSS properties. It is

actually a combination of three quite separate features:

SVG Filters originate from an earlier specification [13] that allowed visual effects to be

applied to SVG drawings. The Filter Effects specification incorporates SVG Filters and allows

them to be applied to any HTML element using CSS. The SVG filter specification defines 16

basic operations (known as filter primitives) including convolution, colour transforms and

image composition. Each of these filter primitives has a number of input parameters that

can be set, and primitives can be combined to produce more complex effects such as

drop shadows and bump mapping [14] [15].

<filter id="greyscale">
 <feColorMatrix type="matrix" values="0.3333 0.3333 0.3333 0 0
 0.3333 0.3333 9.3333 0 0
 0.3333 0.3333 0.3333 0 0
 0 0 0 1 0"/>
</filter>

<style>.f1 { filter: url(#greyscale) }</style>

<div class="f1"> Hello World</div>

Figure 13

Applying a simple SVG

filter to an HTML element

A number of simple pre-defined filters are also defined by the specification. These allow

effects such as greyscale, brightness, contrast and drop shadows to be applied without

needing to write out complex SVG filters.

<style>.f2 { filter: grayscale(100%) }</style>

<div class="f2"> Hello World</div>

Figure 14

Pre-defined CSS Filters

The Filter Effects specification also incorporates the GLSL ES-based shader language from

WebGL. This allows complex pixel and vertex shaders to be applied to HTML elements via

CSS. Timing attacks using WebGL shaders have been demonstrated by Context previously

[16] , allowing cross-origin images to be read by a malicious web page. Recent research has

showed how a similar technique could be applied to CSS shaders to read cross-origin HTML

content [17].

CSS Filter Effects

SVG Filters
WebGL
Shaders

Predefined
CSS Filters

Context Information Security Research. Response. Assurance www.contextis.com 14 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Currently no browser ships with CSS shader support enabled by default. SVG Filters are the

most widely supported part of the Filter Effects specification, being supported by the latest

versions of Firefox, Chrome and Internet Explorer. Therefore SVG filters are a good place to

look for timing vulnerabilities.

SVG Filter

Support

WebGL

Shader

Filter

Support

Pre-defined

CSS Filter

Support

Can apply

filters to link

elements?

Can apply

filters to any

HTML

element?

Firefox Yes No No Yes Yes

IE10 Yes No No Yes No ŧ

Chrome Yes No* Yes Yes Yes

Table 3

Browser support for the

Filter Effects specification

 * Experimental support can be enabled via chrome://flags

 ŧ IE only allows filters can only be applied to SVG content

Timing Attacks with SVG Filters

Filters are interesting from a security perspective because they can be applied to arbitrary

HTML content, including cross-origin iframes and links. Although the latest revision of the Filter

Effects specification advises against allowing filters to be applied to cross-origin content,

both Firefox and Chrome currently allow it. If an SVG filter (or combination of filters) can be

found that take a variable amount of time to apply depending on their input, then a timing

attack may be possible.

SVG filters in Internet Explorer are hardware accelerated, and run on the GPU. In Firefox and

Chrome filters are implemented C++ code; they run relatively slowly as they don’t take

currently advantage of the GPU1. To speed up filter rendering a number of software

optimisations are used in these browsers. Most software optimisations attempt to speed up

common cases but will often perform slowly in less-common edge cases. By studying the

Firefox source code, a number of filters were identified that would perform quicker on

certain types of image.

One filter of particular interest in Firefox was the morphology filter. This filter supports two

operations – erosion and dilation. These are typically used in image processing to make

edges and lines thinner or thicker. This is implemented by passing a ‘kernel’ of a certain size

(e.g. 3x3 or 5x5) over each pixel of the input image. In a dilation operation, each pixel will

be set to the darkest pixel found in its surrounding kernel. The size of the kernel in the SVG

morphology filter can be controlled through the radius parameter (r). In a naïve

implementation, an input image of w * h pixels in size will require x * h * r * r pixels to be

scanned in total.

1 Experimental hardware-accelerated SVG filters are implemented in Chrome. But are

turned off by default

Context Information Security Research. Response. Assurance www.contextis.com 15 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

However, the Firefox code has an optimisation. As the kernel is moved over the input image

from left to right, the algorithm remembers the location of the darkest pixel (D). As long as D

remains within the kernel, only the rightmost column of pixels in the kernel need to be

scanned for darker pixels - a total of r pixels. If a pixel is found that is equal to or darker than

D then D is updated to the location of that pixel. Once the kernel moves beyond D, the

entire r * r kernel must be scanned again.

