
Google Confidential and Proprietary

Java Caching with Guava
Charles Fry (fry@google.com)

Google Confidential and Proprietary

Introduction
● The Guava project is an open-source release of

Google's core Java libraries
○ Stuff like collections, primitives support, concurrency

libraries, string processing, & cetera
○ These are the libraries that other projects are built

on
● The package com.google.common.cache contains

our caching libraries
○ Simple, in-memory caching
○ Thread-safe implementation (internally similar to

ConcurrentHashMap)
○ No explicit support for distributed caching

Google Confidential and Proprietary

Types of Caches
● We provide two types of caches

○ LoadingCache: knows how to load entries when a
cache miss occurs
■ LoadingCache.get(key) returns the value

associated with key, loading it first if necessary
○ Cache: does not automatically load entries

● We're going to focus on the loading case here; it's
usually what you want

Google Confidential and Proprietary

Simple Loading Cache
CacheLoader<String, String> loader =
 new CacheLoader<String, String>() {
 public String load(String key) {
 return key.toUpperCase();
 }
 };

LoadingCache<String, String> cache =
 CacheBuilder.newBuilder()
 .build(loader);

Google Confidential and Proprietary

Simple Loading Cache
cache.size(); // returns 0

cache.getUnchecked("simple test");
// cache miss, invokes CacheLoader
// returns "SIMPLE TEST"

cache.size(); // returns 1

cache.getUnchecked("simple test");
// cache hit
// returns "SIMPLE TEST"

Google Confidential and Proprietary

Concurrency
● Cache instances are internally implemented very similar

to ConcurrentHashMap
○ And are thus thread-safe

● But what happens if multiple threads simultaneously
request the same key?

● CacheLoader.load will be invoked a single time for
each key, regardless of the number of requesting
threads
○ The result will be returned to all requesting threads

and inserted into the cache using the equivalent of
putIfAbsent

Google Confidential and Proprietary

Checked Exceptions
● What if loading causes a checked exception?

CacheLoader<String, String> checkedLoader =
 new CacheLoader<String, String>() {
 public String load(String key)
 throws IOException {
 return loadFromDisk(key);
 }
 };

Google Confidential and Proprietary

Checked Exceptions
LoadingCache<String, String> cache =
 CacheBuilder.newBuilder()
 .build(checkedLoader);

try {
 cache.get(key);
} catch (ExecutionException e) {
 // ensure stack trace is for this thread
 throw new IOException(e.getCause());
}

Google Confidential and Proprietary

Weak Keys
● What if the cache keys are transient objects (e.g.

requests), which don't belong in the cache if there are
no other references elsewhere?

LoadingCache<Request, Metadata> cache =
 CacheBuilder.newBuilder()
 .weakKeys()
 .build(loader);

● Allow the garbage collector to immediately collect cache

keys when other references are gone
● Causes key equality to be determined using ==
● Cost: 3 new references, adding 16 bytes per entry

Google Confidential and Proprietary

Eviction
● So far the caches we've shown you will grow without

bound
● CacheBuilder can automatically evict elements based

on various criteria

Google Confidential and Proprietary

Eviction: Maximum Size
LoadingCache<String, String> cache =
 CacheBuilder.newBuilder()
 .maximumSize(200)
 .build(loader);

● Elements will be evicted in approximate LRU order
● Costs:

○ Every access now becomes a lightweight write (to
record access order)

○ Evictions occur on write operations
○ 2 new references, in a doubly-linked access queue,

adding 16 bytes per entry

Google Confidential and Proprietary

Eviction: Maximum Weight
Weigher<String, String> weighByLength =
 new Weigher<String, String>() {
 public int weigh(
 String key, String value) {
 return value.length();
 }
 };
LoadingCache<String, String> cache =
 CacheBuilder.newBuilder()
 .maximumWeight(2000)
 .weigher(weighByLength)
 .build(loader);

Google Confidential and Proprietary

● Eviction order is the same as maximumSize
○ In fact they share the same data structure (and cost)
○ However more than one entry may be evicted at a

time (making room for a single large entry)
● Weight is only measured once, when an entry is added

to the cache
● Weight is only used to determine whether the cache is

over capacity; not for selecting what to evict

Eviction: Maximum Weight

Google Confidential and Proprietary

Cache Stats
● With an automatic eviction policy in play, one starts to

wonder about cache performance
○ What ratio of requests are served directly from

cache?
○ How much time is spent loading entries?

