
com.google.common.util.concurrent
The Guava Team

com.google.common.collect
com.google.common.util.concurrent
java.util.concurrent
Effective Java (concurrency is in chapter 10)
Java Concurrency in Practice

the l inked docs and books also have advice about Java concurrency (general princ iples, java.uti l.concurrent)
note: some slides refer to methods that have not yet been released (l isteningDecorator, Futures.allAsList/successfulAsList). We expect to release these in Guava 10 in July

http://code.google.com/p/guava-libraries/people/list
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/package-summary.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html
http://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683
http://www.amazon.com/Java-Concurrency-Practice-Brian-Goetz/dp/0321349601

collect

Immutable*
ConcurrentHashMultiset
Multimaps.synchronizedMultimap
MapMaker

before getting to uti l .concurrent, touch on our other packages
we keep concurrency in mind in our other packages

http://www.google.com/codesearch?q=com.google.common.collect.Immutable+package%3Ahttp%3A%2F%2Fguava-libraries\.googlecode\.com&origq=com.google.common.collect.Immutable&btnG=Search+Trunk
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/ConcurrentHashMultiset.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/Multimaps.html#synchronizedMultimap%28com.google.common.collect.Multimap%29
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/MapMaker.html

collect: Immutable*

whenever possible, for various reasons
use them. l inked doc has advantages as well as some tradeoffs
one of many reason to use them: thread safety
immutable in the thread-safe sense
many other c lasses without "Immutable" in the name are immutable (unlike JDK SimpleDateFormat): CharMatcher, Splitter

http://www.google.com/codesearch?q=com.google.common.collect.Immutable+package%3Ahttp%3A%2F%2Fguava-libraries\.googlecode\.com&origq=com.google.common.collect.Immutable&btnG=Search+Trunk
http://code.google.com/p/guava-libraries/wiki/TenThingsAboutImmutableCollections

collect: ConcurrentHashMultiset

Multiset<K> ≈ Map<K, Integer> with extra methods and
optional thread-safety
Map<String, Integer> map = newHashMap();
for (StatsProto proto : protos) {
 String host = proto.getHost();
 if (!map.containsKey(host)) {
 map.put(host, 1);
 } else {
 map.put(host, map.get(host) + 1);
 }
}

code counts number of times each host appears in a proto
map from element type to number of occurrences

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/ConcurrentHashMultiset.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/Multiset.html

collect: ConcurrentHashMultiset

Multiset<K> ≈ Map<K, Integer> with extra methods and
optional thread-safety
Multiset<String> multiset =
 HashMultiset.create();
for (StatsProto proto : protos) {
 multiset.add(proto.getHost());
}
NumericMap (someday)
prefer immutable

e.g., count number of queries to each shard
NumericMap to support long, double for, e.g., total nanoseconds spent in an operation
sometimes need modifiabil i ty, e.g., stats (probably from different threads, therefore concurrency)

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/ConcurrentHashMultiset.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/Multiset.html

collect:
Multimaps.synchronizedMultimap

Multimap<K, V> ≈ Map<K, Collection<V>> with extra
methods and optional thread-safety
Map<String, List<StatsProto>> map =
 newHashMap();
for (StatsProto proto : protos) {
 String host = proto.getHost();
 if (!map.containsKey(host)) {
 map.put(host,
 new ArrayList<StatsProto>());
 }
 map.get(host).add(proto);
}

code indexes protos by host

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/Multimaps.html#synchronizedMultimap%28com.google.common.collect.Multimap%29
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/Multimap.html

collect:
Multimaps.synchronizedMultimap

Multimap<K, V> ≈ Map<K, Collection<V>> with extra
methods and optional thread-safety
Multimap<String, StatsProto> multimap =
 ArrayListMultimap.create();
for (StatsProto proto : protos) {
 multimap.put(proto.getHost(), proto);
}
synchronized performs better than our internal wait-free
equivalent
prefer immutable

this particular code could use Multimaps.index()
synchronization especially painful with "check then act" necessary for the first item (multiset and multimap both)

