
Guava
Google's Core Libraries for Java

Kevin Bourrillion, Google Inc.
as presented at Netflix 2010-04-26

Overview

Guava: Google's core Java libraries for Java 5+.

This presentation: broad overview, partial highlight reel, and
lots of questions?

Presenter (me):
At Google >5 years
Lead engineer, Java core libraries >3 years

Overview

Guava: Google's core Java libraries for Java 5+.

This presentation: broad overview, partial highlight reel, and
lots of questions?

Presenter (me):
At Google >5 years
Lead engineer, Java core libraries >3 years
Devoted Netflix subscriber >9 years!

your company changed my life
I OWE YOU GUYS

Overview (of library)

http://guava-libraries.googlecode.com

Apache 2 license (very permissive).
Frequent releases ("r03" a few weeks ago, "r04" this week).

Under com.google.common:
base, collect, io, net*, primitives, util.concurrent

Er, what about the "Google Collections Library?"
(most of collect, some of base)

We want you to use Guava!

"I could just write that myself." But...

These things are much easier to mess up than it seems
With a library, other people will make your code faster for
you
When you use a popular library, your code is in the
mainstream
When you find an improvement to your private library, how
many people did you help?

Well argued in Effective Java 2e, Item 47.

1. com.google.common.base

"The corest of the core."

"java.langy" stuff.

The Objects class

public class Person {
 final String name, nickname;
 final Movie favMovie;

 @Override public boolean equals(Object object) {
 if (object instanceof Person) {
 Person that = (Person) object;
 return Objects.equal(this.name, that.name)
 && Objects.equal(this.nickname, that.nickname)
 && Objects.equal(this.favMovie, that.favMovie);
 }
 return false;
 }

 @Override public int hashCode() {
 return Objects.hashCode(name, nickname, favMovie);
 }

Objects example cont.

public class Person {
 final String name, nickname;
 final Movie favMovie;
 // ...

 @Override public String toString() {
 return Objects.toStringHelper(this)
 .add("name", name)
 .add("nickname", nickname)
 .add("favMovie", favMovie)
 .toString();
 }

 public String preferredName() {
 return Objects.firstNonNull(nickname, name);
 }
}

Preconditions

Our class com.google.common.base.Preconditions supports
defensive coding. You can choose either

 if (state != State.PLAYABLE) {
 throw new IllegalStateException(
 "Can't play movie; state is " + state);
 }

. . . or . . .

 Preconditions.checkState(state == State.PLAYABLE,
 "Can't play movie; state is %s", state);

(what's the difference? none!)

Preconditions (2)

Or compare . . .

 public void setRating(StarRating rating) {
 if (rating == null) {
 throw new NullPointerException();
 }
 this.rating = rating;
 }

. . . with (using static import) . . .

 public void setRating(StarRating rating) {
 this.rating = checkNotNull(rating);
 }

CharMatcher

We once had a StringUtil class. It grew large:
allAscii, collapse, collapseControlChars, collapseWhitespace, indexOfChars,
lastIndexNotOf, numSharedChars, removeChars, removeCrLf, replaceChars,
retainAllChars, strip, stripAndCollapse, stripNonDigits, ...

These represent a partial cross product of two notions:
 (a) what's a "matching" character?
 (b) what to do with those matching characters?

This approach could not scale, so we created CharMatcher.

An instance of this type represents part (a), and the operation
you invoke on it represents part (b).

Getting a CharMatcher

Use a predefined constant (examples)
CharMatcher.WHITESPACE (tracks Unicode defn.)
CharMatcher.JAVA_DIGIT
CharMatcher.ASCII
CharMatcher.ANY

Getting a CharMatcher

Use a predefined constant (examples)
CharMatcher.WHITESPACE (tracks Unicode defn.)
CharMatcher.JAVA_DIGIT
CharMatcher.ASCII
CharMatcher.ANY

Use a factory method (examples)
CharMatcher.is('x')
CharMatcher.isNot('_')
CharMatcher.oneOf("aeiou").negate()
CharMatcher.inRange('a', 'z').or(inRange('A', 'Z'))

Getting a CharMatcher

Use a predefined constant (examples)
CharMatcher.WHITESPACE (tracks Unicode defn.)
CharMatcher.JAVA_DIGIT
CharMatcher.ASCII
CharMatcher.ANY

Use a factory method (examples)
CharMatcher.is('x')
CharMatcher.isNot('_')
CharMatcher.oneOf("aeiou").negate()
CharMatcher.inRange('a', 'z').or(inRange('A', 'Z'))

Subclass CharMatcher, implement matches(char c)

Now check out all that you can do . . .

