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UWA – Web of Devices

● Ubiquitous networked devices
– Moore's law now applies to RF circuitry

● Low additional cost to add network connectivity to device 
microcontrollers (via wireless or via power line)

– 2.6 billion phones, with 1.6 million more each day
– RFID @ 2 cents, fits between ridges in thumb print
– Home security, appliances, entainment
– Lighting, heating and environmental controls
– Office equipment, shops, mobile, automotive

● A world of connections, The Economist, 28 April 2007



  

Different Perspectives
● End Users

– easy to use and compelling reason for purchase
● Application Developers

– ability to add value whilst controlling costs
● Device Vendors

– appeal to users, developers and network operators
● Network Operators

– applications and devices that drive ARPU
● Browser Vendors

– appeal to device vendors, developers, operators
● Website and content owners

– attracting users and developers



  

Examples of Devices

● Security sensors for movement, pressure, windows/doors

● Door locks and security cameras

● Smoke, Carbon Monoxide and pollution detectors

● Lighting, heating and other environmental controls

● Household appliances (e.g. washing machine, freezer)

● Hand held remote controllers

● Flat screen display/television

● Media servers

● Home gateways 

● Phones, Printers, Scanners, Cameras, Projectors, ...



  

Mix of networking technologies

● Multiplicity of rapidly evolving networking technologies

● Challenge of how to create applications involving a 
changing mix of technologies

● Wireless

– WiFi, BlueTooth, Infrared, Ultrasound, ...
● Wired

– Twisted pair, Optical Fibre, Powerline,  ...
● Home gateways as bridges between different technologies

– telephone, stereo system, kitchen appliances and other 
network-enabled devices of the future



  

Mix of vendors and generations

● People expect devices to work for many years

– varies with kind of device, e.g. phone vs television
– technology is changing on a faster time scale

● Mix of vendors

– people will buy devices from a range of vendors and 
expect applications to work across vendors and device 
generations

● Standards are needed to meet user expectations

● This will lead to an ecosystem for device vendors and 
application developers



  

Combining local & remote services

● The Web makes it easy to exploit remote services
– Remote servers can support streaming media, news, guides, 

social networks, games, photo sharing, etc.

● These can add value to native capabilities of devices
– e.g. turn mobile phone into language translator via sending photo 

of Japanese menu to server for OCR and translation to English

● Web servers
– May be used to install and manage applications as an easier 

alternative to traditional shrink-wrapped software

– May provide rich descriptions of device capabilities

– May be involved in service discovery as brokers

● Critical to motivating Network operators and Websites



  

Usability, Security and Privacy

● Effective security is essential
– Don't give the front door key to intruders!
– Protect users privacy

● Must be usable if security is to work in practice
– Lessons from phishing
– Don't put the burden on users

● Practical considerations
– how to verify that this application should be granted 

access to a particular set of device capabilities
– registering wireless devices with network



  

Home network example

DOM
script

Agent

Website
TV
+

Browser

remote

Heating
System

Gateway

Uses power line for
network connection 

UI for
Heating 
control

● Use TV + remote to 
control all kinds of 
household appliance

● Application hosted by 
website



  

Realizing the Potential

● Initially, just proprietary solutions

– end user purchases complete solution
– single vendor and single product generation

● Followed by narrowly focused industry standards

– e.g. Pictbridge as solution for printing direct from 
camera when printer and camera from different vendors

● Broader standards follow later, enabling new applications

– Traditional programming languages like C++ and Java 
offer low level control but are costly to develop with

– Web technologies will make applications easier and 
cheaper to develop, enabling a much bigger ecosystem



  

What's needed to achieve this?

● Standard-based architecture that decouples application 
authoring from the details of networking technologies and 
device platforms

● Standards for groups of devices with similar functions so 
that applications are not tied to specific devices

– Bringing together interested parties to work on 
ontologies of device capabilities and exposure as APIs 
for markup and scripts to access these capabilities

– Careful consideration for versioning to ensure that new 
devices will work with existing applications, and that 
new applications will work with older devices



  

How is W3C addressing this?