This algorithm will perform quickest on an

image of uniform colour, since D will always

be updated to be on the right hand side of

the kernel, and the whole kernel will never

need to be scanned in full. This means that in

the best possible case, only w * h * r pixels will

need to be scanned in total. For example, if

an erosion filter with a radius of 15 is applied

to an image 320x240 in size, then the best

case is 1,152,000 comparisons. The worst

possible case would be an image where the

darkest pixel was always on the leftmost

column of the kernel (e.g. a gradient). In this

case, 17,280,000 comparisons would be

needed in total - 15 times slower.

The diagram to the right shows how the

optimised algorithm works.

Figure 15 - Applying a dilation

morphology operation thickens lines

Figure 16 - Applying a dilation with a

3x3 kernel (radius 3)

Figure 17 - The optimised morphology algorithm in Firefox

Context Information Security Research. Response. Assurance www.contextis.com 16 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Timing the speed of SVG filters

To test the performance of SVG filters in a web browser, requestAnimationFrame can again

be used. The following code shows how a simple test harness can be set up to time how

long a filter takes to apply to an image:

<style>.f { filter: url(#morphology) } </style>

<svg>

 <filter id="morphology">

 <feMorphology operator="erode" radius="30">

 </filter>

</svg>

<script>

var element= document.getElementById('e');

var count = 10;

var times = [];

var lastTime = 0;

loop(t) {

var diff = lastTime – t;

lastTime = t;

if (element.classList.contains('f'))

 times.push(diff);

element.classList.toggle('f');

if (count--)

 requestAnimationFrame(loop);

}

requestAnimationFrame(loop);
</script>

Figure 18

Timing the performance of

an SVG filter

The above code works by repeatedly toggling the SVG filter on and off in each frame of

animation. Each time the filter is turned on, the duration of that frame is recorded. After 10

frames, 5 timings of the filter code will have been recorded. An average can then be

calculated.

To compare the performance of the morphology filter, two different input images were

provided and then timed with the above code – an image of random noise and an image

of flat colour.

By experimenting with the filter parameters and different sized input images a timing

difference of over 89ms between the two images was achieved – an average of 35ms for

the black image and 124ms for the noisy image. feMorphology filter in Chrome was also

found to have timing differences, though to a lesser extent. Now that this variable timing has

been established, the next step is to use this in some useful way in a timing attack.

Context Information Security Research. Response. Assurance www.contextis.com 17 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Figure 19

Two different inputs with

the erode filter applied

History Sniffing with SVG Filters

The example above shows how a noisy image takes longer to filter than a flat image. If we

could make a link element appear as a black square if it is unvisited, and a noisy square if it

is visited, then we could use the morphology filter to tell the difference. Unfortunately, due to

the restrictions on what styles can be applied to visited links, only a few CSS properties can

be changed using the :visited selector, including color and background-color. However, we

can use the following CSS to make a link element appear as either a black square or a white

square:

<style>

a { width: 100px; height: 100px; background-color: black }

a:visited { background-color: white }

</style>

Figure 20

Making links appear as

black or white squares

Since visited and unvisited links now differ only in colour, the morphology filter will take the

same amount of time on both inputs. However, SVG filters can help us to overcome this. The

following SVG filter multiplies the source image with an image of random noise, using the

feImage and feComposite filter primitives. An erosion filter is then applied to the resulting

image. The feComposite filter takes each pixel in the input image and multiplies its value

with the corresponding pixel of the noise image. If the input is black (i.e. 0) the output image

will also be black. If the input image is white, the result will be the noisy image.

Context Information Security Research. Response. Assurance www.contextis.com 18 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

<filter id="timingfilter1" filterRes="172">

 <feImage xlink:href="noise.png">

 <feComposite in2="SourceGraphic" operator="arithmetic" k1="1">

 <feMorphology operator="erode" radius="30">

</filter>

Figure 21

A timing attack filter using

feMorphology

There are three parameters to this filter that can be adjusted to affect its timing – the erode

radius, the value of the filterRes parameter and the size of the input the filter is applied to.

The filterRes property can be applied to any SVG filter and sets the resolution at which the

filter is applied to the input – the larger the value, the longer the filter will take to compute.

