

OpenMAX™ Content Pipe

Specification

Version 1.0

March 22, 2011

 3

Copyright © 2005-2011 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the
Khronos Group, Inc. It or any components may not be reproduced, republished, distributed,
transmitted, displayed, broadcast, or otherwise exploited in any manner without the express
prior written permission of the Khronos Group. You may use this specification for
implementing the functionality therein, without altering or removing any trademark,
copyright or other notice from the specification, but the receipt or possession of this
specification does not convey any rights to reproduce, disclose, or distribute its contents, or
to manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter
member of Khronos to copy and redistribute UNMODIFIED versions of this specification in
any fashion, provided that NO CHARGE is made for the specification and the latest available
update of the specification for any version of the API is used whenever possible. Such
distributed specification may be reformatted AS LONG AS the contents of the specification
are not changed in any way. The specification may be incorporated into a product that is
sold as long as such product includes significant independent work developed by the seller.
A link to the current version of this specification on the Khronos Group website should be
included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties,
express or implied, regarding this specification, including, without limitation, any implied
warranties of merchantability or fitness for a particular purpose or non-infringement of any
intellectual property. Khronos Group makes no, and expressly disclaims any, warranties,
express or implied, regarding the correctness, accuracy, completeness, timeliness, and
reliability of the specification. Under no circumstances will the Khronos Group, or any of its
Promoters, Contributors or Members or their respective partners, officers, directors,
employees, agents or representatives be liable for any damages, whether direct, indirect,
special or consequential damages for lost revenues, lost profits, or otherwise, arising from
or in connection with these materials.

SAMPLE CODE and EXAMPLES, as identified herein, are expressly depicted herein with a
“grey” watermark and are included for illustrative purposes only and are expressly outside
of the Scope as defined in Attachment A - Khronos Group Intellectual Property (IP) Rights
Policy of the Khronos Group Membership Agreement. A Member or Promoter Member shall
have no obligation to grant any licenses under any Necessary Patent Claims covering
SAMPLE CODE and EXAMPLES.

Khronos and OpenMAX are trademarks of the Khronos Group Inc. Bluetooth is a registered
trademark of the Bluetooth Special Interest Group. RealAudio and RealVideo are registered
trademarks of RealNetworks, Inc. Windows Media is a registered trademark of Microsoft
Corporation.

 5

Table of Contents
OPENMAX™ CONTENT PIPE SPECIFICATION .. 1

TABLE OF CONTENTS .. 5

1 OVERVIEW ... 7

1.1 PURPOSE OF THIS DOCUMENT ... 7
1.2 ABOUT THE KHRONOS™ GROUP .. 7
1.3 VERSION NUMBER ... 7
1.4 HISTORY OF CONTENT PIPE DEVELOPMENT ... 7
1.5 BACKWARD COMPATIBILITY .. 8
1.6 ACKNOWLEDGEMENTS .. 8

2 CONTENT PIPE ... 10

2.1 RATIONALE ... 10
2.2 CONCEPT ... 10
2.3 IMPLEMENTATION .. 10
2.4 DEFINITION .. 12

2.4.1 Content Pipe versioning type ... 14
2.4.2 Content Pipe handle type .. 14

2.5 CONTENT ACCESS AND MANIPULATION .. 14
2.5.1 Get a Content Pipe ... 15
2.5.2 Content Pipe Methods .. 15
2.5.3 Positions... 16

2.6 STREAMING SUPPORT ... 17
2.7 BASIC TYPES ... 18
2.8 ENUMERATIONS .. 19

2.8.1 CPA_RESULTTYPE .. 19
2.8.2 CPA_ORIGINTYPE .. 21
2.8.3 CPA_ACCESSTYPE ... 22
2.8.4 CPA_CHECKBYTERESULTTYPE ... 23
2.8.5 CPA_EVENTTYPE.. 24

2.9 TYPE DEFINITIONS .. 25
2.9.1 CPA_VERSIONTYPE .. 25
2.9.2 CPA_POSITIONINFOTYPE .. 25
2.9.3 CPA_CALLBACKTYPE .. 26

2.10 METHOD FOR ACQUIRING A CONTENT PIPE ... 27
2.10.1 CPA_GetContentPipe .. 27

2.11 CONTENT PIPE METHODS ... 27
2.11.1 CPA_GetApiVersion .. 27
2.11.2 CPA_ReleaseContentPipe .. 28
2.11.3 CPA_SetConfig .. 28
2.11.4 CPA_GetConfig .. 29
2.11.5 CPA_Open .. 29
2.11.6 CPA_Create .. 30
2.11.7 CPA_Close .. 30
2.11.8 CPA_CheckAvailableBytesToRead .. 31
2.11.9 CPA_CheckAvailableBytesToWrite .. 31
2.11.10 CPA_SetPosition ... 32
2.11.11 CPA_GetPositions .. 33
2.11.12 CPA_GetCurrentPosition ... 33

 6

2.11.13 CPA_Read .. 34
2.11.14 CPA_ReadBuffer ... 35
2.11.15 CPA_ReleaseReadBuffer ... 36
2.11.16 CPA_Write ... 36
2.11.17 CPA_RegisterCallback .. 37

3 EXAMPLE USE CASES ... 38

3.1 OPENMAX IL PLAYBACK/PARSER USE CASE .. 38
3.2 OPENMAX IL RECORDING/COMBINER USE CASE .. 38
3.3 OPENMAX AL PLAYBACK USE CASE .. 39
3.4 OPENMAX AL RECORD USE CASE .. 39
3.5 OPENSL ES PLAYBACK USE CASE .. 40
3.6 OPENSL ES RECORD USE CASE .. 40

 7

1 Overview

1.1 Purpose of this Document
This document details the Content Pipes API (CP) 1.0.0. Developed as an open standard by
the Khronos Group, Content Pipes is a C-language interface for reading and writing content
data, and could be used together with other Khronos API such as OpenMAX IL API or
OpenMAX AL API.

1.2 About the Khronos™ Group
The Khronos Group is a member-funded industry consortium focused on the creation of
open standard, royalty-free APIs to enable the authoring and accelerated playback of
dynamic media on a wide variety of platforms and devices. All Khronos members can
contribute to the development of Khronos API specifications, are empowered to vote at
various stages before public deployment, and may accelerate the delivery of their
multimedia platforms and applications through early access to specification drafts and
conformance tests. The Khronos Group is also responsible for other open APIs such as
OpenGL® ES, OpenKODE™, OpenSL ES™ and OpenVG™.

1.3 Version number
The version number of this document is of format a.b.c. It is divided into three parts:

Part Name Description

a Major An update of the Major number means a non-backwards compatible
change in the interface. Not all functionality that was there in the
previous version is guaranteed to work.

b Minor An update of the Minor number means a backwards-compatible
change in the sense that the existing clients of the interface will
continue working when the implementation of the interface is
updated. Clients expecting new version of the implementation may
or may not work with an older version of the implementation.

c Step An update of the Step number means no changes in the interface
itself including its semantics, but instead the documentation has
been improved.

1.4 History of content pipe development
Content pipe was originally specified in OpenMAX IL 1.x, and also in the OpenMAX AL draft
specification. Content pipe was originally specified in OpenMAX IL 1.x, and also in the
OpenMAX AL draft specification. To simplify the specification maintenance process, it was
decided by IL and AL groups, for future releases of specification, to separate the content

 8

pipe out of both IL specification and the draft AL specification and make it into one
independent.

1.5 Backward Compatibility
There will be at least two versions of content pipe implementation, one according to
OpenMAX IL 1.x specification that has no special version number for content pipe, and the
other one according to this specification which has content pipe version number. In order to
facilitate implementation migration, in this specification all type definition and methods are
prefixed with “CPA_” to represent the “advanced” content pipe defined in this specification,
to be distinguished from the legacy content pipe. Please note that this version of content
pipe is not backward compatible with the legacy content pipe specified in OpenMAX IL 1.x
spec.

