
Chatter on the Wire:
A look at DHCP traffic

by Eric Kollmann
aka xnih

v.1.0
September 2007

Disclaimer

Disclaimer
All information provided in here is my take on the RFC's and on data I came across in my testing. Some of it
could be incorrect!

This paper will be updated from time to time if new data is available that needs added. This is by no means a
completely finished project or a guaranteed 100% accurate document.

i

Acknowledgments

Acknowledgments
Thanks go out to

● The crew at OpenOffice.org that made a great product which I wrote most of this in.
● WeOnlyDo.com for the code and sample project for a DHCP Server. I tried some of the other free ones

out there and couldn't get any to work the way I wanted.
● winpcap.org which without Satori would have never happened.
● wireshark.org who without all of the packet capture screenshots in here wouldn't have been possible.
● A couple of security researchers who have helped out on the project either directly with code into Satori

or with information or posts about the program, because without interest in Satori most of this paper
wouldn't have been written because it would have fallen off my radar.

● packetfence.org project and one of the people over there who pushed the idea of doing more on this
whole DHCP idea.

● NetworkSorcery.net, whose breakdown of different packets has come in very helpful throughout both
papers and multiple programming projects over the years!

Suggested reading material
● For those that want to know more about DHCP in general a good book to read is 'The DHCP Handbook'

2nd Edition by Ralph Droms and Ted Lemon. Droms has been a name on the RFC's for DHCP for years!
● Though this will be mentioned later check out 'ICMP Usage in Scanning' by Ofir Arkin, you can find it

at: http://www.sys-security.com/archive/papers/ICMP_Scanning_v3.0.pdf Many of the initial ideas on
how else to identify systems came from ideas I first read about in some of Ofir's earlier papers.

● From a passive identification process I'd also recommend taking a look at 'Silence on the wire: A field
guide to passive reconnaissance and indirect attacks'. This is an all encompassing book on passive
identification by Michal Zalewski and I know my papers have the same general name, Michal gave me a
bad time about it once.

ii

Contents

Contents
Disclaimer... i
Acknowledgments... ii

Thanks go out to..ii
Suggested reading material... ii

Contents.. iii
Brief recap..1
RFC History for DHCP..3
How DHCP works... 5

DHCP DISCOVER Packet... 7
DHCP OFFER Packet... 7
DHCP REQUEST... 9
DHCPACK & DHCPNAK... 9
Renewing a DHCP Lease..9
DHCP RELEASE – Giving the IP back... 10
DHCP INFORM packets – Getting more information... 10

Format of a DHCP Packet..12
The Hard Way to Fingerprint DHCP... 15

Windows 95.. 18
Windows 98.. 23
Windows 98 SE...24
Window ME.. 25
Windows NT... 26
Windows 2000.. 27
Windows Vista.. 28
Arudis..29
Gentoo 2005.0... 29
Gentoo 2006.1... 30
CentOS 4... 30
Fedora Core 3..31
Fedora Core 4..31
Fedora Core 5..31
Knoppix 5.1...32
Other Linux Builds..32

IP TTL on DHCP Packets..33
DHCP Options – the easy way...34

Using all Options...34
Option 55...35
Windows 95 ... 35
Windows 98.. 36
Microsoft as a whole... 37
Fedora Core and Cent OS... 38
Backtrack, Gentoo and Slax using Option 60... 38
Other Linux Distributions using Option 51 and 57...39

iii

Contents

Beyond Option 55 – how we can track a few other things.. 41
Option 61...41
Option 77...42

PXE Boot and what we can Learn... 43
Option 93 – Client System Architecture... 43
Option 94 – Client Network Device Interface.. 44

Utilizing Lease Information...45
What happens when a lease expires.. 45

Appendix A..47
DHCP Options.. 47
DHCP Message Type 53 Values - per [RFC2132]... 50

iv

Brief recap

Brief recap
Back in August 2005 I did a paper titled: 'Chatter on the Wire: A look at excessive network traffic and what it
can mean to network security'. I don't know how widespread it was or how many people read it, but it kept me
busy during my time in Iraq. It was about active and passive identification and more importantly about all the
different ways that passive OS identification can be used.

I briefly touched on DHCP fingerprinting in that paper. Originally I thought I had a brand new idea, but a
search on google popped up this article: http://www.nts.ku.edu/about/projects/dhcp/NGDHCP.pdf from
sysadminmag.com from February 2005, a few months earlier than my first discovery of this great idea. Dave
Hull one of the authors of the article later put me in contact with the people at the packetfence.org project and
now over 2 years after that article was written, DHCP fingerprinting still has not really taken off at all! I hope
to shed some more light on it and maybe someone with more programming skills than I will expand and run
with it.

There are only a few projects that I know of that utilize this technique for OS identification, below are a few
that I know are currently still receiving updates and are actively supported:

● Satori, which uses it and other packets it sees on the wire for OS identification, written by yours truly,
located at: http://myweb.cableone.net/xnih

● PacketFence which uses the techniques/identification to determine if it should grant you a DHCP
address, which is maintained at http://packetfence.org

● RogueScanner which is a free program for active fingerprinting, which also has a DHCP listener
portion. One issue with it is it is a closed database and it actually ships off its fingerprints back to the
company's site. You can find more out on it at
http://www.networkchemistry.com/products/roguescanner.php

There are a few other projects that were started in regards to the original project:
● dhcprint, last version I see was 0.2 updated in October 2005, located at:

http://erwin.wpi.edu/~fs/dhcprint/
● DHCPListener, last version I see was 1.4, which was the proof of concept one discussed in the original

article. It can be located at: http://www.nts.ku.edu/downloads/

Other products/projects that appear to be using DHCP Fingerprinting
● DAIR, from mobisys, it appears to be geared towards wireless security and detecting rogue APs

I believe University of Kansas also utilizes this information in their RINGS project based on the original
writeup in sysadminmag.com.

So to wrap this all up, no DHCP Fingerprinting isn't something specfic I came up with, but 2 years later little
has been done with it, that I've seen, to improve/expand it beyond the original idea presented by Dave Hull and
George F. Willard III of using the Option 55 and Option 60 data.

Note: In September 2007 I ran across an article dated February 2003 entitled 'New scheme for passive OS
fingerprinting using DHCP message' from the Journal 'Joho Shori Gakkai Kenkyu Hokoku'. Actually all I ran
across was the abstract that discusses using DHCP messages. I have not been able to find a copy of the actual
article. So, this approach to OS fingerprinting is even older than initially thought!

1

http://www.nts.ku.edu/about/projects/dhcp/NGDHCP.pdf
http://www.nts.ku.edu/downloads/
http://erwin.wpi.edu/~fs/dhcprint/
http://www.networkchemistry.com/products/roguescanner.php
http://packetfence.org/
http://myweb.cableone.net/xnih

Brief recap

I've been working on this approach to OS fingerprinting since March 2005 or so, so not sure how I've never
come across this before?

2

RFC History for DHCP

RFC History for DHCP
Before we go any farther we really need a little RFC history lesson. I know, boring to some of you, at the mere
mention of 'RFC' your eye's have rolled back into your head, you've started drooling and gasping for breath, but
it needs to be done since as things have changed with the RFC's so have what the vendors do with their DHCP
stack.

RFC 1541 – Written in October 1993, so for the purposes of this paper it will be the first one we deal a lot with
since the earliest OS I'm writing on is Windows 95. RFC 1541 can be found at:
http://www.faqs.org/rfcs/rfc1541.html

RFC 2131 – Replaced RFC 1541 and was written in March 1997. It is the main one we'll be using. Some
things may have changed in later RFC's. It can be found at: http://www.faqs.org/rfcs/rfc2131.html

According to RFC 2131 here is what has changed from the previous RFC:

1.1 Changes to RFC 1541

 This document updates the DHCP protocol specification that appears in
 RFC1541. A new DHCP message type, DHCPINFORM, has been added; see
 section 3.4, 4.3 and 4.4 for details. The classing mechanism for
 identifying DHCP Clients to DHCP Servers has been extended to include
 "vendor" classes as defined in sections 4.2 and 4.3. The minimum
 lease time restriction has been removed. Finally, many editorial
 changes have been made to clarify the text as a result of experience
 gained in DHCP interoperability tests.

RFC 2132 – Released in March 1997. It gives us information on DHCP Options and BOOTP Vendor
Extensions which is one of the main ways we are using to ID systems.

RFC 4361 – Released in February 2006. It provides a few updates to RFC 2131 and 2132, in respect to the
Client Identification, Option 61, which we use a little in identification also. This one may provide us some
useful information, but could be a waste of time also, only time will tell.

RFC 4388 – This RFC provides some new DHCP Message Types, primarily DHCPLeaseQuery and the
different available responses. It was released in Feburary 2006. It can be found here:
http://www.faqs.org/rfcs/rfc4388.html

Note: It would be fun to get a DHCP Server that supports DHCP Lease Query and send that to all these OS's
and see how they respond. This would be a good test and paper at a later time.

RFC 4578 – Provides some info on PXEboot. It was written recently in November 2006. It can be found here:
http://www.faqs.org/rfcs/rfc4578.html Interesting things to look at here will be section 2.1 which will help
provide information about the underlying hardware platform.

Ok, this is by no means an exhaustive list of the RFC's that talk about DHCP, but it is a start. There are a ton
that deal with IPv6, but since I don't have an IPv6 network to play with, we won't be touching on that in this
paper.

3

http://www.faqs.org/rfcs/rfc4578.html
http://www.faqs.org/rfcs/rfc4388.html
file:///rfcs/rfc1541.html
file:///rfcs/rfc1541.html
http://www.faqs.org/rfcs/rfc2131.html
http://www.faqs.org/rfcs/rfc1541.html

RFC History for DHCP

Notice a lot of these RFC's have been released in the past year (as of the initial writing of this paper). Unless
vendors were planning ahead or not waiting for the RFC, odds are most of the OS's we'll be looking at won't
support some of these new things (such as DHCPLeaseQuery). But we'll see.

4

How DHCP works

How DHCP works
Ok, now that we have the RFC's out of the way and an idea of what has come before, in this field of study, we
can start looking a bit more at it. DHCP has been with us for a long time now. It was an extension or maybe
better put a replacement to BOOTP, but so as to utilize the existing infrastructure already built up in the
BOOTP world it utilized the same format/structure. Some of this we will see may come back to bite us a bit, or
more precisely we are left with information 20+ years later in a DHCP packet that does not appear to be used
anymore. (This can always be a problem when we continue to worry about backward compatibility).

Before we get much further we need to understand how DHCP actually works. As you've seen there are
numerous RFC's out there, and I know the mere mention of that makes some of your eyes glaze over. For those
of you who don't want to look at RFC's at all, sorry, you're going to have to do a lot of scanning of this
document, at least in some areas, since I quote some of them, quite heavily. If it wasn't for these RFC's and
each vendors interpretation of them, or very lack adherence to them it would make the first part of this paper
very hard to do. Granted the first part is about how to do DHCP identification the hard way, so maybe it really
doesn't matter there!

Part of the reason DHCP Fingerprinting works so well is because DHCP is a broadcast packet. Even with all of
those nice expensive, high end switches, replacing all those cheap hubs, when that DHCP Client decides to
come up and request an IP address, they broadcast out for everyone to hear (at least on their local segment) that
“Here I am; Here's my MAC; Here's what IP I had before; Here's what I want”. From a passive OS
identification perspective how can I complain about this lovely “feature”?

Before we go any further I guess we should look at how DHCP actually works, or at least my interpretation and
the drawing that I like. I've noted in this flowchart where we can potentially fingerprint the machines.

5

How DHCP works

At point 1, we can fingerprint the Client with the
Options and information in each of those Options
since most OSs have a unique set of Options, in a
unique order, that they ask for in a DHCP
Discover packet. This will at least give us a base
OS or general idea of the system we may be
dealing with.

At point 2, we can also fingerprint the Client. We
can use the information from Point 1, but better
yet, we can use the time between
DHCPDISCOVER packets. This is going to be
the first main way we look at identifying the
remote client.

At point 3, we can fingerprint the Server, this is
only useful with SOHO type devices that do not
allow you to change things. If you can change
the Options that your Server advertises, any
fingerprinting done here is near useless.

At point 4, we will use the same idea as point 1,
except DHCP Requests now.

At point 5, we can use the same idea as point 2,
assuming that the DHCP Server does not
Respond. This DHCPREQUEST packet may
also be sent as the machine boots up if the lease is
still valid.

At point 6, we may find it to be useful, don’t
know yet. The work required to track this is
beyond what I'm willing to put in at this time!

At point 7, we see something very few OSs
behave nicely and do. That is sending a DHCP
RELEASE packet. This is an advantage since
you never know when you might spot a system.
Also, add to that fact that most OS's don't do this,
it brings down the list of systems we'll identify
this way to just a few!