The timing filter can now be used to tell if a link is visited. To do this, the following method

can be used to perform a history sniffing attack.

Method 5 – SVG filter history sniffing timing attack

 Apply the filter to a known visited link Ncalib times, and calculate the average time Tpos

 Apply the filter to a known unvisited link Ncalib times, and calculate average time Tneg

 Apply the filter to an unknown link L1, Ntest times, and calculate the average time T1

 If T1 is closer to Tpos than Tneg then the link is visited

 Repeat for all links to be tested – T2, T3 …

Figure 22 - black and white inputs will take different amounts of time Figure 23 – The internal steps of the timing filter

Context Information Security Research. Response. Assurance www.contextis.com 19 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

The first two steps are calibration steps. Ncalib can be set to something like 10. Once

calibration has been completed, then Ntest can be set to a lower number (e.g. 2 or 3). A

lower number for Ntest will speed up the sniffing attack at the cost of accuracy – the lower

the number tests, the higher the number of false positives or negatives will be.

When developing a history sniffing proof of concept using SVG filters, it was found that the

timing was being affected by the link repainting behaviour, described in the first part of this

paper. Each time the filter was applied and removed Firefox would perform a lookup of the

link URL and restyle the link if it was visited. This caused the filter to be repainted more often

than expected, meaning that the timings were not accurate.

To overcome this, a custom Firefox CSS property called -moz-element was used [18]. -moz-

eelment allows a ‘snapshot’ of an HTML element on a page to be used as the background

image for another element on the web page. Essentially, one element can copy the

appearance of another, but not its behaviour. -moz-element can be used to ‘reflect’ the

appearance of the original link. The SVG filter can then be applied to this reflection,

preventing Firefox from redrawing the original link element and also preventing any URL

lookups that may affect the timing of the filter2.

<style>

a { background-color: black; width: 100px; height: 100px }

a:visited { background-color: white }

#reflect { background: -moz-element(#link); width: 100px; height: 100px; }

</style>

<div id="reflect"></div>

Figure 24

Using -moz-element to

reflect another element

Reading Pixels

Now that SVG filters can be used to distinguish a black square from a white square, could

this technique be used to read arbitrary pixel values – for example pixels from a cross-origin

iframe? In theory, a malicious website could load a site that the user is logged into in an

iframe. It could then use the feMorphology timing attack to read one pixel at a time from

the iframe, building up an entire image of it. There are, however, a number of obstacles to

this:

 Most websites don’t just have black and white pixels.

 Filtering a single pixel probably won’t be slow enough to time – we want a square of

around 100x100 to apply the filter to.

The first obstacle can be solved by applying an SVG filter to the iframe to perform a

‘threshold’ operation, converting the iframe to monochrome. The following code shows an

SVG filter that will perform a threshold operation, making all pixels either white or black.

2 Chrome does not support -moz-element, however it does support the SVG <pattern>

element which does essentially the same thing for SVG content.

Context Information Security Research. Response. Assurance www.contextis.com 20 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

<filter id="threshold" color-interpolation-filters="sRGB">

 <feColorMatrix type="matrix"

 values="0.333 0.333 0.333 0 -.16

 0.333 0.333 0.333 0 -.16

 0.333 0.333 0.333 0 -.16

 0 0 0 0 1" />

 <feComponentTransfer>

 <feFuncR type="discrete" tableValues="1 0" />

 <feFuncG type="discrete" tableValues="1 0" />

 <feFuncB type="discrete" tableValues="1 0" />

 </feCompnentTransfer>

</filter>

Figure 25

Threshold SVG filter

To enlarge pixels from the iframe, CSS transforms can be used. Normally when transforms are

used to scale up an image, the resulting image is smoothed to prevent pixellation. However,

pixels are exactly what is needed – the input to the timing filter must be either a black or

white square. Fortunately, another CSS property helps here - image-rendering [19] allows a

web page to select the scaling algorithm used for on elements. Specifying image-rendering:

crisp-edges instructs the browser to turn off any smooth scaling algorithms.