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/Multimaps.html#synchronizedMultimap%28com.google.common.collect.Multimap%29
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/Multimap.html

collect: MapMaker

slides to come in a few months
build concurrent maps and caches

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/MapMaker.html

collect: MapMaker

slides to come in a few months

private final ConcurrentMap<String, Feed> feedCache =
 new MapMaker()
 .expireAfterWrite(2, MINUTES)
 .maximumSize(100),
 .makeMap();
on-demand computation with computing maps. with a "normal" cache, you must look in the cache, perform the operation, and insert the result into cache. computing map hides cache management: register a

computing Function, then just call feedCache.get

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/MapMaker.html

collect: MapMaker: features

concurrent requests to a computing map share the same
computation (TODO: sharing without caching)
prefer Multiset / Multimap / Table

share computation an advantage over manual cache management: request LDAP groups for user jsmith concurrently in two threads: only one call is made. Of course, results are cached. Someday MapMaker wil l
al low you to turn off caching so that serves only to combine in-fl ight queries

we see people using MapMaker.makeComputingMap() to create a Map<K, Collection<V>>, Map<K, Integer> etc. don't forget Multiset / Multimap / Table, which offer nicer interfaces
(Table is a two-keyed Map)

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/MapMaker.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/MapMaker.html#makeComputingMap%28com.google.common.base.Function%29
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/collect/Table.html

util.concurrent

Future basics
ListenableFuture
Futures
more about Future
Service
Executor

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/ListenableFuture.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Service.html

Future basics

"A handle to an in-progress computation."

"A promise from a service to supply us with a result."
different phrasings of the same thing

Future basics

Map<LocalDate, Long> pastSales =
 archiveService.readSales();
Map<LocalDate, Long> projectedSales =
 projectionService.projectSales();

return buildChart(pastSales, projectedSales);

▇▇▇▇▇▇▇▇
▇▇▇▇▇▇▇▇▇▇

we tell a network thread to make a request, and then we block. the network thread sends the request to a server. the server responds to a network thread, and the network thread unblocks us
repeat
~5s each; done in ~10s
our thread is doing nothing; it handed off work to another thread/machine
there's no reason not to overlap the two do-nothing periods, but this code can't

Future basics
inparallel {
 Map<LocalDate, Long> pastSales =
 archiveService.readSales();
 Map<LocalDate, Long> projectedSales =
 projectionService.projectSales();
}
return buildChart(pastSales, projectedSales);

▇▇▇▇▇▇▇▇
▇▇▇▇▇▇▇▇▇▇

a possible solution is to modify the language to support an inparallel keyword
instead of waiting for the sum of the two operations' durations, we now wait for the max

Future basics

Future<Map<LocalDate, Long>> pastSales =
 archiveService.readSales();
Future<Map<LocalDate, Long>> projectedSales =
 projectionService.projectSales();

return buildChart(pastSales.get(), projectedSales.get());

▇▇▇▇▇▇▇▇
▇▇▇▇▇▇▇▇▇▇

in Java, there's no inparallel, but we can change our methods to return a Future
this allows us to split the operation into "make request" and "wait for results" phases
the method calls now make queries but don't wait for their results; when we're done with all our other work, we call get(), which does wait

util.concurrent: ListenableFuture

What
Why
When
How

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/ListenableFuture.html

util.concurrent: ListenableFuture:
the what

Future with one new method:
addListener(Runnable, Executor)
when the future is done (success, exception, cancellation), the
listener runs

i f the Future is already done at the time of the addListener call, the l istener is invoked when it's added. in short, i f you call addListener, your l istener wil l run as long as future doesn't run forever
ListenableFuture implementation responsible for automatically invoking when finished
works l ike FutureTask.done, if you're familiar with that
executor doesn't even see l istener unti l future is done, so (1) there is no overhead or wasted threads and (2) the l istener can call get() and know it won't wait
before, we blocked to get the result of a future; now we can set a callback
why would we want to do that? see next slides