6

Figure 1.1 – Flowchart of How DHCP packets flow

DHCP Server
Responds

Yes

No

DHCPOFFER
still valid

Server Sends
Broadcast:
DHCPACK

Server Sends
Broadcast:

DHCPNACK
No

Yes

Client accepts
the DHCP
Address

Client sends ARP
to test IP

Is there a
response to

that ARP

Client
Shutdown
Gracefully

Yes

Yes

No

Yes

Client Sends
Broadcast:

DHCPDISCOVER

1 Either DHCP
Server is down or

set as private.
Client waits

random time and
resends packet

2

DHCP Server(s)
sends Broadcast:

DHCPOFFER

3

Client sends
Broadcast:

DHCPREQUEST

4

Client sends:
DHCPRELEASE

7

Client accepts IP.
Periodically sends
DHCPREQUEST

to renew

5

Client rejects IP
and sends:

DHCPDECLINE

6

DHCP Server
Reponds

No

Client Renews
Lease for X time

Yes

Lease eventually
expires

How DHCP works

DHCP DISCOVER Packet
Let's first take a look at the initial bootup process of the machine. This will give us a general idea of what these
packets look like that the DHCP Clients and Servers are sending around to each other, look at how to read them,
what the different sections are, and why we care about them.

Initially, upon bootup most clients will send a DHCPDISCOVER packet. Lets look at a typical one:

Figure 1.2 - Typical DHCP Discover Packet

The Client machine initially sends out a broadcast packet to 255.255.255.255, with a source of 0.0.0.0. Again,
with this being a broadcast packet we are able to see it anywhere on the local segment. On a /24 segment this
may not be as big a deal as say a /16, but even on a small network every little piece of information may come in
useful for you, or for an attacker.

DHCP OFFER Packet
Once a DHCP Server receives a DHCPDISCOVER it will send a DHCPOFFER packet. Any DHCP Server that
hears the packet will send this OFFER back to the client. (This is under the assumption that there are leases still
available and that the server is not setup as a private DHCP server, only handing out addresses to pre-approved
or pre-registered MACs.)

7

How DHCP works

Figure 1.3 - Typical DHCP Offer sent from a DHCP Server

Each DHCP Server is going to do its own thing in regards to what Options it tells the Client about, but the main
things are going to be:
IP Address, Subnet Mask, and Lease Time.

More Options may be sent to the Client, but none of those are actually needed for the Client to work inside of
its current subnet. Granted if you want it to participate on the Internet you may want to provide a default
gateway/router and a DNS Server or two.

The Client may receive more than one DHCP Offer. It just depends on your network. If this were to happen
the Client must make a decision on which DHCP Offer to accept. It may do this by which one answered first,
or it may make that decision based on the Options it received from the DHCP Server. This is going to be very
client specific.

This would be an interesting place of study in the future, but typically, at least in my experience there are not
multiple DHCP Servers per segment, except in a failover scenario. Who wants DHCP Servers fighting over
clients, possibly giving out bad info to it or giving out conflicting information! On the other hand, there are
always those people that plug in a little SOHO router when they shouldn't and end up handing out private/non-
routable addresses and cause problems! Determining how different Clients figure out which DHCP Server to
use would be interesting.

8

How DHCP works

DHCP REQUEST
At this point, the Client will send a DHCPREQUEST, requesting an IP address from the DHCP Server. In
some cases the machine will request different Options than it requested in the DHCPDISCOVER packet, but
not in all cases. Again, this is going to be Client specific.

DHCPACK & DHCPNAK
At this point the DHCP Server acknowledges that that IP is ok by sending a DHCPACK to the client if the offer
is still valid. If the offer has expired, or another DHCP Server has handed out that IP Address, the DHCP
Server will send out a DHCPNAK.

If a DHCPNAK, or negative acknowledgment is sent then the Client will send a DHCPDECLINE packet and
then it will start over sending DHCPDISCOVER packets, at least by RFC. (Is this always the case or will it just
go back and send out DHCPREQUESTS, yet one more place to spend some time researching).

If a DHCPACK, or acknowledgment is sent it is then up to the client to verify that the IP is good for it to use.
Some clients will send out a Gratuitous ARP packet, but not all, asking who owns that IP address. If it gets an
answer it means that someone else is using it, and it then starts over at the DHCPDISCOVER step. If no ARP
Reply is seen, it assumes the IP is free and assigns it to its IP stack.

Again, when time permits we should look into what OS's actually do this, sending out the Gratuitous ARP, to
verify that the IP is free. How many OS's out there, just believe the DHCP Server, accept the IP, and try to start
using it? At least at this time, outside of the scope of this paper like many other things mentioned so far.

Renewing a DHCP Lease
First, we need to look at the RFC here a bit. We need to understand what the Client is supposed to do according
to the RFC. For those of you that want to look this up, here is the RFC that this is from:
http://www.faqs.org/rfcs/rfc2131.html

Section 4.4.5
 The client maintains two times, T1 and T2, that specify the times at
 which the client tries to extend its lease on its network address.
 T1 is the time at which the client enters the RENEWING state and
 attempts to contact the server that originally issued the client's
 network address. T2 is the time at which the client enters the
 REBINDING state and attempts to contact any server. T1 MUST be
 earlier than T2, which, in turn, MUST be earlier than the time at
 which the client's lease will expire.

 [cut]...

 Times T1 and T2 are configurable by the server through options. T1
 defaults to (0.5 * duration_of_lease). T2 defaults to (0.875 *
 duration_of_lease). Times T1 and T2 SHOULD be chosen with some
 random "fuzz" around a fixed value, to avoid synchronization of
 client reacquisition.

 [cut]...

9

http://www.faqs.org/rfcs/rfc2131.html

How DHCP works

 In both RENEWING and REBINDING states, if the client receives no
 response to its DHCPREQUEST message, the client SHOULD wait one-half
 of the remaining time until T2 (in RENEWING state) and one-half of
 the remaining lease time (in REBINDING state), down to a minimum of
 60 seconds, before retransmitting the DHCPREQUEST message.

Ok, so in a nutshell, assuming a lease time of 10 mins (600 secs): 5 mins (300 secs) in the client will attempt to
renew that IP address, sending a DHCPREQUEST, if for some reason it doesn’t get a response it waits half the
time between 300 and 525 secs or 112.5 seconds, so at approximately 413 seconds from getting its IP it would
do yet another DHCPREQUEST. Eventually it would get to that 525 second mark (10 mins = 600 seconds,
0.875 of 600 = 525). At this point it would be in REBINDING state.

When it runs into REBINDING State it stops sending out DHCPREQUEST packets in unicast and starts
sending them in broadcast mode.

If the lease expires, it is supposed to stop sending data out on its leased IP and start the whole process over like
it just booted up, doing a DHCPDISCOVER, DHCPREQUEST, etc. If it gets the original IP back then it is not
required to do the Gratuitous ARP, but if it gets a new IP, then it needs to go through all of the steps.

Now the question, from a fingerprinting perspective is:
1. How big is the “fuzz” factore around the .50 and .875 marks in each OS? Are we talking 0-1 second, 1-

5 secs, etc?
2. Do machines do the 50% of time remaining between T1 and T2 as they are supposed to?
3. When a lease expires, does the OS stop processing packets to that address, or does it continue using it?

The amount of tracking required to keep track of this is more than I'm willing to put in. Other issues that arise
here are how long the lease time is, how long machines stay up and running, etc. To get accurate results here
you'd have to have:

1. Short lease times
2. Client devices that stay up and running constantly

So it is something that may give out useful results, but it is not the easiest way to determine an OS.

DHCP RELEASE – Giving the IP back
Section 4.4.6 talks briefly about DHCPRELEASE, saying it is not a required feature for DHCP to work, but that
if a client no longer needs the IP address (ie it is being shut down) it should do a release.

As we’ll see later, very few OSs implement this feature.

DHCP INFORM packets – Getting more information
DHCPINFORM gives you the ability to request information that may not have been needed upon bootup.
During testing this has been seen mostly in the case of Novell Netware client machines requesting information
on NDS tree, context information or SLP location. This is typically information that is not sent out in the
original DHCPOFFER, but needed by the client.

From a fingerprinting aspect this can give us information about software on the client machine, but may not get
us much closer in determining what OS is on the client.

10

How DHCP works

After further testing, with newer OS's, we've seen that Windows Vista also now utilizes DHCPINFORM
packets. The difference here is that Vista sends the same type of information in the INFORM packets as it did
in its others, so no additional information has really been seen from this OS's perspective with the INFORM
packets.

11

Format of a DHCP Packet

Format of a DHCP Packet
Before we get any deeper into this lets look, again, at a typical DHCP packet. This one happens to be from a
Windows 95 box.

A quick run down on each part of the above message:
● Message Type - Also known as 'op' if you look at the RFC. It has a length of 1. Possible values for this

field are: 1 – DHCP Request; 2 – DHCP Reply
● Don't confuse 'Message Type' with Option 53 'DHCP Message Type'. They may look a lot a

like, but they will hold slightly different information.
● Hardware Type – Also known as 'htype'. It has a length of 1. Possible values for this field, that we'll

see are: 1 – Ethernet; There are others, but we won't be seeing them, but for those interested in a list see:
http://www.networksorcery.com/enp/protocol/dhcp.htm It looks like there are currently about 33.

● Hardware Address – Also known as 'hlen'. It has a length of 1. For our purposes the value we'll be
seeing is 6, the length of a MAC.

● Hops – Length of 1. This value is typically 0, the only time it should be anything different is if the
packet is forwarded on by a DHCP Relay agent.

● Transaction ID – Also known as 'xid'. Length of 4. Should be a random number generated by the client
which is used for the Client and Server to keep track of the current transaction.

● Seconds elapsed – Also known as 'secs'. Length of 2. Set by the client and is supposed to tell the Server
how much time has passed since it started trying to get an IP or has been working on the renewal
process. As we'll see, this is one of those places where each vendor does their own thing.

● Bootp flags – Or just simply 'flags' in the RFC. Length of 2. Should be 1 of 2 values, either Broadcast
or Unicast. The Server is supposed to adhere to what the client requests here. If the client sends it in
Unicast, the Server should respond with Unicast. The only bit, at this point in time, that is to be set is
the first one. All the rest are to be set to 0. So far I haven't seen any that set the rest of the bits to

12

http://www.networksorcery.com/enp/protocol/dhcp.htm

Format of a DHCP Packet

anything but 0, but it may be interesting for future research from identifying the DHCP Server is to set
that value and see if the Server sends it back with the same flags or if it resets them all to 0! According
to the RFC the Relay Agents and Servers should ignore anything besides 0, but we know how well
vendors adhere to RFCs!

● Client IP Address – Or simply 'ciaddr'. Length of 4 for an Ipv4 address of course. Should only hold a
value of anything besides 0.0.0.0 if the client currently has a valid IP address and has it bound to its IP
stack. If the clients DHCP lease has expired, this should be 0.0.0.0

● Your (client) IP address – Or simply 'yiaddr'. Length of 4. Used in the DHCP Offer and ACK packets
returned from the Server. Simply put it is the Server telling you what IP address you should use. An
interesting test would be for the DHCP Client to send something besides 0.0.0.0 in its packet to the
Server. What will the Server do?

● Next Server IP address – Or 'siaddr' in the RFC. Length of 4. Again a field filed in by the Server in
Offer and ACK packets. I've never seen anything but 0.0.0.0 in it, probably depends on the DHCP
Server software and setup. Again, what happens if the client sends the Server something in this field?

● Relay agent IP address – 'giaddr'. Length of 4. This will only be something besides 0.0.0.0 if you are
utilizing a DHCP Relay Agent in your setup.

● Client MAC address – 'chaddr' in the RFC. Length of 16. Just what it states, it is the MAC of the client
sending the DHCP packet. But for those of you paying attention you're saying wait, a MAC isn't 16 in
length, it is only 6! Well think back a few bullets here, we had this nice option called 'Hardware
Length'. Maybe just maybe these 2 tie together in some way. For our purposes, expect a value of length
6 with a lot of 00 padding.

● Server host name not given – Or from the RFC 'sname'. It has a length of 64 and can hold Server host
name information. Typically a lot more of those 00's from my experience.

● Boot file name not given – Or from the RFC 'file' which has a length of 128. As I recall it is for those
systems that will be doing a tftp of their boot file. I believe it was mostly for those old diskless
workstations, but may also be used by cable modems. Haven't looked at this field in a long time.

● Magic Cookie, Options, End Option and Padding – Or all just 'options' via the RFC. This is a variable
length field and each piece breaks down a little bit more. The Options field can be up to 312 in length,
which would make the total packet 576. One of the Options that can be set in this section lets the client
inform the Server of what size packet it is willing to accept. We typically see this with a Mac OS X
machine and some flavors of Linux (and I'm sure Unix as well, but I didn't have any test subjects there).