The core method for retrieving the legacy content pipe defined in OpenMAX IL 1.x is defined
as:

OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_GetContentPipe (
OMX_OUT OMX_HANDLETYPE *hPipe,
OMX_IN OMX_STRING szURI);

For the new advanced content pipe in this specification, a corresponding method is defined
as:

CPA_RESULTTYPE CPA_GetContentPipe (CPA_OUT CPA_HANDLE *hPipe);

This method could be used together with OpenMAX IL and other APIs such as OpenMAX AL
API. In OpenMAX IL usage, this method is placed at IL core.

1.6 Acknowledgements
Content Pipe Application Programming Interface Specification version 1.0.0 is the result of
the contributions of many people, representing a cross section of the desktop, hand-held,
and embedded computer industry. Following is a partial list of the contributors, including the
company that they represented at the time of their contribution:

Chris Grigg, Beatnik

Roger Nixon, Broadcom

Timothy Granger, Broadcom

Frédéric Gabin, Ericsson

Håkan Gårdrup, Ericsson

Harald Gustafson, Ericsson

Marcus Lorentzon, Ericsson

Zhengrong Yao, Ericsson

Jean-Michel Trivi, Google

Erik Noreke, Independent

Graham Wacey, Imagination

Kevan Ahmadi, Imagination

 9

Neeraj Agrawal, Imagination

Dave Murray, Incoras

Derek O’Gorman, Incoras

Adrian Burian, Nokia

Jarmo Hiipakka, Nokia

Juan Rubio, Nokia

Matti Paavola, Nokia

Ossi Kalevo, Nokia

Robert Palmer, Nokia

Yeshwant Muthusamy, Nokia

Acorn Pooley, Nvidia

Isaac Richards, Nvidia

Jim Van Welzen, Nvidia

Scott Peterson, Nvidia

Dusan Veselinovic, PacketVideo

Tom Longo, Qualcomm

Juan Rubio, Symbian

Robert Palmer, Symbian

Giulio Urlini, STMicroelectronics

Philippe Tribolo, ST-Ericsson

Pierre-Yves Taloud, ST-Ericsson

Sebastien Le Duc, ST-Ericsson

Thierry Vuillaume, ST-Ericsson

Gary Totney, Texas Instruments

Sripal Bagadia, Texas Instruments

 10

2 Content Pipe

2.1 Rationale
Streaming media processing requires efficient data flow in and out of a media processing
object.

For instance, in the playback use case a container format parser/demuxer typically pulls
source data in a manner that assumes reads on a local file. Likewise, in the recording use
case, a container format combiner/muxer typically pushes final data in a manner that
assumes writes on a local file. Such “file access” is usually synchronous and includes some
high frequency reads/writes of small size as well as random access.

In some cases, the content from which source data is pulled or to which final data is pushed
is not local or is not from a file. The conventional approach to this use case, often referred
to as “data streaming”, leverages queues of large input or output buffers of linear data
transferred asynchronously. This approach is at odds with the "file access" model around
which many parsers and combiners are designed. If conventional streaming is used then
reconciling the two transfer models involves additional memory copies, waiting, and
complexity.

2.2 Concept
We eliminate the inconsistency of these models by constructing a data access abstraction
interface for pulling source data and pushing final data that lends itself to the needs of
parsers and combiners. Rather than restricting ourselves to “file access” and the
connotations it implies we use a more generalized notion of “content piping”.

A “content pipe” is an abstraction for any mechanism of accessing content data (i.e. pulling
content data in or pushing content data out). This abstraction is not tied to any particular
implementation. A pipe may be implemented, for example, as a local file, a remote file, a
broadcast stream, memory buffers, intermediate data from derived from persistent data,
etc. A pipe needn’t be limited to a single method of providing access. For instance a single
pipe may provide via both local files and remote files, or through multiple transport
protocols. A system may include one or many pipes.

2.3 Implementation
Since content pipe functions are synchronous, the implementation of the pipe interface is
local even if the content itself is remote. This may entail a local agent acting as a broker
between asynchronously pushed buffers from remote content and a pipe client (e.g. a
parser) that must synchronously pull in data of varying sizes. Such an agent would maintain
both the complex/elastic connection between the remote content and a local cache (which
entails careful synchronization) as well as the simple/rigid connection between the local
cache and the parser (which as a pull interface lacks complex synchronization).

Note that the synchronous pull based transfer implied by content pipe interface implies
neither that the physical connection to the content nor the propagation of the data beyond
the client be synchronous and pull-based. For example, consider the example of an
OpenMAX IL parser component reading from either a remote file or a local one. The parser
is provided the interface it requires, the mechanism to satisfy the pipe is completely
abstracted and may actually use asynchronous data transfers, and the downstream data

 11

transfer is completely unaffected. This is shown in Figure 1. In this document, the IL
components that directly connect to the content pipe (e.g., the parser and muxer in Figure
1) are also referred to as content pipe users. Figure 2 shows an example of content pipe
usage in OpenMAX AL and OpenSL ES (they share the same object model). Here, the
content pipe serves as either the data source (for reads) or data sink (for writes) of a media
object. The media object utilizes the methods of the content pipe interface to read or write
data.

Section 2.5 contains detailed exemplar use cases of content pipes in OpenMAX IL, OpenMAX
AL and OpenSL ES.

Figure 1: Content Pipe Operation Example - OpenMAX IL

 12

Figure 2: Content Pipe Operation Example - OpenMAX AL/OpenSL ES

2.4 Definition
The content pipe interface structure is defined as:

typedef struct CPA_PIPETYPE
{
CPA_VERSIONTYPE nApiVersion;

CPA_RESULTTYPE (*CPA_ReleaseContentPipe)(

CPA_INOUT CPA_HANDLE* hPipe);

CPA_RESULTTYPE (*CPA_SetConfig)(

CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_STRING szKey,
CPA_IN CPA_PTR value);

CPA_RESULTTYPE (*CPA_GetConfig)(

CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_STRING szKey,
CPA_OUT CPA_PTR value);

 13

CPA_RESULTTYPE (*CPA_Open)(
CPA_IN CPA_HANDLE hPipe,
CPA_OUT CPA_HANDLE* hContent,
CPA_IN CPA_STRING szURI,
CPA_IN CPA_ACCESSTYPE eAccess);

CPA_RESULTTYPE (*CPA_Create)(

CPA_IN CPA_HANDLE hPipe,
CPA_OUT CPA_HANDLE * hContent,
CPA_IN CPA_STRING szURI);

CPA_RESULTTYPE (*CPA_Close)(

CPA_IN CPA_HANDLE hPipe,
CPA_INOUT CPA_HANDLE* hContent);

CPA_RESULTTYPE (*CPA_CheckAvailableBytesToRead)(

CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_U32 nBytesRequested,
CPA_OUT CPA_CHECKBYTESRESULTTYPE* peResult);

CPA_RESULTTYPE (*CPA_CheckAvailableBytesToWrite)(

CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_U32 nBytesRequested,
CPA_OUT CPA_CHECKBYTESRESULTTYPE* peResult);

CPA_RESULTTYPE (*CPA_SetPosition)(

CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_POSITIONTYPE nOffset,
CPA_IN CPA_ORIGINTYPE eOrigin);

CPA_RESULTTYPE (*CPA_GetPosition)(

CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_OUT CPA_POSITIONINFOTYPE* pPosition);

CPA_RESULTTYPE (*CPA_GetCurrentPosition)(

CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_OUT CPA_POSITIONINFOTYPE* pPosition);

