Certificate Transparency

Adam Langley, Ben Laurie, Emilia Kasper Al Cutter, Stephen McHenry

{agl, benl, ekasper}@google.com

Part I Certificate Transparency Background & Design

Part II Implementing A CT Log

The DigiNotar/TURKTRUST story

- July 19th, 2011: DigiNotar CA finds evidence of compromise through routine daily check
- Evidence of large-scale MitM in July
- *.google.com pinning failure externally reported August 28th, cert revoked and Chrome updated August 29th
- August 2011: TURKTRUST CA mistakenly issues two intermediate CA certs
- *.google.com cert detected December 24th 2012, revoked December 25th

How to fix this?

- Minimize the window between incident and response
 - We can't prevent attacks, but we can make them much more expensive by giving the attacker only one, short-lived shot
- Only domain owners know which certificates are legitimate - give them power
- Make the (computers of the) world gossip
 - vaccination effect: not everyone has to participate for everyone to benefit

Certificate Transparency Promise

Certificate Transparency will make all public end-entity TLS certificates public knowledge, and will hold CAs publicly accountable for all certificates they issue.

And it will do so without introducing another trusted third party.

Design requirements

- Compulsory: make non-logged certs hard fail in browsers
 - Must be extremely easy for server operators (= no software upgrade)
 - No side channels (a la OCSP) in TLS handshake
 - No noticeable performance penalty for page load
- Backwards compatible: do not break old browsers
- No plug-and-play option in TLS...
- ... but can do hard fail with CA participation
 - CA submits cert, embeds signature and re-signs

Certificate log core design

- A CT Log is an append-only list of certificates. The log server
 - Verifies the certificate chain for CA attribution
 - For accepted certificates, immediately issues a cryptographic promise to log them
 - Periodically appends all new certificates to the append-only log and signs that list (we use a Merkle Tree)
- Two-phase design influenced by both CA/TLS server and log server deployment restrictions

Who participates in the protocol?

- Server(operator)s and CAs
 - submit certificates to the log
 - obtain a signature that a certificate is logged
 - servers present this signature to TLS clients

• TLS clients

- synchronously verify the log signature using a builtin public key
- asynchronously verify that the certificate has appeared in the append-only log
- asynchronously gossip their view of the log

• Everyone

- verifies their views of the log are consistent
- monitors the log for suspicious certificates

Public reactions

• Lots of supportive reactions:

- "DigiCert believes strongly in the value of added transparency to [SSL]" (Jeremy Rowley, DigiCert)
- "FWIW, as lead developer of Comodo's issuance code [...], I intend to seek permission [...] to implement [CT]." (Rob Stradling, Comodo)
- "I think [CT] lets everyone win without being the TSA of the Internet." (Jon Callas, Entrust)
- Some (valid) concerns from CAs:
 - What if we want to issue a cert and the log is down?
 - What if the log rejects our certificate?

Who will operate logs?

- Google is committed to running a robust, high performance log service
- We hope that there will be other logs
 - Multiple logs = feasible to revoke a compromised log's key in the browser
 - Certs can have multiple log signatures, clients will check that at least one of them is from a currently trusted log
- Not every log has to be high-performance
 Open-source codebase for smaller logs
- We'd welcome CAs to run one to alleviate concerns about external dependencies

Part II Implementing A CT Log

System requirements

- Seamlessly integrate with CA processes
 - Distributed frontends/geographically separate logs for speed and ~100% uptime
 - Reliably commit new certificate entries inline with the certificate submission
 - << 1 qps writes on average (a few million new certs per year?) but highly bursty
- Eventually, assign a fixed order to entries (distributed log needs a global counter)
- Log has a Maximum Merge Delay (MMD) for publishing updates

CT log security

- The private key
 - Log key is as sensitive (= as hard to replace) as a root CA key...
 - ... but unlike a root CA key, needs to be online 24/7
 - However ROI on compromise is much smaller:
 - attacker still needs to compromise a CA first
 - ... and only gets one, short-lived shot
 - Need multiple logs to tolerate occasional failure
- Crypto
 - RSA2048/ECDSA P-256 with SHA256
 - ECDSA has minimal overhead in embedded certificates (~100 bytes per CT log)

Google is running a CT pilot log

https://ct.googleapis.com/pilot/

- 1,247,715 certificates in the log, and counting (<u>https://ct.googleapis.com/pilot/ct/v1/get-sth</u>)
- No official MMD yet but aim to update daily
- Aim to accept common roots: if yours is missing and you'd like it added, let us know
- Public key and updates via certificatetransparency@googlegroups.com

CT support for Chrome coming soon

- Gradual deployment: start by displaying positive indicators for CT-enabled websites
- Privacy-preserving gossip protocols
- Allow "pinning" of mandatory CT?

Certificate Transparency × C Certificate Transparency × Settings		
← → ℃	https://www.example.com:8124	
Network Work Internet-Draft Intended stat	www.example.com Identity verified	*
Expires: Octo	Permissions Connection	
-	The identity of this website has been verified by Certificate Transparency CA. <u>Certificate Information</u>	
Abstract	Your connection to www.example.com is encrypted with 256-bit encryption.	
This d well a	The connection uses TLS 1.1.	ti
Logs a	CAMELLIA_256_CBC, with SHA1 for message authentication and DHE_RSA as the key	pr
Status of	exchange mechanism.	
This I Intern	The server's certificate has been observed in a Certificate Transparency log.	s sk
Interr progre	i Site information	hs
This I	fou have never visited this site before today.	
Copyrigh	What do these mean?	
Copyr		er

This document is subject to BCP 78 and the IETF Trust's Legal Provisions rights and restrictions with respect to this document. Code Components Simplified BSD License.

Resources

Design document

http://www.links.org/files/CertificateTransparencyVersion2.1a.pdf

Experimental Internet Draft http://datatracker.ietf.

org/doc/draft-laurie-pki-sunlight/

Open-source code repository

http://code.google.com/p/certificate-transparency

Google's CT log pilot

https://ct.googleapis.com/pilot

Mailing list

certificate-transparency@googlegroups.com

certificate-transparency@googlegroups.com