
Web Application Incident Response & Forensics:
A Whole New Ball Game!

Chuck Willis chuck.willis@mandiant.com

Rohyt Belani rohyt.belani@mandiant.com

Black Hat Briefings USA 2006

August 2, 2006

1

 Founded in February 2004
 Full spectrum information security company:
• Professional Services
• Education
• Software

 Services include:
• Application Security
• Network Security
• Incident Response
• Computer Forensics

 Located in Alexandria, VA & NYC
 Former US military investigators and

industry security professionals

Company Overview

2

Why Are We Here?

 “They” say that attacks against
web applications are on the rise

 “We” see it – 70% of the attacks
we have responded to in the last
year have been against web
applications

 Responding to such attacks is
different
• Need to understand application

security
• Need to look elsewhere for

evidence

3

Agenda

 Background

 How web application incident response and
forensics is different

 Case Studies

 Log discovery, review, and analysis
• Web Server
• Application Server
• Database

 Remediation

Background

5

Three Tier Web Application

HTTP
Request

HTTP
Response

Client Web
Browser

Internet /
Intranet

Web Server
(presentation)

App Server
(business logic)

Database
(resource)

These servers may be independent
or may run on the same machine

Result Set

SQL
Query

HTTP Request /
RPC Call

HTTP
Response /
RPC Return

6

Standard Incident Response & Forensics

 Capture volatile data
• Processes
• Ports and network connections
• Memory dumps
• Logged in users

 Perhaps capture some non-volatile data
• Event logs
• File listing and timestamps

 Shutdown system

 Make forensic image

7

Standard Incident Response & Forensics

 Analyze image with forensic tools
• Examine file timestamps
• Check for known malicious software
• Examine deleted files
• Conduct string searches
• Carve files based on headers

8

How Does Web App Forensics Differ?`

Let’s find out…

9

Why Standard Process Doesn’t Work

 Web applications are often distributed across
multiple servers

 Web applications are often business critical and
downtime for imaging may not be allowed

 Database servers usually have large disk arrays
 Web application attacks usually do not leave

evidence in the same places as other attacks
 Web application forensics and incident response

requires a solid understanding of web application
security issues – not a conventional “forensicator”
skill

10

Web Application Forensics Overview

 Understand the “normal” flow of the application
 Review log files:
• Web Server
• Application Server
• Database Server
• Application

 Capture application and server configuration files
 Identify potential anomalies:
• Malicious input from client
• Breaks in normal web access trends
• Unusual referrers
• Mid-session changes to cookie values

 Determine a remediation plan

A Report from the Trenches - Case #1

12

Symptoms

 “I see a trade executed from my account
…10000 shares of a company I haven’t even
heard about, were purchased on January 17
(2006) @ 2 pm from my account!” – a client of a
well-established brokerage firm in NYC

 7 other clients of the same brokerage firm report
the same issue – in January 2006

13

Investigation

 Computer security breaches were the prime
suspect

 Was the brokerage firm hacked? Was it the end
user who was hacked?

 We had dates and times of the trade executions
as a clue

14

Investigation

 Our team began reviewing the brokerage firm’s
online trading application for clues
• Network logs
• Web server logs
• Security mechanisms of the application

 We asked to duplicate the victim’s hard drive and
review it for indicators of compromise

15

 Web Server Logs

 Requested IIS logs for January 17, 2006 from all
the (load balanced) servers

 Combined the log files into one common
repository = 1 GB

 Microsoft’s Log Parser to the rescue

16

Microsoft LogParser

 LogParser is an excellent and free tool for
analyzing log files

 Available from www.microsoft.com

 More information on unofficial LogParser support
site: http://www.logparser.com/

 Supports a variety of log formats

 Uses SQL syntax to process log files

17

Microsoft LogParser

 Parsed out all requests to execute.asp using
Microsoft Log Parser:

LogParser -o:csv "select * INTO
execute.csv from *.log where
cs-uri-stem like '/execute.asp%'"

18

Can You Find The Smoking Gun?

.

.