Using your new CharMatcher

boolean matchesAllOf(CharSequence)
boolean matchesAnyOf(CharSequence)
boolean matchesNoneOf(CharSequence)
int indexIn(CharSequence, int)
int lastIndexIn(CharSequence, int)
int countIn(CharSequence)
String removeFrom(CharSequence)
String retainFrom(CharSequence)
String trimFrom(CharSequence)
String trimLeadingFrom(CharSequence)
String trimTrailingFrom(CharSequence)
String collapseFrom(CharSequence, char)
String trimAndCollapseFrom(CharSequence, char)
String replaceFrom(CharSequence, char)

(Sure, there's overlap between this and regex.)

Putting it together

To scrub an id number, you might use

 String seriesId =
 CharMatcher.DIGIT.or(CharMatcher.is('-'))
 .retainFrom(input);

Putting it together

To scrub an id number, you might use

 String seriesId =
 CharMatcher.DIGIT.or(CharMatcher.is('-'))
 .retainFrom(input);

If inside a loop, move your CharMatcher definition outside the
loop, or to a private class constant.

 private static final CharMatcher SERIES_ID_CHARS =
 CharMatcher.DIGIT.or(CharMatcher.is('-'));

 . . .

 String id = SERIES_ID_CHARS.retainFrom(input);

Joiner

Bizarrely Missing From The JDK Class Libraries:
joining pieces of text with a separator.

 String s = Joiner.on(", ").join(episodesOnDisc);

Joiner is configurable:

 StringBuilder sb = ...;
 Joiner.on("|").skipNulls().appendTo(sb, attrs);

Joiner

Bizarrely Missing From The JDK Class Libraries:
joining pieces of text with a separator.

 String s = Joiner.on(", ").join(episodesOnDisc);

Joiner is configurable:

 StringBuilder sb = ...;
 Joiner.on("|").skipNulls().appendTo(sb, attrs);

It can even handle maps:

 static final MapJoiner MAP_JOINER = Joiner.on("; ")
 .useForNull("NODATA")
 .withKeyValueSeparator(":");

Splitters!

Splitter

Breaks strings into substrings
by recognizing a separator (delimiter), one of:

a single character: Splitter.on('\n')
a literal string: Splitter.on(", ")
a regex: Splitter.onPattern(",\\s*")
any CharMatcher (remember that?)

or using a fixed substring length
Splitter.fixedLength(8)

 Iterable<String> pieces =
 Splitter.on(',').split("trivial,example")

returns "trivial" and "example" in order.

But the JDK does have splitting!

JDK has this:
 String[] pieces = "foo.bar".split("\\.");

It's convenient to use this... if you want exactly what it does:

regular expression
result as an array
its way of handling empty pieces

which is very strange

Our Splitter is very flexible (next slide...)

Splitter: more examples

The default behavior is simplistic:
 // yields [" foo", " ", "bar", " quux", ""]
 Splitter.on(',').split(" foo, ,bar, quux,")

If you want extra features, ask for them!

Splitter: more examples

The default behavior is simplistic:
 // yields [" foo", " ", "bar", " quux", ""]
 Splitter.on(',').split(" foo, ,bar, quux,")

If you want extra features, ask for them!
// yields ["foo", "bar", "quux"]
Splitter.on(',')
 .trimResults()
 .omitEmptyStrings()
 .split(" foo, ,bar, quux,")

Order of config methods doesn't matter.

2. com.google.common.primitives

common.primitives is a new package that helps you work with the
primitive types: int, long, double, float, char, byte, short, and
boolean.

If you need help doing a primitive task:

1. check the wrapper class (e.g. java.lang.Integer)
2. check java.util.Arrays
3. check com.google.common.primitives
4. it might not exist!

common.primitives (2)

common.primitives contains the classes
Booleans, Bytes, Chars, Doubles, Floats, Ints, Longs and (wait for
it) Shorts. Each has the exact same structure (but has only the
subset of operations that make sense for its type).

Many of the byte-related methods have alternate versions in the
classes SignedBytes and UnsignedBytes. (Bytes are peculiar...)