Note: A little side trip down memory lane here... The Magic Cookie feature was first introduced back in RFC
951 in September 1985, here is what they had to say:

 If the 'vend' field is used, it is recommended that a 4 byte
 'magic number' be the first item within 'vend'. This lets a
 server determine what kind of information it is seeing in this
 field. Numbers can be assigned by the usual 'magic number'
 process --you pick one and it's magic. A different magic number
 could be used for bootreply's than bootrequest's to allow the
 client to take special action with the reply information.

Then in RFC 1497, from August 1993 we get:

Vendor Information "Magic Cookie"

 As suggested in [RFC-951], the first four bytes of this field have
 been assigned to the magic cookie, which identifies the mode in

13

file:///rfcs/rfc951.html

Format of a DHCP Packet

 which the succeeding data is to be interpreted. The value of the
 magic cookie is the 4 octet dotted decimal 99.130.83.99 (or
 hexadecimal number 63.82.53.63) in network byte order.

And guess what, taking a look at Windows Vista Beta 2 we see:

So something originally planned for BOOTP back in 1985 to be used to allow the client to “take special action
with the reply information” and which never appears to have been implemented is still sitting out there! I know
we have to worry about backward compatibility and whatnot, but a 20+ year old RFC feature that as far as I
can determine was never actually implemented..... just sad. An interesting test here would be to set it to
different values, see what different DHCP Servers would do with it. Or in writing your own DHCP Server, fill
it in with other values and see if any clients actually notice. My guess is most don't even read the value, but just
skip it, but who knows. Outside of testing I'll be doing at this time.

Ok, now that we have a run down on what a typical DHCP packet has in it we'll start utilizing that information
in this section. We'll start by treating this like those high school math classes I'm sure we all loved so much.
First we'll do it the hard way, then, after we understand how to do it that way we'll sit down and get to know
how to do it the easy way. In case high school has changed in the 15 years or so since I was there, or the math
classes at least, it used to be you always got to prove the formula before you could use it, or would learn how to
do it the hard way first and then after that get shown the easy way. So here goes....

14

The Hard Way to Fingerprint DHCP

The Hard Way to Fingerprint DHCP
We can use multiple little differences in the way an OS implements its DHCP stack to identify the OS. Some of
these ideas are nothing new to this paper, they are borrowed from ideas presented elsewhere and used for other
OS identification products on different parts of the IP stack.

First we'll look at timing of how often a DHCP Discover packet is sent out when a DHCP Server is not present.
We'll look at Microsoft OS's first since they have the same tendencies here as they do in their ICMP stack. A
great paper on ICMP OS Fingerprinting is by Ofir Arkin and can be found at: http://www.sys-
security.com/archive/papers/ICMP_Scanning_v3.0.pdf

To setup this test, each OS was started up on a segment without a DHCP Server on it to answer them. Clients
were allowed up to 20 minutes to see what they'd do and what packets they would send out. All of the
Microsoft based OS's would do their initial barrage of packets, go to “sleep” for about 5 minutes and then start
over. Some of the Linux based systems would do something similar, where others would do their initial few
attempts, and when they weren't answered, never appeared to attempt to contact the DHCP Server again.

Note: Microsoft Definitions and History

Before we get much farther here I'd like to throw out a definition or two:

Gold, as in Windows 95 Gold is the original release of an Microsoft OS, so in the case of Windows 95 we had
the following releases:

Windows 95 Gold
Windows 95 SP1 (Win 95A)
Windows 95 OSR2 (Win 95B)
Windows 95 OSR2.1 (Win 95B)
Windows 95 OSR2.5 (Win 95C)

Below is a list of Windows based OS's and when they were released, this list is based off of wikipedia.org's list
here: http://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions

DOS-Based
1985 November - Windows 1.0
1987 December - Windows 2.0
1990 May - Windows 3.0
1992 August - Windows 3.1
1992 October - Windows for Workgroups 3.1
1993 November - Windows for Workgroups 3.11
1995 August - Windows 95 (4.00.950)
1995 December - Windows 95 SP1 (4.00.950A)
1996 August - Windows 95 OSR2 (4.00.1111 and 4.0.950B)
1997 August - Windows 95 OSR2.1 (4.00.1212 and 4.0.950B)
1997 August - Windows 95 OSR2.5 (4.00.1214 and 4.0.950C)

15

http://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions
http://www.sys-security.com/archive/papers/ICMP_Scanning_v3.0.pdf
http://www.sys-security.com/archive/papers/ICMP_Scanning_v3.0.pdf

The Hard Way to Fingerprint DHCP

1998 June - Windows 98 (4.10.1998 and 4.10.1998A)
1999 May - Windows 98 SE (4.10.2222, 4.10.2222A and 4.10.2222C)
2000 June - Windows Me (4.90.3000 and 4.90.3000A)

NT Kernel-Based
1993 August - Windows NT 3.1
1994 September - Windows NT 3.5
1995 June - Windows NT 3.51 (3.5.1057)
1996 July - Windows NT 4.0 (4.0.1381)
2000 February - Windows 2000 (5.0.2195)
2001 October - Windows XP
2003- Windows 2003 Server
2007 - Windows Vista

CE-based
1996 November - Windows CE 1.0
1997 November - Windows CE 2.0
1998 July - Windows CE 2.1
1998 October - Windows CE 2.11 for the Handheld PC
1999 August - Windows CE 2.12
2000 July - Windows CE 3.0

Note: Linux History and Definitions

Below is a list of Windows based OS's and when they were released, this list is based off of wikipedia.org's list
here: http://en.wikipedia.org/wiki/Linux_kernel

Kernel
1991 September – Linux 0.1
1991 December – Linux 0.11
1992 March – Linux 0.95
1994 March – Linux 1.0.0
1995 March – Linux 1.2
1996 June – Linux 2.0
1999 January – Linux 2.2.0
2001 January – Linux 2.4.0
2003 December – Linux 2.6.0

Distributions
Redhat Linux

1995 May – RHL 1.0
1995 October – RHL 2.1
1996 March – RHL 3.0.3
1996 October – RHL 4.0
1997 December – RHL 5.0
1999 April – RHL 6.0
2000 September – RHL 7.0

16

http://en.wikipedia.org/wiki/Linux_kernel

The Hard Way to Fingerprint DHCP

2002 September – RHL 8.0
2003 April – RHL 9.0

Redhat Advanced Server/Enterprise Server
2002 March – 2.1
2003 October – 3.0
2005 February – 4.0

Fedora Core
2003 November – FC 1
2004 May – FC 2
2004 November – FC 3
2005 June – FC 4
2006 March – FC 5
2006 October – FC 6

Debian
1996 June – 1.1
1998 July – 2.0
2002 July – 3.0
2007 April – 4.0

We could do this all day on Linux distributions, if you need specific ones for where they fall in for RFC
information check out wikipedia and you should be able to find it!

A large chunk of the identification process, in this paper, will be Windows based, of course not all of them, but
a lot of them. There are a number of reasons for this, not least of which is I work as a Microsoft Engineer and
am much more comfortable playing with it than with some of the other OS's. One of the main reasons though is
that it, at least currently, is a “Microsoft world”. I know, I just offended half of the purists out there. Sure other
OS's are making in-roads into this, but the average user out there is still buying quite a few more Microsoft
systems than anything else. Therefore, most of what I see on my work network is Microsoft machines. Since
most of what I see there is Microsoft if just follows it is easier for me to verify those systems than all the others.

We will delve into quite a few Linux distributions, but not nearly as deeply. Most of the Linux distributions
will be of the 'Live CD' flavor because they were easy to download and setup in a VM. Since most were live
distributions we are also able to see some distinct similarities between them, but more on all of that later.

Again, as a reminder each of these tests was run for 15-20 minutes. Collecting packets from the time the system
booted up, until it was shut down. The system was setup on a network without a DHCP Server on it to answer
its queries. We are able to see the actual time packets showed up in the capture, the difference between each of
those DHCP packets, the type of packet it was, the value that was stored in the Seconds Elapsed field and the
TransactionID on that set of packets.

Unless otherwise noted all packets are DHCP DISCOVER packets since the Client has no knowledge of an
existing DHCP Server out there or a currently valid IP address. We will see that this does not stop some clients
from sending DHCP REQUEST packets from the get-go instead of sending initial DHCP DISCOVER packets.

17

The Hard Way to Fingerprint DHCP

Now that we have a general understanding of what is going on lets take a look at a Win95 machine when no
DHCP Server is on the network to answer it.

Windows 95

Note: I'm providing as much information in a lot of these so that someone else may be able to utilize the
information provided here and find other things I may have missed. I know some of these tables go on longer
than needed and that a few more trees will probably be killed in the printing of this, but I'm willing to live with
that.

A coworker of mine used to joke, as we watched Windows copy files, that we only had “5 more minutes in
Microsoft time” for the file to complete its copy. As most of you know, that little feature to tell how much time
is left in a file copy is by no means accurate most of the time, or at least never has been for me. Why bring this
up?

Look at the 'Seconds Elapsed' column. The Windows 95 box says that 512 seconds have elapsed since the
previous DHCP Discover packet was sent. Now look back at the 'Time Difference' column. In actuality only 2
seconds have passed. Each 1 second in real life is equal to 256 in Microsoft time. If that is the case here, I'm
not surprised it has such a hard time figuring out how long anything is going to take!

Ok, enough making fun of Microsoft's bad time management feature and back to something more useful. In
Windows 95, when no DHCP Server is present, it will send 4 DHCP Discover packets, all spaced 2 seconds
apart, sent in Unicast. It will then wait 5 minutes and 2 seconds (302 seconds) and start the process over again.

Now that we've talked a little about the 'Seconds Field' it is probably time to go back and look at what one of the
RFC's has to say about this.

RFC 1532, which dealt with BOOTP, not DHCP had this to say about it:

18

Seen in both Windows 95 Gold and Windows 95B Testing

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Windows 95 Gold

18.548022 0.000000 Unicast 0 0x15011501
20.557468 2.009446 Unicast 512 0x15011501
22.572565 2.015097 Unicast 1024 0x15011501
24.576440 2.003875 Unicast 1536 0x15011501

326.547115 301.970675 Unicast 0 0x7f977f97
328.549272 2.002157 Unicast 512 0x7f977f97
330.553576 2.004304 Unicast 1024 0x7f977f97
332.559363 2.005787 Unicast 1536 0x7f977f97
634.527055 301.967692 Unicast 0 0xe72de82d
636.530027 2.002972 Unicast 512 0xe72de82d
638.535967 2.005940 Unicast 1024 0xe72de82d
640.540041 2.004074 Unicast 1536 0xe72de82d
943.166368 302.626327 Unicast 0 0x4ec44fc4
945.179732 2.013364 Unicast 512 0x4ec44fc4
947.183176 2.003444 Unicast 1024 0x4ec44fc4
949.189149 2.005973 Unicast 1536 0x4ec44fc4

The Hard Way to Fingerprint DHCP

3.2 Definition of the 'secs' field

 The 'secs' field of a BOOTREQUEST message SHOULD represent the
 elapsed time, in seconds, since the client sent its first BOOTREQUEST

 message. Note that this implies that the 'secs' field of the first
 BOOTREQUEST message SHOULD be set to zero.

 Clients SHOULD NOT set the 'secs' field to a value which is constant
 for all BOOTREQUEST messages.

 DISCUSSION:

 The original definition of the 'secs' field was vague. It was
 not clear whether it represented the time since the first
 BOOTREQUEST message was sent or some other time period such as
 the time since the client machine was powered-up. This has
 limited its usefulness as a policy control mechanism for BOOTP
 servers and relay agents. Furthermore, certain client
 implementations have been known to simply set this field to a
 constant value or use incorrect byte-ordering. Incorrect
 byte-ordering usually makes it appear as if a client has been
 waiting much longer than it really has, so a relay agent will
 relay the BOOTREQUEST sooner than desired (usually
 immediately). These implementation errors have further
 undermined the usefulness of the 'secs' field. These incorrect
 implementations SHOULD be corrected.

This RFC was released in October 1993 and was labeled 'Clarifications and Extensions for the Bootstrap
Protocol'.

Remember this little bit here:

 Clients SHOULD NOT set the 'secs' field to a value which is constant
 for all BOOTREQUEST messages.

This will come back up in later Microsoft OS's and in some of the Linux builds we look at.

Now that we've seen what Windows 95 did lets go back and look at what RFC 1541. (For those tracking RFC's
you're probably asking “Hey I thought we were using RFC 2131 as the main one?” We are, but Windows 95
was released in 1995, RFC 2131 was released in 1997, so to give Microsoft a break we'll be nice and look at the
RFC in place during this time frame).

RFC 1541
4.4.1 Initialization and allocation of network address

 The client begins in INIT state and forms a DHCPDISCOVER message.
 The client should wait a random time between one and ten seconds to
 desynchronize the use of DHCP at startup. The client sets 'ciaddr'
 to 0x00000000. The client MAY request specific parameters by
 including the 'parameter request list' option. The client MAY
 suggest a network address and/or lease time by including the
 'requested IP address' and 'IP address lease time' options. The

19

The Hard Way to Fingerprint DHCP

 client MUST include its hardware address in the 'chaddr' field for
 use in delivery of DHCP reply messages. The client MAY include a
 different unique identifier in the 'client identifier' option. If
 the client does not include the 'client identifier' option, the
 server will use the contents of the 'chaddr' field to identify the
 client's lease.