CPA_RESULTTYPE (*CPA_Read)(

CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_OUT CPA_BYTE* pData,
CPA_INOUT CPA_U32* pSize);

CPA_RESULTTYPE (*CPA_ReadBuffer)(

CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_OUT CPA_BYTE** ppBuffer,
CPA_INOUT CPA_U32* pSize,
CPA_IN CPA_BOOL bForbidCopy);

 14

CPA_RESULTTYPE (*CPA_ReleaseReadBuffer)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_BYTE* pBuffer);

CPA_RESULTTYPE (*CPA_Write)(

CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_BYTE *pData,
CPA_INOUT CPA_U32* pSize);

CPA_RESULTTYPE (*CPA_RegisterCallback)(

CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_CALLBACKTYPE ClientCallback,
CPA_IN CPA_PTR ClientContext);

} CPA_PIPETYPE;

The access macros for content pipe API version is defined as follow:

#define CP_GetApiVersion(hPipe) \
 ((CP_PIPETYPE*)hPipe)->nApiVersion

2.4.1 Content Pipe versioning type
The first field of the content pipe type class contains version information.

CPA_VERSIONTYPE nApiVersion;

2.4.2 Content Pipe handle type
A content pipe handle type is defined to identify different classes of objects used in content
pipe implementation. One handle could refers to one instance of content pipe interface,
another handle might refer to one opened content (a file, a stream).

typedef void* CPA_HANDLE;

2.5 Content Access and Manipulation
Access to content pipe functionality can be conceptually divided into two layers.

The method CPA_GetContentPipe is used to acquire an instance of a content pipe interface
that can be created and destroyed. Each instance of content pipe interface is identified by
one handle.

The acquired instance of content pipe interface (with one handle) provides methods for
accessing and manipulating the actual content data (a file, a stream), such as opening,
creating and closing actual content, the actual content is identified by one content handle.

In such a manner, one instance of content pipe interface may open and close different
content streams during its life cycle. However, only one content stream can be active at any
given point in time.

 15

2.5.1 Get a Content Pipe
The CPA_GetContentPipe method is used to acquire one instance of content pipe interface.

CPA_RESULTTYPE CPA_GetContentPipe (CPA_OUT CPA_HANDLE *hPipe);

2.5.2 Content Pipe Methods
A content pipe has the following methods.

CPA_VERSIONTYPE CPA_GetApiVersion(
CPA_IN hPipe);

CPA_RESULTTYPE (*CPA_ReleaseContentPipe)(
CPA_INOUT CPA_HANDLE* hPipe);

CPA_RESULTTYPE (*CPA_SetConfig)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_STRING szKey,
CPA_IN CPA_PTR value);

CPA_RESULTTYPE (*CPA_GetConfig)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_STRING szKey,
CPA_OUT CPA_PTR value);

CPA_RESULTTYPE (*CPA_Open)(
CPA_IN CPA_HANDLE hPipe,
CPA_OUT CPA_HANDLE* hContent,
CPA_IN CPA_STRING szURI,
CPA_IN CPA_ACCESSTYPE eAccess);

CPA_RESULTTYPE (*CPA_Create)(
CPA_IN CPA_HANDLE hPipe,
CPA_OUT CPA_HANDLE* hContent,
CPA_IN CPA_STRING szURI);

CPA_RESULTTYPE (*CPA_Close)(
CPA_IN CPA_HANDLE hPipe,
CPA_INOUT CPA_HANDLE* hContent);

CPA_RESULTTYPE (*CPA_CheckAvailableBytesToRead)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_U32 nBytesRequested,
CPA_OUT CPA_CHECKBYTERESULTTYPE* peResult);

CPA_RESULTTYPE (*CPA_CheckAvailableBytesToWrite)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_U32 nBytesRequested,
CPA_OUT CPA_CHECKBYTERESULTTYPE* peResult);

CPA_RESULTTYPE (*CPA_SetPosition)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_POSITIONTYPE nOffset,
CPA_IN CPA_ORIGINTYPE eOrigin);

 16

CPA_RESULTTYPE (*CPA_GetPosition)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_OUT CPA_POSITIONINFOTYPE* pPosition);

CPA_RESULTTYPE (*CPA_GetCurrentPosition)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_OUT CPA_POSITIONINFOTYPE* pPosition);

CPA_RESULTTYPE (*CPA_Read)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_OUT CPA_BYTE* pData,
CPA_INOUT CPA_U32* pSize);

CPA_RESULTTYPE (*CPA_ReadBuffer)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_OUT CPA_BYTE** ppBuffer,
CPA_INOUT CPA_U32* pSize,
CPA_IN CPA_BOOL bForbidCopy);

CPA_RESULTTYPE (*CPA_ReleaseReadBuffer)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_BYTE* pBuffer);

CPA_RESULTTYPE (*CPA_Write)
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_BYTE* pData,
CPA_INOUT CPA_U32* pSiz);

CPA_RESULTTYPE (*CPA_RegisterCallback)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_CALLBACKTYPE ClientCallback,
CPA_IN CPA_PTR ClientContext);

Because content parsers and muxers operate as though they are accessing files directly, a
pipe’s data access functions are modeled on conventional file access. These include
functions for reading and writing data using client buffers and setting/retrieving the
read/write position within the content. A content pipe instance provides methods for file
handling.

2.5.3 Positions
All positions are expressed as CPA_POSITIONTYPE values as shown in the following structure.

#define CPA_POSITION_NA -1
#ifdef CPA_64BITSSUPPORTED
define CPA_POSITION_32_MAX 0x000000007FFFFFFF
typedef CPA_S64 CPA_POSITIONTYPE;
#else
define CPA_POSITION_32_MAX 0x7FFFFFFF
typedef CPA_S32 CPA_POSITIONTYPE;
#endif

 17

Platforms that can handle 64 bit arithmetic may set the flag CPA_64BITSUPPORTED. Both the
content pipe and the content pipe user must be compiled with the same flag setting..

Implementation on a platform that does handle 64 bit arithmetic (and is compiled with the
flag CPA_64BITSUPPORTED set) may still only handle positions of 32 bits. This is for example
the case if the standard C library function ftell is used. This implementation may convert
the signed 64-bit value to a signed 32-bit value internally but risk loss of precision. The
defined values CPA_POSITION_32_MAX may be used together with the result code
CPA_OKPOSITIONEXCEED2GB to indicate this loss of precision by the content pipe (see
CPA_GetPosition).

A position equaling to CPA_POSITION_NA indicates that the requested position could not be
determined or is not applicable.

2.6 Streaming Support
In streaming content pipe use case, the source content may be remotely located and
streamed during processing to a position of local accessibility (e.g. a local cache of remote
content). A set of functions is defined to accommodate such scenarios.

Figure 3: Visualization of a streaming data stream. The striped red area is not accessible
because it is not kept or not yet downloaded.

The CPA_GetPositions() method reports five values. The values match different key
positions marked out in Figure 2. The internal relations between the different positions in a
content pipe implementation must follow the rules B(Begin) ≤ F(First) ≤ C(Current) ≤ L(Last)
≤ E(End). Thus position F may never pass the current read or write position C. The
CPA_GetCurrentPosition() method is used to report only the current position. The
CheckAvailableBytesToRead() method queries if a given number of bytes are available for
reading and the CheckAvailableBytesToWrite() method queries if a given number of
bytes are available for writing. This allows the client to check for the availability of enough
bytes to satisfy a large section of parsing prior to beginning the parsing. This allows a pipe
implementation to stream data to a local cache.

