
Laboratory for Dependable Distributed Systems

0wned by an iPod
Maximillian Dornseif

PacSec 2004

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Agenda
• Who we are and what we do

• Introduction to Firewire

• Demo

• Technical Details of hacking by FireWire

• Forensics by FireWire

• What to do about it

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Who are we?
• RWTH Aachen University,

Germany

• Laboratory for Dependable
Distributed Systems

• Michael Becher, Maximillian
Dornseif, Halvar Flake, Christian
Klein

Laboratory for Dependable Distributed Systems

Introduction into
Firewire

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

What is Firewire?
• Developed by Apple Computers since

1985

• IEEE 1394 (1995), IEEE 1394a (2000),
IEEE 1394b (2002).

• Marketed by Apple as Firewire or
FireWire

• Marketed by Sony as iLink

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

FireWire

• Serial bus, similar but more sophisticated
than USB

• Faster

• Peer-to-Peer, needs no computer

• More Power

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Marketplace
• Apple - pushing FireWire hard:

• Since January 1999 in Desktops

• Since January 2000 in Notebooks

• September 2000 where the last non-
FireWire machines shipped

• October 2001: iPod as FireWire killer-app

• Sony - we’ll come to that

• Others: most upper class systems come with
FireWire

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

FireWire by Sony

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Other FireWire

• Audio

• Printers

• Scanners

• Cameras

• GPS

• Lab Equipment

• Industrial Control

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Things to come

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Confusion

Demos

Connecting different
Systems

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Technical Details

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Unified Memoryspace

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

OHCI

• Asynchronous functions

• Can be used to access on-board RAM
and RAM on extension cards (PCI)

physical requests - physical requests, including
physical read, physical write and lock requests to
some CSR registers (section 5.5), are handled directly
by the Host Controller without assistance by system
software.” (OHCI Standard)

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

OHCI Filters

• “Asynchronous Request Filters”
“The 1394 Open HCI allows for selective access to host memory and the
Asynchronous Receive Request context so that software can maintain host
memory integrity. The selective access is provided by two sets of 64-bit
registers: PhysRequestFilter and AsynchRequestFilter. These registers allow
access to physical memory and the AR Request context on a nodeID basis.”
(OHCI Standard)

• PhysicalRequestFilter Registers (set and clear)
“If an asynchronous request is received, passes the
AsynchronousRequestFilter, and the offset is below PhysicalUpper-Bound
(section 5.15), the sourceID of the request is used as an index into the
PhysicalRequestFilter. If the corresponding bit in the PhysicalRequestFilter is
set to 0, then the request shall be forwarded to the Asynchronous Receive
Request DMA context. If however, the bit is set to 1, then the request shall be
sent to the physical response unit.” (OHCI Standard)

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Exploiting Reads
• We can read arbitrary memory locations.

So we can:

• Grab the Screen contents

• Just search the memory for strings

• Scan for possible key material

• Parse the whole physical memory to
understand logical memory layout.

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Exploiting Writes
• We can write arbitrary data to arbitrary

memory location. So we can:

• Mess up

• Change screen content

• Change UID/GID of a certain process

• Inject code into a process

• Inject an additional Process

Forensics by Firewire

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

The forensics schism
• Unplug, do post-mortem disk-analysis

• Misses Processes, open connections, etc.

• Gather information on the live system,
afterwards do a clean shutdown and do
afterwards disk-analysis

• Contaminates evidence during the
information gathering

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Live Memory Dumps
• Being able to dump the whole memory

without software support would solve the
schism

• Tribble is a specialized pice of hardware
being able to dump physical memory via
DMA transfers over the PCI bus

• If you can do the same via Firewire, you get
away with a software only solution

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Forensics Challenges

• There is little experience in reconstructing
logical/virtual memory from physical
memory dumps

• To find open network connections etc. we
have to parse a bunch of kernel structures

Conclusions

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Shields-Up!

• Ensure that only fully trusted devices are
connected to your FireWire ports

• Press you driver/OS vendors about
FireWire filtering

Maximillian Dornseif • Laboratory for Dependable Distributed Systems

Be Prepared for Forensics

• You might want to keep FireWire ports on
incident prone systems at hand

• Keep them physically secured

• Have some software ready to do memory
dumps via FireWire