● These and other questions can be answered with:

LoadingCache<String, String> cache =
 CacheBuilder.newBuilder()
 .recordStats()
 .build(loader);
// cumulative stats since cache creation
CacheStats stats = cache.stats();

Google Confidential and Proprietary

Cache Stats
CacheStats stats = cache.stats();
stats.hitRate();
stats.missRate();
stats.loadExceptionRate();
stats.averageLoadPenalty();

CacheStats delta = cache.stats()
 .minus(stats);
delta.hitCount();
delta.missCount();
delta.loadSuccessCount();
delta.loadExceptionCount();
delta.totalLoadTime();

Google Confidential and Proprietary

Eviction: Time to Idle
LoadingCache<String, String> cache =
 CacheBuilder.newBuilder()
 .expireAfterAccess(2, TimeUnit.MINUTES)
 .build(loader);

● Elements will expire after the specified time has elapsed

since the most recent access
● Eviction order is the same as maximumSize

○ They share the same data structure (and cost)
○ However cache size will be dynamic instead of static
○ Evictions performed on read or write operations

● Cost: 2 new references, in a doubly-linked write queue,
adding 16 bytes per entry

● Tests can advance time with CacheBuilder.ticker

Google Confidential and Proprietary

Eviction: Time to Live
LoadingCache<String, String> cache =
 CacheBuilder.newBuilder()
 .expireAfterWrite(2, TimeUnit.MINUTES)
 .build(loader);

● Elements will expire after the specified time has elapsed

since the entry's creation or update
● Useful for dropping stale data from the cache

○ Unlike other expiration strategies this is more about
data correctness than resource conservation

● Cost: 2 new references, in a doubly-linked write queue,
adding 16 bytes per entry

Google Confidential and Proprietary

Eviction: Soft Values
LoadingCache<String, String> cache =
 CacheBuilder.newBuilder()
 .softValues()
 .build(loader);

● Allow the garbage collector to collect cached values

○ VMs "bias against clearing recently-created or
recently-used soft references"

○ But in practice "SoftReferences will always be kept
for at least one GC after their last access"

● Cost: 4 new references, adding 16 bytes per entry
● Performance: O(?), large production systems can be

very adversely affected by many soft references
○ Consider maximumSize instead (or also)

Google Confidential and Proprietary

Cache Configuration
● CacheStats give insight into cache performance, and

open the door for optimizing the cache configuration
● Cache configuration parameters can be changed

without recompiling code with CacheBuilderSpec

// from command-line flag or config file
String spec =
 "maximumSize=200,expireAfterWrite=2m";
LoadingCache<String, String> cache =
 CacheBuilder.from(spec)
 .build(loader);

Google Confidential and Proprietary

Removal Notifications
● Sometimes cached entries are associated with

resources which need to be closed or cleaned up
● Removal notifications can be sent for each entry which

is removed from the cache, containing the removed key
and value (if available) and the cause of removal

LoadingCache<String, String> cache =
 CacheBuilder.newBuilder()
 .maximumSize(200)
 .removalListener(listener)
 .build(loader);

Google Confidential and Proprietary

Removal Notifications
RemovalListener<String, String> listener =
 new RemovalListener<String, String>() {
 public void onRemoval(
 RemovalNotification<String, String> n) {
 if (n.wasEvicted()) {
 cleanupEntry(n.getKey(), n.getValue());
 }
 }
 };

Google Confidential and Proprietary

Removal Notifications
● Removal notifications include a RemovalCause, though

it is generally sufficient to check wasEvicted()
● Removal listeners are called synchronously during user

operations
○ Consider implementing RemovalListener

asynchronously (or wrapping with
RemovalListeners.asynchronous)

● Removal listeners shouldn't blindly re-insert removed
elements back into the cache

Google Confidential and Proprietary

Refreshing Stale Entries
● We've already seen how expireAfterWrite can

remove stale entries
● In cases where stale data should be served while fresh

data is being loaded, the method LoadingCache.
refresh(K) can be used to request a reload
○ Reload will be performed by calling CacheLoader.