CPA_RESULTTYPE (*CPA_CheckAvailableBytesToRead)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_U32 nBytesRequested,
CPA_OUT CPA_CHECKBYTERESULTTYPE* peResult);

CPA_RESULTTYPE (*CPA_CheckAvailableBytesToWrite)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_U32 nBytesRequested,
CPA_OUT CPA_CHECKBYTERESULTTYPE* peResult);

If the data or space is not immediately available the pipe will call the client via the provided
callback when it is. Note that the content pipe will only hold one outstanding callback of
each type (BytesToRead and BytesToWrite). A second request for any of the type will cancel

B F C L E

ab bf fc cl le eo

B F C L E

ab bf fc cl le eo

 18

any previously trigged callbacks of that type independent of whether this call trigged a new
callback or not. This callback mechanism also includes events for data overflow and a pipe
disconnection (e.g. if the connection with a remote source is lost). See the CPA_EVENTTYPE
enumeration for details. The callback is registered via the RegisterCallback method:

CPA_RESULTTYPE (*CPA_RegisterCallback)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_CALLBACKTYPE ClientCallback,
CPA_IN CPA_PTR ClientContext);

The ReadBuffer method reads a large area of data using the pipe implementation’s memory.
If a pipe implementation is streaming remote data to a local cache the desired data will
already reside in local memory prior to a call on this method. This method avoids the
memory copy that would be required if the client provided the memory pointer. Instead, in
this method the pipe implementation shall provide the memory pointer ppBuffer.

CPA_RESULTTYPE (*CPA_ReadBuffer)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_OUT CPA_BYTE** ppBuffer,
CPA_INOUT CPA_U32* pSize,
CPA_IN CPA_BOOL bForbidCopy);

This necessitates a ReleaseReadBuffer() method to release a buffer acquired via
ReadBuffer

CPA_RESULTTYPE (*CPA_ReleaseReadBuffer)(
CPA_IN CPA_HANDLE hPipe,
CPA_IN CPA_HANDLE hContent,
CPA_IN CPA_BYTE* pBuffer);

2.7 Basic types
The basic types are defined here:

typedef void* CPA_PTR;
typedef char* CPA_STRING;
typedef unsigned char CPA_BYTE;
typedef void* CPA_HANDLE;
typedef unsigned char CPA_U8;
typedef signed char CPA_S8;
typedef unsigned short CPA_U16;
typedef signed short CPA_S16;
typedef unsigned long CPA_U32;
typedef signed long CPA_S32;

A short description of each basic type is given in the following table:

Basic Type Description

CPA_PTR A void pointer

 19

Basic Type Description

CPA_STRING The CPA_STRING type is intended to be used to
pass “C” type strings between the Content pipe
Client and the Content pipe implementation.
The CPA_STRING type is a 8 bit pointer to a
zero terminated string. CPA_STRING contains
text in UTF-8 format.

CPA_BYTE The CPA_BYTE type is intended to be used to
pass arrays of bytes to and from the content
pipe. The CPA_BYTE type is a 8 bit unsigned
data field.

CPA_HANDLE
Define the public interface for the content pipe
Handle.

CPA_U8 CPA_U8 is an 8 bit unsigned quantity.

CPA_S8 CPA_S8 is an 8 bit signed quantity.

CPA_S16 CPA_S16 is a 16 bit signed quantity.

CPA_U32 CPA_U32 is a 32 bit unsigned quantity.

CPA_S32 CPA_S32 is a 32 bit signed quantity.

CPA_BOOL Represents a true (CPA_TRUE) or false
(CPA_FALSE) value.

For system that support 64 bits arithmetic, the CPA_U64 type and CPA_S64 could be defined
accordingly for unsigned and signed quantity.

2.8 Enumerations

2.8.1 CPA_RESULTTYPE
The CPA_RESULTTYPE enumeration defines result codes form content pipe methods and is
defined as follow:

 20

typedef enum CPA_RESULTTYPE{
CPA_OK,
CPA_OKEOS,
CPA_OKPOSITIONEXCEED2GB,
CPA_EPOSNOTAVAIL,
CPA_EUNKNOWN,
CPA_EACCESS,
CPA_EAGAIN,
CPA_EALREADY,
CPA_EBUSY,
CPA_ECONNREFUSED,
CPA_ECONNRESET,
CPA_EEXIST,
CPA_EFBIG,
CPA_EINVAL,
CPA_EIO,
CPA_ENOENT,
CPA_EURINOTSUPP,
CPA_ENOMEM,
CPA_ENOSPC,
CPA_ENO_RECOVERY,
CPA_EOPNOTSUPP,
CPA_ETIMEDOUT,
CPA_EVERSION

} CPA_RESULTTYPE;

Result codes may contain both errors and success messages. If the result code indicates an
error, other outputs may be invalid. The description of each value is given in Table 2-1:

Table 2-1: Content Pipe result code

Value Description
CPA_OK

The operation was successful

CPA_OKEOS

End of stream reached. EOS must be returned
when more bytes are requested that what is
available in the stream. The available bytes
must be returned.

CPA_OKPOSITIONEXCEED2GB Current position exceeds 2 GB and that is not
handled by the current implementation.

CPA_EPOSNOTAVAIL
Position not available in the specified content
stream.

CPA_EUNKNOWN Unknown error.

CPA_EACCESS
Operation denied due to violating the content
access mode

CPA_EAGAIN

Resource unavailable at the moment but
content pipe user can wait for a while and try
again.

CPA_EALREADY
Address already in use, or a connection attempt
is already in progress for this address.

 21

Value Description

CPA_EBUSY
Device or resource busy and can not fulfill the
request.

CPA_ECONNREFUSED Connection refused by the content host.

CPA_ECONNRESET

The connection has been reset by the content
host. This usually means that the content host
program has crashed, or closed the socket
unexpectedly.

CPA_EEXIST
The file a content pipe user want to create
already exists.

CPA_EFBIG
File too large. The current content pipe
implementation might have issue handling it.

CPA_EINVAL Invalid argument.

CPA_EIO I/O error.

CPA_ENOENT The specified address is not available.

CPA_EURINOTSUPP The URI is not supported with this content pipe.

CPA_ENOMEM Out of memory.

CPA_ENOSPC No space left on destination device or address.

CPA_ENO_RECOVERY A non-recoverable error has occurred.

CPA_EOPNOTSUPP Operation not supported.

CPA_ETIMEDOUT Connection to content host has timed out.

CPA_EVERSION A version error found

2.8.2 CPA_ORIGINTYPE
The CPA_ORIGINTYPE enumeration defines all the origin types used by the CPA_SetPosition
method of the CPA_PIPETYPE from which the indicated position is relative.

typedef enum CPA_ORIGINTYPE {
CPA_OriginBegin,
CPA_OriginFirst,
CPA_OriginCur,
CPA_OriginLast,
CPA_OriginEnd

} CPA_ORIGINTYPE;

The description of each value is given in Table 2-2:

 22

Table 2-2: Content Pipe Origin Types

Value Description. Opened for Read or Write
CPA_OriginBegin Read/Write: Origin is the beginning of content,

specifically the first byte of the content’s data
stream.

CPA_OriginFirst Read: Origin is the beginning of available
content, specifically the first still available byte
of the content’s data stream.
Write: Not applicable

CPA_OriginCur Read/Write: Origin is the current position within
the content.

CPA_OriginLast Read: Origin is the end of the available content,
specifically the position of the last available
byte of the content’s data stream.
Write: Not applicable

CPA_OriginEnd Read: Origin is the end of content, specifically
the last byte of the content’s data stream.
Write: Not applicable

2.8.3 CPA_ACCESSTYPE
The CPA_ACCESSTYPE enumeration defines all the access types used by the CPA_Open
method of the CPA_PIPETYPE and is defined as:

typedef enum CPA_ACCESSTYPE {
CPA_AccessRead,
CPA_AccessWrite,
CPA_AccessReadWrite

} CPA_ACCESSTYPE;

The description of each value is given in Table 2-3:

Table 2-3: Content Pipe Access Types

Value Description
CPA_AccessRead Access type is read only.
CPA_AccessWrite Access type is write only.
CPA_AccessReadWrite Access type is both read and write.