 The client generates and records a random transaction identifier and
 inserts that identifier into the 'xid' field. The client records its
 own local time for later use in computing the lease expiration. The
 client then broadcasts the DHCPDISCOVER on the local hardware
 broadcast address to 0xffffffff IP broadcast address and 'DHCP
 server' UDP port.

 If the 'xid' of an arriving DHCPOFFER message does not match the
 'xid' of the most recent DHCPDISCOVER message, the DHCPOFFER message
 must be silently discarded. Any arriving DHCPACK messages must be
 silently discarded.

 The client collects DHCPOFFER messages over a period of time, selects
 one DHCPOFFER message from the (possibly many) incoming DHCPOFFER
 messages (e.g., the first DHCPOFFER message or the DHCPOFFER message
 from the previously used server) and extracts the server address from
 the 'server identifier' option in the DHCPOFFER message. The time
 over which the client collects messages and the mechanism used to
 select one DHCPOFFER are implementation dependent. The client may
 perform a check on the suggested address to ensure that the address
 is not already in use. For example, if the client is on a network
 that supports ARP, the client may issue an ARP request for the
 suggested request. When broadcasting an ARP request for the
 suggested address, the client must fill in its own hardware address
 as the sender's hardware address, and 0 as the sender's IP address,
 to avoid confusing ARP caches in other hosts on the same subnet. If
 the network address appears to be in use, the client sends a
 DHCPDECLINE message to the server and waits for another DHCPOFFER. As
 the client does not have a valid network address, the client must
 broadcast the DHCPDECLINE message.

Ok, so the client starts in the INIT state, or DHCPDISCOVER state with the client waiting 1-10 seconds to
“desynchronize” during startup. Well this is going to be hard to determine since we really don't know when the
OS's IP stack is online, so we'll assume it does this correctly.

To look at some of the other stuff it will be easier to look at a packet now:

20

The Hard Way to Fingerprint DHCP

Next the client is supposed to set its 'ciaddr' to 0x00000000, it is set to 0.0.0.0 so, so far so good. The client
“MAY” request an IP address and lease time. As we see in the Options, Option 50 it requests the IP it has had
in the past, but does not request a specific lease time.

The client “MUST” provide its hardware address, which would be found in the Client MAC address field.

Another “MAY” pops up now, it may provide a different unique ID for the Client Identifier Field (Option 61).
As we see here Windows 95 provided the same information in Option 61 as its Client MAC address. This isn't
always the case, but it is the typical thing you will see.

The Client is to create a random transaction ID. As we see above Windows 95 chose 0x16011601. At first I
thought it kept picking something and just repeating it. 12341234 type idea. But it only does this on the first 2
sets of packets it sends in the first table above (0x15011501 and 0x7f977f97), then in the 3rd set of packets this
pattern falls apart. We see this in some of the other OS's also, so there has to be something there, but I haven't
dug around enough to figure out the pattern.

So from what we've seen above, Microsoft appears to be adhering to the RFC (except for the seconds elapsed
field so far). But that can't be true can it, doesn't Microsoft always do its own thing?

Lets back up a little in the RFC

4.1 Constructing and sending DHCP messages

 DHCP Clients and servers both construct DHCP messages by filling in
 fields in the fixed format section of the message and appending
 tagged data items in the variable length option area. The options
 area includes first a four-octet 'magic cookie' (which was described

21

The Hard Way to Fingerprint DHCP

 in section 3), followed by the options. The last option must always
 be the 'end' option.

 [cut]

 DHCP Clients are responsible for all message retransmission. The
 client MUST adopt a retransmission strategy that incorporates a
 randomized exponential backoff algorithm to determine the delay
 between retransmissions. The delay before the first retransmission
 MUST be 4 seconds randomized by the value of a uniform random number
 chosen from the range -1 to +1. Clients with clocks that provide
 resolution granularity of less than one second may choose a non-
 integer randomization value. The delay before the next
 retransmission MUST be 8 seconds randomized by the value of a uniform
 number chosen from the range -1 to +1. The retransmission delay MUST
 be doubled with subsequent retransmissions up to a maximum of 64
 seconds. The client MAY provide an indication of retransmission
 attempts to the user as an indication of the progress of the
 configuration process. The protocol specification in the remainder
 of this section will describe, for each DHCP message, when it is
 appropriate for the client to retransmit that message forever, and
 when it is appropriate for a client to abandon that message and
 attempt to use a different DHCP message.

 Normally, DHCP Servers and BOOTP relay agents attempt to deliver
 DHCPOFFER, DHCPACK and DHCPNAK messages directly to the client using
 unicast delivery. The IP destination address (in the IP header) is
 set to the DHCP 'yiaddr' address and the link-layer destination
 address is set to the DHCP 'chaddr' address. Unfortunately, some
 client implementations are unable to receive such unicast IP
 datagrams until the implementation has been configured with a valid
 IP address (leading to a deadlock in which the client's IP address
 cannot be delivered until the client has been configured with an IP
 address).

 A client that cannot receive unicast IP datagrams until its protocol
 software has been configured with an IP address SHOULD set the
 BROADCAST bit in the 'flags' field to 1 in any DHCPDISCOVER or
 DHCPREQUEST messages that client sends. The BROADCAST bit will
 provide a hint to the DHCP Server and BOOTP relay agent to broadcast
 any messages to the client on the client's subnet. A client that can
 receive unicast IP datagrams before its protocol software has been
 configured SHOULD clear the BROADCAST bit to 0. The BOOTP
 clarifications document discusses the ramifications of the use of the
 BROADCAST bit [21].

 A server or relay agent sending or relaying a DHCP message directly
 to a DHCP Client (i.e., not to a relay agent specified in the
 'giaddr' field) SHOULD examine the BROADCAST bit in the 'flags'
 field. If this bit is set to 1, the DHCP message SHOULD be sent as
 an IP broadcast using an IP broadcast address (preferably
 255.255.255.255) as the IP destination address and the link-layer
 broadcast address as the link-layer destination address. If the
 BROADCAST bit is cleared to 0, the message SHOULD be sent as an IP
 unicast to the IP address specified in the 'yiaddr' field and the
 link-layer address specified in the 'chaddr' field. If unicasting is
 not possible, the message MAY be sent as an IP broadcast using an IP

22

The Hard Way to Fingerprint DHCP

 broadcast address (preferably 255.255.255.255) as the IP destination
 address and the link-layer broadcast address as the link-layer
 destination address.

Ok, I cut some of the 4.1 section out above, but left a chunk at the end that is useful information for other
purposes. The whole flag section there about Unicast and Broadcast will come in eventually. But back to the
problem at hand and the idea that Microsoft may have been following the RFC.

There is this little chunk about,

 The client MUST adopt a retransmission strategy that incorporates a
 randomized exponential backoff algorithm to determine the delay
 between retransmissions. The delay before the first retransmission
 MUST be 4 seconds randomized by the value of a uniform random number
 chosen from the range -1 to +1.

It goes on to say that the next one should double this (so 4, 8, 16, 32 ±1) continuing to double to to a max of
64. Well lets look back at what the actual Time Difference was between Windows 95 DHCP Discover packets
when the DHCP Server wasn't answering.... 2, 2, 2, 302

Ok, so there are a few things that Windows 95 seems to miss in the RFC:
● Time frame between retransmissions
● Whole point of the seconds elapsed field

Each Microsoft OS is a little different on this and I'll touch on each one below.

Windows 98

Similar to Windows 95 we see Seconds elapsed actually being a factor of 256, so again for every one second
elapsed in real life, the OS is incrementing this field in the DHCP packet by 256. Also like Windows 95 we see
4 DHCP packets sent out when no DHCP Server is there to respond, but something a little different now,
instead of every 2 seconds, we now get packets ever 6 seconds, then a break of 5 minutes and 6 seconds and the

23

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Windows 98 Gold

0.000000 0.000000 Unicast 0 0xe800e800
5.993846 5.993846 Unicast 1536 0xe800e800

11.993841 5.999995 Unicast 3072 0xe800e800
17.992411 5.998570 Unicast 4608 0xe800e800

326.326851 308.334440 Unicast 0 0xaa9eaa9e
332.335218 6.008367 Unicast 1536 0xaa9eaa9e
338.344430 6.009212 Unicast 3072 0xaa9eaa9e
344.356020 6.011590 Unicast 4608 0xaa9eaa9e
649.329187 304.973167 Unicast 0 0x653c663c
655.400866 6.071679 Unicast 1536 0x653c663c
661.472528 6.071662 Unicast 3072 0x653c663c
667.486649 6.014121 Unicast 4608 0x653c663c
972.162776 304.676127 Unicast 0 0x2eda2fda
978.470199 6.307423 Unicast 1536 0x2eda2fda
984.489159 6.018960 Unicast 3072 0x2eda2fda
990.555391 6.066232 Unicast 4608 0x2eda2fda

The Hard Way to Fingerprint DHCP

process starts over again.

So there are a few things that Windows 98 Gold seems to miss in the RFC:
● Time frame between retransmissions
● Whole point of the seconds elapsed field

Windows 98 SE

With Windows 98 SE we get a little change. First it appears someone got tired of that whole 256 thing and
decided to change it up a bit for this release (who said 98SE was just a re-release of the same OS?). Instead of
incrementing it they decided to lock it to a specific value for all packets sent in that round. No idea what this
value will be each time, it appears to be random.

Here is where RFC 1532 shows up again, remember that little bit about:

 Clients SHOULD NOT set the 'secs' field to a value which is constant
 for all BOOTREQUEST messages.

Well they didn't exactly set it to a constant value for all of the packets, just all of the packets after the initial one.

As you can also see in the table above, the first volley of DHCP Discover packets, unlike in the previous OS
releases we've seen, we only get 3 DHCP Discover packets, then a little over 5 minute break and then back to
the 4 packet volley we've come to expect from a Microsoft OS. Also a little difference here is that each packet
is spaced a little differently. In previous OS's each packet was evenly spaced. Now we see the 2nd packet being
sent 4 seconds (±1) after the first, then the next packet being sent 8 seconds (±1) after that, then 15 seconds (±1)
after that.

With Windows 98 SE they sorta figured out:
● Time frame between retransmission in the RFC

But then they missed this even more than they had before:
● Whole point of the seconds elapsed field

24

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Windows 98 SE

0.000000 0.000000 Unicast 0 0x4264c24f
4.016893 4.016893 Unicast 53345 0x4264c24f

11.993695 7.976802 Unicast 53345 0x4264c24f
354.526033 342.532338 Unicast 0 0x451ac06f
358.534833 4.008800 Unicast 40874 0x451ac06f
366.538299 8.003466 Unicast 40874 0x451ac06f
381.493376 14.955077 Unicast 40874 0x451ac06f
691.511730 310.018354 Unicast 0 0x5913326d
696.513772 5.002042 Unicast 20137 0x5913326d
705.525158 9.011386 Unicast 20137 0x5913326d
722.485332 16.960174 Unicast 20137 0x5913326d

1035.460828 312.975496 Unicast 0 0xce351b1d
1039.470282 4.009454 Unicast 63143 0xce351b1d
1046.475661 7.005379 Unicast 63143 0xce351b1d
1061.483806 15.008145 Unicast 63143 0xce351b1d

The Hard Way to Fingerprint DHCP

My only conclusion at this point is that Microsoft hired a new group every time to write the DHCP stuff and
they either didn't like what the previous group had done or figured they could do it better and did things
completely different. Got me, all I know is based on what we've seen up to here it sure looks that way!

Window ME

Windows ME made a few changes to the previous consumer version of Windows, but kept a few also (maybe
the comment about a different group every time was a bit premature here). With Windows ME we now get an
initial volley of 3 DHCP Discover packets sent in Unicast mode, when there is no answer here it waits about 14
seconds and tries again. This time it sets the DHCP flag as Broadcast instead of Unicast. Waits times are 4, 8,
and 16 seconds, each ±1 and then a 5 minutes and some odd seconds break, to start over again. Like Windows
98 SE it decides that the whole Seconds Elapsed field is just something it needs to fill and shoves some junk in
it.

This wraps up the consumer version of Windows for back in the day. Next we'll take a look at the business
version of Windows NT and 2000. Eventually looking at some of their latest stuff of Vista.

But before that, a quick wrap up on the Win9x OS's for this section (unfortunately for us all, they'll show up
again somewhere in this paper). For the most part we've seen the DHCP Discover packet in Unicast mode, the
seconds elapsed being tied to 256 and the time between packets being set to a fairly straight forward algorithm
with a 5 minute delay between DHCP Discover volleys.