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/ListenableFuture.html

util.concurrent: ListenableFuture:
the why: callbacks
service.process(request).addListener(new Runnable() {
 public void run() {
 try {
 Result result = Futures.makeUninterruptible(future).get();
 // do something with success |result|
 } catch (ExecutionException ee) {
 // do something with failure |ee.getCause()|
 } catch (RuntimeException e) {
 // just to be safe
 }
 }
}, executor);
ListenableFuture is a single, common interface for both callbacks and futures
but Runnable isn't the ideal callback interface
boilerplate: process+addListener, makeUninterruptible, two exceptions, unwrap in one case
(yes, some people throw RuntimeException from future.get(), even though perhaps they shouldn't, and if your system is callback based, you'd better catch it)

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/ListenableFuture.html

util.concurrent: ListenableFuture:
the why: callbacks
service.process(new AsyncCallback<Result>() {
 public void success(Result result) {
 // do something with success |result|
 }
 public void failure(Exception e) {
 // do something with failure |e|
 }
}, executor);

We may one day provide an adapter to support this use.
compare to GWT callback interface
not The One Thing that ListenableFuture is good for

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/ListenableFuture.html

util.concurrent: ListenableFuture:
the why: "aspects"
future.addListener(new Runnable() {
 public void run() {
 processedCount.incrementAndGet();
 inFlight.remove(name);
 lastProcessed.set(name);
 LOGGER.infofmt("Done with %s", name);
 }
}, executorService);
"aspects" in the sense of aspect-oriented programming, code that runs automatically every time we do something without inserting that code into the main implementation
traditional example is that you have an RPC interface and want to log every call. you could reimplement the interface yourself such that every method does two things, log and delegate. or you could use guice or

some other interceptor interface to implement one method to be automatically invoked whenever a call is made
here you're not the one who is using the output of the future (or at least you're not the primary consumer); someone else wil l call get() on it later to access the result
This can work, but it's not the most popular use of ListenableFuture, either.

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/ListenableFuture.html

util.concurrent: ListenableFuture:
the why: building blocks

Given several input futures, produce a future that returns the
value of the first to complete successfully.
Offload postprocessing to another thread.

the kil ler app: "To serve as a foundation for higher-level abstractions"
these tasks are examples of things you can't do with a plain Future (or can't do effic iently)
digression: "first to complete succesfully" is what ExecutorCompletionService does for Futures created by submission to an executor; that c lass insert callbacks in the same place as ListenableFuture
in the postprocessing example, we want to start postprocessing immediately, so we don't want to kick off multiple operations, wait for all of them to finish, kick off multiple postprocessings, wait for all of them to finish,

etc. We want postprocessing to start automatically when a task completes
we'l l look at a few libraries that use ListenableFuture later
so ListenableFuture is OK for some things, good for others. when to use...?

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/ListenableFuture.html

util.concurrent: ListenableFuture:
the when
Always.

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/ListenableFuture.html

util.concurrent: ListenableFuture:
the when
Always.

(+) Most Futures methods require it.
(+) It's easier than changing to ListenableFuture later.
(+) Providers of utility methods won't need to provide Future and
ListenableFuture variants of their methods.
(−) "ListenableFuture" is lengthier than "Future."
(−) Classes like ExecutorService give you a plain Future by
default.

cost of creating and passing around ListenableFuture is small
you might need it now, or you (or a caller) might need it later

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/ListenableFuture.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html

util.concurrent: ListenableFuture:
the how
Create ListenableFuture instead of plain Future:

ExecutorService.submit(Callable) ➜
Call MoreExecutors.listeningDecorator on your
executor.