 23

2.8.4 CPA_CHECKBYTERESULTTYPE
The CPA_CHECKBYTERESULTTYPE enumeration defines all possible results of a call to the
CPA_CheckAvailableBytesToRead() and CPA_CheckAvailableBytesToWrite() method of
the CPA_PIPETYPE. The CPA_CHECKBYTERESULTTYPE enumeration is defined as:

typedef enum CPA_CHECKBYTESRESULTTYPE{
CPA_CheckBytesOk,
CPA_CheckBytesNotReady,
CPA_CheckBytesInsufficientBytes,
CPA_CheckBytesTooLargeRequest,

} CPA_CHECKBYTESRESULTTYPE;

The description of each value is given in Table 2-4:

Table 2-4: Result Types for CheckAvailableBytesToRead() and
CheckAvailableBytesToWrite()

Value Description
CPA_CheckBytesOk Read: There is at least the requested number of

bytes available. No callback is triggered.
Write: There is space for at least the request
number of bytes available. No callback is
triggered.

CPA_CheckBytesNotReady Read: The pipe is still retrieving bytes and
presently lacks sufficient bytes. Client will be
called when sufficient bytes are available.
Callback is triggered and previously trigged
read callbacks are canceled.
Write: The pipe is still processing data and
presently lacks sufficient space. Client will be
called when they are sufficient space is
available. Callback is triggered and previously
trigged write callbacks are canceled.

CPA_CheckBytesInsuffici
entBytes

Read: The pipe has reached the end of stream
and the available bytes are less than those
requested. There may still be some data in the
pipe. No callback is triggered.
Write: The pipes current session lacks sufficient
space to store the requested amount of data.
This may depend on full storage space or a lost
connection. There may still be some data in the
pipe that is being processed. No callback is
triggered.

 24

Value Description
CPA_CheckBytesTooLargeR
equest

Read: The pipe can never reach the requested
number of bytes due to insufficient pre buffer
space in the pipe. No callback is triggered.
Write: The pipe can never receive a data
delivery of the requested size due to insufficient
pre buffer space in the pipe. No callback is
triggered.

2.8.5 CPA_EVENTTYPE
The CPA_EVENTTYPE enumeration defines events a content pipe may send to its user via a
registered client callback method, the registration is done by the CPA_RegisterCallback()
method. The CPA_EVENTTYPE enumeration is defined as:

typedef enum CPA_EVENTTYPE{
CPA_EventBytesToReadAvailable,
CPA_EventBytesToWriteAvailable,
CPA_EventPipeDisconnected,
CPA_EventEndOfStream,

} CPA_EVENTTYPE;

The description of each value is given in Table 2-5:

Table 2-5: Content Pipe Event Types

Value Description
CPA_EventBytesToReadAvai
lable

Bytes requested in the latest
CPA_CheckAvailableBytesToRead() call which
were formally unavailable are now available.
The iParam parameter of the callback contains
the number of bytes currently available.

CPA_EventBytesToWriteAva
ilable

Bytes requested in the latest
CPA_heckAvailableBytesToWrite() call which
were formally unavailable are now available.
The iParam parameter of the callback contains
the number of free bytes currently available.

CPA_EventPipeDisconnecte
d

The pipe been disconnected. The iParam
parameter of the callback is unused. Trigged
CPA_EventBytesToWriteAvailable callbacks
have been canceled.

CPA_EventEndOfStream EndOfStream has been reached and trigged
CPA_EventDataAvailable callbacks have been
canceled.

 25

2.9 Type definitions

2.9.1 CPA_VERSIONTYPE
The CPA_VERSIONTYPE type indicates the version of a content pipe API and could be queried
by content pipe user via a CPA_GetApiVersion() method. Note that this is not a versioning
of a specific content pipe type’s functionality. CPA_VERSIONTYPE is defined as follows:

typedef union CPA_VERSIONTYPE
{
 struct
 {
 CPA_U8 nVersionMajor;
 CPA_U8 nVersionMinor;
 CPA_U8 nRevision;
 };
 CPA_U32 nVersionID;
} CPA_VERSIONTYPE;

The description of each value is given in Table 2-6:

Table 2-6: Content Pipe Version Types

Type Value Description
CPA_U8 nVersionMajor Major part of version field.
CPA_U8 nVersionMinor Minor part of version field.
CPA_U8 nRevision Revision
CPA_U32 nVersionID Unique ID for the current version.

2.9.2 CPA_POSITIONINFOTYPE
The CPA_POSITIONINFOTYPE describes the current position, the content size and the window
for the available content. This type is constructed by a structure with the following members.

typedef struct CPA_POSITIONINFOTYPE {
CPA_POSITIONTYPE nDataBegin;
CPA_POSITIONTYPE nDataFirst;
CPA_POSITIONTYPE nDataCur;
CPA_POSITIONTYPE nDataLast;
CPA_POSITIONTYPE nDataEnd;

} CPA_POSITIONINFOTYPE;

By subtracting nDataFirst from nDataLast, the available number of bytes may be obtained
when content pipe is opened for reading. The positions are illustrated in Figure 2.

The description of each letter is given in Table 2-7:

 26

Table 2-7: Position Types

Letter Type Value Description. Opened for
Read or Write

B CPA_POSITIONTYPE nDataBegin Read: The beginning of
content, specifically the position
of the first byte of the content’s
data stream. Typically zero.
Write: The beginning of
content, specifically the position
of the first writable byte of the
content’s data stream. Typically
zero.

F CPA_POSITIONTYPE nDataFirst Read: The beginning of the
available content, specifically
the position of the first (still)
available byte of the content’s
data stream. Typically zero for
file reading.
Write: Nor applicable

C CPA_POSITIONTYPE nDataCur Read/Write: Current position

L CPA_POSITIONTYPE nDataLast Read: The end of the available
content, specifically the position
of the last available byte of the
content’s data stream. Typically
equaling nDataEnd for file
reading.
Write: Not applicable

E CPA_POSITIONTYPE nDataEnd Read: The end of content,
specifically the position of the
last byte of the content’s data
stream. This may return
CPA_POSITION_NA if the
position is unknown. Typically
equaling the file size for file
reading.
Write: Not applicable

2.9.3 CPA_CALLBACKTYPE
The CPA_CALLBACKTYPE describes the callback function signature used for callbacks. The
context in where the content pipe callback function is executed in is unknown to the content
pipe user. Note that CPA_RegisterCallback() is intended for the content pipe user.

 27

typedef CPA_RESULTTYPE (*CPA_CALLBACKTYPE)(
CPA_HANDLE hPipe,
CPA_EVENTTYPE eEvent,
CPA_PTR ClientContext) CPA_RESULTTYPE;

2.10 Method for acquiring a content pipe

2.10.1 CPA_GetContentPipe
Before any content pipe function could be used, as one starting step one has to acquire one
instance of content pipe interface first. The CPA_GetContentPipe() method is used at start
to retrieve an instance of content pipe interface. In order to access the content, the full URI
information of content are needed when the instance of content pipe interface calls the
CPA_Open() and CPA_Create()methods.

In order to deal with different types of URIs, several content pipes implementation might
exist on the system. It is the integrator’s responsibility to mask the presence of
these multiple implementations to the content pipe user, and present a single coherent
interface.

After acquiring the instance of content pipe interface, the content pipe user may be able to
use CPA_GetConfig() or CPA_SetConfig() methods with a NULL value in hContent
parameter for accessing content pipe configuration prior to providing the URI.

The content pipe implementation shall allocate the memory for the instance of content pipe
interface.

The result code CPA_EURINOTSUPP must be expected.