25

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Windows ME

18.510131 0.000000 Unicast 0 0x4947fe04
34.077567 15.567436 Unicast 13155 0x4947fe04
41.869045 7.791478 Unicast 13155 0x4947fe04
56.266649 14.397604 Broadcast 0 0x1d738766
60.266023 3.999374 Broadcast 2659 0x1d738766
68.274701 8.008678 Broadcast 2659 0x1d738766
84.279593 16.004892 Broadcast 2659 0x1d738766

407.452938 323.173345 Broadcast 0 0x2e64e045
411.452450 3.999512 Broadcast 45377 0x2e64e045
420.464766 9.012316 Broadcast 45377 0x2e64e045
436.481583 16.016817 Broadcast 45377 0x2e64e045
797.448305 360.966722 Broadcast 0 0x8626547d
801.420618 3.972313 Broadcast 10048 0x8626547d
808.432701 7.012083 Broadcast 10048 0x8626547d
823.463090 15.030389 Broadcast 10048 0x8626547d

The Hard Way to Fingerprint DHCP

Windows NT

I thought I had a copy of NT Gold around, but haven't found it, so we'll look at SP1 here first. Again we see the
256 factor, packets sent in Unicast, but a bit different time difference in between. It appears to be 9, 14, and 18,
all ±1.

SP5 seems to have kept most of the same stuff, but again it has changed the pause between packets. Now using
4, 8, and 16, ±1. I'm not sure when this changed, but I assume either in SP3 or SP5 since that seems to be when
most changes were made to this OS from what I recall (sorry was never a big NT 4 fan).

Even though they seemed to fix the spacing issue, the seconds elapsed seems to be uniquely Microsoft even in

26

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Windows NT 4 SP5

3.907075 0.000000 Unicast 0 0x2272886f
7.871992 3.964917 Unicast 1024 0x2272886f

15.912602 8.040610 Unicast 3072 0x2272886f
31.884816 15.972214 Unicast 7168 0x2272886f

364.976805 333.091989 Unicast 0 0xb53c0626
368.943210 3.966405 Unicast 1024 0xb53c0626
377.932114 8.988904 Unicast 3328 0xb53c0626
393.960682 16.028568 Unicast 7424 0xb53c0626
748.980794 355.020112 Unicast 0 0xca00bb73
753.949018 4.968224 Unicast 1280 0xca00bb73
761.990595 8.041577 Unicast 3328 0xca00bb73
778.976421 16.985826 Unicast 7680 0xca00bb73

1114.010100 335.033679 Unicast 0 0x7720cd50
1117.975139 3.965039 Unicast 1024 0x7720cd50
1124.962010 6.986871 Unicast 2816 0x7720cd50
1140.996640 16.034630 Unicast 6912 0x7720cd50

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Windows NT 4 SP1

3.849133 0.000000 Unicast 0 0x6b154665
13.360092 9.510959 Unicast 2560 0x6b154665
26.562041 13.201949 Unicast 5888 0x6b154665
44.719590 18.157549 Unicast 10496 0x6b154665

365.917669 321.198079 Unicast 0 0x7f0f2410
375.602385 9.684716 Unicast 2560 0x7f0f2410
389.665813 14.063428 Unicast 6144 0x7f0f2410
407.550019 17.884206 Unicast 10752 0x7f0f2410
729.690455 322.140436 Unicast 0 0x5f12c41d
739.490730 9.800275 Unicast 2304 0x5f12c41d
753.685147 14.194417 Unicast 6144 0x5f12c41d
772.512828 18.827681 Unicast 10752 0x5f12c41d

1094.304309 321.791481 Unicast 0 0x7a126f6e
1104.051941 9.747632 Unicast 2560 0x7a126f6e
1118.582369 14.530428 Unicast 6400 0x7a126f6e
1137.338007 18.755638 Unicast 11008 0x7a126f6e

The Hard Way to Fingerprint DHCP

the business version of Windows.

Windows 2000

Windows 2000, released right around the same time as Windows ME, they kicked over to this
Unicast/Broadcast type feature. Starts out with 4 Unicast packets, when it gets no response it changes to
Broadcast. Like SP5 of NT we have a 4, 8, and 16 ±1 'Time Difference' and they are still clinging to their 256
seconds in Microsoft time being equal to 1 second in real life feature.

Before we move on to their current OS's of Vista (was only a beta as of the initial writing of this) we'll do a
quick rehash here. Like the previous set of OS's we get this lovely 256 seconds = 1 second rule, we have a set
of rules to determine how many seconds the OS will wait between DHCP Discover packets and then its roughly
5 minute wait between volleys.

27

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Windows 2000 Server SP4

0.000000 0.000000 Unicast 0 0x1e2c1abc
4.006332 4.006332 Unicast 1024 0x1e2c1abc

11.991062 7.984730 Unicast 3072 0x1e2c1abc
28.022814 16.031752 Unicast 7168 0x1e2c1abc
63.983527 35.960713 Broadcast 0 0x662ead22
68.960069 4.976542 Broadcast 1280 0x662ead22
77.012748 8.052679 Broadcast 3328 0x662ead22
93.004581 15.991833 Broadcast 7424 0x662ead22

410.031348 317.026767 Broadcast 0 0x0cff5ecd
414.004389 3.973041 Broadcast 1024 0x0cff5ecd
421.999163 7.994774 Broadcast 3072 0x0cff5ecd
439.022150 17.022987 Broadcast 7424 0x0cff5ecd
791.009081 351.986931 Broadcast 0 0x4f706246
795.035815 4.026734 Broadcast 1024 0x4f706246
803.022808 7.986993 Broadcast 3072 0x4f706246
819.149566 16.126758 Broadcast 7168 0x4f706246

The Hard Way to Fingerprint DHCP

Windows Vista

Windows Vista has changed the Way Microsoft does DHCP a little bit, but not much really. They've kicked
over to Broadcast for the DHCP Flag field completely now and they also appear to send an extra initial packet
that is not tied into the rest of them (see how the Transaction ID changes between packet 1 and packet 2). But
other than that, they are in the same basic boat they've been in for quite some time. They are still doing
something close to 4, 8, and 16 second intervals, with a 5 minute and some odd second interval between
volleys. According to the RFC they really should have had a 32 and 64 second packet in there. They also have
never got around to changing their whole 1 second in real life = 256 seconds in Microsoft time feature.

Supposedly this Broadcast Flag can be turned off in Vista, but it is on by default.

Now that we've had a lot of fun, can we really call it that, fun, anyway, now that we've had all this fun at
Microsoft's expense, lets look at some of the Linux boxes I came up with for testing.

28

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Windows Vista

36.643228 0.000000 Broadcast 0 0xa9e19fdc
36.774136 0.130908 Broadcast 0 0x47c9f24d
40.861436 4.087300 Broadcast 1024 0x47c9f24d
48.107649 7.246213 Broadcast 3072 0x47c9f24d
63.972979 15.865330 Broadcast 6912 0x47c9f24d

403.203627 339.230648 Broadcast 0 0x5837e59f
407.173866 3.970239 Broadcast 1024 0x5837e59f
416.166606 8.992740 Broadcast 3328 0x5837e59f
431.169484 15.002878 Broadcast 7168 0x5837e59f
740.306192 309.136708 Broadcast 0 0x7feedd14
745.314252 5.008060 Broadcast 1280 0x7feedd14
753.309754 7.995502 Broadcast 3328 0x7feedd14
770.342450 17.032696 Broadcast 7680 0x7feedd14

1073.395371 303.052921 Broadcast 0 0xdd85322a
1078.349264 4.953893 Broadcast 1280 0xdd85322a
1086.366535 8.017271 Broadcast 3328 0xdd85322a
1102.362298 15.995763 Broadcast 7424 0xdd85322a

The Hard Way to Fingerprint DHCP

Arudis

This box had a packet capture run for only about 11 minutes. You can see all the data collected. For the first 30
seconds it sent out DHCP DISCOVER packets, after getting no response it stopped trying.

One of the things we see completely different here than we did in the Microsoft tests is that it has set a value in
the Seconds Elapsed field and kept it consistently throughout its DHCP startup sequence. One thing to note is
that it had 2 different DHCP DISCOVER processes going at the same time. It is supposed to keep the same
Transaction ID throughout this process. In this case we see 2 distinct ones. We can break that down to this:

Based on this we get it sending out packets at 4, 8, and 16 second intervals ±1. Why it was doing two at the
same time I'm not sure, but something to look into later if time permits.

Gentoo 2005.0

29

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Arudis

0.000000 0.000000 Unicast 10 0x4591d25f
1.651587 1.651587 Unicast 10 0x957746a
3.044003 1.392416 Unicast 10 0x4591d25f
5.672182 2.628179 Unicast 10 0x957746a

11.069977 5.397795 Unicast 10 0x4591d25f
13.776210 2.706233 Unicast 10 0x957746a
27.173683 13.397473 Unicast 10 0x4591d25f
29.893524 2.719841 Unicast 10 0x957746a

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Arudis

0.000000 0.000000 Unicast 10 0x4591d25f
3.044003 3.044003 Unicast 10 0x4591d25f

11.069977 8.025974 Unicast 10 0x4591d25f
27.173683 16.103706 Unicast 10 0x4591d25f

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Arudis

1.651587 0.000000 Unicast 10 0x957746a
5.672182 4.020595 Unicast 10 0x957746a

13.776210 8.104028 Unicast 10 0x957746a
29.893524 16.117314 Unicast 10 0x957746a

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Gentoo 2005.0

0.000000 0.000000 Unicast 10 0x8e2b2c51
3.550021 3.550021 Unicast 10 0x8e2b2c51

14.915227 11.365206 Unicast 10 0x8e2b2c51
36.471822 21.556595 Unicast 10 0x8e2b2c51

The Hard Way to Fingerprint DHCP

We see the same basic things here. A set Seconds Elapsed field and a failure to try to do DHCP Discovers
again after the initial attempt fails.

Gentoo 2006.1

This build seems to have something a bit different going on than some of the rest. It started off doing a DHCP
REQUEST, this is typically done when you have an existing IP address or are doing a renewel/rebind, not
something you do when the machine hasn't been turned on before. Was this a fluke, does it have to do with
when they made the original LiveCD that this was booted off of, not sure, sometime we need to rerun it for
validity.

CentOS 4

Again, we see 2 separate processes going on at the same time here. One with a Transaction ID of 0x75f6c938
and another of 0x65782858. Each approximately 6 ±1 seconds apart from each other. It then takes a little
break and starts over sending out 6 packets and then quiting when it doesn't get a response.

One change though is that the Seconds Elapsed Field is actually correct.

Later when we look at the easy way to ID systems we'll see that CentOS and Fedora can't be differentiated by
the simple means, but as we will see here in a second maybe in the case of no DHCP Server being present we
can utilize it to tell the difference?

30

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
CentOS 4

0.000000 0.000000 Unicast 0 0x75f6c938
3.222040 3.222040 Unicast 0 0x65782858
6.403152 3.181112 Unicast 6 0x75f6c938
8.383582 1.980430 Unicast 7 0x65782858

33.829241 25.445659 Unicast 0 0x89863f03
37.761298 3.932057 Unicast 4 0x89863f03
46.568221 8.806923 Unicast 13 0x89863f03
61.236646 14.668425 Unicast 28 0x89863f03
80.741610 19.504964 Unicast 48 0x89863f03
90.459483 9.717873 Unicast 58 0x89863f03

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Gentoo 2006.1
(DHCP Request) 0.000000 0.000000 Unicast 10 0xeceee772
(DHCP Request) 4.194787 4.194787 Unicast 10 0xeceee772
(DHCP Request) 12.401223 8.206436 Unicast 10 0xeceee772
(DHCP Request) 28.860002 16.458779 Unicast 10 0xeceee772
(DHCP Discover) 60.106819 31.246817 Unicast 10 0xa5a7371a
(DHCP Discover) 64.175171 4.068352 Unicast 10 0xa5a7371a
(DHCP Discover) 72.249659 8.074488 Unicast 10 0xa5a7371a
(DHCP Discover) 88.294355 16.044696 Unicast 10 0xa5a7371a

The Hard Way to Fingerprint DHCP

Fedora Core 3

Here, unlike in CentOS 4, we don't get the 2 sets of DHCP DISCOVER packets. More tests need to be done to
see if this always happens or if one of these was a fluke due to some unknown reason. Again on this one, like
the previous ones, after the initial flurry of DHCP DISCOVER packets, this OS never seemed interested in
trying again. I gave it 10 or so minutes and never saw any other packets.

Fedora Core 4

It looks a lot like the Fedora Core 3 one, expect we picked up one more packet in there. Instead of only 5
packets, we got 6. Again this could have to do with the algorithm that they use to determine when to send out
packets. This was a one time test and hasn't been repeated yet.

Fedora Core 5

Like the previous test, we've increased the number of packets. Instead of 6 packets like in Fedora Core 4, we
got 7 packets here. Other than that everything looks basically the same.

