
Improving Tor using a
TCP-over-DTLS Tunnel

by

Joel Reardon

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2008

c© Joel Reardon 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners. I
understand that my thesis may be made electronically available to the public.

Joel Reardon

ii

Abstract

The Tor network gives anonymity to Internet users by relaying their traffic through
the world over a variety of routers. This incurs latency, and this thesis first explores
where this latency occurs. Experiments discount the latency induced by routing
traffic and computational latency to determine there is a substantial component
that is caused by delay in the communication path. We determine that congestion
control is causing the delay.

Tor multiplexes multiple streams of data over a single TCP connection. This is
not a wise use of TCP, and as such results in the unfair application of congestion
control. We illustrate an example of this occurrence on a Tor node on the live
network and also illustrate how packet dropping and reordering cause interference
between the multiplexed streams.

Our solution is to use a TCP-over-DTLS (Datagram Transport Layer Security)
transport between routers, and give each stream of data its own TCP connection.
We give our design for our proposal, and details about its implementation. Finally,
we perform experiments on our implemented version to illustrate that our proposal
has in fact resolved the multiplexing issues discovered in our system performance
analysis. The future work gives a number of steps towards optimizing and improving
our work, along with some tangential ideas that were discovered during research.

Additionally, the open-source software projects latency proxy and libspe, which
were designed for our purposes but programmed for universal applicability, are
discussed.

iii

Acknowledgements

I would like to thank my supervisor Dr. Ian Goldberg for his assistance and guid-
ance in developing this work. I would also like to thank my readers, Dr. U.
Hengartner and Dr. S. Keshav, for their participation and feedback.