MyFutureTask.set(V) ➜
Use SettableFuture.

you need to decide that you want a ListenableFuture at *creation* time
we used to have method called blockAThreadInAGlobalThreadPoolForTheDurationOfTheTask to adapt to ListenableFuture. no, that's not really what it was called (really "makeListenable"), but that's how it worked
this is necessarily how any after-the-fact Future->ListenableFuture converter must work, as someone needs to invoke the l isteners. by creating a l istener-aware future from the beginning, you're letting the thread that

sets the future's value do that
makeListenable was a pain when it appeared in tests: it's much easier if you can guarantee that l istener runs right away, not when background blocking thread notices
Most futures ultimately work in one of two ways / two "kinds" of futures (executor submission and manual set()); we have uti l i ties to create both
listeningDecorator to automatically make all submissions return ListenableFuture
if you are already using your own FutureTask subclass, subclass ListenableFutureTask instead
or use AbstractListenableFuture - *not* AbstractFuture

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/ListenableFuture.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/MoreExecutors.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/SettableFuture.html

util.concurrent: Futures

transform
chain
allAsList / successfulAsList
others that I won't cover here

I said I'd give some examples of methods operating on futures; here they are

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html#transform%28java.util.concurrent.Future, com.google.common.base.Function%29
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html#chain(com.google.common.util.concurrent.ListenableFuture, com.google.common.base.Function)
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html#allAsList(java.lang.Iterable)
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html#successfulAsList(java.lang.Iterable)

util.concurrent: Futures:
transform
Future<QueryResult> queryFuture = ...;
Function<QueryResult, List<Row>> rowsFunction =
 new Function<QueryResult, List<Row>>() {
 public List<Row> apply(QueryResult queryResult) {
 return queryResult.getRows();
 }
 };
Future<List<Row>> rowsFuture =
 transform(queryFuture, rowsFunction);
trivial postprocessing that won't fail: e.g., proto to java object
the output value is the output of the Function, or an exception if the original future failed

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html#transform%28java.util.concurrent.Future, com.google.common.base.Function%29

util.concurrent: Futures: chain
ListenableFuture<RowKey> rowKeyFuture =
 indexService.lookUp(query);
Function<RowKey, ListenableFuture<QueryResult>> queryFunction =
 new Function<RowKey, ListenableFuture<QueryResult>>() {
 public ListenableFuture<QueryResult> apply(RowKey rowKey) {
 return dataService.read(rowKey);
 }
 };
ListenableFuture<QueryResult> queryFuture =
 chain(rowKeyFuture, queryFunction);
chain() is transform() on steroids: the transformation can fail with a checked exception, and it can be performed asynchronously
heavy, multi-stage queries, l ike an index lookup + data lookup
the work done during the original l istenablefuture is the first step; the function derives the second step from the result of the first
the output value is the output of the Future returned by the Function, or an exception if the original future failed
you could perform the stages in series yourself, but you might want multiple such chains of execution to occur in parallel, so you need to keep everything in terms of Future

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html#chain(com.google.common.util.concurrent.ListenableFuture, com.google.common.base.Function)

util.concurrent: Futures:
allAsList / successfulAsList

List<Future> ➜ Future<List>
Difference is exception policy:
allAsList

fails if any input fails
successfulAsList

succeeds, with null in place of failures

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html#allAsList(java.lang.Iterable)
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html#successfulAsList(java.lang.Iterable)

util.concurrent: He's still talking about
Future
Don't implement it yourself.

Avoid:
deadlocks
data races
get() that returns different values at different times
get() that throws RuntimeException
extra calls to listeners
conflating two kinds of cancellation

Remember: MoreExecutors.listeningDecorator,
SettableFuture.

I couldn't write a correct Future implementation from scratch without a lot of research. even if I did, it would be slow
you might think it would be hard to write a future that returns different values at different times, but I edited some code that had this behavior and didn't notice that it worked that way unti l I ran the tests after my

change and found that they failed
RuntimeException breaks callbacks that call get() and don't check for it
Future cancellation is a talk unto itself; i t's probably not a big deal if your cancel() implementation is broken, but why not get it right for free?
also occasionally useful are AbstractListenableFuture and ListenableFutureTask

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/MoreExecutors.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/SettableFuture.html

util.concurrent: He's still talking about
Future
Don't even mock it (usually).