CPA_RESULTTYPE CPA_GetContentPipe(
CPA_OUT CPA_HANDLE* hPipe);

This is a blocking call. The description of each parameter is given in Table 2-9:

Table 2-8: CPA_GetContentPipe() Parameters

The parameters are as follows.

Parameter Description

hPipe
[out]

Handle to the requested instance of content pipe
interface. The content pipe implementation shall
allocate memory for this instance.

2.11 Content Pipe methods
After the creation of one instance of content pipe interface, the following methods could be
used on that instance.

2.11.1 CPA_GetApiVersion
Returns the API version that the current content pipe implements.

 28

CPA_VERSIONTYPE CPA_GetApiVersion(
CPA_HANDLE hPipe);

This is a blocking call. The description of each parameter is given in as follows.

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

return
[out]

Content Pipe API version

2.11.2 CPA_ReleaseContentPipe
The CPA_ReleaseContentPipe() method releases all resources allocated when the content
pipe was obtained by the content pipe user. It is up the content pipe user to make sure that
no content streams of the specified type are still open when releasing the content pipe
interface. If the content pipe user still has any open content streams, this call may either
fail, close opened resources or proceed the release making all opened content streams
inaccessible.

CPA_RESULTTYPE (*CPA_ReleaseContentPipe)(
CPA_HANDLE* hPipe);

This is a blocking call. The description of each parameter is given as follows.

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance that
has to be released. The handle shall be set to NULL
after a successful method call.

2.11.3 CPA_SetConfig
The CPA_SetConfig() method is used to set the configuration of the acquired content pipe
interface by specifying the key value. The streams of one content pipe interface share the
same configuration. The content pipe user must allocate the value memory.

CPA_RESULTTYPE (*CPA_SetConfig)(
CPA_HANDLE hPipe,
CPA_HANDLE hContent,
CPA_STRING szKey,
CPA_PTR value);

This is a blocking call. The description of each parameter is given as follows. This method
allows Null value in hContent parameter.

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

 29

Parameter Description

hContent
[in]

Handle of content stream.

szKey
[in]

A string of parameter name for content pipe
configuration.

value
[in]

Pointer to a configuration parameter value. The
memory pointed to is only valid during the call.

2.11.4 CPA_GetConfig
The CPA_GetConfig() method is used to get the content pipe interface’s configuration via
querying the key value. The streams of one content pipe interface share the same
configuration. The content pipe user must allocate the value memory. This method allows
Null value in hContent parameter.

CPA_RESULTTYPE (*CPA_GetConfig)(
CPA_HANDLE hPipe,
CPA_HANDLE hContent,
CPA_STRING szKey,
CPA_PTR value);

This is a blocking call. The description of each parameter is given as follows.

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

hContent
[in]

Handle of content stream.

szKey
[in]

A string of parameter name for content pipe
configuration.

value
[out]

Pointer to a configuration parameter value. The
memory pointed to is only valid during the call

2.11.5 CPA_Open
The CPA_Open() method opens the specified content stream with the specified access type.
i.e. open one existing file for reading.

CPA_RESULTTYPE (*CPA_Open) (
CPA_HANDLE hPipe,
CPA_HANDLE* hContent,
CPA_STRING szURI,
CPA_ACCESSTYPE eAccess);

This is a blocking call. The description of each parameter is given as follows.

 30

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance that
owns the opened content stream.

hContent
[out]

Pointer receiving the new content handle
corresponding to the specified URI opened with the
specified access type. The content pipe
implementation shall allocate the memory for this
pointer.

szURI
[in]

URI specifying the location of the content stream.

eAccess
[in]

Desired access to the content.

2.11.6 CPA_Create
The CPA_Create() method creates the specified content stream for writing and returns a
handle to it. i.e. create one new file for writing.

CPA_RESULTTYPE (*CPA_Create)(
CPA_HANDLE hPipe,
CPA_HANDLE* hContent,
CPA_STRING szURI);

This is a blocking call. The description of each parameter is given as follows.

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance that
owns the created content stream.

hContent
[out]

Pointer receiving the new content handle
corresponding to the specified URI created for
writing. The content pipe implementation shall
allocate the memory for this pointer.

szURI
[in]

URI specifying the desired location of the content
stream.

2.11.7 CPA_Close
The CPA_Close() method closes the specified content pipe data stream handle and sets the
hContent pointer to NULL.

CPA_RESULTTYPE (*CPA_Close)(
CPA_HANDLE hPipe,
CPA_HANDLE* hContent);

This is a blocking call. The description of each parameter is given as follows.

 31

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

hContent
[in]

Handle of the content stream to be closed. The
handle shall be set to NULL after a successive call.

2.11.8 CPA_CheckAvailableBytesToRead
The CPA_CheckAvailableBytesToRead() method verifies that the specified number of bytes
is available for reading from the current position in the stream. (Specifically the size of area
cl in Figure 2.) If one content pipe implementation supports the CPA_Read() method or
CPA_ReadBuffer() method, it shall also support this method.

CPA_RESULTTYPE (*CPA_CheckAvailableBytesToRead) (
CPA_HANDLE hPipe,
CPA_HANDLE hContent,
CPA_U32 nBytesRequested,
CPA_CHECKBYTESRESULTTYPE * peResult);

If current stream is opened in write mode, CPA_EACCES may be returned. This is a blocking
call. The description of each parameter is given as follows.

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

hContent
[in]

Handle of content stream to check.

nBytesRequested
[in]

The desired number of bytes.

peResult
[out]

Result of check (see definition of
CPA_CHECKBYTESRESULTTYPE).

2.11.9 CPA_CheckAvailableBytesToWrite
The CPA_CheckAvailableBytesToWrite() method verifies that space for the specified
number of bytes is available for writing from current position in the stream. If one content
pipe implementation support CPA_Write() method, it shall also support this method.

CPA_RESULTTYPE (*CPA_CheckAvailableBytesToWrite) (
CPA_HANDLE hPipe,
CPA_HANDLE hContent,
CPA_U32 nBytesRequested,
CPA_CHECKBYTERESULTTYPE * peResult);

 32

If current stream is opened in read mode, CPA_EACCES may be returned. This is a blocking
call. The description of each parameter is given as follows.

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

hContent
[in]

Handle of content stream to check.

nBytesRequested
[in]

The desired space in bytes.

peResult
[out]

Result of check (see definition of
CPA_CHECKBYTERESULTTYPE).

2.11.10 CPA_SetPosition
The CPA_SetPosition() method moves the pipe’s byte position within a piece of content to
the specified location.

CPA_RESULTTYPE (*CPA_SetPosition)(
CPA_HANDLE hPipe,
CPA_HANDLE hContent,
CPA_POSITIONTYPE nOffset,
CPA_ORIGINTYPE eOrigin);

SetPosition is expected leave the following result codes depending on the specified position
if no other error occurs:

Area in Figure 2 Expected result code

Ab CPA_EPOSNOTAVAIL

Bf CPA_OK or
CPA_EPOSNOTAVAIL

Fc CPA_OK

Cl CPA_OK

Le CPA_OK

Eo CPA_OK
(If the end position of the file is unknown, there
is no way for a SetPosition to tell the difference
between area le and eo, thus the same
behavior and the same result code is expected.)

This is a blocking call. The returning from this method does not necessarily imply that data
from the new position is immediately available. The description of each parameter is given
as follows.

 33

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

hContent
[in]

Handle of the content stream.

nOffset
[in]

Offset of desired byte position relative to the
specified origin.

eOrigin
[in]

Origin from relative to which the offset applies.

