
NetSurf after 1.0 – where to from here?

John-Mark Bell

2nd April 2007

1 Introduction

As development of NetSurf’s first official release draws to a close, now
would seem to be the ideal opportunity to evaluate what has been achieved.
Further to this, and assuming development is set to continue, it is wise to
consider future directions for the project.

It must be stressed that the views contained within this document are
those of the author alone - nothing is set in stone. This document aims
to stimulate the debate surrounding the goals for future NetSurf releases.
Criticism and new ideas are welcome. The selection of features and tech-
nologies in this document is highly subjective, especially in the discussion
of non-core technologies. Additionally, a number of technologies are in-
cluded for completeness rather than as sensible propositions.

It is also important to be aware that this document is deliberately vague
on the subject of how the suggestions made within it might be imple-
mented. That information is too specific for a discussion document.

2 Where we are now

The current state of NetSurf is the result of 5 years’ development. This
section provides an overview of where NetSurf has been successful and
where there is still room for improvement.

1

mailto:jmb@netsurf-browser.org


2.1 What’s good

2.1.1 Achieved project goals

The original mission statement for NetSurf was “to bring the HTML 4 and
CSS technologies to RISC OS”. In the current browser, it is fair to say that
this aim has been achieved successfully. However, that original mission
statement does not cover a large proportion of the fundamental feature set
that is required to realise a usable web browser. NetSurf 1.0 contains sup-
port for much more than just the two, key, technologies mentioned above.

2.1.2 Good ability to render much of the web

In terms of its rendering ability (and thanks mainly to its CSS support)
NetSurf is capable of displaying a large proportion of the web in the way
it is intended. Sites which are well designed and conform to standards are
handled particularly well.

2.1.3 Speed

NetSurf is fast. In terms of responsiveness to user actions, it far outperforms
competing products. The layout and drawing engine is reasonably well
optimised.

2.1.4 UI

A key feature of NetSurf is how well it integrates with the native OS. This
is achieved by use of native tools wherever possible, along with adherence
to platform HCI standards. NetSurf’s RISC OS UI goes beyond this and is
considered by some to be setting the standard for user interfaces on that
platform. Features such as the status bar nested to the left of the horizontal
scrollbar have made their way into other applications.

2.1.5 Documentation & Graphic Design

NetSurf is well documented. The user manual weighs in at over 10,000
words and is illustrated by many images. The documentation has been
translated into 3 languages (with a partial translation into a fourth). Graphic

2



design plays an important part in NetSurf; the branding of the browser, de-
sign of the website and user interface themes are all affected by this.

2.1.6 Portability & Overall Design

NetSurf is portable. It has been seen running on a number of different
operating systems, on a number of different processor architectures. These
include:

Operating systems:

• RISC OS

• Linux (various distributions)

• FreeBSD

• Microsoft Windows (via GTK, not native).

Processor architectures:

• ARM

• x86

• x86 64

• SPARC.

NetSurf has also been ported to the Nokia N770 handheld device.
The design of NetSurf is particularly modular – handlers for different

types of content may be added trivially. Implementation of new user inter-
faces is simplified by the coherent API and separation of most implementa-
tion details into platform independent and platform dependent parts.

2.2 What’s bad

2.2.1 Intolerance of syntactically invalid documents

NetSurf’s HTML parser is particularly picky about syntactically invalid doc-
uments. Its error handling mechanisms are nowhere near as robust as those
of mainstream browsers and differ significantly from those other parsers.

3



This results in NetSurf exhibiting strange layout behaviour when faced with
some sites. With over 90% of the HTML documents on the web being syn-
tactically invalid to some degree, NetSurf’s behaviour in this area leaves a
lot to be desired.

2.2.2 Speed

Although NetSurf is fast, there is plenty of room for improvement. SSL
fetches are particularly slow on ARM hardware. Additionally, large doc-
uments appear to tax the browser’s core engine rather more than would
be desired. Complaints have been seen in the past that “it’s not as fast as
Fresco”; some of this speed difference can, however, be put down to the
fact that the releases of Fresco in question have utterly no support for CSS
at all.

2.2.3 Memory consumption

Another common complaint about NetSurf (though significantly less fre-
quently seen in recent times) is that of memory consumption. For some,
NetSurf uses too much memory (and releases too little back to the OS when
it is idle). This is clearly an area for improvement.

2.2.4 Incomplete CSS2 support

NetSurf’s CSS2 support is incomplete. The vast majority of major features
are present but there is still a significant subset of functionality that is miss-
ing. For example, support for @charset/@media blocks, !important rules
and pseudo-selectors is missing. To various extents, these affect NetSurf’s
ability to render pages as they are intended.

