

Ubiquitous Web Applications

Dave Raggett (W3C/Volantis)

May 2007 Contact: dsr@w3.org

UWA – Web of Devices

● Ubiquitous networked devices
– Moore's law now applies to RF circuitry

● Low additional cost to add network connectivity to device
microcontrollers (via wireless or via power line)

– 2.6 billion phones, with 1.6 million more each day
– RFID @ 2 cents, fits between ridges in thumb print
– Home security, appliances, entainment
– Lighting, heating and environmental controls
– Office equipment, shops, mobile, automotive

● A world of connections, The Economist, 28 April 2007

Different Perspectives
● End Users

– easy to use and compelling reason for purchase
● Application Developers

– ability to add value whilst controlling costs
● Device Vendors

– appeal to users, developers and network operators
● Network Operators

– applications and devices that drive ARPU
● Browser Vendors

– appeal to device vendors, developers, operators
● Website and content owners

– attracting users and developers

Examples of Devices

● Security sensors for movement, pressure, windows/doors

● Door locks and security cameras

● Smoke, Carbon Monoxide and pollution detectors

● Lighting, heating and other environmental controls

● Household appliances (e.g. washing machine, freezer)

● Hand held remote controllers

● Flat screen display/television

● Media servers

● Home gateways

● Phones, Printers, Scanners, Cameras, Projectors, ...

Mix of networking technologies

● Multiplicity of rapidly evolving networking technologies

● Challenge of how to create applications involving a
changing mix of technologies

● Wireless

– WiFi, BlueTooth, Infrared, Ultrasound, ...
● Wired

– Twisted pair, Optical Fibre, Powerline, ...
● Home gateways as bridges between different technologies

– telephone, stereo system, kitchen appliances and other
network-enabled devices of the future

Mix of vendors and generations

● People expect devices to work for many years

– varies with kind of device, e.g. phone vs television
– technology is changing on a faster time scale

● Mix of vendors

– people will buy devices from a range of vendors and
expect applications to work across vendors and device
generations

● Standards are needed to meet user expectations

● This will lead to an ecosystem for device vendors and
application developers

Combining local & remote services

● The Web makes it easy to exploit remote services
– Remote servers can support streaming media, news, guides,

social networks, games, photo sharing, etc.

● These can add value to native capabilities of devices
– e.g. turn mobile phone into language translator via sending photo

of Japanese menu to server for OCR and translation to English

● Web servers
– May be used to install and manage applications as an easier

alternative to traditional shrink-wrapped software

– May provide rich descriptions of device capabilities

– May be involved in service discovery as brokers

● Critical to motivating Network operators and Websites

Usability, Security and Privacy

● Effective security is essential
– Don't give the front door key to intruders!
– Protect users privacy

● Must be usable if security is to work in practice
– Lessons from phishing
– Don't put the burden on users

● Practical considerations
– how to verify that this application should be granted

access to a particular set of device capabilities
– registering wireless devices with network

Home network example

DOM
script

Agent

Website
TV
+

Browser

remote

Heating
System

Gateway

Uses power line for
network connection

UI for
Heating
control

● Use TV + remote to
control all kinds of
household appliance

● Application hosted by
website

Realizing the Potential

● Initially, just proprietary solutions

– end user purchases complete solution
– single vendor and single product generation

● Followed by narrowly focused industry standards

– e.g. Pictbridge as solution for printing direct from
camera when printer and camera from different vendors

● Broader standards follow later, enabling new applications

– Traditional programming languages like C++ and Java
offer low level control but are costly to develop with

– Web technologies will make applications easier and
cheaper to develop, enabling a much bigger ecosystem

What's needed to achieve this?

● Standard-based architecture that decouples application
authoring from the details of networking technologies and
device platforms

● Standards for groups of devices with similar functions so
that applications are not tied to specific devices

– Bringing together interested parties to work on
ontologies of device capabilities and exposure as APIs
for markup and scripts to access these capabilities

– Careful consideration for versioning to ensure that new
devices will work with existing applications, and that
new applications will work with older devices

How is W3C addressing this?

● New Ubiquitous Web Applications Working Group

– Launched 30 March 2007
– Successor to former Device Independence WG
– Broadened focus on Ubiquitous Web Applications

● Support for regional subgroups

– can hold meetings in local language, e.g. Japanese
– greater convenience for meeting times and locations
– meeting summaries and technical specs in English

● Balance between openness and confidentiality

– publish approved meeting summaries and approved
editorial drafts of technical documents

Why become a member?