Don't Mock Data Objects (aka Value Objects).
"Data object?" Future is more Queue than List or proto.
Contrast to service objects:

Fragile:
accessed by get (timed or untimed), addListener, or
isDone
vs. a service object with only one method per operation
(usually)

Lightweight:
immediateFuture(userData)
vs. a test Bigtable with the user data

examples: a protocol buffer is a value object; an rpc stub is a service object
is Future, with all i ts behavior, really a data object? more or less
think of it l ike Queue, which is a concurrent collection but sti l l a collection. even List has behavior. only some data c lasses have none whatsoever
mocking Future: you don't want to, and you don't need to
fragil i ty: state is accessed by multiple methods: multiple get()s, or peek()/poll()/.... a change in implementation of chain() to access that state in different ways could break your mocks
by contrast, while service objects certainly *can* have multiple methods that do the same thing (e.g., sync and async RPC variants), this occurs less often
"immediateFuture: it's easier than setting up a Bigtable test cell"

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Futures.html#immediateFuture%28V%29

util.concurrent: Executor
MoreExecutors.sameThreadExecutor

for quick tasks that can run inline
MoreExecutors.getExitingExecutorService

for "half-daemon" threads
UncaughtExceptionHandlers.systemExit

for exiting after unexpected errors
ThreadFactoryBuilder

new ThreadFactoryBuilder()
 .setDaemon(true)
 .setNameFormat("WebRequestHandler-%d")
 .build();

plus others I won't cover here
use sameThreadExecutor only when you l iterally don't care which thread runs the task; think of it as "anyThreadExecutor"
don't get cute, e.g. "my future's value comes from a task in thread pool X, so if I use sameThreadExecutor, my l istener wil l run in that thread pool." that's *usually* true, but if your addListener call occurs *after* the

future completes, now your l istener is running in the thread that invoked addListener instead
don't let me scare you away from sameThreadExecutor entirely, but reserve it for fast tasks only
"half-daemon" solves the following problem with important background tasks: if your threads are non-daemon, the process can't exit automatically; if they're daemon, the process wil l exit without waiting for them to

finish
getExitingExecutorService threads keep the VM alive only as long as they are doing something
one configuration option you have when setting up a thread pool is what to do with unhandled exceptions. by default, they're printed to stderr (not your logs), and the thread (not the process) dies, which might be

bad if thread is important; maybe you don't know what it was in the middle of
another option in setting up thread pool is to set other properties of individual threads; to help, we provide ThreadFactoryBuilder

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/MoreExecutors.html#sameThreadExecutor()
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/MoreExecutors.html#getExitingExecutorService(java.util.concurrent.ThreadPoolExecutor)
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/UncaughtExceptionHandlers.html#systemExit%28%29
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/ThreadFactoryBuilder.html

util.concurrent: Service

definition
lifecycle
implementation

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Service.html

util.concurrent: Service: definition

"An object with an operational state, plus asynchronous start()
and stop() lifecycle methods to transfer into and out of this
state."
web servers, RPC servers, monitoring initialization, ...

anything you might start when starting your process and maybe take down at the end
the value of the interface is the common API for us to adapt all our services to, hiding threading, etc.; the implementation could change how it uses threads without affecting users
this frees users from thinking about these details
and it allows users to build l ibraries that can run atop any generic Service
this puts the burden of handling threading on the Service implementer, but we simplify things for them with helper c lasses. More on that in a minute

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Service.html

util.concurrent: Service: lifecycle

States:
NEW ➜
STARTING ➜
RUNNING ➜
STOPPING ➜
TERMINATED

Note the lack of restart - it's a one way street. It's because our Service actually models a 'service invocation'.
you can trigger start/stop and optionally wait for them to complete with... a ListenableFuture