2.2.5 Layout engine missing functionality

The layout engine is missing support for some CSS layout-related proper-
ties. The most obvious of these include fixed positioning, vertical alignment
and text baselining. The current layout engine is not designed to handle
dynamic changes to the underlying document or its styling.

4



2.2.6 No DOM/JavaScript

The primary complaint about NetSurf’s feature set is the complete absence
of JavaScript from it. To a number of potential users, this issue renders the
browser useless (at least in their minds, if not in practice). Coupled with
the lack of JavaScript is the omission of a DOM implementation into which
a JavaScript engine could hook. Although this is more of an implementa-
tion detail, it is a critical problem which must be solved, should JavaScript
support be required.

3 The future

In this section, we provide an overview of the technologies which could be
added to NetSurf in the future, identifying the benefits of doing so and any
disadvantages which may be incurred.

3.1 Core Technologies

3.1.1 HTML4 and later

Enhanced support for HTML 4 and versions of HTML beyond that. The crit-
ical issues here are parsing the document source into a consistent internal
representation and applying the correct layout rules to each element.

In considering the parsing problem, it is important to be aware that
it provides the ideal opportunity to bring NetSurf’s error handling in line
with that of mainstream browsers. It also allows for the production of a
parsing architecture which is capable of handling extraneous source data
to be injected into the input stream (cf. document.write()).

Correct layout is important for consistent rendering and interoperabil-
ity with other user agents. Many of the layout requirements for HTML el-
ements are directly representable in CSS. There are a number of elements
which have special cases, for one reason or another. Many of these are
already handled by NetSurf’s current HTML handling; there are omissions,
however, and these should be fixed.

5



3.1.2 XHTML

NetSurf’s current handling of XHTML is to map it directly to HTML and use
the existing HTML handling infrastructure to handle it. This is not entirely
satisfactory, especially at the parse stage, as XHTML imposes a different set
of requirements upon UAs than HTML. The most prominent example of this
is XHTML’s parsing requirements – being an XML dialect, encountering an
error in the input document should abort the parsing process. There also
exist a number of XML-specific features which an HTML parser would not
be able to handle (processing instructions, for example).

Adding support for this would involve use of an XML parser to parse the
document into a DOM. Ideally, this DOM would have the same interface as
that for standard HTML (i.e. DOM nodes are the same, no matter what the
source). To achieve this probably means making use of a SAX parser and
building the DOM tree ourselves.

3.1.3 XML + XSLT / SVG / MathML

NetSurf currently has no ability to handle generic XML documents (styled
with CSS or, through XSLT, converted into (X)HTML + CSS). This extends
to a lack of support for SVG or MathML (which are both XML applications).
The former is becoming more prevalent on the web, due to native handling
being included in at least one mainstream browser.

SVG and MathML may be embedded as a subtree within another XML
dialect’s DOM (e.g. an XHTML document may contain elements from the
svg namespace). The impact of this is that scripting implementations are
able to manipulate these DOM subtrees in the same way as they may oper-
ate upon the containing document’s. To achieve this fully would require a
great deal of work.

3.1.4 CSS

NetSurf’s CSS support currently encompasses the vast majority of CSS1
and a great deal of CSS2.1. However, the parser has its limits and does
need revisiting. Also, pseudo selectors and !important rules are entirely
unsupported.

NetSurf currently has no support for alternate stylesheets and dynamic
stylesheet switching. This is needed from an accessibility perspective if

6



nothing else.
At-rules aren’t supported particularly well at present (especially @me-

dia blocks, the contents of which get treated as if they are part of the con-
taining stylesheet regardless of whether their media type is applicable to
the UA).

To address these issues, NetSurf’s CSS parser will need a rewrite. In or-
der to support dynamic pseudo classes sensibly, the ability to match styles
dynamically is required. While these things are being addressed, consider-
ation should be made as to how support for CSS3 and future versions could
be added (even if such support does not appear in the short term).

3.1.5 DOM

NetSurf currently discards the DOM tree generated by the parser after the
box tree has been created. This makes the addition of scripting support to
the existing browser almost impossible.

The DOM comprises a number of different components, of which the
Core, HTML and Events collections are the most important from a scripting
perspective.

Adding support for the DOM APIs can take two forms; the first is to
veneer them over existing implementation details (i.e the DOM is simply
a part of the scripting implementation); the second is to make the DOM
API a core component of the browser’s engine and use it throughout. The
former option isn’t available within NetSurf, as the information needed to
be able to make the DOM APIs a veneer is not available.