● New Ubiquitous Web Applications Working Group

– Launched 30 March 2007
– Successor to former Device Independence WG
– Broadened focus on Ubiquitous Web Applications

● Support for regional subgroups

– can hold meetings in local language, e.g. Japanese
– greater convenience for meeting times and locations
– meeting summaries and technical specs in English

● Balance between openness and confidentiality

– publish approved meeting summaries and approved 
editorial drafts of technical documents



  

Why become a member?

● To get a head start on future standards

– some competitors will be involved but not all
● To drive the direction of those standards

– based upon your own experience and needs
● To reduce costs of development through shared test suites

– Voice Browser WG members benefited from pooling 
tests, resulting in stronger test suite for lower cost

● Specifications benefit from scrutiny by people from 
different companies and backgrounds

– reduces future costs by spotting problems early



  

UWA Approach

● Define user interface, data models and behaviour as 
combination of markup and event-driven scripting
– XML + Events + RDF + Object Model 

● Device coordination framework
– descriptions, binding and use of capabilities

● Logical support for passing events between devices 
over different networking technologies
– coupling devices and support for remote user interfaces

● Distinction between authoring and execution
– policy-based content adaptation to match the delivery 

context (user preferences, device capabilities, etc.)



  

Device Behaviour

● Simple devices with fixed behaviour
● XML + scripted event handlers

– e.g. XHTML/SVG + ECMAScript
● Pure XML with language defined event 

handlers
– e.g. SCXML (StateChartXML)

● event driven state machines as in UML
● Pure script with event handlers

– Device has script engine + library of objects

How to “program” device behaviour?



  

Device Coordination Framework

Finding and binding to services
in the context of an application session



  

Examples of Services

● Device capabilities, e.g.
– audio capture and playback
– embedded camera
– ability to initiate a phone call
– persistent storage
– calendar, address book, personal preferences, ...

● Speech synthesis and recognition
– using embedded or remote speech engine

● Geographic location

 “service” is used loosely for anything that Web applications might want to make use of



  

Binding to a Service

● Binding as a scripting interface
– Input a service name or description
– Output an object that proxies for the service

● May be restricted and based upon proving 
membership of appropriate access control list
– Issues of trust, identity, privacy and security
– Usability issues, e.g. asking user for decision

– Is it okay to send location to web app?
– Is it okay to grant access to camera?

● What information to provide as context?
● What if user isn't present?



  

Service Discovery

● Name service or describe its characteristics
– URI for service or service description
– Description as content for XML element that will act 

as DOM proxy for the service
● Discovery mechanism may be implicit

– Provided by run-time environment, e.g. UPnP
● Discovery mechanism may be explicit

– Provided by a named Web server
– Based upon external description of service



  

Binding as Markup

● Markup element as proxy for service/capability
– Attribute that names service/capability as a URI
– Or URI for reference to external description
– Or content markup as description
– When binding is complete, raises binding event
– Or error event if binding fails if access is denied

● fallback markup for an alternative
– Another event when resource is unbound

● Target events at element to control resource
● Set event handlers to respond to changes



  

Delivery Context Client Interfaces

● Enable applications to dynamically respond to 
changes in user preferences, device 
capabilities and environmental conditions

● Exposed as tree of XML DOM Nodes
– For example, display characteristics, playback 

volume level, memory size, geographical location, 
battery level, network availability, etc.

– Nodes may support additional interfaces for 
accessing services, e.g. dimming display, or muting 
microphone

– Nodes act as proxies for accessing capabilities
DOM = Document Object Model



  

hidden messaging layer
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Client or Server?
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Client or Server?
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Event Transport

● HTTP

a) Add HTTP server to each device
● But problems with firewalls/NAT

b) Emulate via polling/long lived connection
● Hacks with Ajax

● Overloading SMS on GSM networks
● SIP and IMS

– Each device acts as client and server
● IETF/3GPP standards
● XML representation of event as SIP message payload

How to deliver events to devices?



  

Tunnelling through NAT
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Tunnelling through NAT
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Tunnelling through NAT
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Public and Private Agents
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What's needed?

● Interfaces for accessing services from web 
scripts
– Need standards for common services
– Need standards for discovery and binding

● Descriptions that can be used for discovery and 
adaptation purposes
– Semantic Web technologies like Ontologies

● Policies for discovery and binding
– Need standards for describing them
– Cover security and privacy considerations



  

Remote User Interfaces

● Model behaviour as script or state machine

– Interaction Manager (IM)
● Model UI as XML (XHTML, SVG, ...)