iv

Contents

List of Tables viii

List of Figures x

1 Introduction 1

2 Privacy 3

2.1 Perceptions of Privacy . 4

2.2 The Nymity Slider . 5

2.3 Internet Privacy . 6

2.4 Privacy Enhancing Technologies . 6

2.5 Modern Challenges . 7

2.5.1 Political Dissidence and Human Rights 9

2.5.2 Internet Censorship . 10

2.5.3 Identity Theft and the Dossier Effect 12

3 The Network Architecture of Tor 13

3.1 Tor . 14

3.1.1 Threat Model . 15

3.1.2 Basic Operation . 15

3.1.3 Alternative Approaches . 16

3.2 Transport Protocols . 18

3.2.1 User Datagram Protocol (UDP) 18

3.2.2 Transmission Control Protocol (TCP) 19

v

4 System Performance Analysis 23

4.1 latency proxy: The Internet on a Loopback Device 24

4.1.1 Rewriting and Relaying Packets 25

4.1.2 Experimentation . 26

4.2 libspe: A Dynamic System Performance Analysis Library 28

4.2.1 Static Data Collection . 29

4.2.2 Interaction Socket . 29

4.2.3 Observers . 30

4.2.4 Dynamic Callbacks . 30

4.2.5 System Interface . 31

4.3 Timing Client/Server . 31

5 Latency in Tor’s Datapath 33

5.1 The Impact of Transport Latency 35

5.2 Latency along the Computational Datapath 39

5.3 Queueing Latency along the Datapath 41

5.3.1 Input Buffers . 43

5.3.2 Output Buffers . 47

5.4 Thread Model for Reading and Writing 52

5.5 Unwritable Connections . 57

5.5.1 TCP Window Sizes . 57

5.5.2 TCP Output Buffer Sizes 58

5.6 TCP Multiplexing Problem . 62

5.6.1 Unfair Congestion Control 62

5.6.2 Cross-Circuit Interference 63

5.7 Summary . 68

6 Proposed Transport Layer 69

6.1 Problems with TCP . 70

6.2 TCP-over-DTLS Tunnel . 70

6.3 Backwards Compatibility . 72

6.4 User-level TCP Stack . 73

6.4.1 Daytona: A User-Level TCP Stack 74

vi

6.4.2 UTCP: Our Tor-Daytona Interface 75

6.5 Integration of UDP Transport into Tor 77

6.5.1 Establishing a Connection 77

6.5.2 Establishing a Circuit . 79

6.5.3 Sending and Receiving Data 80

7 Experimental Results 84

7.1 Profiling and Timing Results . 84

7.1.1 Demultiplexing . 85

7.1.2 Receiving . 85

7.1.3 Transmitting . 86

7.1.4 TCP Timer . 86

7.1.5 Datapath . 87

7.1.6 Summary . 88

7.2 Basic Throughput and TCP Tuning 88

7.3 Multiplexed Circuit with Packet Dropping 92

7.4 TCP Censorship Attack . 94

7.5 Summary . 95

8 Conclusions 96

8.1 Future Work . 96

8.1.1 Real-World Benefits . 96

8.1.2 Improving DTLS . 97

8.1.3 Optimized TCP Stack . 97

8.1.4 TCP Stack Memory Management 98

8.1.5 Stream Control Transmission Protocol 99

8.1.6 Optimize Demultiplexing of Circuits 100

8.1.7 Probing Attack . 100

8.1.8 UDP Forwarding . 101

8.1.9 Windows ORs and Reputation 105

8.1.10 Web Browsing Mode for Tor 105

8.2 Summary . 106

Bibliography 108

vii

List of Tables

4.1 RTT and packet dropping for selected Tor routers 28

5.1 Transport and overhead latency in Tor 37

5.2 Throughput for different dropping configurations 66

5.3 Latency for different dropping configurations 66

5.4 Throughput for different reordering configurations 67

5.5 Latency for different reordering configurations 68

7.1 Throughput and delay for different reordering configurations 90

7.2 Throughput for different dropping configurations 92

7.3 Latency for different dropping configurations 93

viii

List of Figures

2.1 An example Google Street View image 8

4.1 Example TCP connection over the latency proxy 26

4.2 Example UDP connection over the latency proxy 27

5.1 A circuit datapath in Tor . 33

5.2 The datapath for Experiment 2 . 36

5.3 Message sequence diagram for Experiment 2 38

5.4 Simplified datapath for cell processing 39

5.5 Cell processing time reported from Experiment 3 42

5.6 Waiting times and data sizes for a representative input buffer 44

5.7 Partition diagram for input buffer latency across many buffers . . . 45

5.8 Zoomed area of interest for Figure 5.7 46

5.9 Waiting times and data sizes for a representative output buffer . . . 49

5.10 Partition diagram for output buffer latency across many buffers . . 50

5.11 Partition diagram for output buffer latency sorted by throughput . 51

5.12 Distribution of waiting intervals in libevent 55

5.13 Idle time as a percent of 1 s intervals in Tor 55

5.14 Duration for the execution of libevent’s event callbacks 56

5.15 Duration for the second elapsed callback 56

5.16 TCP window size over time . 60

5.17 TCP socket output buffer size . 60

5.18 Relationship between TCP socket metrics 61

5.19 Example of congestion on multiple streams 63

5.20 TCP correlated streams . 64

5.21 Setup for Experiments 8, 9, and 12 65

ix

6.1 Proposed TCP-over-DTLS Transport showing decorrelated streams 69

6.2 Packets for TCP Tor and our TCP-over-DTLS improved Tor 71

6.3 Daytona User-Level TCP Stack System Diagram 74

6.4 User-Level TCP Stack System Diagram 75

6.5 Layout of the TORTP header in memory 76

6.6 Establishing a new circuit between UDP ORs 82

6.7 Sending and receiving data in TCP-over-UDP Tor 83

7.1 Time to demultiplex a UDP packet 86

7.2 Time to inject a packet . 87

7.3 Time to emit a packet . 88

7.4 Time to perform a TCP timer task 89

7.5 UDP Datapath Duration . 91

x

Chapter 1

Introduction

Internet privacy does not exist—at least not inherently in its design. It is erro-
neously believed to exist; searching for the exact phrase “the anonymity of the
Internet” in Google returns 89,200 results in September 2008. However, without
extra precautions, all actions on the Internet are linkable, and privacy disclosure
is a growing concern. Chapter 2 presents definitions of privacy in the digital age,
and explains the need for privacy on the Internet. Various nations have decided
to heavily censor the Internet of any political content, and Internet privacy allows
citizens of those nations the freedom to access an unfettered Internet.

Fortunately there already exists an outstanding tool to enable Internet privacy,
which has seen widespread use and popularity throughout the world. This tool is
called Tor [16], and consists of a network of thousands of routers whose operators
have volunteered to relay Internet traffic around the world anonymously. Clients
send their traffic into the Tor network and it exits at another location in the network.
Any entity that cannot view the entire network is unable to associate the sender
of any traffic with its ultimate destination. Tor aims to ensure that no such entity
can view the entire network by geopolitically diversifying its routers. Thus, even
government actors cannot quickly and discreetly compromise the Tor network. We
describe Tor in more detail in Chapter 3 and also briefly cover the fundamental
networking protocols of the Internet.

Despite its popularity, Tor has a problem that dissuades its use for all web
traffic—it incurs greater latency on its users than they would experience without
Tor. Additional latency is expected since users are sending their data to loca-
tions that are geopolitical diverse before dispatching. However, not all latency is
accounted for by transport time. The goal of this thesis is an exploration to deter-
mine where and why this latency occurs, and how we can improve Tor. To begin
our enquiry, Chapter 4 presents a suit of tools we have developed to help perform
our evaluation. First we present the latency proxy, a tool to simulate packet la-
tency, packet dropping, and packet reordering that occur on the Internet. Next is
the library libspe, a library to perform dynamic system performance evaluation,
including monitoring data structures and performing timing results of code. This

1

CHAPTER 1. INTRODUCTION 2

library is designed to allow the monitored program to operate without interruption,
while permitting the evaluator to access it remotely to perform analysis.

In Chapter 5 we perform our system performance analysis of Tor. We determine
the cost of transport latency and performing computations, discovering that there
exist other sources of latency outside those components. We begin exploring Tor’s
datapath thoroughly to determine where this latency occurs. We find that conges-
tion control mechanisms cause data to become delayed inside buffers in Tor and the
operating system. We discover that these mechanisms are being used improperly
because of Tor’s design and quantify the degradation it causes.

We present the solution to this problem in Chapter 6. Our proposal is a new
transport layer for Tor that, importantly, is backwards compatible with the existing
Tor network. Routers in Tor can gradually and independently upgrade, and our
system provides immediate benefit to any pair of routers that choose to use our
improvements. We discuss how it was implemented, and provide algorithms for our
new components.

Chapter 7 presents the experiments to compare the existing Tor design with
our new implementation. We compare latency and throughput, and perform tim-
ing analysis of our changes to ensure that they do not incur non-negligible compu-
tational latency. Our results are favourable: the computational overhead remains
negligible and our solution is successful in addressing the improper use of congestion
control.

This thesis concludes with a description of future work. We detail steps that
must be taken before our contribution can be deployed. Ways in which our design
can be improved are presented. An extension for our design is the use of end-to-
end congestion control—we explore this in some detail. Our research also uncovered
some tangential observations that might improve Tor; these are included as well.

Chapter 2

Privacy

Personal privacy and the privacy of correspondence are considered fundamental
human rights, proposed in article 12 of the United Nation’s Universal Declaration
of Human Rights [72]. Countries with democratic tradition are the most respect-
ful of privacy, with Germany and Canada leading the world in legislation aimed
at preserving this right [54]. Private information, however, has never been more
accessible than in our electronic age. Personal information is being stored digi-
tally, aggregated, searched, shared, bought and sold, and kept indefinitely at an
unprecedented rate.

A senior Central Intelligence Agency director has stated that it is time to re-
scind the notion that privacy is a right afforded to us: “Protecting anonymity isn’t
a fight that can be won. Anyone that’s typed in their name on Google under-
stands that. Instead, privacy, I would offer, is a system of laws, rules, and customs
with an infrastructure of Inspectors General, oversight committees, and privacy
boards....” [37]. Privacy Rights Clearinghouse chronicles near-daily data breaches
that occur, including losses by government officials [55]. The common trend is the
movement of data to laptops that are then stolen, or the improper disposal of sensi-
tive information. A recent survey indicates that ten thousand laptops are lost each
week in the largest thirty-six airports in the United States, with half containing
either customer or private information [51]. The report added that two-thirds of
travellers admit that they do not take any steps to protect or secure their laptops.
Until legislation is enacted to ensure that those whose privacy has been violated
are properly compensated by the offending firm, firms will be unlikely to choose to
delete private data they collect, or put in place the proper safeguards to ensure the
cessation of these data leaks.

Certainly the case is easily made that computer networks are prone to at-
tack [50]. No firm can ensure that data is protected without incurring large costs.
We suspect that any legislation that punishes data leaks will likely result in many
firms no longer maintaining data records that are not directly necessary. For in-
stance, Google was recently forced by a court to reveal customer usage data for
their video viewing site YouTube to the private copyright holder Viacom [12]. While

3

CHAPTER 2. PRIVACY 4

Google bemoans the court decision as unjust, others criticize Google’s insistence
that IP addresses do not constitute personal information [77] and their decision to
maintain comprehensive usage records years after their relevance, which Viacom
has used to their advantage [12].

2.1 Perceptions of Privacy

Many people falsely believe that a physically unobserved act is private. As a collo-
quial example, one friend expressed happiness for our new radio-frequency identifi-
cation (RFID) system for tracking library books, since they were no longer required
to disclose their borrowed books for inspection when exiting the library. In reality,
the new system may afford them less privacy as each book, without access control,
broadcasts a unique identifier to whomever carries an inexpensive RFID reader.
Online purchases are illustrative of this perception of privacy; bashfulness can re-
sult in purchases of embarrassing items over the Internet with a credit card in their
name rather than paying with cash anonymously in person.