We don't do primitive-based collections; try fastutil, or trove4j,
or . . .

Method Longs Ints Shorts Chars Doubles Bytes S.Bytes U.Bytes Booleans
hashCode X X X X X X X
compare X X X X X X X X
checkedCast X X X X X
saturatedCast X X X X X
contains X X X X X X
indexOf X X X X X X X
lastIndexOf X X X X X X X
min X X X X X X X
max X X X X X X X
concat X X X X X X X
join X X X X X X X X
toArray X X X X X X X
asList X X X X X X X
lexComparator X X X X X X X X
toByteArray X X X X
fromByteArray X X X X

common.primitives: The Table

3. com.google.common.io

If what you need pertains to streams, buffers, files and the like,
look to our package com.google.common.io.

Key interfaces:

 public interface InputSupplier<T> {
 T getInput() throws IOException;
 }
 public interface OutputSupplier<T> {
 T getOutput() throws IOException;
 }

Typically: InputSupplier<InputStream>,
OutputSupplier<Writer>, etc. This lets all our utilities be useful
for many kinds of I/O.

common.io: Streams

Our terms:

byte stream
means "InputStream or OutputStream"

char stream
means "Reader or Writer."

Utilities for these things are in the classes ByteStreams
and CharStreams (which have largely parallel structure).

common.io: ByteStreams

byte[] toByteArray(InputStream)
byte[] toByteArray(InputSupplier)
void readFully(InputStream, byte[])
void write(byte[], OutputSupplier)
long copy(InputStream, OutputStream)
long copy(InputSupplier, OutputSupplier)
long length(InputSupplier)
boolean equal(InputSupplier, InputSupplier)
InputSupplier slice(InputSupplier, long, long)
InputSupplier join(InputSupplier...)

CharStreams is similar, but deals in Reader, Writer, String and
CharSequence (often requiring you to specify a Charset).

common.io: Files

The Files class works one level higher than ByteStreams and
CharStreams, and has a few other tricks.

byte[] toByteArray(File)
String toString(File, Charset)
void write(byte[], File)
void write(CharSequence, File, Charset)
long copy(File, File)
long copy(InputSupplier, File)
long copy(File, OutputSupplier)
long copy(File, Charset, Appendable)
long move(File, File)
boolean equal(File, File)
List<String> readLines(File, Charset)

common.io: the future?

JDK 7 has a proper abstract filesystem API, and ARM syntax.

You won't need most of our common.io anymore then!

4. com.google.common.collect

It would take an entire presentation to tell you about this
package... (and it did!)

Immutable Collections
Multimaps, Multisets, BiMaps
Comparator-related utilities
Forwarding collections, Constrained collections
Some functional programming support (filter/transform/etc.)

Just search google collections video in your favorite search engine.

One highlight: MapMaker

MapMaker is the jewel of common.collect.

ConcurrentMap<User, RecGraph> recommendations =
 new MapMaker()
 .weakKeys()
 .expiration(10, TimeUnit.MINUTES)
 .makeComputingMap(
 new Function<User, RecGraph>() {
 public RecGraph apply(User user) {
 return createExpensiveGraph(user);
 }
 });

It merits another entire presentation of its own.

5. com.google.common.util.concurrent

Spend the time to get deeply familiar with java.util.concurrent first!

Then come check out:

Callables, Futures, CheckedFuture, ListenableFuture,
UninterruptibleFuture, Service, MoreExecutors,
ThreadFactoryBuilder, TimeLimiter,

Caveat 1

Libraries marked @Beta are subject to change at any time!

For the rest, we intend to maintain compatibility (modulo
deprecation window).

Nothing that was in Google Collections 1.0 is @Beta.

Caveat 2

Serialization compatibility not guaranteed.

Don't assume persisted serialized data can be deserialized in
future version of the library.

(Consider not even using serialization if you can avoid it!)

What to do now?

Download it, see online javadocs, etc.
http://guava-libraries.googlecode.com

Watch Collections presentation
http://www.youtube.com/watch?v=ZeO_J2OcHYM
(or search "google collections video")

Join discussion list
http://groups.google.com/group/guava-discuss

Ask for help
post with "guava" tag to StackOverflow.com

Q & A

http://code.google.com/p/guava-libraries/
http://www.youtube.com/watch?v=ZeO_J2OcHYM
http://groups.google.com/group/guava-discuss
http://StackOverflow.com