The CSSOM is also missing from NetSurf at present and support for this
would ideally be added in future. Any DOM support should target DOM
levels 3 and 2, ideally, although support for DOM levels 1 and 0 will, to
some extent, be necessary for compatibility.

3.1.6 JavaScript

JavaScript is the key feature missing from NetSurf and, for some, is the bar-
rier to it becoming their first-choice browser. A JavaScript implementation
is comprised of; an ECMAScript interpreter, a collection of classes exposing
the DOM API, a collection of classes exposing the non-DOM API (Window,
History, etc), and a collection of classes implementing other things.

7



The major effort involved in bringing JavaScript support to NetSurf is
likely to be that of the class libraries (and ensuring appropriate sandboxing
for JavaScripts).

3.1.7 Layout Engine

As it stands, NetSurf’s layout engine is completely unsuited to dynamic
document changes (either through CSS or scripting). Should support for
dynamic CSS or scripting be added in the future, this shortcoming must be
addressed.

The layout engine also omits support for a number of layout-related
CSS properties. Ideally, these will be addressed in future.

3.2 Non-core Technologies

3.2.1 IDN/IRI

NetSurf currently has no support for Internationalized Domain Names (IDNs)
or Internationalized Resource Identifiers (IRIs). At some future point, sup-
port for these technologies should probably be added.

3.2.2 Flash

For the RISC OS build, it may be desirable to add support for Flash, ei-
ther through a plugin or by embedding support directly within the browser.
From a cross-platform perspective, utilising a plugin would be better, as it
would allow usage of whichever plugin is native to the platform.

3.2.3 Plugins

Plugins in general are an issue which requires addressing in the future. The
legal implications of the Eolas patent have caused other browser vendors
to implement a “click to activate” interface for embedded content (i.e. the
embedded content is not displayed until the user has clicked to activate the
plugin task).

8



3.2.4 Printing

Printing is currently fairly rudimentary and prone to failure in some situa-
tions. It would be good to address this in the future.

Future developments could include the addition of a print preview mech-
anism; allowing the user to see what will be printed (and perhaps select the
areas they wish to print). Taking account of print stylesheets when printing
would be a worthwhile addition.

Printing on RISC OS 5 is fundamentally broken. Addressing this may
be done in one of two ways; make NetSurf fall back to printing only ASCII
text; fix the OS’ printer drivers. The former is hardly a desirable solution
(and one which has been studious avoided in the past). Therefore, if at all
possible, fixing the OS’ printer drivers would appear to be the best solution.

3.2.5 Disc Caching

Caching of content to disc has long been contemplated but, as yet, remains
unimplemented for all contents which are not images. It may be a desirable
improvement to add caching support for non-image contents.

3.2.6 Development tools

To aid web developers, it may be a good idea to include some kinds of
debugging facilities, such as a JS console, log of parsing errors, DOM in-
spector, and so forth.

3.3 User Interface

3.3.1 Improvements

The common user interface is reasonably feature complete. This section
details a number of ways in which it could be improved.

Keyboard navigation Keyboard-driven web page navigation would be a
nice addition, providing functionality which is present in other browsers.
One way in which this could be achieved is to use the CSS outline property
to dynamically indicate the currently selected link.

9



Kiosk mode It may be desirable to add a kiosk mode interface, where the
content area encompasses the entire screen.

Auto-completion for forms NetSurf currently possesses auto-completion
for the URL entry bar. It would be a useful enhancement to extend this to
all form fields. There are obvious issues here relating to password entry,
however.

3.3.2 RISC OS UI

Technology The current implementation of the RISC OS user interface is
in a state of flux. It is partially built upon a collection of generalised utility
code. It would likely be useful to the wider RISC OS community if this code
was extracted from NetSurf and a suitable library created from it, perhaps
licensed under a liberal licence, such as MIT.

Once this has been done, the remaining rough edges of NetSurf’s inter-
face implementation can be ironed out.

3.3.3 GTK UI

The GTK user interface is partially completed. There is a large amount
of ancillary functionality missing, however; along with a number of rough
edges. In future, it would be desirable to improve this situation.

3.4 Portability

NetSurf is designed in a portable manner. This section describes ways in
which this portability could be exploited.

3.4.1 Native Win32 port

A native port to the Win32 platform has been asked for in the past. It might
be reasonable to attempt this in future.

3.4.2 Native OS X port

Similarly to a Win32 port, a port to OS X might be a reasonable proposition,
especially as GTK integration with OS X’s UI isn’t particularly brilliant.