● Run UI and behaviour on separate devices

● IM sends events to update remote UI's DOM

● IM receives events from UI as result of user input

● UI can be distributed on multiple devices and controlled via 
single interaction manager

– rich UI: mobile phone or remote + flat screen display
– simple UI with buttons and indicator 



  

Browser
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REX

<rex>

   <event target=“...”  name=“...” timeStamp=“...”>
     XML serialization of event's data
   </event>

   <event target=“...”  name=“...” timeStamp=“...”>
     XML serialization of event's data
   </event>

   ...
</rex>

Serialize sequence of events as XML Grammar

event target identified using XPath,
timeStamp defines when to dispatch event



  

REX

<rex xmlns="http://www.w3.org/2006/rex"
   xmlns:svg="http://www.w3.org/2000/svg">

  <event target="/svg/g/circle[1]"
    name="DOMNodeRemoved" timeStamp="1000"/>

  <event target="/svg/g"
    name="DOMNodeInserted" position="0" timeStamp="3000">

      <svg:rect x="0px" y="0px" width="200px" height="200px"
         fill="#888" stroke="#000"/>

  </event>

</rex>

Example that updates SVG DOM tree

http://www.w3.org/2006/rex
http://www.w3.org/2000/svg


  

Abstracting control

● Describe behaviour as event-driven state machine

– Runs as agent
● Application level semantic events

● Couple UI to state machine via event transport

● XHTML + DOM operates at lower level of abstraction

● Introduce abstraction layer to mediate between XHTML 
events and application level events

● Abstraction layer can be located anywhere in network
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Adaptation

Describing applications in a way that makes
them easier to run on a range of devices



  

Challenge of device diversity

● An ever increasing diversity of devices

● It is expensive to test on lots of devices

● My employer Volantis Systems has a database of over 
4000 mobile devices with several hundred properties for 
each

– browsers vary in details of scripting support, CSS bugs, 
etc.

– variations in display size, fonts, kinds of buttons, 
memory, etc.

● Much tougher challenge than for desktop browsers



  

Policy-based Adaptation

● Author markup in device independent representation

– authoring format is freed from browser restrictions
– high level events in place of low level scripts

● Describe policies for adaptation to classes of devices

– what layout, images, style sheets, scripts, etc.
– skinning apps as combo of markup, CSS, script

● Adaptation process executes policies for specific delivery 
context

– e.g. generate HTML4 if appropriate
– split content for low memory devices
– exploit client APIs for rich web apps (e.g. Ajax)



  

External Groups

● 3GPP – protocols for mobile devices (GSM, W-CDMA)

● DLNA – device coordination for home entertainment

● FIPA – IEEE CS standards for agent-based technology

● HGI – devices acting as home gateways

● IETF – protocols including HTTP and SIP

● OMA – mobile application environment

● PUCC – device and service metadata for devices

with potential relevance to W3C work on Ubiquitous Web Apps



  

Ubiquitous Web Applications WG

● Home page http://www.w3.org/2007/uwa

● Follow on to former Device Independence WG

● Plus broadened focus on Ubiquitous Web Applications

● Looking for companies interested in working on

– enabling applications across multiple devices
– content adaptation for multi-channel delivery

● UWA WG Charter

– http://www.w3.org/2006/10/uwa-charter.html
– chair: Dave Raggett <dsr@w3.org>
– team contact: Stéphane Boyera <boyera@w3.org>

http://www.w3.org/2007/uwa
http://www.w3.org/2006/10/uwa-charter.html


  

UWA Workshop

● Dublin, Ireland, 5-6 June 2007
– http://www.w3.org/2007/02/dmdwa-ws/

● Reduce the cost of developing and maintaining  
Web Applications
– Abstract versus Concrete UI's
– Application data and task models
– Policies for adaptation to specific devices

● Come and help us to better understand the 
future of Web authoring and the role of 
declarative techniques for distributed Web 
applications

http://www.w3.org/2007/02/dmdwa-ws/


  

Ubiquitous Web Applications

Questions?