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=3840943093874b3484c3839de9340494

sessionid=676db87873ab0393898de0398348c89

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=298230e0393bc09849d839209883993

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=3840943093874b3484c3839de9340494

sessionid=90198e1525e4b03797f833ff4320af39

cs-uri-query

HTTP/1.0200/execute.aspPOST172.16.87.2311:10:19

HTTP/1.0200/execute.aspPOST172.16.41.531:21:43

HTTP/1.0200/execute.aspPOST172.16.121.31:19:20

HTTP/1.0200/execute.aspPOST172.16.54.331:04:35

......

......

HTTP/1.0200/execute.aspPOST172.16.22.331:28:15

HTTP/1.0200/execute.aspPOST172.16.22.331:23:16

HTTP/1.0200/execute.aspPOST172.16.22.331:18:15

HTTP/1.0200/execute.aspPOST172.16.22.331:13:15

HTTP/1.0200/execute.aspPOST172.16.22.331:08:15

HTTP/1.0200/execute.aspPOST172.16.22.331:03:15

versionStatuscs-uri-stem
cs-
method

c-ip#Fields:time

#Date: 2006-01-017 01:03:15

#Version: 1.0

#Software: Microsoft Internet Information Services 5.0

19

 Next Step

 Noticed repeated use of same sessionid at
regular intervals from the same IP

 Parsed out all requests with the suspicious
sessionid

LogParser -o:csv "select * INTO
sessionid.csv from *.log where
cs-uri-query like
'%90198e1525e4b03797f833ff4320af39'"

20

Can You Find The Smoking Gun?

HTTP/1.0200sessionid=90198e1525e4b03797f833ff4320af39/account.aspPOST172.16.14.16614:07:54

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

.

.

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

sessionid=90198e1525e4b03797f833ff4320af39

cs-uri-query

HTTP/1.0200/confirm.aspPOST172.16.22.3314:10:09

HTTP/1.0200/execute.aspPOST172.16.22.3314:08:15

HTTP/1.0200/login.aspPOST172.16.14.16614:07:23

HTTP/1.0200/execute.aspPOST172.16.22.3314:03:15

HTTP/1.0200/execute.aspPOST172.16.22.3313:58:15

HTTP/1.0200/execute.aspPOST172.16.22.3313:53:15

......

......

HTTP/1.0200/execute.aspPOST172.16.22.331:28:15

HTTP/1.0200/execute.aspPOST172.16.22.331:23:16

HTTP/1.0200/execute.aspPOST172.16.22.331:18:15

HTTP/1.0200/execute.aspPOST172.16.22.331:13:15

HTTP/1.0200/execute.aspPOST172.16.22.331:08:15

HTTP/1.0200/execute.aspPOST172.16.22.331:03:15

versionStatuscs-uri-stem
cs-
method

c-ip#Fields:time

#Date: 2006-01-017 01:03:15

#Version: 1.0

#Software: Microsoft Internet Information Services 5.0

21

Phishing?

 No indications of key logging trojans, malware, viruses,
etc. were found on the victim’s computer.

 Look what we found in the archived .pst file:

URL: https://www.xyzbrokerage.com/login.asp?sessionid=90198e1525e4b03797f833ff4320af39

22

Session Fixation

 The application was confirmed to be vulnerable
to session fixation:
• A session id was issued before login
• The same session id was used by the application

after login for the purposes of user authorization
• This allowed an attacker to hijack legitimate user

sessions using a bit of social engineering

Web Server Logs

24

IIS 6.0

 Default logs are plain text in W3C Extended log
file format

 Logs stored in LogFiles\W3SVCx

 Easily parsed with text parsing tools or with
LogParser

 Log files can capture cookies and referrer
headers

 Cannot log HTTP POST data

25

IIS 6.0 – Logged by Default

 Date / Time

 Client IP

 Server Info

 HTTP Method

 URL and Parameters

 HTTP Status Code

 User Agent

26

IIS 6.0 – Not Logged by Default

Can be enabled:

 Transfer Sizes

 Host Header

 Cookies

 Referrer

Not even an option…

 POST Data

27

Why Do We Care About POST Data?

 Much of the user input to a web application is
passed to the server as POST parameters

 Manipulating these parameters is the prime
mechanism for attacking an application

 POST data logging provides insight into such
attacks

 POST data is necessary to perform an accurate
damage assessment

28

Referrer Header

 What is the Referrer header?