31

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Fedora Core 3

91.557369 0.000000 Unicast 0 0x9708cf05
96.513013 4.955644 Unicast 5 0x9708cf05

110.525387 14.012374 Unicast 19 0x9708cf05
123.491597 12.966210 Unicast 32 0x9708cf05
139.500417 16.008820 Unicast 48 0x9708cf05

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Fedora Core 4

2.780580 0.000000 Unicast 0 0xd1cd455f
7.785394 5.004814 Unicast 5 0xd1cd455f

18.762807 10.977413 Unicast 16 0xd1cd455f
29.743068 10.980261 Unicast 27 0xd1cd455f
36.779749 7.036681 Unicast 34 0xd1cd455f
49.768023 12.988274 Unicast 47 0xd1cd455f

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Fedora Core 5

92.332620 0.000000 Unicast 0 0x5aff2e17
96.956827 4.624207 Unicast 5 0x5aff2e17

105.951240 8.994413 Unicast 14 0x5aff2e17
119.962996 14.011756 Unicast 28 0x5aff2e17
127.968500 8.005504 Unicast 36 0x5aff2e17
136.983728 9.015228 Unicast 45 0x5aff2e17
148.983644 11.999916 Unicast 57 0x5aff2e17

The Hard Way to Fingerprint DHCP

Knoppix 5.1

For a Linux build, here is something a little odd, they seem to be taking pointers from Microsoft and sticking to
a factor of 256 for that Seconds Elapsed field. I guess we can't just divide the number in their by 256 and see if
it is a factor of 256 and assume it is a Microsoft box anymore. Oh well.

Other Linux Builds
All of the Linux builds so far have decided that if the DHCP Server wasn't up initially, then why try again, at
least in the short term (again, only gave them 10 minutes to try again). Other builds, such as Lindows
(Linspire), OpenBSD and a few others did not seem to have this same short coming, but instead continued to
send out DHCP DISCOVER packets every few seconds, waiting for that DHCP Server to come back on line
and provide it a way onto the network.

There was a lot more data collected on these other builds, but due to time constraints they will not be added at
this time. I hope to release version 1.5 of this paper down the road at some time and to add some of the other
OS's that were skipped, both Linux and Windows machines, along with other OS's such as BeOS.

32

OS Actual Time Time Diff Broad/Unicast Sec elapsed TransID
Knoppix 5.0.1

0.000000 0.000000 Unicast 0 0x60d7d6c3
4.005759 4.005759 Unicast 1024 0x60d7d6c3

11.037472 7.031713 Unicast 2816 0x60d7d6c3
20.833675 9.796203 Unicast 5120 0x60d7d6c3

IP TTL on DHCP Packets

IP TTL on DHCP Packets

If you don't find your favorite OS or Distributionin there, look at one that is based off the same family branch.
Odds are when they built it, they didn't tweak it down at the lower layer, just the pretty front end that they put
on it!

As noted in the title of this, this is the TTL on DHCP packets. Windows seems to pretty much stick to a TTL of
128 across all IP packets. Linux seems to take into account that your DHCP Server really shouldn't be up to
127 hops away from you and drops this number down a bit more. OS X on the other hand seems to want to
make sure your DHCP server can be contacted no matter how far away it is, so it gives it the most it can at 255!

33

OS TTL OS TTL OS TTL OS TTL
Anonym.os 1.0 16 Window s 95 32 Backtrack 1.0 64 Window s 98 128
Auditor 20060502 16 Backtrack 2.0 64 Window s 98 SE 128
Cent OS 4 16 Freespire 1.0 64 Window s ME 128
Fedora Core 3 16 Freespire 2.0 64 Window s NT 4 128
Fedora Core 4 16 Gentoo 2005.0 64 Window s 2000 128
Fedora Core 5 16 Gentoo 2006.0 64 Window s XP 128
Fedora Core 6 16 Gentoo 2006.1 64 Window s Vista 128
Helix 1.8 16 Linspire 4.5 64
Insert 1.3.8 16 Linspire 5.0 64
Kanotix 2005-01 16 Red Hat 6.2 64
Kanotix 2005-02 16 Slax 5.1.8 64
Kanotix 2005-03 16 SUSE Linux 10.1 64
Kanotix 2005-04 16 Ubuntu - Gnome 2.10 64
Kanotix 2006-01 RC4 16 Ubuntu 5.10 64 OS TTL
Knoppix 3.6 16 Ubuntu 6.10 64 OSX 255
Knoppix 3.7 16
Knoppix 3.8 16
Knoppix 3.9 16
Knoppix 4.0 16
Knoppix 5.0 16
Knoppix 5.1 16
Knoppix STD 0.1 16
Open BSD 3.8 16
Operator 3.3 16
PC BSD 1.2 16
PC BSD 1.3 16
PC Linux 16
PHLAK 0.1 16
PHLAK 0.2 16
PHLAK 0.3 16
SLED 10 16

DHCP Options – the easy way

DHCP Options – the easy way
Using all Options
Now that we've looked at the hard way to do identification lets take a look at an easier way. Each machine, as it
boots up, requests certain DHCP Options and Parameters on those Options. We can see that in the following
packet capture:

The first thing we have boxed/marked up there is 'Differentiated Services Field'. I'm not going to touch on this
in this paper, but I have noticed that some OS's have a value of 0x00, where others seem to always be 0x10.
This could come into some use in differentiating between OS's at a later time. This has more to do with the IP

34

DHCP Options – the easy way

stack as a whole than the DHCP Stack, but it appears to be tied into DHCP, in a very loose way for
identification, and that is the only reason I mention it in this paper.

'Time To Live' happens to be next. We've already seen the typical time to live size for a lot of the OS's out
there in the IP stack in my other paper, but the TTL on IP packets that happen to be DHCP packets seem to be
different than the default OS IP TTL, at least on non-Windows machines.

'Second's Elapsed' we've discussed in the first section and how this is one of those fields that each OS seems to
do its own thing with.

'Bootp Flags', here we basically have two options, either it is Unicast or it is Broadcast, that simple.

'Client IP Address', here we'll typically see the 0.0.0.0, but if the lease expires and the machine is still online the
Client will request its existing IP address again (typically at least, some OS's seem to figure if they have the
lease it is good until they shut down and they don't do a request for that address again until they reboot.

But now onto the main feature, the Options that a machine requests upon bootup. In this case we have a
Windows 95B machine asking for Options 53, 61, 50, 12. At this point it actually is just doing a DHCP
Discover (see Option 53) and then providing the DHCP Server with some other information.

Some of that other information is its current hostname, and since most machines like to keep the same IP
address they had in the past, it tells the DHCP Server what IP it would like to have if it is available.

Option 55
By large Option 55 will give us the best information in regards to what OS is being run. In some cases it will be
the same across multiple OS's, or normally over multiple flavors of the same underlying kernel in the Linux
world. Utilizing the parameters requested in Option 55, and the order in which they are requested will/can
typically identify the OS by requesting the IP address.

We'll see more about this throughout the next few sections!

Windows 95
During a normal startup process we'll see these 2 packets from a Windows 95 machine:

A TTL of 32 is unique to Windows 95 from my testing on DHCP. With Windows in general the DHCP TTL
and the TTL it sends on almost all other IP packets is the same. So 32 for Windows 95 machines, 128 for all
the rest.

If we were only to see the DHCP Discover packet, we could utilize the DHCP Options to identify this machine.
Typically though, most networks will have a DHCP Server on the network, so after the machine sends out the
Discover packet it will get an Offer from the Server, once that happens it will then send a DHCP Request. At
this time we can utilize the information provided in parameter list of DHCP Option 55 to uniquely identify the

35

OS Type TTL Options Option 55
Window s 95 Discover 32 53,61,50,12
Window s 95 Request 32 53,61,50,54,12,55,43 1,3,15,6,44,46,47

DHCP Options – the easy way

machine.

In most cases we never need to rely on the DHCP Options as a whole, but can utilize the DHCP Option 55
parameter list to identify machines. There are some cases though where Option 55 data is the same on multiple
OS's. In that case if we fall back to utilizing all of the Options we may be able to get a better guess as to the
OS.

With that being the case, you may ask why we don't utilize the DHCP Options alone. The problem is they are,
typically, too generic. Options alone may give you the family the OS belongs to, but they typically will not
give you the actual build in that family. That being said, new builds of OS's are coming out all the time, so to
dismiss the Options field completely would be a bad idea. Some times the only thing we have to go on is the
Options it gives us.

Windows 98
Next we'll look at Windows 98 SE because it adds another piece to the puzzle:

We now have what is known as the DHCP Vendor Class Identifier, or as I typically refer to it the Vendor Code.
Windows 98SE and Window ME both started adding MSFT 98.

The Vendor Code was introduced so that vendors could provide specific information from the client. This
allows the DHCP Server to send specific information back to the client for the type of hardware it is. This of
course assumes that the Vendor Class Identifier is accurate. If Windows 98SE and Windows ME both say they
are MSFT 98, that may be fine in most cases, since you'd be sending both 98 and ME the same general
information, but what about those cases where one flavor of the OS is no longer supported and the other is. Say
you wanted to get all Windows 98SE boxes off the network, but ME was still ok, well this information alone
isn't enough to do that.

36

DHCP Options – the easy way

Microsoft as a whole
Here we see all of the main information from the Microsoft Systems out there:

The problem is the OS, for whatever reason, from time to time will add something onto Option 55. Typically it
is just a '252' as we see in the Vista Inform Packet, but that isn't always the case.

Below are the 3 I've typically seen from a Windows XP machine, but I have reports of others. Most of the
others are variations where the '1' is dropped off of them:

1,15,3,6,44,46,47,31,33,249,43
1,15,3,6,44,46,47,31,33,249,43,252
1,15,3,6,44,46,47,31,33,249,43,252,12

So it looks like an addition of '252' or '252,12' to the end of a known Windows Option 55 parameter list will
probably be a feasible way to ID machines also. But this hasn't been extensively tested yet!

Next we'll start looking at some Linux machines. Since a lot of Linux builds all come from the same parent, we
can see this in their DHCP bootup process. One other thing that has been interesting to see is that some builds
have not changed their DHCP bootup process throughout quite a few iterations.

37

OS Type TTL Options Option 55 Vendor Code
Windows 95 Discover 32 53,61,50,12
Windows 95 Request 32 53,61,50,54,12,55,43 1,3,15,6,44,46,47
Windows 98 Discover 128 53,61,50,12,55 1,3,6,15,44,46,47,57
Windows 98 Request 128 53,61,50,54,12,55 1,3,6,15,44,46,47,57
Windows 98 SE Discover 128 53,61,50,12,60,55 1,15,3,6,44,46,47,43,77 MSFT 98
Windows 98 SE Request 128 53,61,50,54,12,81,60,55 1,15,3,6,44,46,47,43,77 MSFT 98
Windows 98 SE (Renewel)Request 128 53,61,50,12,81,60,55 1,15,3,6,44,46,47,43,77 MSFT 98
Windows ME Discover 128 53,251,61,50,12,60,55 1,15,3,6,44,46,47,31,33,43,77 MSFT 98
Windows ME Request 128 53,61,50,54,12,60,55 1,15,3,6,44,46,47,31,33,43,77 MSFT 98
Windows ME (Renewel) Request 128 53,61,12,60,55 1,15,3,6,44,46,47,31,33,43,77 MSFT 98
Windows NT 4 Discover 128 53,61,50,12,55 1,15,3,44,46,47,6
Windows NT 4 Request 128 53,61,50,54,12,55 1,15,3,44,46,47,6
Windows NT 4 (Renewel) Request 128 53,61,12,55 1,15,3,44,46,47,6
Windows 2000 Discover 128 53,251,61,50,12,60,55 1,15,3,6,44,46,47,31,33,43 MSFT 5.0
Windows 2000 Request 128 53,61,50,54,12,81,60,55 1,15,3,6,44,46,47,31,33,43 MSFT 5.0
Windows 2000 (Renewel) Request 128 53,61,12,81,60,55 1,15,3,6,44,46,47,31,33,43 MSFT 5.0
Windows XP Discover 128 53,116,61,50,12,60,55 1,15,3,6,44,46,47,31,33,249,43 MSFT 5.0
Windows XP Request 128 53,61,50,54,12,81,60,55 1,15,3,6,44,46,47,31,33,249,43 MSFT 5.0
Windows XP (Renewel) Request 128 53,61,12,81,60,55 1,15,3,6,44,46,47,31,33,249,43 MSFT 5.0
Windows Vista Discover 128 53,116,61,50,12,60,55,43 1,15,3,6,44,46,47,31,33,121,249,43 MSFT 5.0
Windows Vista Request 128 53,61,50,54,12,81,60,55,43 1,15,3,6,44,46,47,31,33,121,249,43 MSFT 5.0
Windows Vista (Renewel) Request 128 53,61,12,81,60,55,43 1,15,3,6,44,46,47,31,33,121,249,43 MSFT 5.0
Windows Vista Inform 128 53,61,12,60,55,43 1,15,3,6,44,46,47,31,33,121,249,43,252 MSFT 5.0

DHCP Options – the easy way

Fedora Core and Cent OS

So as you can see above Fedora Core 3-6 and Cent OS 4 (and I believe the other versions of Cent OS also) all
use the same underlying DHCP stack. So here is one place that we can't differentiate between OS versions or
different OS builds.