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Service.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Service.State.html#NEW
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Service.State.html#STARTING
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Service.State.html#RUNNING
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Service.State.html#STOPPING
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Service.State.html#TERMINATED

util.concurrent: Service:
implementation

AbstractExecutionThreadService
AbstractIdleService
AbstractService

choose an implementation based on how your service does its threading: single-threaded, multi-threaded, and arbitrari ly threaded, respectively
I'l l show a sample implementation using each

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Service.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/AbstractExecutionThreadService.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/AbstractIdleService.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/AbstractService.html

util.concurrent: Service:
AbstractExecutionThreadService
protected void startUp() {
 dispatcher.listenForConnections(port, queue);
}
protected void run() {
 Connection connection;
 while ((connection = queue.take() != POISON)) {
 process(connection);
 }
}
protected void triggerShutdown() {
 dispatcher.stopListeningForConnections(queue);
 queue.put(POISON);
}
start() calls your startUp() method, creates a thread for you, and invokes run() in that thread. stop() calls triggerShutdown() and waits for the thread to die

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Service.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/AbstractExecutionThreadService.html

util.concurrent: Service:
AbstractIdleService
protected void startUp() {
 servlets.add(new GcStatsServlet());
}
protected void shutDown() {}
for when you need a thread only during startup and shutdown (here, any queries to the GcStatsServlet already have a request thread to run in)

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Service.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/AbstractIdleService.html

protected void doStart() {
 new Thread("webserver") {
 public void run() {
 try {
 notifyStarted();
 webserver.run();
 } catch (Exception e) {
 notifyFailed(e);
 }
 }
 }.start();
}

protected void doStop() {
 new Thread("stop webserver") {
 public void run() {
 try {
 webserver.blockingShutdown();
 notifyStopped();
 } catch (Exception e) {
 notifyFailed(e);
 }
 }
 }.start();
}

util.concurrent: Service:
AbstractService

for services that require full, manual thread management
here, we need manual thread management because our webserver doesn't have an asynchronous stopAndNotifyCallback method. stop() isn't allow to block, so our doStop() kicks off its own thread
if not for that, we could use AbstractExecutionThreadService, with the contents of doStart() moved to run()
the lack of an asynchronous shutdown method is exactly the kind of annoyance that Service exists to paper over

http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/Service.html
http://guava-libraries.googlecode.com/svn/trunk/javadoc/com/google/common/util/concurrent/AbstractService.html

Questions?

Bugs
Usage (use the tag guava)
Discussion

http://code.google.com/p/guava-libraries/issues/list
http://stackoverflow.com/questions/ask
http://stackoverflow.com/questions/tagged/guava
http://groups.google.com/group/guava-discuss

	com.google.common.util.concurrent
	collect
	collect: Immutable*
	collect: ConcurrentHashMultiset
	collect: ConcurrentHashMultiset
	collect: Multimaps.synchronizedMultimap
	collect: Multimaps.synchronizedMultimap
	collect: MapMaker
	collect: MapMaker
	collect: MapMaker: features
	util.concurrent
	Future basics
	Future basics
	Future basics
	Future basics
	util.concurrent: ListenableFuture
	util.concurrent: ListenableFuture: the what
	util.concurrent: ListenableFuture: the why: callbacks
	util.concurrent: ListenableFuture: the why: callbacks
	util.concurrent: ListenableFuture: the why: "aspects"
	util.concurrent: ListenableFuture: the why: building blocks
	util.concurrent: ListenableFuture: the when
	util.concurrent: ListenableFuture: the when
	util.concurrent: ListenableFuture: the how
	util.concurrent: Futures
	util.concurrent: Futures: transform
	util.concurrent: Futures: chain
	util.concurrent: Futures: allAsList / successfulAsList
	util.concurrent: He's still talking about Future
	util.concurrent: He's still talking about Future
	util.concurrent: Executor
	util.concurrent: Service
	util.concurrent: Service: definition
	util.concurrent: Service: lifecycle
	util.concurrent: Service: implementation
	util.concurrent: Service: AbstractExecutionThreadService
	util.concurrent: Service: AbstractIdleService
	util.concurrent: Service: AbstractService
	Questions?