 Referrer headers are an indicator of browsing
flow

 Can be used to identify abnormal browsing
trends that may be indicative of an attack

 Not a reliable measure

 Referrer spoofing is easy and results in false
positives

29

Cookie Crunching

 May 2006

 Multi-national food and beverages company
requested bids for a machinery maintenance
contract

 The bids were to be provided over the Web

 One of the bidders appeared to have inside
knowledge

 Chief counsel ordered an investigation

30

Cookie Crunching

 Application authorized requests based on the
“uid” cookie

 Reviewed IIS 6.0 server logs
 Server was configured to log cookies
 Parsed all requests to bid.aspx
 Multiple requests from the same IP address with

different uid cookies
 Whois on the IP address revealed the culprit
 Cookie logging saved the day!

31

URLScan

 URLScan is a free IIS filter from Microsoft that
can prevent some types of HTTP requests from
making it to the web server

 If URLScan is in use, the logs will include details
on blocked requests

 Logs are stored by default in same directory as
URLScan

 Automated attacks can often be detected by
reviewing URLScan logs

32

Apache Web Server Logs

 Log format and locations are highly customizable

 Log configuration set in httpd.conf

 Access log – records all requests
• access.log on Windows, access_log on Unix

 Error log – holds diagnostic and error messages
• error.log / error_log

 Some modules have their own logs:
• rewrite.log

33

Apache Logs – Default Access Log

 LogFormat "%h %l %u %t \"%r\" %>s %b"
• Remote Host
• Remote logname (from identd)
• Remote user (from HTTP authentication)
• Time
• First line of request
• Status
• Bytes sent

 mod_log_config can used to enhance Apache
logging to capture additional fields

Application Server Logs

35

Application Server Logs

 Application servers will log data

 Logged events will include:
• Unhandled application exceptions
• Application errors
• Loader problems (references to classes that are

not available)
• Other implementation dependent items
• Some messages from applications

36

ASP.NET Application Server

 ASP.NET does not maintain its own log files

 Errors and unhandled exceptions are logged to
the Windows event logs

 In .NET 2.0, an unhandled exception will halt the
application by default

37

BEA WebLogic

 BEA WebLogic is a common Java application
server and HTTP server

 Maintains a variety of logs:
• Server Log

 Messages and errors from the server, applications
and subsystems

 ServerName/ServerName.log
• Domain Log

 Messages forwarded from the servers in the domain
 Not all messages are forwarded or logged at the

domain level
 DomainName.log

38

BEA WebLogic

 Other logs that may be present:
• HTTP Log – similar to Apache access log
• Node Manager Logs – startup and status

messages
• Standard Output – Messages from the server and

also from the applications
• Standard Error
• Java Transaction API (JTA) Logs
• Java Database Connectivity (JDBC) Logs

39

WebSphere Application Server

 IBM’s WebSphere Application Server is another
common Java App Server

 Logs created by WebSphere:
• Apache Web Server Logs

 Access Log
 Error Log

• IBM Service Log
 Logs events for servers under a node
 File name is activity.log
 Log is binary data – use showlog script to convert

40

WebSphere Application Server

 Stream logs on WebSphere:
• JVM logs – streams from Java code

 SystemOut.log
 SystemErr.log

• Process logs – streams from native code
 native_stdout.log
 native_stderr.log

A Report from the Trenches - Case #2

42

Symptoms

 The CEO of a retail organization received an
extortion threat of $250,000 via snail mail

 The threat – 125,000 customer credit card
numbers would be sold to the mafia

 The response was demanded in the form of a
footer on the main page of the retailer’s website

43

Response

 In-house counsel used several ploys to buy time
– a mere 72 hours were granted by the extorter

 3 members of our team were brought in to
investigate round the clock for the next 3 days

 Our job was to determine how the credit card
database may have been compromised and
more importantly who was the culprit

44

What Followed?

 Frenzied web server log analysis to detect
anomalous activity – Nothing!

 Reviewed all employee email inboxes to detect
internal fraud – Nothing!

 Database login/logout activity reviewed – nothing
suspicious

 Web application scanned for SQL injection flaws
– No luck!