People generally want privacy, but seem only concerned about privacy when they
are informed or reminded about it. A study of Canadians showed that nearly half
refuse to offer private information, such as telephone numbers, to shopkeepers upon
request [8]. Half also have asked retailers why such information was being collected.
This is prudent behaviour: divulging such information is rarely in its subject’s
best interest. To explore the importance of privacy, John et al. [35] performed a
study was done that exposed subjects to a website that prompted them for private
information such as their inclinations towards disreputable acts. One website was
designed to look professional and provided very strong privacy guarantees, and the
other was designed to look childish and offered no such guarantee. Paradoxically, it
was revealed that those who had been given privacy reassurances on the professional
site were less likely to reveal private information than those who had been given no
such assurances on the childish site. They concluded that the mention of privacy
set off alarms in minds of the participants, who then chose to dismiss the assurances
and protect their privacy themselves. The lack of any mention of privacy resulted
in the participant giving no consideration to its loss.

The search engine Ask recently re-advertised itself as a privacy-enhancing search
engine—promoting their AskEraser feature that allows users to erase their dossier of
collected search results easily [5]. This feature, disabled by default, also warns that
it may not delete search history, for instance, when a critical error occurs or they
have been given a legal obligation in a local jurisdiction to collect search information
for law enforcement. The paradoxical nature of privacy suggests that mentioning
that search histories are being recorded and indexed by their identity will make
people more concerned and suspicious about the service, even if the service deletes
them in bona fide, and the service is a better choice for the privacy-concerned.
Another search engine, cuil, made a wiser decision; it simply avoids collecting any
identified search information altogether, and mentions this in the privacy policy

CHAPTER 2. PRIVACY 5

for those who are sufficiently concerned about privacy to investigate [14]. The
fact that privacy concerns are strengthened when they are mentioned is likely why
Google resisted placing a link to their controversial privacy policy on their front
page [56]. Recently they have acquiescing for some countries where demand has
been vocal [21].

2.2 The Nymity Slider

Different transactions disclose identity to different degrees. In Goldberg’s Ph.D
thesis [23] he presents the nymity slider, which clarifies the differences between
levels of identity disclosure. It is a virtual one-dimensional slider that ranks the
nymity of transactions along the axis of privacy. The highest position, verinymity,
means true name. A verinymous transaction involves the disclosure of one’s true
identity, or information linked uniquely to their1 true identity. Examples in real
life include using one’s credit card, or showing government identification to prove
one’s age. Below verinymity is pseudonymity, meaning false name. A pseudonym,
or an alias, is a persistant front name behind which the true identity is hidden.
In the real world, pseudonyms include author’s pen names, or nicknames used by
bloggers.

The important distinction between verinymity and pseudonymity is that one has
control over the disclosure of their own identity—only the holder of the pseudonym
can choose to reveal it. Verinymity can be obfuscated, such as a Social Insurance
Number (SIN) that uniquely corresponds to an identity. However, the lack of
personal ownership over the mapping from one’s SIN to their identity makes it
decidedly verinymous.

The remaining positions on the slider are two varieties of anonymity, meaning
without names: linkable anonymity and unlinkable anonymity. Linkably anony-
mous transactions are transactions that can be linked together, however the linking
does not correspond to a real identity or a pseudonym: they are simply correlated.
An example of this is seen in retail outlets that use loyalty cards to offer a small
discount. (Often these cards are trivial to acquire and offer immediate benefit.)
Such cards require no registration and are not linked to any identity. They are
valuable to retail outlets for collecting data about customer buying patterns so as
to juxtapose items to encourage “impulse buying”. Finally, the lowest level on the
nymity slider is unlinkable anonymity. This is true anonymity, where individual
transactions are unlinkable to an external party or to each other. Using cash for
a purchase, or providing the police with an anonymous tip over the telephone, are
examples of unlinkably anonymous transactions.

Importantly, the position on the nymity slider can move towards verinymity
during a transaction much more readily than it can move towards anonymity. When

1This thesis will use pronouns for the third person plural as the singular third-person pronouns

of indefinite gender when it is unambiguous with another plural object.

CHAPTER 2. PRIVACY 6

one chooses to disclose an aspect of their identity during a transaction, such as
using ID to prove their age of majority, then that transaction becomes verinymous
even if the purchase is then done anonymously with cash. Similarly, an unlinkably
anonymous transaction becomes linkable when the decision is made to use a loyalty
card for a discount.

2.3 Internet Privacy

The hidden user aspect of the Internet leads it to be widely considered anonymous;
this is epitomized by the cartoon of a dog using a computer captioned by “On the
Internet, no one knows you’re a dog.”[19] People believe that their transactions are
unlinkable if they choose not to disclose their name. However, each Internet user
has an IP address that is revealed whenever a web server is accessed. IP addresses
are generally unique for each Internet user, however there are some caveats. Some
users have their exact IP address hidden behind network address translation (NAT),
which maps all computers on a local network to a single external IP address, which
provides anonymity up to the set of users on their local network. Others are assigned
IPs by their Internet Service Provider (ISP) temporarily, and so IP addresses are
only unique for a particular user at a particular time. This addressing system is
necessary for the backbone of the Internet to route traffic appropriately; however,
it allows their transactions to be linkable by IP address.

An IP is a verinym, because the ISP is aware of the customer’s true name
that it associates with each IP. The user lacks self-determination of the correlation
between their IP and their true identity, and ISPs are generally under no contractual
obligation to maintain the privacy of this association. In fact, ISPs can be forced
by courts to reveal the identity of their users when a copyright holder makes a
complaint regarding intellectual property infringement [28].

2.4 Privacy Enhancing Technologies

A privacy enhancing technology (PET) is a technology whose goal is to enhance
the privacy of the user. That is, a technology that prevents the position on the
nymity slider from careening needlessly towards verinymity for its user’s transac-
tions. These technologies are designed for use in the online world, and are employed
in a variety of contexts including instant messaging, web-browsing, and electronic
publishing. Goldberg et al. [27, 24, 25] present a quintennial series that examines
the progression of PETs. They contend that the most widely successful PET in
history is Transport Layer Security (TLS), which is used to encrypt and secure
Internet communication. It has become an invaluable tool on the Internet, and
is used for nearly all authentication, e-commerce, and server remote control pan-
els. Another successful PET is Off-the-Record Messaging [7], a plugin for popular
instant messaging programs that provides authentication, security, confidentiality,

CHAPTER 2. PRIVACY 7

and deniability to conversations. Contributing to its success is both the widespread
use of instant messaging for private conversations and the fact that it is provided
as a standard component for Adium [1] and is used automatically when both par-
ties support it—some users do not even realize that their conversations are being
protected from eavesdroppers. This is the ideal way to give privacy to users; to be
widely used it must be transparent to use and trivial to configure.

