
Adobe Systems Incorporated AMF 3 Specification

Adobe Systems Inc.
AMF 0 Specification
Category: ActionScript Serialization

Action Message Format -- AMF 0
Copyright Notice
Copyright (c) Adobe Systems Inc. (2002-2006). All Rights Reserved.

Abstract
Action Message Format (AMF) is a compact binary format that is used to serialize
ActionScript object graphs. Once serialized an AMF encoded object graph may be used
to persist and retrieve the public state of an application across sessions or allow two
endpoints to communicate through the exchange of strongly typed data.

AMF was introduced in Flash Player 6 in 2001 and remained unchanged with the
introduction of ActionScript 2.0 in Flash Player 7. The version header of this format was
set to 0 and thus this version of the format is referred to as AMF 0.

NOTE: In Flash Player 9 a new version of AMF was introduced to coincide with the
release of ActionScript 3.0 and a new ActionScript Virtual Machine (AVM+), namely
AMF 3. AMF 0, however, continues to be supported in all versions of the Flash Player
from Flash Player 6 onwards.

Table of Contents
1 Introduction
1.1 Purpose
1.2 Notational Conventions
1.2.1 Augmented BNF
1.3 Basic Rules
1.3.1 Strings and UTF-8
2 AMF 0 Data Types
2.1 Types Overview
2.2 Number Type
2.3 Boolean Type
2.4 String Type
2.5 Object Type
2.6 Movieclip Type
2.7 null Type
2.8 undefined Type
2.9 Reference Type
2.10 ECMA Array Type
2.11 Object End Type
2.12 Strict Array Type
2.13 Date Type

Page 1 of 11

Adobe Systems Incorporated AMF 3 Specification

2.14 Long String Type
2.15 Unsupported Type
2.16 RecordSet Type
2.17 XMLDocument Type
2.18 Typed Object Type
3. AMF 0 Extensions
3.1 AVM+ Type Marker
4. Usages of AMF 3
4.1 NetConnection
4.1.1 AMF Version
4.1.2 AMF Header
4.1.3 AMF Body
5. Normative References

1 Introduction

1.1 Purpose
Action Message Format (AMF) is a compact binary format that is used to serialize
ActionScript object graphs. Once serialized an AMF encoded object graph may be used
to persist and retrieve application state across sessions or allow two endpoints to
communicate through the exchange of strongly typed data. The first version of AMF,
referred to as AMF 0, serializes ActionScript objects and retains strong type information,
capturing the public state of application data. AMF 0 also supports sending complex
objects by reference which helps avoid sending redundant instances in an object graph as
well as allowing endpoints to restore relationships and avoid circular references.

1.2 Notational Conventions

1.2.1 Augmented BNF
Type definitions in this specification use Augmented Backus-Naur Form (ABNF) syntax
[RFC2234]. The reader should be familiar with this notation before reading this
document.

1.3 Basic Rules

U8 = An unsigned byte, 8-bits of data, an octet
U16 = An unsigned 16-bit integer in big endian

(network) byte order
S16 = An signed 16-bit integer in big endian (network)

byte order
U32 = An unsigned 32-bit integer in big endian

(network) byte order
DOUBLE = 8 byte IEEE-754 double precision floating point

value in network byte order (sign bit in low
memory).

KB = A kilobyte or 1024 bytes.
GB = A Gigabyte or 1,073,741,824 bytes.

Page 2 of 11

Adobe Systems Incorporated AMF 3 Specification

1.3.1 Strings and UTF-8
AMF 0 uses (non-modified) UTF-8 to encode strings. UTF-8 is the abbreviation for 8-bit
Unicode Transformation Format. UTF-8 strings are typically preceded with a byte-length
header followed by a sequence of variable length (1 to 4 octets) encoded Unicode code-
points. Depending on the format and data type AMF may use a slightly modified byte-
length header. The variants will be clearly defined below and referred to throughout the
document.

In ABNF syntax, [RFC3629] describes UTF-8 as follows:

UTF8-char = UTF8-1 | UTF8-2 | UTF8-3 | UTF8-4
UTF8-1 = %x00-7F
UTF8-2 = %xC2-DF UTF8-tail
UTF8-3 = %xE0 %xA0-BF UTF8-tail | %xE1-EC 2(UTF8-tail) |

%xED %x80-9F UTF8-tail | %xEE-EF 2(UTF8-tail)
UTF8-4 = %xF0 %x90-BF 2(UTF8-tail) | %xF1-F3 3(UTF8-tail)

| %xF4 %x80-8F 2(UTF8-tail)
UTF8-tail = %x80-BF

Serialized UTF-8 strings typically include a header that precedes any character content
and specifies the byte-length of the remaining content. The standard header is a 16-bit
integer. This document will refer to this type as follows:

UTF-8 = U16 *(UTF8-char)

A 16-bit byte-length header implies a theoretical maximum of 65,535 bytes to encode a
string in UTF-8 (essentially 64KB).