● To get a head start on future standards

– some competitors will be involved but not all
● To drive the direction of those standards

– based upon your own experience and needs
● To reduce costs of development through shared test suites

– Voice Browser WG members benefited from pooling
tests, resulting in stronger test suite for lower cost

● Specifications benefit from scrutiny by people from
different companies and backgrounds

– reduces future costs by spotting problems early

UWA Approach

● Define user interface, data models and behaviour as
combination of markup and event-driven scripting
– XML + Events + RDF + Object Model

● Device coordination framework
– descriptions, binding and use of capabilities

● Logical support for passing events between devices
over different networking technologies
– coupling devices and support for remote user interfaces

● Distinction between authoring and execution
– policy-based content adaptation to match the delivery

context (user preferences, device capabilities, etc.)

Device Behaviour

● Simple devices with fixed behaviour
● XML + scripted event handlers

– e.g. XHTML/SVG + ECMAScript
● Pure XML with language defined event

handlers
– e.g. SCXML (StateChartXML)

● event driven state machines as in UML
● Pure script with event handlers

– Device has script engine + library of objects

How to “program” device behaviour?

Device Coordination Framework

Finding and binding to services
in the context of an application session

Examples of Services

● Device capabilities, e.g.
– audio capture and playback
– embedded camera
– ability to initiate a phone call
– persistent storage
– calendar, address book, personal preferences, ...

● Speech synthesis and recognition
– using embedded or remote speech engine

● Geographic location

 “service” is used loosely for anything that Web applications might want to make use of

Binding to a Service

● Binding as a scripting interface
– Input a service name or description
– Output an object that proxies for the service

● May be restricted and based upon proving
membership of appropriate access control list
– Issues of trust, identity, privacy and security
– Usability issues, e.g. asking user for decision

– Is it okay to send location to web app?
– Is it okay to grant access to camera?

● What information to provide as context?
● What if user isn't present?

Service Discovery

● Name service or describe its characteristics
– URI for service or service description
– Description as content for XML element that will act

as DOM proxy for the service
● Discovery mechanism may be implicit

– Provided by run-time environment, e.g. UPnP
● Discovery mechanism may be explicit

– Provided by a named Web server
– Based upon external description of service

Binding as Markup

● Markup element as proxy for service/capability
– Attribute that names service/capability as a URI
– Or URI for reference to external description
– Or content markup as description
– When binding is complete, raises binding event
– Or error event if binding fails if access is denied

● fallback markup for an alternative
– Another event when resource is unbound

● Target events at element to control resource
● Set event handlers to respond to changes

Delivery Context Client Interfaces

● Enable applications to dynamically respond to
changes in user preferences, device
capabilities and environmental conditions

● Exposed as tree of XML DOM Nodes
– For example, display characteristics, playback

volume level, memory size, geographical location,
battery level, network availability, etc.

– Nodes may support additional interfaces for
accessing services, e.g. dimming display, or muting
microphone

– Nodes act as proxies for accessing capabilities
DOM = Document Object Model

hidden messaging layer

Proxies for accessing services

DOM
script

Internet

DOM Object

Target
Event

Event
Listener

DOM
script

DOM Object

Target
Event

Event
Listener

DOM – XML Document Object Model

Device Device

Client or Server?

DOM
script

Client

DOM
script

Server

Internet

Client or Server?

DOM
script

Agent

DOM
script

Agent

Internet

Agent combines client and server

Event Transport

● HTTP

a) Add HTTP server to each device
● But problems with firewalls/NAT

b) Emulate via polling/long lived connection
● Hacks with Ajax

● Overloading SMS on GSM networks
● SIP and IMS

– Each device acts as client and server
● IETF/3GPP standards
● XML representation of event as SIP message payload

How to deliver events to devices?

Tunnelling through NAT

DOM
script

Agent

DOM
script

Agent

Internet

Proxy

NAT or Firewall

Tunnelling through NAT

DOM
script

Agent

DOM
script

Agent

Internet

Proxy

NAT or Firewall

Proxy may arrange for direct link through NAT

Tunnelling through NAT

DOM
script

Agent

DOM
script

Agent

Proxy

NAT or Firewall

Connecting devices behind different NATs

NAT or Firewall

Public and Private Agents

DOM
script

Private
Agent

NAT or Firewall

DOM
script

Public
Agent

DOM
script

Public
Agent

NAT or Firewall

DOM
script

Private
Agent

Appliance,
Phone or
Laptop

Appliance,
Phone or
Laptop

Large
Website

Large
Website

What's needed?

● Interfaces for accessing services from web
scripts
– Need standards for common services
– Need standards for discovery and binding

● Descriptions that can be used for discovery and
adaptation purposes
– Semantic Web technologies like Ontologies

● Policies for discovery and binding
– Need standards for describing them
– Cover security and privacy considerations

Remote User Interfaces

● Model behaviour as script or state machine

– Interaction Manager (IM)
● Model UI as XML (XHTML, SVG, ...)