Backtrack, Gentoo and Slax using Option 60
We see this on other Linux OS's also, but in some cases we can catch a break by looking at yet another field that
some of them, like Microsoft OS's, have in them. Back to that lovely Vendor Code. In this case though we get
better differentiation because of it.

The nice builders of Gentoo wanted to put a little special touch on their build to set it apart from others. So they
tagged the name right in there. Not just telling us that it was Gentoo Release 3, but that it was running the
Linux 2.6.11 Kernel.

The people at Backtrack didn't give us as much added information to inform us that it was Backtrack 1.0, but
they did provide us with the info that it was running the Linux 2.6.15.6 Kernel.

We can see that they have both continued this practice in later versions:

So here again we see that Gentoo has told us that Gentoo R5 is running Linux 2.6.15 Kernel. Gentoo R8
happened to be 2006.1, not sure what happened to R6 and R7.

38

Slax 5.1.8 Request 64 1,3,6,12,15,17,23,28,29,31,33,40,41,42,119 Linux 2.6.16 i686
Gentoo 2006.0 Request 64 1,3,6,12,15,17,23,28,29,31,33,40,41,42,119 Linux 2.6.15-gentoo-r5 i686
Gentoo 2006.1 Request 64 1,3,6,12,15,17,23,28,29,31,33,40,41,42,119 Linux 2.6.17-gentoo-r8 i686
Backtrack 2.0 Request 64 1,3,6,12,15,17,23,28,29,31,33,40,41,42,119 Linux 2.6.18-rc5 i686

Backtrack 1.0 Request 64 1,3,6,12,15,17,23,28,29,31,33,40,41,42 Linux 2.6.15.6 i686
Gentoo 2005.0 Request 64 1,3,6,12,15,17,23,28,29,31,33,40,41,42 Linux 2.6.11-gentoo-r3 i686

Fedora Core 3 Request 16 53,54,50,55 1,28,2,3,15,6,12,40,41,42
Fedora Core 4 (Renewel) Request 16 53,55 1,28,2,3,15,6,12,40,41,42
Fedora Core 5 Discover 16 53,50,55 1,28,2,3,15,6,12,40,41,42
Fedora Core 3 Discover 16 53,50,55 1,28,2,3,15,6,12,40,41,42
Fedora Core 3 (Renewel) Request 16 53,55 1,28,2,3,15,6,12,40,41,42
Fedora Core 4 Discover 16 53,50,55 1,28,2,3,15,6,12,40,41,42
Fedora Core 4 Request 16 53,54,50,55 1,28,2,3,15,6,12,40,41,42
Fedora Core 5 Request 16 53,54,50,55 1,28,2,3,15,6,12,40,41,42
Fedora Core 6 (Renewel) Request 16 53,55 1,28,2,3,15,6,12,40,41,42
Cent OS 4 Discover 16 53,50,55 1,28,2,3,15,6,12,40,41,42
Cent OS 4 Request 16 53,54,50,55 1,28,2,3,15,6,12,40,41,42
Fedora Core 5 (Renewel) Request 16 53,55 1,28,2,3,15,6,12,40,41,42
Fedora Core 6 Discover 16 53,50,55 1,28,2,3,15,6,12,40,41,42
Fedora Core 6 Request 16 53,54,50,55 1,28,2,3,15,6,12,40,41,42
CentOS 4 (Renewel) Request 16 53,55 1,28,2,3,15,6,12,40,41,42

DHCP Options – the easy way

Backtrack upgraded from the 2.6.11 kernel to the 2.6.18 RC5 one.

Slax 5.1.8 got in here also with the 2.6.16 kernel.

Now could there be overlaps here? Sure, Slax 5.1.9 or some other such build may also be running the Linux
2.6.18-rc5 kernel, so utilizing DHCP alone will not be 100% on your OS identification, but it will get you into
the ball park. And in the case of Gentoo builds may give you a very good idea!

Other Linux Distributions using Option 51 and 57
Here we add a little new twist. We've seen how the Option 55 data will be the same across multiple
distributions of Linux boxes that are all based off the same underlying build, well some of the other Options that
they may provide are Option 51, the Lease time that the Client would like to request, and Option 57, telling the
DHCP Server the size of DHCP packets that it can accept.

As you can see here PHLAK, Knoppix 3.6 – 4.0, Knoppix STD 0.1, Operator 3.3, Auditor 20060502, Kanotix
2005-01 through 03 are all using the same underlying DHCP stack. At first glance at the Option 55 parameter
list we may assume that Red Hat 6.2 is also, and it may be, but it also has a little twist to it. Instead of a TTL of
16, it has a TTL of 64 on its DHCP packets.

All of these OS's are requesting a DHCP Lease Time of 43200 seconds (720 mins or 12 hours). They are also
telling the DHCP Server that they can accept DHCP messages up to a size of 548, instead of the default of 576.
Not sure how this is supposed to help them since according to the RFC it should NEVER be less than 576.
There has to be something here, but, unknown at this time.

As you can see below with a newer version, of the above OS's, the Option 55 data changed:

39

Knoppix 5.0 16 1,3,6,15,28,12,7,9,42,48,49,26 43200 548
Knoppix 5.1 16 1,3,6,15,28,12,7,9,42,48,49,26 43200 548
Kanotix 2005-04 16 1,3,6,15,28,12,7,9,42,48,49,26 43200 548
Kanotix 2006-01 RC4 16 1,3,6,15,28,12,7,9,42,48,49,26 43200 548
Helix 1.8 16 1,3,6,15,28,12,7,9,42,48,49,26 43200 548
Insert 1.3.8 16 1,3,6,15,28,12,7,9,42,48,49,26 43200 548

PHLAK 0.1 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
PHLAK 0.2 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
PHLAK 0.3 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
Knoppix 3.6 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
Knoppix 3.7 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
Knoppix 3.8 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
Knoppix 3.9 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
Knoppix 4.0 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
Knoppix STD 0.1 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
Operator 3.3 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
Auditor 20060502 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
Kanotix 2005-01 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
Kanotix 2005-02 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
Kanotix 2005-03 16 1,3,6,15,28,12,7,9,42,48,49 43200 548
Red Hat 6.2 64 1,3,6,15,28,12,7,9,42,48,49 43200 548

DHCP Options – the easy way

Late in 2005 (guessing based on Kanotix) the underlying Knoppix stuff must have been updated. Helix and
Insert distributions seem to be based on Knoppix based on the Option 55 parameter list. Not sure if that is
accurate without more digging into them, but it seems feasible from what we've seen so far.

Anyway, they started requesting Option 26, MTU for the NIC interface.

40

Beyond Option 55 – how we can track a few other things

Beyond Option 55 – how we can track a few other
things
Option 61
Option 61 Client Identifier is used as a unique identifier to link a Client to its lease. Typically this will be the
Clients MAC, but in cases of RRAS Servers it is a bit of other “stuff” and then its MAC address. This makes
identify MS RRAS Servers fairly trivial from their DHCP packets.

This one is a non RRAS machine, a typical Client you’d see on the network. Value of its data is:
01 + MAC

This one is a MS RRAS Server. Value of its data is:
01 + RAS + ‘ ‘ + MAC + 000000000000

This last one is of a Cisco 2900 Catalyst XL device. We also see its MAC and the VLAN that it is sitting on.

41

Beyond Option 55 – how we can track a few other things

Option 77
Option 77 is User Class Information. This field can be used in quite a few ways, but a default will give you this
on a RRAS Server from Microsoft. It is typically used to help identify a type of computer or category of a user.
This is a user tweakable setting on the Client machine, so while semi useful for Fingerprinting, the fact that it is
changeable from the clients end has to be taken into account.

42

PXE Boot and what we can Learn

PXE Boot and what we can Learn
Ok, you may be thinking there is nothing specific to learn from PXE boots beside the fact that there is a
machine out there trying to do a network boot. We'll that is what I thought originally too until I stumbled across
2 different PXE boots.

Back in the introduction to all of the RFC's I mentioned:
RFC 4578 – Provides some info on PXEboot. It was written recently in November 2006. It can be found here:
http://www.faqs.org/rfcs/rfc4578.html Interesting things to look at here will be section 2.1 which will help
provide information about the underlying hardware platform.

Well lets look at what this actually provides us with:

Option 93 – Client System Architecture
● 0 Intel x86PC
● 1 NEC/PC98
● 2 EFI Itanium
● 3 DEC Alpha
● 4 Arc x86
● 5 Intel Lean Client
● 6 EFI IA32

43

http://www.faqs.org/rfcs/rfc4578.html

PXE Boot and what we can Learn

● 7 EFI BC
● 8 EFI Xscale
● 9 EFI x86-64

So by looking at Option 93 we can determine what the underlying Hardware is. May be useful, may not, time
will tell.

Option 94 – Client Network Device Interface
● 2.00 LANDesk service agent boot ROMs. No PXE APIs.
● 2.00 First generation PXE boot ROMs. (PXENV+)
● 2.01 Second generation PXE boot ROMs. (!PXE)
● 3.00 32/64-bit UNDI specification. (Alpha)
● 3.10 32/64-bit UNDI specification. (Beta) First generation EFI runtime driver support.
● 3.20 32/64-bit UNDI specification. (Release) Second generation EFI runtime driver support.

With Option 94 we can now see what PXE compliance level the NIC is. VMWare uses 2.01.

44

Utilizing Lease Information

Utilizing Lease Information
What happens when a lease expires
One thing that needs more looking into is how many OS's actually renew their IP addresses when the lease
expires and which ones just wait until the next time they reboot.

From my testing it did not look like the majority of Linux builds renewed their leases if they were currently up
and running, only requesting new ones the next time they rebooted. To utilize this information for identification
purposes would be hard. You would need to track individual machines upon bootup, knowing how long the
lease is for and then watching them once 50% of the lease time was up and see if they try to do a DHCP
Request to renew their lease. This may be feasible on a network with a short lease time, but not as practical on
networks with long leases. Granted the use of any passive OS identification program or utility is typically a
long term project and not a 20 minute deal anyway!

Here is a list of OS's that, appear to just continue to use the IP Address, this may have been because of the short
least times I gave them (10 minutes), or it may have been for other reasons:

● Auditor 20060502
● Backtrack 1.0
● Backtrack 2.0
● Helix 1.8
● Insert 1.3.8
● Kanotix 2005-01
● Kanotix 2005-02
● Kanotix 2005-03
● Kanotix 2005-04
● Kanotix 2006-01 RC4
● Knoppix 3.6
● Knoppix 3.7
● Knoppix 3.8
● Knoppix 3.9
● Knoppix 4.0
● Knoppix 5.0
● Knoppix 5.1
● Knoppix STD 0.1
● PHLAK 0.1
● PHLAK 0.2
● PHLAK 0.3
● Red Hat 6.2
● Ubuntu - Gnome 2.10
● Windows 95
● Windows 98

Here are a list known to do DHCP Renewel Requests (DHCP Request) while they currently have an existing IP
address:

45

Utilizing Lease Information

● Cent OS 4
● Fedora Core 3
● Fedora Core 4
● Fedora Core 5
● Fedora Core 6
● Freespire 1.0
● Freespire 2.0
● Gentoo 2005.0
● Gentoo 2006.0
● Linspire 4.5
● Linspire 5.0
● PC BSD 1.2
● PC BSD 1.3
● PC Linux
● Slax 5.1.8
● Ubuntu 5.10
● Ubuntu 6.10
● Windows 2000
● Windows 98 SE
● Windows ME
● Windows NT 4
● Windows Vista
● Windows XP

Here is a list of OS's I'm unsure of due to the fact they didn't like my cobbled together DHCP Server (or I just
didn't pay enough attention to see if they every did):

● Anonym.os 1.0
● Gentoo 2006.1
● Open BSD 3.8
● SLED 10
● SUSE Linux 10.1

46

Appendix A

Appendix A
DHCP Options
Straight copy of: http://www.iana.org/assignments/bootp-dhcp-parameters, but it is always nice to have in a
piece of reference material so you don't have to always go out and look it up.