<style>
#f { border: none }
#zoom {
 background: -moz-element(#f);
 transform: scale(8);
 transform-origin: 0 0;
 image-rendering: -moz-crisp-edges;
}
</style>

<iframe src="http://example.org" id="f"></iframe>
<div id="zoom"></div>

Figure 26

Enlarging pixels in an

iframe

These techniques, combined with the feMorphology filter timing attack allow a webpage in

Firefox to read pixels from an iframe. The following method can be used:

Method 6 – Reading pixels from an iframe

 Apply the filter to a known white pixel Ncalib times, and calculate average time Twhite

 Apply the filter to a known black pixel Ncalib times, and calculate average time Tblack

 Load target site into an iframe

 Apply the threshold SVG filter

 Crop the iframe to the first pixel to be read and enlarge 100x

 Apply the filter to the pixel, Ntest times, and calculate the average time T1

 Calculate the colour of the pixel by comparing T1 to Tblack and Twhite

 Repeat for each pixel in the desired area of the iframe to build up the stolen image

Context Information Security Research. Response. Assurance www.contextis.com 21 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Figure 27

Top left: Original iframe

Top right: Iframe enlarged 8x

Bottom left: Threshold applied

Bottom right: A single enlarged

pixel from the iframe

The -moz-element reflection method is again required for the timing to be accurate.

Applying the filter directly to the iframe results in the contents of the iframe being redrawn

before the filter is applied, which can give inaccurate results. Using -moz-element to make a

visual copy of the iframe, means that the filter is only applied to a static bitmap, preventing

any additional rendering from taking place.

Shown below is the resulting image that was built up by reading pixels from a cross-domain

iframe using this technique. The image was built up in around 60 seconds. A few pixels have

been read incorrectly but most are correct.

Figure 28

Resulting image that was

read using the timing

attack

Reading Text with Pixel Perfect OCR

Building up a picture of an iframe makes for an interesting demo, but it is relatively slow. The

example above required hundreds of pixel to be read, and only created an image of a few

characters of text. Furthermore, an attacker isn’t necessarily interested in stealing a picture.

Most sensitive information that would be of interest to an attacker is textual – for example

usernames or security tokens. Could an information-stealing technique be created that

would recognise text and require fewer pixels to be read? In theory text could be read by

only looking at a few pixels of each character, provided enough is known about the font

used to display the text.

It is possible to construct a text-recognising algorithm that can efficiently steal data from

cross-origin iframes, if a few constraints are applied:

 The font face and size of the text to be read must be known

Context Information Security Research. Response. Assurance www.contextis.com 22 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

 The location of the text on the page must be known (e.g. the location of username

or email address on a profile page)

 The set characters to be recognised must be limited and known (e.g. is the data to

be read numeric, hexadecimal or alphabetic)

A good example of text that is a known font and size is the view-source view in Firefox. A

quirk in Firefox allows the source code of a web page to be loaded in an iframe instead of

the page itself. It is also possible to automatically scroll to a given line number in the source

code, by specifying it in the URL hash:

<iframe src=”view-source:http://example.com#line28”></iframe>

Figure 29

Loading a page’s source

in an iframe in Firefox

The source code of authenticated web pages often contain information that is sensitive. In

addition to a user’s personal information, such as their name or email address, the source

may also contain security tokens such as CSRF or authentication tokens.

Figure 30

The source code of a

Google+ comments

widget, displayed in an

iframe. The source

contains the currently

authenticated user’s

Google ID and other

profile information.

On Windows, the default font for view source in Firefox is 13px Courier. By analysing this font,

an algorithm could determine which pixels must be read in order to recognise a character.

We created a JavaScript-based algorithm to analyse a character set and determine which

pixels differentiate each character. The algorithm starts with a given character set in the

target font, with the threshold filter applied. In the example below, the character set is lower

case hex:

Figure 31

The target character set,

in the default font used by

Firefox in view-source on

Windows 7. The same

threshold filter has been

applied to match how the

characters are read in the

timing attack.

Context Information Security Research. Response. Assurance www.contextis.com 23 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Next, the algorithm builds up a heat map by stacking the characters on top of each other,

counting how many characters use each pixel. In the image below, the red pixels are those

used by exactly half of the characters. The highlighted red pixel in the first heat map is used

only by characters 4, 7, a, b, c, d, e and f. The second heat map shows the accumulation of

those characters and again highlights a pixel that can be read to halve the search space.

The algorithm builds up a binary search tree that allows a set of 16 characters to be

recognised by reading only 4 unique pixels for each character.

Figure 32

Character heat maps for

13px Courier.

The first heat map shows

all 16 characters

combined. The red pixels

are those that are set by

exactly half of the

characters.

The last heat map shows a

pixel that can be used to

distinguish between

characters 7 and f.