For longer strings, a 32-bit byte-length may be required. This document will refer to this
type as:

UTF-8-long = U32 *(UTF8-char)

A 32-bit byte-length header implies a theoretical maximum of 4,294,967,295 bytes to
encode a string in UTF-8 (essentially 4GB).

Occasionally the empty string is used as a special case to signify no further dynamic
properties are present.

UTF-8-empty = U16 ; byte-length reported as zero with

; no UTF8-char content, i.e. 0x0000

Page 3 of 11

Adobe Systems Incorporated AMF 3 Specification

2 AMF 0 Data Types

2.1 Types Overview
There are 16 core type markers in AMF 0. A type marker is one byte in length and
describes the kind of encoded data that may follow.

marker = U8

The set of possible type markers are listed below (values are represented in hexadecimal
format):

number-marker = 0x00
boolean-marker = 0x01
string-marker = 0x02
object-marker = 0x03
movieclip-marker = 0x04 ; reserved, not supported
null-marker = 0x05
undefined-marker = 0x06
reference-marker = 0x07
ecma-array-marker = 0x08
object-end-marker = 0x09
strict-array-marker = 0x0A
date-marker = 0x0B
long-string-marker = 0x0C
unsupported-marker = 0x0D
recordset-marker = 0x0E ; reserved, not supported
xml-document-marker = 0x0F
typed-object-marker = 0x10

NOTE: With the introduction of AMF 3 in Flash Player 9, a special type marker was
added to AMF 0 to signal a switch to AMF 3 serialization. This allows NetConnection
requests to start out in AMF 0 and switch to AMF 3 on the first complex type to take
advantage of the more the efficient encoding of AMF 3.

avmplus-object-marker = 0x11

Type markers may be followed by the actual encoded type data, or if the marker
represents a single possible value (such as null) then no further information needs to be
encoded.
value-type = number-type | boolean-type | string-type |

object-type | null-marker | undefined-marker |
reference-type | ecma-array-type |
strict-array-type | date-type | long-string-type
| xml-document-type | typed-object-type

The object-end-type should only appear to mark the end of a set of properties of an
object-type or typed-object-type or to signal the end of an associative section of an
ECMA Array.

Page 4 of 11

Adobe Systems Incorporated AMF 3 Specification

The Movieclip and Recordset types are not supported for serialization; their markers are
retained with a reserved status for future use.

2.2 Number Type
An AMF 0 Number type is used to encode an ActionScript Number. The data following a
Number type marker is always an 8 byte IEEE-754 double precision floating point value
in network byte order (sign bit in low memory).

number-type = number-marker DOUBLE

2.3 Boolean Type
An AMF 0 Boolean type is used to encode a primitive ActionScript 1.0 or 2.0 Boolean or
an ActionScript 3.0 Boolean. The Object (non-primitive) version of ActionScript 1.0 or
2.0 Booleans are not serializable. A Boolean type marker is followed by an unsigned
byte; a zero byte value denotes false while a non-zero byte value (typically 1) denotes
true.

boolean-type = boolean-marker U8 ; 0 is false, <> 0

; is true

2.4 String Type
All strings in AMF are encoded using UTF-8; however, the byte-length header format
may vary. The AMF 0 String type uses the standard byte-length header (i.e. U16). For
long Strings that require more than 65535 bytes to encode in UTF-8, the AMF 0 Long
String type should be used.

string-type = string-marker UTF-8

2.5 Object Type
The AMF 0 Object type is used to encoded anonymous ActionScript objects. Any typed
object that does not have a registered class should be treated as an anonymous
ActionScript object. If the same object instance appears in an object graph it should be
sent by reference using an AMF 0.

Use the reference type to reduce redundant information from being serialized and infinite
loops from cyclical references.

object-property = (UTF-8 value-type) |

(UTF-8-empty object-end-marker)
anonymous-object-type = object-marker *(object-property)

2.6 Movieclip Type

This type is not supported and is reserved for future use.

Page 5 of 11

Adobe Systems Incorporated AMF 3 Specification

2.7 null Type
The null type is represented by the null type marker. No further information is encoded
for this value.

null-type = null-marker

2.8 undefined Type
The undefined type is represented by the undefined type marker. No further information
is encoded for this value.

undefined-type = undefined-marker

2.9 Reference Type
AMF0 defines a complex object as an anonymous object, a typed object, an array or an
ecma-array. If the exact same instance of a complex object appears more than once in an
object graph then it must be sent by reference. The reference type uses an unsigned 16-
bit integer to point to an index in a table of previously serialized objects. Indices start at
0.

reference-type = reference-marker U16 ; index pointing

; to another
; complex type

A 16-bit unsigned integer implies a theoretical maximum of 65,535 unique complex
objects that can be sent by reference.