10



3.4.3 Ports to anything else?

Ports of NetSurf to other platforms have been suggested in the past. There
exists a rudimentary port of NetSurf to the Maemo platform used by the
Nokia N770/N800 tablets. This port is a variation upon the GTK interface,
which accounts for the differences between GTK on that platform and GTK
on the desktop.

A port to BeOS/Haiku has been suggested in the past, although nothing
appears to have come of this; it might be an idea to chase this up.

3.5 Release Strategy

NetSurf’s current development methodology has been feature driven and
a long period of time has elapsed before a release has been made. This is
mainly due to the need to achieve a suitable level of support for each of
the technologies which comprise a web browser. In version 1.0, we see this
goal being achieved.

In future, however, it would be more appropriate to schedule more reg-
ular releases with fewer features added in each release. This is a compelling
approach as it allows features to be targeted at specific releases, giving end
users some idea of when things will become available. It also allows devel-
opment effort to be focussed upon specific areas. In making releases more
regularly, it forces periods of stabilisation into the schedule, resulting in a
higher quality product.

It is important here to determine how a release schedule might work;
will it be time based (i.e. a release is made every n months) or will it be fea-
ture based (i.e. a release is not made until a certain collection of features
is implemented). A time-based schedule would ensure regularity of re-
lease, but does not guarantee any level of feature addition or improvement
between releases. Conversely, a feature-based schedule would guarantee
feature addition but not a regular stream of releases.

A time-based approach would also enforce a regular stabilisation period.
This would mean that new features would have to be implemented in a
branch and merged into trunk once ready in order to avoid a feature’s lack
of completeness blocking a release.

Perhaps the best approach is a hybrid of the two - where specific features
are targeted at specific releases but this is permitted to slip if too long a
period has elapsed since the previous release.

11



3.5.1 Suggested Plan

This section details a suggested plan for the future development of NetSurf.
The focus is upon the core engine (defined as targeting 3.1.1, 3.1.2, 3.1.4,
3.1.5, 3.1.6, and 3.1.7) as that is where most of the functionality is missing
at present. Other changes would fit around this as necessary.

Releases should be made approximately every 6 months (and no longer
than 12 months should elapse between releases). This equates to approx-
imately 5 months development time followed by a month of stabilisation
for each release.

Here’s a suggested release schedule with a set of features that would be
targeted for each:

Version Features
1.2 New HTML parser (CSS parser, if ready) + DOM

core/html, port box construction
1.4 New CSS parser (if not ready for 1.2) + CSSOM, port

layout engine
1.6 DOM events + new box construction code, port layout

engine
1.8 New layout engine, capable of dynamic content

changes
2.0 JavaScript

Note that this is very sketchy and unlikely to be founded in reality. For
example, 1.2 & 1.4 may be merged, depending upon speed of progress,
as development of the parsers is fairly orthogonal. Also, 1.6 & 1.8 may be
merged, with a longer release schedule due to the amount of work involved
and the impact of changing the layout engine.

4 Conclusion

NetSurf’s current engine is coming close to the end of its design life. This
can be seen in the way that dynamic CSS changes simply don’t work, except
on a very constrained level. This obviously extends to the impact scripting
might have.

Therefore, the engine needs revisiting to address these issues. While
we are at it, we may as well make it more robust and less buggy. The

12



engine is not the sole area where improvements may be made. These may
be addressed in parallel with the engine changes as, in the main, they are
orthogonal.

Section 3.5.1 reflects my own priorities for future development. Stated
explicitly, they are; HTML, XHTML, CSS, DOM, JavaScript, and the re-
quired layout engine changes. Others’ priorities are highly likely to differ.

13


	Introduction
	Where we are now
	What's good
	Achieved project goals
	Good ability to render much of the web
	Speed
	UI
	Documentation & Graphic Design
	Portability & Overall Design

	What's bad
	Intolerance of syntactically invalid documents
	Speed
	Memory consumption
	Incomplete CSS2 support
	Layout engine missing functionality
	No DOM/JavaScript


	The future
	Core Technologies
	HTML4 and later
	XHTML
	XML + XSLT / SVG / MathML
	CSS
	DOM
	JavaScript
	Layout Engine

	Non-core Technologies
	IDN/IRI
	Flash
	Plugins
	Printing
	Disc Caching
	Development tools

	User Interface
	Improvements
	RISC OS UI
	GTK UI

	Portability
	Native Win32 port
	Native OS X port
	Ports to anything else?

	Release Strategy
	Suggested Plan


	Conclusion