In general a text from a character set of size N can be read by testing only log2 N pixels for

each character. For example a base 64 encoded token could be read by testing 6 pixels for

each character.

A proof of concept using this OCR data stealing technique was constructed that could read

around 1 hex character per second. Unlike the image reading technique where a few

incorrectly read pixels can still give a usable result, the OCR technique requires each pixel

read to be correct. If a single pixel is read incorrectly then the wrong path through the

binary tree will be taken, resulting in an incorrect character being read. This can be

prevented by taking several readings for each pixel, improving the accuracy of the read

text.

Context Information Security Research. Response. Assurance www.contextis.com 24 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Conclusion

This paper has demonstrated how a malicious website can use the timing of browser

graphics operations to steal sensitive user data. Fortunately for users, timing attacks that are

easily demonstrated in a controlled environment can prove tricky to implement reliably in

the wild. However, this does not mean that browser vendors should not fix these holes. The

basic techniques described in this paper will inevitably be improved upon to increase their

speed, reliability and real-world usefulness.

Browser vendors have a difficult task in finding and preventing timing vulnerabilities. Such

issues are not easy to identify from a code review perspective and may be found only

through testing and experimentation. Fixing these timing holes can also have an effect on

performance. Browser vendors are in a constant race to improve the speed of their

browsers. The asynchronous URL lookups and filter optimisations that make these timing

attacks possible were intended to increase browser performance. Fixing them could involve

a trade-off between privacy and performance.

Website owners can protect themselves from the pixel reading attacks described in this

paper by disallowing framing of their sites. This can be done by setting the following HTTP

header:

X-Frame-Options: Deny

Figure 33

Setting the X-Frame-

Options header to prevent

framing

This header is primarily intended to prevent clickjacking attacks, but it is effective at

mitigating any attack technique that involves a malicious site loading a victim site in an

iframe. Any website that allows users to log in, or handles sensitive data should have this

header set.

Firefox users who wish to protect themselves against the history sniffing attack can disable

visited link styling. This can be done by following these steps:

 Type ‘about:config’ in the location bar and press enter

 Find the ‘layout.css.visited_links_enabled’ setting using the search bar

 Double click the setting to toggle it to false

Users of all browsers can also reduce the risk of history sniffing attacks by regularly clearing

their history. This can be done by using the Ctrl-Shift-Del keyboard shortcut in Firefox, Chrome

and Internet Explorer.

Context Information Security Research. Response. Assurance www.contextis.com 25 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Security Bug Reports and Disclosure

Context has reported all of the security related findings detailed in this paper to the relevant

browser vendors. Our original SVG filter timing attack research was done against Firefox and

was reported to Mozilla in December 2011.

All the other findings in this paper were researched in 2013 and were reported to vendors in

June 2013.

Listed below are links to the bug reports for Chrome and Firefox. At the time of writing, these

links are not public, though it is expected that they will be opened shortly:

Firefox 22 updated the feMorphology filter to remove the timing differences described in this

paper. However, other filters may still be vulnerable.

SVG Filter Timing Attack:

 Firefox bug report: https://bugzilla.mozilla.org/show_bug.cgi?id=711043

 Mozilla advisory: http://www.mozilla.org/security/announce/2013/mfsa2013-55.html

 Chrome bug report: https://code.google.com/p/chromium/issues/detail?id=251711

Link Repainting Attack:

 Firefox bug report: https://bugzilla.mozilla.org/show_bug.cgi?id=884270

 Chrome bug report: https://code.google.com/p/chromium/issues/detail?id=252165

https://bugzilla.mozilla.org/show_bug.cgi?id=711043
http://www.mozilla.org/security/announce/2013/mfsa2013-55.html
https://code.google.com/p/chromium/issues/detail?id=251711
https://bugzilla.mozilla.org/show_bug.cgi?id=884270
https://code.google.com/p/chromium/issues/detail?id=252165

Context Information Security Research. Response. Assurance www.contextis.com 26 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

About Context

Context Information Security is an independent security consultancy specialising in both

technical security and information assurance services.

The company was founded in 1998. Its client base has grown steadily over the years, thanks

in large part to personal recommendations from existing clients who value us as business

partners. We believe our success is based on the value our clients place on our product-

agnostic, holistic approach; the way we work closely with them to develop a tailored

service; and to the independence, integrity and technical skills of our consultants.

The company’s client base now includes some of the most prestigious blue chip companies

in the world, as well as government organisations.

