Resource Driven Clusters

James Bottomley
SteelEye Technology

OCF Workshop 20 January 2003



Introduction

 Quorate clusters are centrally controlled

— Analagous to single CPU controlled by 1 clock
— Cluster must form first before actions taken

— Cluster directs all actions based on its
controlling view of the cluster membership

- Membership must be well defined

— Actions generally agreed to by all cluster
members (single cluster view)

- Only a single cluster entity may exist at one time



Introduction (2)

e Resource driven clusters are more chaoti

— Act like Asynchronous CPU designs (actions
trickle through instead of being co-ordinated
centrally)

— There is no central controlling cluster

- Actions controlled for a given resource by
cluster member who "owns” the resource

- Other member acquiescence to actions by
owning node not required



Introduction (3)

 Resource driver clusters (continued)

— No central cluster means no monotonic instance
numbers

— Cluster may form with partial communications

— Multiple resources => multiple owning nodes
each of which may take an action
simultaneously

— Multiple independent sub-clusters may form



Why?

e Easier to design and build (no central
control layer need be constructed)

— Simplicity is desirable in HA (less to go wrong)

« Better scaling properties (in large clusters
with large numbers of resources)

o Better disaster survivability (formation of
multiple sub clusters usually gives better
recovery characteristics)



Why Not?

« Harder to analyse.

— Chaotic behaviour makes provability difficult.
— Disliked by acadaemia for this reason.

 Multi-threaded failover characteristics may
cause OS resource problems.

e Single cluster view hard to obtain

- makes administration difficult
e Definitely not like the good old VAX



Elements of Resource Driven

Clusters
« Resources comprise
Hierarchies
WebservefJ e Hierarchies are
7 \ fundamental units

[IP Address} { database} * At IeaSt one
resource of a

/ hierarchy must be

owhable.

disc
{ } e arrows represent
dependencies




Resource Ownership Properties

» Classes of resources are ownable
 Ownability implies two properties
- May | own (i.e. test of ownership)

— Take ownership (must be exclusive)

* Disk resources implement ownability usually
with reservations

 May also introduce ownership carrying
resources (similar to a guorum disc)



SCSI| Reservations

e Tailor made for resource ownership

 Reservation will enforce exclusive access to
the owning node. Another node may not
accidentally or maliciously interfere with the
data

« Ownership is at the disc level, not the
partition level (multiple partitions move
together)

 Reservations can cause OS problems (i.e.
can‘t read the partition table)



Hierarchy Ownership

 Nodes own the hierarchy

« To own a hierarchy, a node must own all of
its ownable resources.

e To prevent ownership deadlock, hierarchies
need a deterministic ownership acquisition
ordering.

« As soon as a node owns a hierarchy, it may
proceed to recover that hierarchy regardless
of what is going on in the cluster.



Cluster Partition lllustration




Cluster Partition lllustration (2)

%




Utility Functions

 Problem: Recovery may proceed but
resulting hierarchy may not be useful

- Webserver recovers but cannot see router =>
no external visibility for website

e In a partition, other sub-cluster may be more
useful for recovering the resource

 Therefore, construct a utility measure of the
hierarchy by summing the individual utilities
of the resource

— utility is often user or application defined



Utility Functions (2)

« Utility isn‘t all or nothing, like ownership

o Utility is often computed as a “score” out of
a fixed (but small) number

 The utility score is used as a starting point
for the backoff algorithm

 Backoff is the time between having the
hierarchy ready for recovery and beginning
the ownership acquisition

 Feeding utility into backoff gives time for a
more useful node to recover first.



Utility Functions (3)

« Utility has no "veto”

— A completely useless hierarchy will still
eventually recover (after waiting for more
potentially useful ones)

— This is by design (customers don‘t like losing
heirarchies just because they‘re useless)

o Utility is probabalistic, not deterministic.

- Circumstances may still conspire to recover a
useless hierarchy over a useful one.



Limitations

 What happens if hierarchy has no ownable
resources”?

- e.g. storage is replicated not shared.
— Application requires no storage.

 Must introduce ownability into the hierarchy

- May use spurious ownable resource (similar to
a quorum disc)

— May use other ownership tricks, like STONITH

* |n no case will the model be worse than that
of a quorate cluster.



Formulating Cluster View

 Difficult to obtain unambiguously

« Each node only has partial information
(enough for itself to operate)

 Forming a cluster view for administration is a
problem

- Need to collate cluster view, taking input from
each node

- agent that forms cluster view needs contact with
each node (may need superset of cluster
communication paths)



Conclusions

 Resource driven clusters are significantly
different from Quorate ones

- Severely limits APIs covering both
— cannot assume that the cluster is all.

 Resource driven clusters have greater
flexibility and greater complexit

 Richer sequence of recovery scenarios (c.f.
utility functions)