● Run UI and behaviour on separate devices

● IM sends events to update remote UI's DOM

● IM receives events from UI as result of user input

● UI can be distributed on multiple devices and controlled via
single interaction manager

– rich UI: mobile phone or remote + flat screen display
– simple UI with buttons and indicator

Browser
Slave DOM Tree

Master DOM Tree
(possibly virtual)

UI events

REX – an XML grammar for
serializing DOM events

● Remote event
listeners

Mutation
events

● Remote event
dispatch

REX for Distributed Components

REX = Remote Events for XML
DOM = Document Object Model

Application
script or SCXML

Event handers that
update the DOM

REX

<rex>

 <event target=“...” name=“...” timeStamp=“...”>
 XML serialization of event's data
 </event>

 <event target=“...” name=“...” timeStamp=“...”>
 XML serialization of event's data
 </event>

 ...
</rex>

Serialize sequence of events as XML Grammar

event target identified using XPath,
timeStamp defines when to dispatch event

REX

<rex xmlns="http://www.w3.org/2006/rex"
 xmlns:svg="http://www.w3.org/2000/svg">

 <event target="/svg/g/circle[1]"
 name="DOMNodeRemoved" timeStamp="1000"/>

 <event target="/svg/g"
 name="DOMNodeInserted" position="0" timeStamp="3000">

 <svg:rect x="0px" y="0px" width="200px" height="200px"
 fill="#888" stroke="#000"/>

 </event>

</rex>

Example that updates SVG DOM tree

http://www.w3.org/2006/rex
http://www.w3.org/2000/svg

Abstracting control

● Describe behaviour as event-driven state machine

– Runs as agent
● Application level semantic events

● Couple UI to state machine via event transport

● XHTML + DOM operates at lower level of abstraction

● Introduce abstraction layer to mediate between XHTML
events and application level events

● Abstraction layer can be located anywhere in network

SCXML
(State machine)

XHTML
(Visual/Tactile)

Semantic
Events

Abstraction
Layer

XHTML
Events

Modality specific

Modality
independent

Local or
Remote

Abstraction layer for Events

Adaptation

Describing applications in a way that makes
them easier to run on a range of devices

Challenge of device diversity

● An ever increasing diversity of devices

● It is expensive to test on lots of devices

● My employer Volantis Systems has a database of over
4000 mobile devices with several hundred properties for
each

– browsers vary in details of scripting support, CSS bugs,
etc.

– variations in display size, fonts, kinds of buttons,
memory, etc.

● Much tougher challenge than for desktop browsers

Policy-based Adaptation

● Author markup in device independent representation

– authoring format is freed from browser restrictions
– high level events in place of low level scripts

● Describe policies for adaptation to classes of devices

– what layout, images, style sheets, scripts, etc.
– skinning apps as combo of markup, CSS, script

● Adaptation process executes policies for specific delivery
context

– e.g. generate HTML4 if appropriate
– split content for low memory devices
– exploit client APIs for rich web apps (e.g. Ajax)

External Groups

● 3GPP – protocols for mobile devices (GSM, W-CDMA)

● DLNA – device coordination for home entertainment

● FIPA – IEEE CS standards for agent-based technology

● HGI – devices acting as home gateways

● IETF – protocols including HTTP and SIP

● OMA – mobile application environment

● PUCC – device and service metadata for devices

with potential relevance to W3C work on Ubiquitous Web Apps

Ubiquitous Web Applications WG

● Home page http://www.w3.org/2007/uwa

● Follow on to former Device Independence WG

● Plus broadened focus on Ubiquitous Web Applications

● Looking for companies interested in working on

– enabling applications across multiple devices
– content adaptation for multi-channel delivery

● UWA WG Charter

– http://www.w3.org/2006/10/uwa-charter.html
– chair: Dave Raggett <dsr@w3.org>
– team contact: Stéphane Boyera <boyera@w3.org>

http://www.w3.org/2007/uwa
http://www.w3.org/2006/10/uwa-charter.html

UWA Workshop

● Dublin, Ireland, 5-6 June 2007
– http://www.w3.org/2007/02/dmdwa-ws/

● Reduce the cost of developing and maintaining
Web Applications
– Abstract versus Concrete UI's
– Application data and task models
– Policies for adaptation to specific devices

● Come and help us to better understand the
future of Web authoring and the role of
declarative techniques for distributed Web
applications

http://www.w3.org/2007/02/dmdwa-ws/

Ubiquitous Web Applications

Questions?