 Tag Name Length Meaning Reference
 --- ---- ------ ------- ---------
 0 Pad 0 None [RFC2132]
 1 Subnet Mask 4 Subnet Mask Value [RFC2132]
 2 Time Offset 4 Time Offset in [RFC2132]
 Seconds from UTC
 3 Router N N/4 Router addresses [RFC2132]
 4 Time Server N N/4 Timeserver addresses [RFC2132]
 5 Name Server N N/4 IEN-116 Server addresses [RFC2132]
 6 Domain Server N N/4 DNS Server addresses [RFC2132]
 7 Log Server N N/4 Logging Server addresses [RFC2132]
 8 Quotes Server N N/4 Quotes Server addresses [RFC2132]
 9 LPR Server N N/4 Printer Server addresses [RFC2132]
 10 Impress Server N N/4 Impress Server addresses [RFC2132]
 11 RLP Server N N/4 RLP Server addresses [RFC2132]
 12 Hostname N Hostname string [RFC2132]
 13 Boot File Size 2 Size of boot file in 512 byte [RFC2132]
 chunks
 14 Merit Dump File N Client to dump and name [RFC2132]
 the file to dump it to
 15 Domain Name N The DNS domain name of the [RFC2132]
 client
 16 Swap Server N Swap Server addeess [RFC2132]
 17 Root Path N Path name for root disk [RFC2132]
 18 Extension File N Path name for more BOOTP info [RFC2132]
 19 Forward On/Off 1 Enable/Disable IP Forwarding [RFC2132]
 20 SrcRte On/Off 1 Enable/Disable Source Routing [RFC2132]
 21 Policy Filter N Routing Policy Filters [RFC2132]
 22 Max DG Assembly 2 Max Datagram Reassembly Size [RFC2132]
 23 Default IP TTL 1 Default IP Time to Live [RFC2132]
 24 MTU Timeout 4 Path MTU Aging Timeout [RFC2132]
 25 MTU Plateau N Path MTU Plateau Table [RFC2132]
 26 MTU Interface 2 Interface MTU Size [RFC2132]
 27 MTU Subnet 1 All Subnets are Local [RFC2132]
 28 Broadcast Address 4 Broadcast Address [RFC2132]
 29 Mask Discovery 1 Perform Mask Discovery [RFC2132]
 30 Mask Supplier 1 Provide Mask to Others [RFC2132]
 31 Router Discovery 1 Perform Router Discovery [RFC2132]
 32 Router Request 4 Router Solicitation Address [RFC2132]
 33 Static Route N Static Routing Table [RFC2132]
 34 Trailers 1 Trailer Encapsulation [RFC2132]
 35 ARP Timeout 4 ARP Cache Timeout [RFC2132]
 36 Ethernet 1 Ethernet Encapsulation [RFC2132]
 37 Default TCP TTL 1 Default TCP Time to Live [RFC2132]
 38 Keepalive Time 4 TCP Keepalive Interval [RFC2132]
 39 Keepalive Data 1 TCP Keepalive Garbage [RFC2132]
 40 NIS Domain N NIS Domain Name [RFC2132]

47

http://www.iana.org/assignments/bootp-dhcp-parameters

Appendix A

 41 NIS Servers N NIS Server Addresses [RFC2132]
 42 NTP Servers N NTP Server Addresses [RFC2132]
 43 Vendor Specific N Vendor Specific Information [RFC2132]
 44 NETBIOS Name Srv N NETBIOS Name Servers [RFC2132]
 45 NETBIOS Dist Srv N NETBIOS Datagram Distribution [RFC2132]
 46 NETBIOS Node Type 1 NETBIOS Node Type [RFC2132]
 47 NETBIOS Scope N NETBIOS Scope [RFC2132]
 48 X Window Font N X Window Font Server [RFC2132]
 49 X Window Manager N X Window Display Manager [RFC2132]
 50 Address Request 4 Requested IP Address [RFC2132]
 51 Address Time 4 IP Address Lease Time [RFC2132]
 52 Overload 1 Overload "sname" or "file" [RFC2132]
 53 DHCP Msg Type 1 DHCP Message Type [RFC2132]
 54 DHCP Server Id 4 DHCP Server Identification [RFC2132]
 55 Parameter List N Parameter Request List [RFC2132]
 56 DHCP Message N DHCP Error Message [RFC2132]
 57 DHCP Max Msg Size 2 DHCP Maximum Message Size [RFC2132]
 58 Renewal Time 4 DHCP Renewal (T1) Time [RFC2132]
 59 Rebinding Time 4 DHCP Rebinding (T2) Time [RFC2132]
 60 Class Id N Class Identifier [RFC2132]
 61 Client Id N Client Identifier [RFC2132]
 62 Netware/IP Domain N Netware/IP Domain Name [RFC2242]
 63 Netware/IP Option N Netware/IP sub Options [RFC2242]
 64 NIS-Domain-Name N NIS+ v3 Client Domain Name [RFC2132]
 65 NIS-Server-Addr N NIS+ v3 Server Addresses [RFC2132]
 66 Server-Name N TFTP Server Name [RFC2132]
 67 Bootfile-Name N Boot File Name [RFC2132]
 68 Home-Agent-Addrs N Home Agent Addresses [RFC2132]
 69 SMTP-Server N Simple Mail Server Addresses [RFC2132]
 70 POP3-Server N Post Office Server Addresses [RFC2132]
 71 NNTP-Server N Network News Server Addresses [RFC2132]
 72 WWW-Server N WWW Server Addresses [RFC2132]
 73 Finger-Server N Finger Server Addresses [RFC2132]
 74 IRC-Server N Chat Server Addresses [RFC2132]
 75 StreetTalk-Server N StreetTalk Server Addresses [RFC2132]
 76 STDA-Server N ST Directory Assist. Addresses [RFC2132]
 77 User-Class N User Class Information [RFC3004]
 78 Directory Agent N directory agent information [RFC2610]
 79 Service Scope N service location agent scope [RFC2610]
 80 Rapid Commit 0 Rapid Commit [RFC4039]
 81 Client FQDN N Fully Qualified Domain Name [RFC4702]
 82 Relay Agent Information N Relay Agent Information [RFC3046]
 83 iSNS N Internet Storage Name Service [RFC4174]
 84 REMOVED/Unassigned [RFC3679]
 85 NDS Servers N Novell Directory Services [RFC2241]
 86 NDS Tree Name N Novell Directory Services [RFC2241]
 87 NDS Context N Novell Directory Services [RFC2241]
 88 BCMCS Controller Domain Name list [RFC4280]
 89 BCMCS Controller IPv4 address option [RFC4280]
 90 Authentication N Authentication [RFC3118]
 91 client-last-transaction-time option [RFC4388]
 92 associated-ip option [RFC4388]
 93 Client System N Client System Architecture [RFC4578]
 94 Client NDI N Client Network Device Interface [RFC4578]
 95 LDAP N Lightweight Directory Access Protocol [RFC3679]
 96 REMOVED/Unassigned [RFC3679]
 97 UUID/GUID N UUID/GUID-based Client Identifier [RFC4578]
 98 User-Auth N Open Group's User Authentication [RFC2485]

48

Appendix A

 99 GEOCONF_CIVIC [RFC4776]
 100 REMOVED/Unassigned [RFC3679]
 101 REMOVED/Unassigned [RFC3679]
 102-107 REMOVED/Unassigned [RFC3679]
 108 REMOVED/Unassigned [RFC3679]
 109 Unassigned [RFC3679]
 110 REMOVED/Unassigned [RFC3679]
 111 Unassigned [RFC3679]
 112 Netinfo Address N NetInfo Parent Server Address [RFC3679]
 113 Netinfo Tag N NetInfo Parent Server Tag [RFC3679]
 114 URL N URL [RFC3679]
 115 REMOVED/Unassigned [RFC3679]
 116 Auto-Config N DHCP Auto-Configuration [RFC2563]
 117 Name Service Search N Name Service Search [RFC2937]
 118 Subnet Selection Option 4 Subnet Selection Option [RFC3011]
 119 Domain Search N DNS domain search list [RFC3397]
 120 SIP Servers DHCP Option N SIP Servers DHCP Option [RFC3361]
 121 Classless Static Route N Classless Static Route Option [RFC3442]
 Option
 122 CCC N CableLabs Client Configuration [RFC3495]
 123 GeoConf Option 16 GeoConf Option [RFC3825]
 124 V-I Vendor Class Vendor-Identifying Vendor Class [RFC3925]
 125 V-I Vendor-Specific Vendor-Identifying Vendor-Specific [RFC3925]
 Information Information
 126 Removed/Unassigned [RFC3679]
 127 Removed/Unassigned [RFC3679]
 128 PXE - undefined (vendor specific) [RFC4578]
 128 Etherboot signature. 6 bytes: E4:45:74:68:00:00
 128 DOCSIS "full security" server IP address
 128 TFTP Server IP address (for IP Phone software load)
 129 PXE - undefined (vendor specific) [RFC4578]
 129 Kernel options. Variable length string
 129 Call Server IP address
 130 PXE - undefined (vendor specific) [RFC4578]
 130 Ethernet interface. Variable length string.
 130 Discrimination string (to identify vendor)
 131 PXE - undefined (vendor specific) [RFC4578]
 131 Remote statistics server IP address
 132 PXE - undefined (vendor specific) [RFC4578]
 132 IEEE 802.1Q VLAN ID
 133 PXE - undefined (vendor specific) [RFC4578]
 133 IEEE 802.1D/p Layer 2 Priority
 134 PXE - undefined (vendor specific) [RFC4578]
 134 Diffserv Code Point (DSCP) for VoIP signalling and media streams
 135 PXE - undefined (vendor specific) [RFC4578]
 135 HTTP Proxy for phone-specific applications
 136-149 Unassigned [RFC3942]
 150 TFTP server address (Tentatively Assigned - 23 Jun 2005)
 150 Etherboot
 150 GRUB configuration path name
 151-174 Unassigned [RFC3942]
 175 Etherboot (Tentatively Assigned - 23 Jun 2005)
 176 IP Telephone (Tentatively Assigned - 23 Jun 2005)
 177 Etherboot (Tentatively Assigned - 23 Jun 2005)
 177 PacketCable and CableHome (replaced by 122)
 178-207 Unassigned [RFC3942]
 208 pxelinux.magic (string) = F1:00:74:7E (241.0.116.126) (Tentatively
 Assigned - 23 Jun 2005)

49

Appendix A

 209 pxelinux.configfile (text) (Tentatively Assigned - 23 Jun 2005)
 210 pxelinux.pathprefix (text) (Tentatively Assigned - 23 Jun 2005)
 211 pxelinux.reboottime (unsigned integer 32 bits) (Tentatively Assigned
 - 23 Jun 2005)
 212-219 Unassigned
 220 Subnet Allocation Option (Tentatively Assigned - 23 Jun 2005)
 221 Virtual Subnet Selection Option (Tentatively Assigned - 23 Jun 2005)
 222-223 Unassigned [RFC3942]
 224-254 Private Use
 255 End 0 None [RFC2132]

DHCP Message Type 53 Values - per [RFC2132]
Registration Procedures:

Value Message Type Reference
----- ------------ ---------
 1 DHCPDISCOVER [RFC2132]
 2 DHCPOFFER [RFC2132]
 3 DHCPREQUEST [RFC2132]
 4 DHCPDECLINE [RFC2132]
 5 DHCPACK [RFC2132]
 6 DHCPNAK [RFC2132]
 7 DHCPRELEASE [RFC2132]
 8 DHCPINFORM [RFC2132]
 9 DHCPFORCERENEW [RFC3203]
 10 DHCPLEASEQUERY [RFC4388]
 11 DHCPLEASEUNASSIGNED [RFC4388]
 12 DHCPLEASEUNKNOWN [RFC4388]
 13 DHCPLEASEACTIVE [RFC4388]

The only ones I've captured in the wild are Values 1-8. The rest have fairly recently been added and I assume
are going to be directed at the Client directly via IP, not a broadcast message for everyone to see.

50

	Disclaimer
	Acknowledgments
	Thanks go out to
	Suggested reading material

	Contents
	Brief recap
	RFC History for DHCP
	How DHCP works
	DHCP DISCOVER Packet
	DHCP OFFER Packet
	DHCP REQUEST
	DHCPACK & DHCPNAK
	Renewing a DHCP Lease
	DHCP RELEASE – Giving the IP back
	DHCP INFORM packets – Getting more information

	Format of a DHCP Packet
	The Hard Way to Fingerprint DHCP
	Windows 95
	Windows 98
	Windows 98 SE
	Window ME
	Windows NT
	Windows 2000
	Windows Vista
	Arudis
	Gentoo 2005.0
	Gentoo 2006.1
	CentOS 4
	Fedora Core 3
	Fedora Core 4
	Fedora Core 5
	Knoppix 5.1
	Other Linux Builds

	IP TTL on DHCP Packets
	DHCP Options – the easy way
	Using all Options
	Option 55
	Windows 95
	Windows 98
	Microsoft as a whole
	Fedora Core and Cent OS
	Backtrack, Gentoo and Slax using Option 60
	Other Linux Distributions using Option 51 and 57

	Beyond Option 55 – how we can track a few other things
	Option 61
	Option 77

	PXE Boot and what we can Learn
	Option 93 – Client System Architecture
	Option 94 – Client Network Device Interface

	Utilizing Lease Information
	What happens when a lease expires

	Appendix A
	DHCP Options
	DHCP Message Type 53 Values - per [RFC2132]