Anonymity in the real world depends on the number of users of a system. While
post office boxes allow the owner to receive mail anonymously, if the owner was the
only recipient of mail in the system then it would afford him very little privacy. Our
pragmatic definition of privacy for in the electronic age is based on this reality of
anonymity: we say to be anonymous is to be indistinguishable from a set ; this set is
called the anonymity set. The definition considers the existence of an adversary who
has the goal of identifying an anonymous user. A successful PET would result in
the adversary being unable to determine which user (from the anonymity set) is the
target for whom they are searching. More strongly, it would prevent the adversary
from pairing any user of the system with their identity. The goal in PETs is to
have the anonymity set equal to the set of users. This definition creates a corollary
goal for any PETs that we develop: it is imperative that such technologies are
popular and well-used, as this will increase the anonymity set and thus strengthen
the degree of anonymity afforded.

2.5 Modern Challenges

In the electronic age, privacy is often at odds with convenience. Lust of tech-
nology results in rapid adoption of fantastic technologies without considering the
detrimental effect on privacy involved. Google’s Street View is an example of this
phenomenon. Their service conveniently shows street-level images in many Amer-
ican and world-wide cities, allowing virtual tourists to mill about town without
leaving their computers. Unfortunately, it also shows cars and pedestrians nearby
at the time of photography, going about their days, neither consenting nor aware
of the photography that Google intends to preserve indefinitely. Figure 2.1 shows
the resolution of the camera that has taken millions of such photographs. Privacy
concerns have usually been dismissed with the statement that one who is in pub-
lic has no right to expect privacy. Google, in a lawsuit against them over Street
View, contends that “complete privacy doesn’t exist [in the modern world],” while
saying that Google “takes privacy very seriously.” [63] The chairman of the US
National Legal and Policy Centre, shocked by Google’s apparent hypocrisy, puts
forth that “in the real world individual privacy is fundamentally important and is
being chipped away bit by bit every day by companies like Google.” [63]

The view that one has no reasonable expectation to privacy outdoors is con-
tentious, however, since minors or those in witness protection are also photographed
without discrimination. Even the US Army is forced to opt out of Google’s service,
demanding that areas around sensitive sites are removed from their maps. Google

CHAPTER 2. PRIVACY 8

Figure 2.1: An example Google Street View image, taken in downtown Philadelphia,
Pennsylvania.

CHAPTER 2. PRIVACY 9

chose to acquiesce to the demands of the US Army. The Canadian privacy com-
missioner has ruled that Street View is an egregious violation of privacy [67], and
has reminded the content providers that under strong Canadian privacy laws, any
person who may possibly be identified must provide express permission for their
photograph to be used. Fortunately, the Canadian privacy commission has greater
authority than American public opinion, and Google acquiesced to her concerns
by ceasing their intentions to take street-level pictures throughout large Canadian
cities. While such a service may indeed be useful for travellers who meticulously
plan details of their vacation, including prefamiliarizing themselves with every turn
en route to their hotel, it is far more important that the basic rights of humans
beings are not rescinded by technological proliferation.

The Internet is perhaps the greatest challenge; we need an Internet that permits
all users easy transparent access to information while still respecting fundamental
human rights. In fact, the Internet has become intertwined with human rights
and justice because of its use in underground publishing of political dissidence.
While the United States used its economic strength to allow Radio Free Europe to
broadcast jazz and unsavoury truths about the USSR into the iron curtain [49], the
Internet has the power to make underground grassroots movements have massive
impact, both locally and globally; flashmobs [70] and Pangea Day [47] are exam-
ples of Internet-based coordination of assembly. Moreover, a lack of privacy on the
Internet permits some nations to persue active censorship of vast quantities of data
on the Internet [69]. Finally, the Internet has resulted in the loss of personally iden-
tifiable information for many people who do not realize its worth. This is leading
to a great rise in crimes related to identity theft as identity thieves find getting
personal information a trivial endeavour, unlike the days of rummaging through
rubbish for unshredded documents. In the remainder of this section we explore the
importance of Internet privacy as it relates to political dissidence, censorship, and
personal information.

2.5.1 Political Dissidence and Human Rights

Many regimes worldwide currently lack the same freedoms and access to justice
as Canadians citizens enjoy, and consequently political activists have been arrested
and victimized by these regimes. Being held as a political prisoner is truly a heinous
fate, as regimes that consider political dissidence a criminal offence tend to dismiss
human rights and often disregard the importance of habeas corpus and the Geneva
convention.

Dissidents, whistleblowers, and journalists who believe that the Internet pro-
vides them anonymity make what can be a tragic mistake. The year 2007 wit-
nessed the arrests of 36 bloggers—a record number—for their journalistic activi-
ties, with China and Egypt leading in the fight against free expression [29]. The
Internet search and media giant Yahoo! has, at least four different times over its
existence [57, 58, 60, 59], promptly aided the Chinese government arrest dissidents

CHAPTER 2. PRIVACY 10

by revealing the true identity for a Yahoo! email address. The cited reports are of
journalists who had written dissident articles or sent materials to pro-democracy
organizations. Yahoo!’s cavalier approach to user privacy has landed it in trou-
ble in American courts. Yahoo! claims it did not question why the government
wanted the identities, that there was no correlation with the divulging of informa-
tion and that user summarily being arrested, and insist that they must adhere to
local laws giving them no choice in the matter. A US congressional panel deemed
Yahoo!’s testimony to be false and characterized its actions in preparing testimony
as “inexcusably negligent behavior at best, and deliberately deceptive behavior at
worst.” [73]

While Yahoo! has perhaps the worst human rights record for an online firm, there
is some competition. In May 2008, Google supplied information to the government
of India to track the identity of a user of Orkut, Google’s social networking site.
The man used Orkut to express dissent against an Indian politician, stating “I
hate Sonia Gandhi.” [17] With Google’s assistance he is now arrested and jailed by
Indian authorities [61].

2.5.2 Internet Censorship

The proliferation of Internet censorship techniques in some nations that fail to see
the value in having free and adversarial journalism is another reason for the need
for Internet privacy. This is the dual problem to protecting a dissident author’s
identity; here we intend to protect the identity of someone retrieving censored data.
If an external adversary is unable to determine that a client is making a request to
a censored webpage then they will be unable to censor the data.

The People’s Republic of China is the canonical example of an authoritarian
regime that has opted to censor the Internet to avoid the promotion of free expres-
sion. They have managed to operate the most comprehensive censorship campaign
in all of human history. Their endeavour is called the Golden Shield Project, but
has been colloquially known as the “Great Firewall of China”, as an homage to
their bona fide world wonder.