The best security experts need to bring a broad portfolio of skills to the job, so Context has

always sought to recruit staff with extensive business experience as well as technical

expertise. Our aim is to provide effective and practical solutions, advice and support: when

we report back to clients we always communicate our findings and recommendations in

plain terms at a business level as well as in the form of an in-depth technical report.

Context Information Security Research. Response. Assurance www.contextis.com 27 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Works Cited

[1] W3C, “Timing control for script-based animations,” 2012. [Online].

Available: http://www.w3.org/TR/animation-timing/.

[2] S. Emrys, “CSS Fingerprint: preliminary data,” 2010. [Online]. Available:

http://saizai.livejournal.com/960791.html.

[3] D. Jan, R. Jhala, S. Lerner and H. Shacham, “An empirical study of

privacy-violating information flows in JavaScript web applications,” in

17th ACM Conference on Computer and Communications Security,

2010.

[4] D. Baron, “Preventing attacks on a user's history through CSS :visited

selectors,” 2010. [Online]. Available: http://dbaron.org/mozilla/visited-

privacy.

[5] Z. Weinberg, E. Y. Chen, P. R. Jayaraman and C. Jackson, “I Still Know

What You Visited Last Summer,” in 2011 IEEE Symposium on Security and

Privacy, 2011.

[6] M. Zalewski, “Some harmless, old-fashioned fun with CSS,” 2013.

[Online]. Available: http://lcamtuf.blogspot.co.uk/2013/05/some-

harmless-old-fashioned-fun-with-css.html.

[7] Mozilla, “MozAfterPaint,” 2013. [Online]. Available:

https://developer.mozilla.org/en-

US/docs/Web/Reference/Events/MozAfterPaint.

[8] “Bug 600025 - CSS timing attack on global history still possible with

MozAfterPaint,” 2010. [Online]. Available:

https://bugzilla.mozilla.org/show_bug.cgi?id=600025.

[9] Mozilla, “Bug 608030 - Disable MozAfterPaint for content by default,”

2010. [Online]. Available:

https://bugzilla.mozilla.org/show_bug.cgi?id=608030.

[10] W3C, “Text Shadows,” [Online]. Available:

http://www.w3.org/Style/Examples/007/text-shadow.en.html.

[11] W3C, “CSS Transforms,” 2012. [Online]. Available:

http://www.w3.org/TR/css3-transforms/.

[12] W3C, “Filter Effects 1.0,” 2013. [Online]. Available:

Context Information Security Research. Response. Assurance www.contextis.com 28 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

http://www.w3.org/TR/2013/WD-filter-effects-20130523.

[13] W3C, “SVG Filter Effects Specification,” 2011. [Online]. Available:

http://www.w3.org/TR/SVG/filters.html.

[14] “SVG Wow!,” 2011. [Online]. Available: http://svg-wow.org/.

[15] Microsoft, “Hands On: SVG Filter Effects,” 2012. [Online]. Available:

http://ie.microsoft.com/testdrive/graphics/hands-on-css3/hands-

on_svg-filter-effects.htm.

[16] Context Information Security, “WebGL - A New Dimension for Browser

Exploitation,” 2011. [Online]. Available:

http://www.contextis.co.uk/research/blog/webgl-new-dimension-

browser-exploitation/.

[17] R. Kotche, Y. Pei and P. Jumde, “Stealing cross-origin pixels: Timing

attacks on CSS filters and shaders,” 2013. [Online]. Available:

http://www.robertkotcher.com/pdf/TimingAttacks.pdf.

[18] P. Rouget, “Firefox 4: Drawing arbitrary elements as backgrounds with -

moz-element,” 2010. [Online]. Available:

http://hacks.mozilla.org/2010/08/mozelement/.

[19] Mozilla, “Mozilla Developer Network - image-rendering,” [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/CSS/image-

rendering.

Context Information Security Research. Response. Assurance www.contextis.com 29 / 29

White paper / Pixel Perfect Timing Attacks with HTML5

Context Information Security

London

(HQ)

Cheltenham Düsseldorf Melbourne

4th Floor

30 Marsh Wall

London E14 9TP

United Kingdom

Corinth House

117 Bath Road

Cheltenham GL53 7LS

United Kingdom

1.OG

Adersstr. 28

40215 Düsseldorf

Germany

4th Floor

155 Queen Street

Melbourne VIC 3000

Australia