reload(K, V), which can be implemented
asynchronously

○ Reload can take the old cached value into
consideration for higher efficiency

○ The stale value will continue to be returned until
reload completes

Google Confidential and Proprietary

Automatic Refresh
● Alternatively, stale entries can be automatically

refreshed

LoadingCache<String, String> cache =
 CacheBuilder.newBuilder()
 .refreshAfterWrite(2, TimeUnit.MINUTES)
 .build(loader);

● We call LoadingCache.refresh for you the first time

get is called after the timeout
● Inactive entries will not be proactively refreshed

○ Couple with expireAfterWrite to purge these

Google Confidential and Proprietary

Automatic Refresh
● Benefits of automatic refresh over expiration for dealing

with stale data:
○ Reload can be optimized based on the previous

cached value
○ The stale value will continue to be served during

reload (rather than blocking other threads)
○ Reload can be implemented asynchronously,

decreasing cache latency

Google Confidential and Proprietary

Asynchronous Refresh
● Avoid blocking any user threads by providing an

asynchronous CacheLoader.reload implementation

public ListenableFuture<String> reload(
 final String key, final String oldValue) {
 ListenableFutureTask<String> task =
 ListenableFutureTask.create(
 new Callable<String>() {
 public String call() {
 return load(key);
 }
 });
 executor.execute(task);
 return task;
}

http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m%20Feeling%20Lucky

Google Confidential and Proprietary

Bulk Operations
● Sometimes it's more efficient for a CacheLoader to

load a set of entries simultaneously rather than one at a
time

● This can be accomplished by overriding
CacheLoader.loadAll, and then querying through
LoadingCache.getAll

● Unlike LoadingCache.get, getAll does not block
multiple requests for the same key
○ Doing so would dramatically increase its cost, as

keys may be spread over multiple segments

Google Confidential and Proprietary

Manual Cache Writes
● So far the only way a value can ever get into the cache

is if it comes from the CacheLoader you specified
when creating the cache
○ Which encourages consistent cache content

● But we also support manual writes to the cache
● And reads from the cache which don't load missing

values

String v = cache.getIfPresent("one");
// returns null
cache.put("one", "1");
v = cache.getIfPresent("one");
// returns "1"

Google Confidential and Proprietary

Get or Compute
● Alternatively a new value can be loaded from a

Callable on cache misses

String v = cache.get(key,
 new Callable<String>() {
 public String call() {
 return key.toLowerCase();
 }
 });

● Concurrent requests for the same absent key will result

in a single computation which will be returned to all
threads

Google Confidential and Proprietary

Non-Loading Caches
● In fact, you don't even need a CacheLoader at all

○ We still recommend them for consistency
○ But sometimes it's impractical to define a

CacheLoader at cache-creation time
● If you call CacheBuilder.build() (without

specifying a CacheLoader) you get back a non-loading
Cache
○ Which implements put, getIfPresent, and get

(K, Callable)
○ In fact, LoadingCache extends Cache, which

contains all of the non-loading methods

Google Confidential and Proprietary

Disable Caching
● Sometimes it's necessary to simply turn off caching
● The canonical way to do this is using maximumSize

(0)
○ Can be done without recompiling using

CacheBuilderSpec
○ Concurrent lookups of the same key will still result in

a single load request, but the result will be evicted
immediately

Google Confidential and Proprietary

Map View
● You can view the entries stored inside the cache as a

map using Cache.asMap()
● Notice: LoadingCache.get(K) and Map.get

(Object) have similar-looking signatures, but
remember that they are very different
○ Map.get is really a "get if present" method,

analogous to Cache.getIfPresent
● This can be convenient for iterating over cache content
● All ConcurrentMap write operations are implemented

○ However the canonical way to write to a cache is still
with a CacheLoader or a Callable

Google Confidential and Proprietary

Future Work
● AsyncLoadingCache, where get(K) returns

Future<V>
● CacheBuilder.withBackingCache(Cache) to

facilitate cache layering (L1 + L2 cache)
● Many performance optimizations, including migrating

internals to new ConcurrentHashMap

Google Confidential and Proprietary

FIN

Google Confidential and Proprietary

Why not Map?
● Map.get causes a type-safety hole
● Map.get is a read operation and users don't expect it to

also write
● Map.equals is not symmetric on a self-populating Map
● No way to lookup without causing computation
● Either pending computations can be overwritten by

explicit writes or writes must block on pending
computations

● Interface fails to convey the intent (caching!)