Topics of a political nature are most often censored: human rights, democracy
and liberalism, any non-government sanctioned news, the situation in Tibet, and
the Tienanmen Square massacre of 1989. The success of their censorship and chill-
ing effects is apparent by the fact that the majority of Chinese citizens have not
heard of the Tienanmen Square student protests and the resulting slaughter of hun-
dreds to thousands of students [6]. The 2008 Olympics that are being hosted in
Beijing, China have made this decade-old censorship suddenly a topic in western
media, informing some citizens for the first time of its existence. One commented on
the radio call-in program “Cross-Country Checkup” that he had heard a rumour,
whose veracity he questioned, that China was going to somehow block Internet
websites to journalists during the Olympics [13]. He was unaware of the fact that
the Golden Shield project has existed for over a decade—well before China was

CHAPTER 2. PRIVACY 11

rewarded with the Olympics. Reporters who have travelled to China have been
shocked to discover that the Internet is in fact heavily censored; this is in spite of
the fact that China has eased its censorship for the Olympic period to the most per-
missive state to date. Initially it was stated that censorship would not be performed
during the Olympics, however it was revealed later that the International Olympic
Committee had quietly agreed to censorship for political topics [33]. Perhaps with
greater recognition of these issues will come a greater impetus to change.

A controversial issue with regards to enabling this censorship campaign has
been the eager support of Cisco systems to design and retail censorship solutions to
China. Cisco’s internal documents, leaked accidentally, revealed that they viewed
the China’s censorship as an opportunity to sell more routers [66]; however, they
publically dismiss any proclivity towards censorship: “Cisco strongly supports free-
dom of expression on the Internet, and we respect the conviction of those who have
brought these concerns forward.” [74] A private shareholder initiative would have
made Cisco, among other things, publish a yearly report detailing how Cisco ensures
that it is not violating human rights; however, two-thirds of shareholders voted with
the board of directors to avoid such a focus on human rights [38]. Their defence to
their business decision is that they simply sell generic hardware, in a competitive
market, to an international audience [74]. While China chooses to use their hard-
ware for censorship, Cisco feels that they have done nothing, in the totality of their
Chinese operations, for which they should feel ashamed [74]—their hardware is not
customized explicitly for the purpose of censorship [74]. This is poetically similar
to the reasoning that the 15-year-old Baltimore drug dealer DeAndre McCullough
offered when asked by a journalist how he justifies selling heroin despite it having
destroyed both his parents’ lives: “[The addicts] are gonna buy it from somewhere,
so it might as well be me.” [64] Google, Yahoo!, Skype, and Microsoft agree with
McCullough’s reasoning; their duty to their shareholders outweigh any ethical con-
siderations of censorship, and are complicit in content censorship so as to be able
to operate in mainland China [30].

John Gilmore, the founder of the Electronic Frontier Foundation (which has a
fundamental goal of fighting censorship) quips: “the Internet interprets censorship
as damage and routes around it.” [22]. This statement was made in regards to the
Streisand effect [40], which is that any attempt to remove information from the
Internet ironically results in the rampant proliferation and broadcast of something
that would otherwise be relatively unknown. A classic example was the attempt
to publically remove a secret code used in copy protection by threatening legal
action against a website; a user community outraged over their website’s compliance
began a rebellion, prolifically repeating the secret code, ostensibly out of spite
rather than legitmate dissemination, until the story was widely repeated by various
news agencies [10]. Ideally, the Internet would be impossible to censor without
abandoning its use entirely. However, the lack of privacy for senders and receivers
of data makes censorship by Internet access providers possible. By ensuring no
observer can determine both the source and destinations of Internet traffic we can
prevent any targeted censorship of the Internet.

CHAPTER 2. PRIVACY 12

2.5.3 Identity Theft and the Dossier Effect

It may be difficult for the fortunate citizens of North America to relate to the need
for a political dissident to have privacy; our British tradition makes political satire
a pillar of our democracy. However identity theft motivates the need for privacy
among citizens of enlightened democracies. Identity theft is an increasingly popular
crime in the modern world, particularly in Canada [62]. The premise of identity
theft is that a criminal uses someone else’s identity to perform some transaction.
Identity theft is often used to enable other crimes such as fraud. These transactions
are often monetary in nature, such as withdrawing sums of money from another
person’s bank account, or using someone else’s private information to obtain a credit
card in their name. Identity theft can have devastating effects on people’s credit
history with consequences that are strenuous, if even possible, to resolve. Some
victims of identity theft are detained by police serving warrants in their name [4].

The depth of the problem is only hypothesized in Canada, as Canadians banks
intentionally tell victims not to report the crime to the police [45]. This business
decision indicates that bad press against the bank is more fiscally harmful than
simply restoring the funds without a police investigation. It is unsustainable for
banks to continue passing the cost of identity theft evenly to its customers via
service fees, since the identity theft will only continue to worsen until penalties
against the perpetrators are exacted. The Royal Canadian Mounted Police are
pleading for all victims to report the crime [62], and in a report on identity theft,
proposed that banks be subjected to mandatory reporting laws for cases of identity
theft [45].

Identity theft is made possible because criminals are able to access people’s
personal information [53]. The dossier effect is a means by which an eavesdrop-
ping adversary can collect a wealth of personal information about someone through
linkable transactions involving minor privacy disclosures [23]. As established, all In-
ternet traffic is easily linkable by the IP address of the source, and most webservers
only use encryption for password authentication. A user might be prompted for
their birthday to obtain a horoscope, their postal code to obtain a list of nearby re-
tail outlets, and their name for a vanity search. This allows a passive eavesdropper,
or the websites themselves, to collect a dossier of personal information by linking
each mild disclosure to build a massive result. Once built, this dossier allows the
identity thief to fill out credit card applications, answer identity challenges, etc.

Chapter 3

The Network Architecture of Tor

Providing anonymity to parties communicating over the Internet is an area of active
research. The goal is to hinder attempts by an external observer to learn the
association between pairs of communicators. Connecting the flow of data through
a network uses techniques in traffic analysis, and so anonymity research includes
both developing attacks using traffic analysis and then attempting to thwart their
effectiveness.

Internet applications can be partitioned into two groups based on their demand
for interactivity: those that demand low-latency and those that can tolerate high-
latency. Low-latency applications require interactive communication and prompt
responses: remote shells, instant messaging, and web browsing. High-latency ap-
plications permit far greater latency for communication without significantly im-
pacting usability, as replies are not necessary or can be delayed: electronic mail,
newsgroups, file downloads, low-bandwidth massively distributed computations,
and electronic publishing.