2.11.11 CPA_GetPositions
The CPA_GetPositions() method returns the pipe’s byte position within a piece of content.

CPA_RESULTTYPE (*CPA_GetPositions)(
CPA_HANDLE hPipe,
CPA_HANDLE hContent,
CPA_POSITIONINFOTYPE* pPosition);

The implementation is not mandated to support 64 bit position specifier for GetPosition even
if the flag CPA_64BITSUPPORTED is set. When any position in pPosition exceeds 2^31 and if
64 bit file handling is not supported, the implementation shall return
CPA_OKPOSITIONEXCEED2GB and place CPA_POSITION_32_MAX in one or more fields in
pPosition.

This is a blocking call. The description of each parameter is given as follows.

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

hContent
[in]

Handle of the content stream.

pPosition
[out]

Information about the current byte position of the
pipe within the specified content, the content size
and the window for the available content.

2.11.12 CPA_GetCurrentPosition
The CPA_GetCurrentPosition() method returns only the current position.

CPA_RESULTTYPE (*CPA_GetCurrentPosition)(
CPA_HANDLE hPipe,
CPA_HANDLE hContent,
CPA_POSITIONTYPE* pPosition);

The implementation is not mandated to support 64 bit position specifier for GetPosition even
if the flag CPA_64BITSUPPORTED is set. When any position in pPosition exceeds 2^31 and if

 34

64 bit file handling is not supported, the implementation shall return
CPA_OKPOSITIONEXCEED2GB and place CPA_POSITION_32_MAX in one or more fields in
pPosition.

This is a blocking call. The description of each parameter is given as follows.

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

hContent
[in]

Handle of the content stream.

pPosition
[out]

Information about the current byte position of the
pipe within the specified content, the content size
and the window for the available content.

2.11.13 CPA_Read
The CPA_Read() method retrieves data of the specified size from the content stream and
advances the content pointer by the size of the data. Note that the pipe client provides the
pointer to accept the data. This method is therefore appropriate for small high frequency
reads.

CPA_RESULTTYPE (*CPA_Read)(
CPA_HANDLE hPipe,
CPA_HANDLE hContent,
CPA_BYTE* pData,
CPA_U32* pSize);

If current stream is opened in write mode, CPA_EACCES shall be returned. Read is expected
to leave the following result codes depending on the current position if no other error
occurs:

Area/Position in Figure 2 Expected result code

ab CPA_EPOSNOTAVAIL

bf CPA_EAGAIN or
CPA_EPOSNOTAVAIL

fc CPA_OK

cl CPA_OK

le CPA_EAGAIN

L CPA_OKEOS

eo CPA_EPOSNOTAVAIL

This is a blocking call. Relevant errors include: CPA_EINVAL, and CPA_EIO. The description
of each parameter is given as follows.

 35

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

hContent
[in]

Handle of the content stream.

pData
[out]

Client specified pointer to receive data.

pSize
[in/out]

Prior to call: number of bytes to read.
After call: number of bytes actually read.

2.11.14 CPA_ReadBuffer
The CPA_ReadBuffer() method retrieves a buffer allocated by the pipe containing the
requested number of bytes from the content stream. The content pointer advances by the
number of bytes read. Note that the pipe itself provides the pointer to the data. This
method is therefore appropriate for large low frequency reads. The client shall call
CPA_ReleaseReadBuffer() when done with the buffer to return it to the pipe.

In some cases he requested block might not reside in contiguous memory within the pipe
implementation. For instance, if the pipe leverages a circular buffer then the requested
block might straddle the boundary of the circular buffer. By default a pipe implementation
performs a copy in this case to provide the block to the pipe client in one contiguous buffer.
If, however, the client sets bForbidCopy, then the pipe returns only those bytes preceding
the memory boundary. Here the client may retrieve the data in segments over successive
calls. If bForbidCopy is unset and the result code equals CPA_OK, ReadBuffer must always
return a full buffer of the required size. At End Of Stream, the result code CPA_OKEOS is used
instead. If no more data is available, the reported pSize equals zero and the result code
CPA_OKEOS is delivered. In this case, ppBuffer may point to NULL.

CPA_RESULTTYPE (*CPA_ReadBuffer)(
CPA_HANDLE hPipe,
CPA_HANDLE hContent,
CPA_BYTE** ppBuffer,
CPA_U32* pSize,
CPA_BOOL bForbidCopy);

If current stream is opened in write mode, CPA_EACCES shall be returned.
CPA_ReadBuffer() is expected leave the following result codes depending on the current
position if no other error occurs:

Area/Position in Figure 2 Expected result code

ab CPA_EPOSNOTAVAIL

bf CPA_EAGAIN or
CPA_EPOSNOTAVAIL

Fc CPA_OK

Cl CPA_OK

Le CPA_EAGAIN

 36

Area/Position in Figure 2 Expected result code

L CPA_OKEOS

Eo CPA_EPOSNOTAVAIL

This is a blocking call. The description of each parameter is given as follows.

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

hContent
[in]

Handle of the content stream.

ppBuffer
[out]

Pointer to receive a pipe supplied data buffer.

pSize
[in/out]

Prior to call: number of bytes to read.
After call: number of bytes actually read.

bForbidCopy
[in]

If set the pipe shall never perform a copy opting
instead to obtain less bytes than what is requested.

2.11.15 CPA_ReleaseReadBuffer
The CPA_ReleaseReadBuffer() returns a buffer previously acquired via a call to
CPA_ReadBuffer().

CPA_RESULTTYPE (*CPA_ReleaseReadBuffer)(
CPA_HANDLE hPipe,
CPA_HANDLE hContent,
CPA_BYTE* pBuffer);

This is a blocking call. The description of each parameter is given as follows.

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

hContent
[in]

Handle of the content stream.

pBuffer
[in]

Pipe supplied read buffer being released (i.e.
returned to pipe).

2.11.16 CPA_Write
The CPA_Write() method writes data of the specified size to the content stream and
advances the content pointer by the size of the data. Note that the pipe client provides the
pointer to accept the data.

 37

CPA_RESULTTYPE (*CPA_Write)(
CPA_HANDLE hPipe,
CPA_HANDLE hContent,
CPA_BYTE* data,
CPA_U32* pSize);

If current stream is opened in read mode, CPA_EACCES shall be returned. This is a blocking
call. The description of each parameter is given as follows.

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

hContent
[in]

Handle of the content stream.

pData
[in]

Client specified pointer to data.

nSize
[in/out]

Prior to call: number of bytes to write.
After call: number of bytes actually written.

2.11.17 CPA_RegisterCallback
The CPA_RegisterCallback() method registers a client event callback for a given content
handle with the pipe.

CPA_RESULTTYPE (*CPA_RegisterCallback)(
CPA_HANDLE hPipe,
CPA_CALLBACKTYPE ClientCallback,
CPA_PTR ClientContext);

This is a blocking call. The description of each parameter is given in as follows.

Parameter Description

hPipe
[in]

Handle of the content pipe interface instance.

ClientCallback
[in]

Event callback to register.

ClientContext
[in]

Client context information.

 38

3 Example Use Cases

3.1 OpenMAX IL Playback/Parser Use Case
Consider the OpenMAX IL playback use case where a media processing IL component is
responsible for parsing data from pieces of source content. The following steps occur:

1. The IL client specifies the source content to the IL component by URI.

2. The IL client optionally specifies the mechanism for accessing the source
content (i.e. the content pipe) to the IL component.

3. If the IL client has not specified a content pipe to the IL component when
the IL component transits from LOADED state, the IL component must
acquire an instance of the content pipe interface itself (e.g. via an
OpenMAX IL Core function or some implementation specific mechanism).

4. At the appropriate time the IL component opens the content stream
specified by the IL client using the acquired content pipe interface instance
and its method CPA_Open().

5. The IL component performs CPA_Read() on the source content using the
content pipe interface, parses that content, and plays it.