 Last resort – application code review

45

Racing Against Time

 Over 100,000 lines of code

 A comprehensive code
review was ruled out

 Resorted to scripted
searches through code

46

Scripted Searches

 Did the code contain raw SQL statements?
 Searched for occurrences of the “SELECT” in

the code

Regex = .*SELECT.*

 The search resulted in an overwhelming
number of hits

47

Scripted Searches

 The results from the previous search were
searched for occurrences of the “SELECT *”
string to identify SQL statements where the
scope was not properly limited

Regex = SELECT *.*FROM.*

 The search resulted in 5 hits
 One of the hits was:

SELECT * FROM CardTable

48

The Code That Made The Call

NameValueCollection coll = Request.QueryString;
String[] arr1 = coll.AllKeys;
...
String[] arr5 = coll.getValues(arr1[4]);
string extra = Server.HtmlEncode(arr5[0]).ToString();

if (extra.Equals(“letmein”))
{
Cmd = “SELECT * FROM CardTable”;

}

...

49

Eureka!

 This was a backdoor – an insider job?

 Reviewed code archives to detect addition of
code

 The first check-in with this code was made by a
developer contracted from a third-party in Asia

 Found the URL with the additional parameter in
the web server logs

 The client IP traced back to Asia!

50

Another One Bites The Dust…

 The development company was notified of this
rogue activity

 Local law enforcement was cooperative

51

Post Mortem

 What could have been done better:

• Encryption of sensitive info in the DB

• More advanced DB logging

• Security reviews of code

Database Server Logging

53

Database Server Logging

 Common databases have little or no logging
enabled by default

 Logging of additional database events can be
enabled

 Table or data specific logging can be
accomplished with database triggers

54

MS SQL Server Database Logging

 Captures login/logout and other activity in the
Windows Application Log

 ErrorLog file – server errors and other messages
• New log created on DB startup
• By default, 6 previous logs are stored

 Server-Side Traces can be used for fine-grained
auditing

55

MS SQL C2 Auditing – Advantages

 Records detailed information
• Execution of stored procedures
• Creation or deletion of objects like tables
• Querying of tables
• Permission changes

 Logs stored in .trc files that can be viewed using
SQL Server Profiler

56

MS SQL C2 Auditing – Disadvantages

 Databases and audit logs share the same
directory

 C2 auditing affects SQL server performance

 If the disk is full and C2 log cannot be written
SQL server execution is halted

 C2 auditing is not practical as a long-term
solution

57

Oracle Database Auditing

 Events logged to the OS log by default:
• Instance startup and shutdown
• Connections to DB with administrator privileges

 Additional auditing of database events can be
enabled

 Additional audit entries can be stored in a
database table or in the OS Log

58

Oracle Database Auditing

 Audit.log
• Flat text file
• Records important information about the database

operation
• Records errors
• References to trace files and dump files

 Trace files can result from:
• An error in a background process
• Administrator action

Application Logging

60

Application Level Logging

 Application logs can provide key information
• Detailed knowledge of business logic
• Good signal to noise ratio

 Ask developers or administrators:
• Where are application logs?
• What is format?
• What messages would result from likely malicious

activity?
• How long are logs stored?

61

Application Level Logging

 Application should log these events:
• Invalid Input

 SQL Injection Attempts
 Cross Site Scripting Attempts

• Failed Authentication
• Authorization Failures
• Session Tracking Problems
• Critical portions of business logic

62

Application Level Logging

 Application should log this information:
• Server Identity
• Client IP Address
• Username
• Date/Time
• URL
• POST data
• Cookies

63

Logging Frameworks

 Logging frameworks provide an easy way for
developers to implement and configure logging

 Common logging frameworks:
• Log4j / Log4net / Log4PLSQL
• Java’s java.util.logging
• The Object Guy’s dotnetlog / javalog

Remediation

65

Remediation

 When web application analysis is exhausted,
need to determine if a standard forensic analysis
is warranted

 Need to determine a remediation plan:
• Recover from current state
• Restore from backup
• Rebuild from scratch

 Ensure that causes of the incident are
addressed

66

Conclusion

 Application forensics requires a concerted effort
between system administrators, network
administrators, security staff and developers

 Responders need to be intimately familiar with
application security issues

 Enhance your forensics and incident response
checklists

 There is no one right way!

Questions?

Chuck Willis chuck.willis@mandiant.com

Rohyt Belani rohyt.belani@mandiant.com

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