High-latency anonymity has been widely studied [9, 15, 44]. Traffic analysis can
be prevented by sending Internet traffic through a relay that is simultaneously used
by many others; this relay is known as a mix. Its purpose is to group together a set
of senders and their corresponding set of recipients. Each element of the set has
an equivalent statistical likeliness as being the actual source or destination. Recall
that this matches our definition of privacy; i.e., being indistinguishable from a set.
Mixes use the dimension of time to achieve anonymity—they collect messages over
time and relay the resulting set in batches. An adversary watching data enter and
exit cannot correlate the two beyond the anonymity set (the batch of messages).
As this problem already has reasonable solutions, we focus this thesis on the field
of low-latency anonymity research.

Low-latency anonymity uses a relay to prevent a server from learning the identity
of a client while still remaining useful for interactive purposes. The client sends
their traffic to the relay, which dispatches it to the server on their behalf. The
server links the transactions as having come from the perceived source; i.e., the
relay. This system necessitates that other clients must use the relay, as we have

13

CHAPTER 3. THE NETWORK ARCHITECTURE OF TOR 14

already established that a privacy enhancing system with one user affords little
privacy.

This single relay is vulnerable to a number of attacks. Single-hop relays rely on
the operator’s unwillingness to disclose their users’ identity. The relay itself is able
to perform perfect traffic analysis, and so users must be able to trust the relay with
their privacy. As we have seen with Yahoo!, for example, government actors are
capable of coercing an entity entrusted with privacy rather easily. We present Tor
in the next section, which uses relays as a building block in the design of a robust
and powerful Internet anonymity PET.

3.1 Tor

Tor is the most successful PET that provides low-latency Internet anonymity. It
provides anonymity based on relaying network traffic, but uses multiple relays in
series to protect users’ privacy. Each relay is aware of the relays adjacent in the
series, but no entity (except for the client) is aware of both the client and the
destination. By geographically and politically diversifying the selection of relays,
Tor aims to render infeasible the legal and coercive attacks possible for single-hop
relays.

Tor is the second generation of the Onion Routing project [68] that started at
the US Naval Laboratories. The goal of Tor is to anonymize all Internet traffic—
specifically traffic for low-latency or interactive applications. Its anonymity goal is
to frustrate any attempts at traffic analysis; i.e., preventing attackers from either
discovering pairs of communicating entities or linking multiple communications that
share an entity [16]. Data is sent into the Tor network as the packets for one end
of a TCP connection, which is relayed along a circuit built out of single-hop relays.
It uses multiple layers of encryption, wrapped like an onion, which are removed
at each relay along the path. This prevents any two messages from looking the
same to an observer, and also prevents any relay from knowing the precise data
being transported—except for the last relay, which actually dispatches the TCP
request being made. The results are relayed back through the Tor network, and
the original application making the connection receives the response as though it
were dispatched locally. The Tor network consists of many computers whose owners
have volunteered to run the Tor software, which relays and dispatches traffic. The
relays in the network are called Onion Routers (ORs); we also refer to them as
nodes. The anonymity requirements necessitate that it is difficult for an adversary
to correlate the ORs where data enters and exits the Tor network. Tor accomplishes
this by relaying traffic through the network with the goal of routing traffic through
a segment that the adversary cannot observe.

Tor is currently the most advanced and successful provider of low-latency ano-
nymity, having been launched in 2003 and, as of time of writing, has had five years
of continuous up time despite major system and software updates. It is completely

CHAPTER 3. THE NETWORK ARCHITECTURE OF TOR 15

free and open source, and relies on thousands [71] of volunteers to help route traffic.
Tor has hundreds of thousands of users around the world; many thousands of peo-
ple in China rely on Tor to provide them with anonymous and uncensored Internet
access [41].

3.1.1 Threat Model

Tor’s threat model assumes that the adversary is a non-global active adversary.
Early work in anonymous systems often assumed the existence of a global pas-
sive adversary [9]—an entity who can observe all traffic in the network but does
not interfere with any communication. A global adversary is confounded in most
anonymous systems through the dimension of time; i.e., collecting messages over
time and dispatching them in a batch. This model is too restrictive when design-
ing a pragmatic low-latency anonymous system for use in web-browsing since it
cannot be secure against a global passive adversary while still remaining useable
for interactive tasks. Tor aims to provide a reasonable tradeoff between anonymity
and performance in a low-latency setting. It assumes that its adversaries can only
control small segments of the network: they can observe, modify, generate, delete,
and delay traffic in that network segment, and can compromise a fraction of the
computers in the Tor network. Tor uses a jurisdictional approach to protect client
privacy, under the assumption that an adversary cannot effectively, or at least both
rapidly and discreetly, operate in all jurisdictions.

3.1.2 Basic Operation

The ORs in the Tor network are all volunteers with minimal oversight to prevent
malicious operators from participating. One need only run the free and open-source
Tor program, and they become an OR. The main restriction is that only one OR can
operate per unique IP address. To mitigate the risks inherent in such a volunteer
system, Tor empowers clients to select their own ORs for their circuits and uses the
notion of distributing trust: one cannot fully trust every node, so one diversifies
their trust by making use of several different nodes. The client runs an Onion Proxy
(OP) that builds a circuit through the Tor network; a circuit is an ordered list of
routers through which their traffic will be routed. Each OR on the circuit knows
only the entity directly previous and successive on the circuit. The first node in the
circuit is called the entry node and is the only node aware of the original sender.
The middle nodes are responsible for forwarding data they receive. The final node
on the circuit is called the exit node; it is responsible for communicating with the
client’s intended destination and forwarding the replies back through the network.

Clearly there are abuse issues inherent in a system where a computer owner
volunteers to perform arbitrary Internet transactions with the intention that they
are not aware of the actual transaction being performed. Tor exit nodes can be used
to dispatch spam or to perform network abuse reconnaissance such as port sniffing.

CHAPTER 3. THE NETWORK ARCHITECTURE OF TOR 16

To encourage volunteers, Tor permits an expressive language for exit policies: the
operator can block access over arbitrary ports and addresses to mitigate abuse
issues.

Each node in the circuit is only aware of its direct neighbours. Anonymity is
granted provided the nodes do not collude. The exit node is aware of the destina-
tion, and the entry node is aware of the client making the request. No node in the
system is aware of both the client and the destination unless they share information.
Circuit construction defaults to a length of three—this is to ensure that the exit
node not only does not know the source of the request, but it is further unaware
of which node knows this information as it is hidden behind a middle node. The
question of the ideal circuit length, however, is an open question for research [16].
Tor’s design documents emphasize that nodes on the path should be selected so
that they are geographically and politically diversified. This makes it difficult for
a single government entity to compromise every node along a circuit. Circuit se-
lection also attempts to avoid multiple ORs under the same malicious operator by
selecting ORs that come from distinct /16 networks.