2.10 ECMA Array Type
An ECMA Array or 'associative' Array is used when an ActionScript Array contains non-
ordinal indices. This type is considered a complex type and thus reoccurring instances
can be sent by reference. All indices, ordinal or otherwise, are treated as string 'keys'
instead of integers. For the purposes of serialization this type is very similar to an
anonymous Object.

associative-count = U32
ecma-array-type = associative-count *(object-property)

A 32-bit associative-count implies a theoretical maximum of 4,294,967,295 associative
array entries.

2.11 Object End Type
The object-end-marker is used in a special type that signals the end of a set of object
properties in an anonymous object or typed object or associative array. It is not expected
outside of these types. This marker is always preceded by an empty UTF-8 string and
together forms the object end type.

Page 6 of 11

Adobe Systems Incorporated AMF 3 Specification

object-end-type = UTF-8-empty object-end-marker ; 0x00 0x00
; 0x09

2.12 Strict Array Type
A strict Array contains only ordinal indices; however, in AMF 0 the indices can be dense
or sparse. Undefined entries in the sparse regions between indices are serialized as
undefined.

array-count = U32
strict-array-type = array-count *(value-type)

A 32-bit array-count implies a theoretical maximum of 4,294,967,295 array entries.

2.13 Date Type
An ActionScript Date is serialized as the number of milliseconds elapsed since the epoch
of midnight on 1st Jan 1970 in the UTC time zone. While the design of this type reserves
room for time zone offset information, it should not be filled in, nor used, as it is
unconventional to change time zones when serializing dates on a network. It is suggested
that the time zone be queried independently as needed.

time-zone = S16 ; reserved,

; not supported
; should be set
; to 0x0000

date-type = date-marker DOUBLE time-zone

2.14 Long String Type
A long string is used in AMF 0 to encode strings that would occupy more than 65535
bytes when UTF-8 encoded. The byte-length header of the UTF-8 encoded string is a 32-
bit integer instead of the regular 16-bit integer.

long-string-type = long-string-marker UTF-8-long

2.15 Unsupported Type
If a type cannot be serialized a special unsupported marker can be used in place of the
type. Some endpoints may throw an error on encountering this type marker. No further
information is encoded for this type.

2.16 RecordSet Type
This type is not supported and is reserved for future use.

2.17 XML Document Type
An XMLDocument in ActionScript 1.0 and 2.0 and flash.xml.XMLDocument in
ActionScript 3.0 provides a DOM representation of an XML document. However, on
serialization a string representation of the document is used. The XML document type is
always encoded as a long UTF-8 string.

Page 7 of 11

Adobe Systems Incorporated AMF 3 Specification

xml-document-type = xml-document-marker UTF-8-long

2.18 Typed Object Type
If a strongly typed object has an alias registered for its class then the type name will also
be serialized. Typed objects are considered complex types and reoccurring instances can
be sent by reference.

class-name = UTF-8
object-type = object-marker class-name *(object-

property)

3. AMF 0 Extensions

3.1 AVM+ Type Marker
With the introduction of AMF 3 in Flash Player 9 to support ActionScript 3.0 and the
new AVM+, the AMF 0 format was extended to allow an AMF 0 encoding context to be
switched to AMF 3. To achieve this, a new type marker was added to AMF 0, the
avmplus-object-marker. The presence of this marker signifies that the following Object is
formatted in AMF 3 (See [AMF3]).

Legacy AMF 0 systems that have not been updated to support AMF 3 should throw an
unknown type error.

4. Usages of AMF 0

4.1 AMF Packets and NetConnection
In addition to serializing ActionScript types, NetConnection uses AMF to send messages
to a server to asynchronously invoke remote services. Multiple messages are batched into
a single AMF packet.

amf-packet = version header-count *(header-type) message-

count *(message-type)

The number of headers and the number of messages contained in a packet are represented
by an unsigned 16-bit integer:

header-count = U16
message-count = U16

This implies a theoretical limit of 65,535 headers and 65,535 messages per
NetConnection request.

The definitions of the main structural elements in an amf-packet follow.

Page 8 of 11

Adobe Systems Incorporated AMF 3 Specification

4.1.1 AMF Packet Version
The first two bytes of an AMF packet specify the version of AMF used to encode value
types. The general structure of an AMF packet is always formatted in AMF 0; however,
header values and message body values may be encoded in another AMF version, such as
AMF 3.

version = U16 ; value must be 0 for AMF 0

4.1.2 AMF Context Header
Headers provide context for the processing of the remainder of the AMF packet and all
subsequent messages. Notable uses for this construct would be for encryption of the
remaining packet and/or authentication of the user to the server (username/password).
Multiple context headers may be included within a packet.