6. At the appropriate time the IL component closes the content streams using
the content pipes CPA_Close() method.

7. Finally the content pipe interface instance itself is released if no more
content shall be opened (or created) with the current content pipe interface
instance.

3.2 OpenMAX IL Recording/Combiner Use Case
Consider the OpenMAX IL recording use case where a media processing IL component is
responsible for emitting final data (perhaps muxed and packaged by a “combiner”) to a
piece of content. The following steps occur:

1. The IL client specifies the destination content to the IL component by URI.

2. The IL client optionally specifies the mechanism for accessing the
destination content (i.e. the content pipe) to the IL component.

3. If the IL client has not specified a content pipe to the IL component when
the IL component transits from LOADED state, the IL component must
acquire an instance of the content pipe interface itself (e.g. via an
OpenMAX IL Core function or some implementation specific mechanism).

4. At the appropriate time the IL component creates the content stream
specified by the IL client using the acquired content pipe interface instance
and its method CPA_Create().

5. The IL component performs CPA_Write()on the destination content stream
using the content pipe sending muxed/packaged data to it.

6. At the appropriate time the IL component closes the content streams using
the content pipe CPA_Close() method.

 39

7. Finally, the content pipe interface instance itself is released if no more
content shall be opened (or created) with the current content pipe interface
instance.

3.3 OpenMAX AL Playback Use Case
Consider the OpenMAX AL playback use case using the Media Player object to playback
media content. The following steps occur:

1. The OpenMAX AL client creates an instance of the content pipe interface
using the CPA_GetContentPipe() method.

2. The OpenMAX AL client creates an XADataLocator_ContentPipe
structure and fills in the pContentPipe member with the handle to the
content pipe interface.

3. The OpenMAX AL client creates an XADataSource structure and fills in
the pLocator member with a pointer to the
XADataLocator_ContentPipe structure created earlier.

4. The OpenMAX AL client creates a Media Player object using the
XADataSource as the data source.

5. The OpenMAX AL implementation opens the content pipe using
CPA_Open()

6. The OpenMAX AL implementation uses the method CPA_Read() to obtain
data during playback.

7. When playback is complete, the OpenMAX AL implementation closes the
content pipe using CPA_Close().

8. Finally, if no more content is to be played, the OpenMAX AL client closes
content pipe interface using the CPA_ReleaseContentPipe() method.

3.4 OpenMAX AL Record Use Case
Consider the OpenMAX AL recording use case using the Media Recorder object to capture
mdeia content. The following steps occur:

1. The OpenMAX AL client creates an instance of the content pipe interface
using the CPA_GetContentPipe() method.

2. The OpenMAX AL client creates an XADataLocator_ContentPipe
structure and fills in the pContentPipe member with the handle to the
content pipe interface.

3. The OpenMAX AL client creates an XADataSource structure and fills in
the pLocator member with a pointer to the
XADataLocator_ContentPipe structure created earlier.

4. The OpenMAX AL client creates a Media Recorder object using the
XADataSink as the data sink.

5. The OpenMAX AL implementation creates the content pipe using
CPA_Create()

 40

6. The OpenMAX AL implementation uses the method CPA_Write() to write
data during recording.

7. When recording is complete, the OpenMAX AL implementation closes the
content pipe using CPA_Close().

8. Finally, if no more content is to be captured, the OpenMAX AL client
closes the content pipe interface using the CPA_ReleaseContentPipe()
method.

3.5 OpenSL ES Playback Use Case
Consider the OpenSL ES playback use case using the Audio Player object.. The following
steps occur:

1. The OpenSL ES client creates an instance of the content pipe interface
using the CPA_GetContentPipe() method.

2. The OpenSL ES client creates an SLDataLocator_ContentPipe
structure and fills in the pContentPipe member with the handle to the
content pipe interface.

3. The OpenSL ES client creates an SLDataSource structure and fills in the
pLocator member with a pointer to the SLDataLocator_ContentPipe
structure created earlier.

4. The OpenSL ES client creates an Audio Player object using the
SLDataSource as the data source.

5. The OpenSL ES implementation opens the content pipe using
CPA_Open()

6. The OpenSL ES implementation uses the method CPA_Read() to obtain
data during playback.

7. When playback is complete, the OpenSL ES implementation closes the
content pipe using CPA_Close().

8. Finally, if no more content is to played, the OpenSL ES client closes the
content pipe interface using the CPA_ReleaseContentPipe() method.

3.6 OpenSL ES Record Use Case
Consider the OpenSL ES recording use case using the Audio Recorder object. The following
steps occur:

1. The OpenSL ES client creates an instance of the content pipe interface
using the CPA_GetContentPipe() method.

2. The OpenSL ES client creates an SLDataLocator_ContentPipe
structure and fills in the pContentPipe member with the handle to the
content pipe interface.

3. The OpenSL ES client creates an SLDataSource structure and fills in
the pLocator member with a pointer to the
SLDataLocator_ContentPipe structure created earlier.

4. The OpenSL ES client creates an Audio Recorder object using the
SLDataSink as the data sink.

 41

5. The OpenSL ES implementation creates the content pipe using
CPA_Create()

6. The OpenSL ES implementation uses the method CPA_Write() to write
data during recording.

7. When recording is complete, the OpenSL ES implementation closes the
content pipe using CPA_Close().

8. Finally, if no more content is to be captured, the OpenSL ES client closes
the content pipe interface using the CPA_ReleaseContentPipe() method.

	OpenMAX™ Content Pipe Specification
	Table of Contents
	1 Overview
	1.1 Purpose of this Document
	1.2 About the Khronos™ Group
	1.3 Version number
	1.4 History of content pipe development
	1.5 Backward Compatibility
	1.6 Acknowledgements

	2 Content Pipe
	2.1 Rationale
	2.2 Concept
	2.3 Implementation
	2.4 Definition
	2.4.1 Content Pipe versioning type
	2.4.2 Content Pipe handle type

	2.5 Content Access and Manipulation
	2.5.1 Get a Content Pipe
	2.5.2 Content Pipe Methods
	2.5.3 Positions

	2.6 Streaming Support
	2.7 Basic types
	2.8 Enumerations
	2.8.1 CPA_RESULTTYPE
	2.8.2 CPA_ORIGINTYPE
	2.8.3 CPA_ACCESSTYPE
	2.8.4 CPA_CHECKBYTERESULTTYPE
	2.8.5 CPA_EVENTTYPE

	2.9 Type definitions
	2.9.1 CPA_VERSIONTYPE
	2.9.2 CPA_POSITIONINFOTYPE
	2.9.3 CPA_CALLBACKTYPE

	2.10 Method for acquiring a content pipe
	2.10.1 CPA_GetContentPipe

	2.11 Content Pipe methods
	2.11.1 CPA_GetApiVersion
	2.11.2 CPA_ReleaseContentPipe
	2.11.3 CPA_SetConfig
	2.11.4 CPA_GetConfig
	2.11.5 CPA_Open
	2.11.6 CPA_Create
	2.11.7 CPA_Close
	2.11.8 CPA_CheckAvailableBytesToRead
	2.11.9 CPA_CheckAvailableBytesToWrite
	2.11.10 CPA_SetPosition
	2.11.11 CPA_GetPositions
	2.11.12 CPA_GetCurrentPosition
	2.11.13 CPA_Read
	2.11.14 CPA_ReadBuffer
	2.11.15 CPA_ReleaseReadBuffer
	2.11.16 CPA_Write
	2.11.17 CPA_RegisterCallback

	3 Example Use Cases
	3.1 OpenMAX IL Playback/Parser Use Case
	3.2 OpenMAX IL Recording/Combiner Use Case
	3.3 OpenMAX AL Playback Use Case
	3.4 OpenMAX AL Record Use Case
	3.5 OpenSL ES Playback Use Case
	3.6 OpenSL ES Record Use Case