The name onion routing is an analogy to the mechanism used to ensure that
the data in a cell is revealed only to the last node: the payload is wrapped with
multiple layers of encryption, and each node in the circuit peels away the topmost
layer before relaying the cell. During circuit construction, the client negotiates a
unique encryption key privately with each OR along the circuit. When it sends
data along the circuit, it first encrypts the data for the exit node, then encrypts
it again for each node backwards along the circuit. When the data is sent, each
node applies the decryption function to remove its layer of encryption. The use of
encryption at every node aims to ensure that nodes along the circuit are only aware
of their direct neighbours. The final node on the circuit, after decrypting, will be
left with plaintext data on which it can accordingly act. This procedure happens
similarly in reverse, where each node encrypts the data when it passes, and the
client applies the decryption function to remove each layer of encryption that has
been added.

Tor packages all data into fixed-size cells for dispatching on the network. The
design decision was to make cells 512 bytes in size, meaning that a little more
than two cells can be dispatched in a single TCP packet over a typical network
with a maximum transmission unit (MTU) of 1500 bytes. Streams are always cell-
aligned, so the assumed size is the only delimiter for traffic in Tor. Each cell has a
command that is used to control operations: creating new circuits, destroying old
circuits, relaying data, and actually communicating with the destination.

3.1.3 Alternative Approaches

Tor is not the sole anonymity proxy available. For comparison, we outline the
mechanisms used for alternative anonymity proxies to understand how they differ
from Tor.

CHAPTER 3. THE NETWORK ARCHITECTURE OF TOR 17

Anonymizer

Anonymizer [3] is a single-hop proxy. Clients open a connection to the anonymizing
proxy, which strips their identifying information and forwards the result to the
intended destination. This is a simple and effective design but the proxy is aware of
the source and destination of messages—users must trust the single hop to protect
their privacy. This creates a single point of failure; an entity that can observe
traffic entering and exiting the proxy can break a user’s privacy. Since there are no
circuits, each user has separate connections for all their traffic.

Jondonym

The Jondonym project [2], formerly known as the Java Anon Proxy, is a multi-hop
proxy similar to both Tor and Anonymizer. It amalgamates traffic into cascades—a
fixed well-known circuit. Multiple hops are used to ensure that no entity knows the
source and destination of messages. However, the circuit is public; any observer
knows the nodes it must compromise to break a user’s privacy. Users must trust the
fact that the nodes on the fixed-circuit do not collude. Moreover, an entity that can
observe traffic at each end of the cascade can perform effective traffic analysis [16].

Freedom

The Freedom network [26], which was a business endeavour to provide Internet ano-
nymity, shares many similarities to Tor. It uses client-guided circuit construction,
where circuits are built through a network of routers whose operators were paid to
route traffic. UDP was used as the transport layer for all traffic between nodes.
TCP traffic was captured from the client and sent over UDP, forwarded along the
circuit, and reassembled into TCP at the exit node. This means that the client and
the exit node share a TCP connection, with end-to-end reliability and congestion
control. This has been proposed for Tor as well, which is discussed next.

UDP-OR

Another transport mechanism for Tor has been proposed by Viecco that shares
similarities with the one that will be proposed in this thesis [75]. The proposed
mechanism is to encapsulate TCP packets from the OP and send them over UDP
until they reach the exit node. This means the reliability guarantees and congestion
control are handled by the TCP stack on the client and the exit nodes, and the
middle nodes only forward traffic. The benefits and concerns of this approach are
discussed in Section 8.1.8.

Viecco’s proposal requires a synchronized update of the Tor software for all
users. This may be cumbersome given that Tor has thousands of routers and an
unknown number of clients estimated in the hundreds of thousands. To manage

CHAPTER 3. THE NETWORK ARCHITECTURE OF TOR 18

the system upgrade, it may be possible to first migrate the ORs to support the new
method, but not actually use its functionality. Once upgraded, the exit nodes could
inject content in their returned HTTP streams indicating to users that an upgrade
is necessary before a certain date or their client will no longer function. Updated
clients would also receive this warning message, but could remove the warning
from the HTTP stream before forwarding it to the application. This means that
all clients are warned in an obvious and disruptive manner until they upgrade, and
the period of time for which this is done would be sufficiently long so as to warn
all users. This is important, since some of Tor’s users now need Tor simply to
access Tor’s homepage. An obvious concern is that if a client does not authenticate
the received source code manually, a hostile exit node can provide a spurious link
or simply deliver a modified Tor package that harms its user’s privacy. The Tor
network can audit for this attack by randomly downloading Tor from every exit
node and confirming that it is the expected package.

3.2 Transport Protocols

To understand the sources of latency in the Tor network, one must first understand
the fundamental transport protocols of the Internet: the User Datagram Protocol
(UDP) and the Transmission Control Protocol (TCP). The content of this thesis
relies heavily on the differences between these protocols so they are discussed in
this section for completeness. The reader well-versed in networking can skip this
section.

3.2.1 User Datagram Protocol (UDP)

UDP is a simple protocol for sending a packet of data over the Internet. It permits
a computer to listen on a virtual port for a message, and reads the payload for
packets of data that are sent. The two peers in communication are the connector
and the listener. They communicate using virtual port numbers that identify their
particular stream of communication. The listener opens a socket for the port on
which they are interested in receiving data, and that socket indicates it is readable
when a packet arrives destined for that port. UDP sockets can behave in a con-
nectionless state: when reading from the socket, both the packet payload and the
sender’s address will be returned. This allows one socket to multiplex data from
many other computers. Connectionless sockets require the destination’s address
for all outgoing datagrams. UDP sockets can also behave as connected sockets:
they will reject, with an ICMP error message, all packets that were not sent from
the intended peer. When sending data, the user need no longer specify the target
address: it must be the peer to which the socket is connected.

However, the Internet is a chaotic and unpredictable asynchronous packet-
switching network. Unlike circuit-switching networks (e.g. the telephone service)

CHAPTER 3. THE NETWORK ARCHITECTURE OF TOR 19

that devote a number of fixed-speed and fixed-delay circuits, packets on the In-
ternet are routed and traded around the world by dozens of routers cooperating
to have the packets reach their destination. Unlike telephony, which provides a
fixed bandwidth along established circuits, packet-switching networks are imple-
mented such that they drop packets that exceed that current bandwidth due to
congestion. Moreover, the distributed nature of the Internet tolerates malfunction
through dynamic routing and this leads to reordered and duplicated packets.

UDP does not account for these realities, and simply sends buffers of data
as datagrams to their intended destination; datagrams may arrive out of order,
multiply, or not at all. The fundamental difference between UDP and TCP is
that TCP is designed for robustness against the realities of asynchronous packet
switching networks.

3.2.2 Transmission Control Protocol (TCP)

TCP is a protocol created to assure reliable communication through a chaotic net-
work, accounting for packet loss and reordering [31]. It is simply and elegantly
designed, and in the words of researcher and scholar Alan Kay, “a work of art”[36].
It operates in a connected context, allowing two computers to each send a stream
of data to their peer; data cannot be sent over unconnected TCP sockets.