A header's name typically identifies a remote operation or method to be invoked by this
context header. If a method is specified, it should conform to URI formatting styles using
a forward slash '/' to delimit object and/or directory paths. When the header is bound for
the Flash Player, it should target a well known method name on the NetConnection
instance's client.

header-name = UTF-8

A header also includes a boolean 'must understand' flag. If true, the flag instructs the
endpoint to abort and generate an error if the header is not understood.

If a header is sent to the Flash Player with must understand set to true and the
NetConnection instance's client object does not have a method to handle the header, then
the Flash Player will invoke the onStatus handler on the NetConnection object.

must-understand = U8 ; value == 0, false

; value != 0, true

If the byte-length of a header is known it can be specified to optimize memory allocation
at the remote endpoint. Otherwise, this field should contain (U32)-1 to specify an
unknown length.

header-length = U32 ; byte-length of header

; (U32)-1 if unknown

header-type = header-name must-understand header-length

value-type

Note that object reference indices are local to each context header. Serializers and
deserializers must reset reference indices to 0 each time a new header is processed.

Page 9 of 11

Adobe Systems Incorporated AMF 3 Specification

4.1.3 AMF Message
An AMF Message contains information about an individual transaction that is to be
performed. It specifies the remote operation, a local client operation to be invoked upon
success or failure and data to be used in the operation. The structure of a response
message is the same as a request message.

The first field of an AMF message is the target URI which describes which operation,
function, or method is to be remotely invoked. The exact format of the target URI is not
defined by this specification. The client must use the naming convention established by a
particular server implementation. An example of a convention might be to specify a fully
qualified service name (such as a class name) using forward slashes to separate service
hierarchy (such as class packages) and a dot to separate the operation (such as a public
class method) from the service name.

 e.g. "com/mycompany/Services.getQuote"

The second field of an AMF message is the response URI which specifies a unique
operation name that will be used to match the response to the client invocation. Since the
remote endpoint will use this field in the event of an error, this field is required even if a
successful request would not be expected to return a value to the client.

 e.g. "/1"

When the message holds a response from a remote endpoint, the target URI specifies
which method on the local client (i.e. AMF request originator) should be invoked to
handle the response.

 e.g. "/1/onResult" or "/1/onStatus"

The response's target URI is set to the request's response URI with an '/onResult' suffix to
denote a success or an '/onStatus' suffix to denote a failure.

As with all strings in AMF, the target URI and response URI strings are encoded using
UTF-8.

target-uri = UTF-8
response-uri = UTF-8

The third field of an AMF message is the byte length of the message body. This may be
useful when it is necessary to split up an AMF packet without first decoding each
individual message. If the length cannot be reliably determined, a value of (U32)-1 can be
specified.

message-length = U32 ; byte-length of message

; (U32)-1 if unknown

Page 10 of 11

Adobe Systems Incorporated AMF 3 Specification

Page 11 of 11

The fourth and final field is the message body. The body contains the actual data
associated with the operation. If the message is a client request then the body contains the
client's parameter data that is passed to the remote operation/method. A list of arguments
should be represented with a Strict Array type.

If the message is a remote endpoint response then the message body may contain a result.

Additionally, if the remote endpoint detects an error with the incoming client data and/or
the operation requested, the remote endpoint will provide error information in the
response message body.

The general message type format is as follows:

message-type = target-uri response-uri message-length

value-type

Note that object reference indices are local to each message body. Serializers and
deserializers must reset reference indices to 0 each time a new message is processed.

5. Normative References

[AMF3] Adobe Systems Inc. "Action Message Format -- AMF 3", June 2006.
[RFC2234] D. Crocker., et. al. "Augmented BNF for Syntax Specifications: ABNF",

RFC 2234, November 1997.
[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC 3629,

November 2003.

	Action Message Format -- AMF 0
	1 Introduction
	1.1 Purpose
	1.2 Notational Conventions
	1.2.1 Augmented BNF

	1.3 Basic Rules
	1.3.1 Strings and UTF-8

	2 AMF 0 Data Types
	2.1 Types Overview
	2.2 Number Type
	2.3 Boolean Type
	2.4 String Type
	2.5 Object Type
	2.6 Movieclip Type
	2.7 null Type
	2.8 undefined Type
	2.9 Reference Type
	2.10 ECMA Array Type
	2.11 Object End Type
	2.12 Strict Array Type
	2.13 Date Type
	2.14 Long String Type
	2.15 Unsupported Type
	2.16 RecordSet Type
	2.17 XML Document Type
	2.18 Typed Object Type

	3. AMF 0 Extensions
	3.1 AVM+ Type Marker

	4. Usages of AMF 0
	4.1 AMF Packets and NetConnection
	4.1.1 AMF Packet Version
	4.1.2 AMF Context Header
	4.1.3 AMF Message

	5. Normative References