The overhead of TCP is much greater than UDP. Mitigating the realities of
the Internet requires larger packet headers that communicate metadata for their
stream and the state of their connection. Reliability is achieved by numbering and
acknowledging all the data that has passed through the system; unacknowledged
data is buffered and occasionally resent. Additional metrics are used for flow con-
trol, where receivers will advertise the size of data they can accept to encourage the
sender to regulate their sending. This advertised value, called the window size, al-
lows the receiver to indicate to the sender how much buffer space is available for new
data. Senders also infer congestion that occurs through the network from the need
to retransmit messages. Two algorithms, slow start and congestion avoidance, are
implemented together to respectively recover from and avoid causing congestion.

The state of a TCP connection is managed by a state machine of a dozen states;
transitions occur using control flags in each packet’s header. The flags relevant to
this thesis are the following:

• SYN (synchronization): The TCP header contains a synchronization number.
This flag is used when connecting to inform the peer of the beginning of the
numbered sequence of data that follows.

• ACK (acknowledgement): The TCP header contains a valid acknowledgement
number. This is used to inform the peer how much data has been successfully
received.

CHAPTER 3. THE NETWORK ARCHITECTURE OF TOR 20

• RST (reset): The last message received was not expected. For instance, it
might have been a data packet for an uninitialized connection, or contain ac-
knowledgements for unsent data. After receiving a valid reset, the connection
closes between the computers.

• FIN (finish): The sender has finished sending data. The receiver of a finish
may have more data to send, so a connection can enter into a half-closed state
before finally closing.

The remainder of this section details how TCP achieves reliability and conges-
tion control.

Sequence Numbers and Acknowledgements

Reliability is achieved by having the peer acknowledge received data, and main-
taining a local copy of all data that has not been acknowledged. The TCP protocol
enumerates every octet (i.e., byte) of data sent over the connection; these enumer-
ated values are called sequence numbers. When one peer sends a packet of octets,
they also provide the sequence number of the first octet. Since data can arrive
out of order, multiple times, or not at all, sequence numbers are used to order
the received data, ignore existing data, and determine missing data. When a peer
provides a socket with data to dispatch, the sequence of data is copied into a local
buffer. This is used to generate retransmissions if data is lost in transit. When a
retransmission timer expires, unacknowledged data is resent.

Acknowledgements are numbers sent between both peers that allow a receiver to
indicate to its sender which data has been successfully received. Acknowledgements
are cumulative, so a peer will not acknowledge any data that it has received while
it is still waiting for data with a lower sequence number. When a sender receives
an acknowledgement number, it will remove from their retransmission buffer all the
data that has been acknowledged as successfully received.

Acknowledgements are included in the TCP header for all data messages sent
between peers (except for the initial synchronization message). When data is be-
ing sent unidirectionally, this strategy of piggy-backing acknowledgements to data
transfer is unsuccessful. For this case, TCP uses a delayed acknowledgement strat-
egy; when a timer expires without having sent an acknowledgement then a packet
consisting of only a TCP header is sent to the peer. This permits a bulk sender
to empty its buffer of unacknowledged messages and avoid a congestion control
mechanism that engages when a peer is unresponsive.

Congestion Control and Window Sizes

There are two strategies TCP uses to avoid packet dropping due to oversending
data. Window sizes are used by the receiver to indicate how much data it can

CHAPTER 3. THE NETWORK ARCHITECTURE OF TOR 21

accept, and congestion control algorithms are used by the sender to perceive network
congestion.

Window sizes are used to prevent a sender from overwhelming a receiver with
data beyond its capacity to handle. Overwhelming its peer with data inevitably
causes the peer to drop packets, which results in poor network efficiency. Each
TCP message includes a window size field in the header. The window size is used
to specify how much more data the peer is ready to receive. The sender will only
send data beyond the window size after receiving a new acknowledgement with an
updated window size. Data that is written to the socket in excess of the window
size will have its sending throttled. Thus, window sizes enable flow control for
receivers to avoid overloading them.

A window of size zero indicates that the peer can no longer accept any more
data, and the sender will stop sending data until it is told otherwise. Window size
updates are sent as dataless packets, and so are not acknowledged. In case the
window update is a lost packet, the sender begins a persist timer when it receives
a window size of zero. When the persist timer expires, TCP sends a small packet
to the peer, which triggers an acknowledgement message that includes the current
window size.

While window sizes solve receiver congestion, TCP uses the congestion control
mechanism to enable senders to perceive congestion in the network and throttle
their traffic proactively. TCP implements a pair of algorithms: slow start and con-
gestion avoidance. These are different algorithms with different goals, and function
together to avoid packet drops. They are based on the principle that packet drops
on the Internet occur almost solely due to congestion1 and are best avoided for
efficient networks. Data is sent to the peer, but the amount of data will exceed nei-
ther the receiver’s window, nor the sender’s current congestion window (CWND).
The value of CWND represents the sender’s perception of the current congestion
on the network links between the peers based on recent performance. Specifically,
CWND stores the number of bytes that it believes can be reliably dispatched before
waiting for an acknowledgement to be returned. For the explanation in this section,
we imagine CWND as storing the number of packets instead of bytes.

Slow start is the algorithm used to determine the appropriate value for CWND,
and to recover after a packet drops. It uses exponential growth, where the CWND
begins at one, and increases by one after receiving an acknowledgement. A single
packet is sent first, and after receiving the first acknowledgement, the client in-
crements CWND and determines the round-trip-time (RTT), which is the elapsed
time for a message to be delivered to the receiver and have an acknowledgement.
The sender will dispatch two packets during the next RTT period, receive two
acknowledgements, and increment CWND by two (then four, eight, etc.). This ex-
ponential growth continues until a packet is dropped, at which point the CWND is
halved and is stored as the slow start threshold. Slow start ends at this point, and

1Extensions to consider wireless and satellite networks have been since included as they suffer

packet drops due to hand-offs and temporary interference.

CHAPTER 3. THE NETWORK ARCHITECTURE OF TOR 22

the congestion avoidance algorithm is started. Subsequently, whenever slow start
is invoked again, it will always terminate at the slow start threshold and begin
congestion avoidance.

Congestion avoidance is designed to increment CWND slowly towards the opti-
mum value. If the connection behaves properly during an RTT interval, then con-
gestion avoidance increments CWND by one. If packet loss is detected then CWND
is reset to one packet and slow start is invoked. Packet loss is detected when the
retransmission timer expires [65], but extensions to TCP [32] allow a receiver to
indicate missing packets to the sender. When three duplicate acknowledgements
arrive that do not acknowledge outstanding data, the sender infers the next seg-
ment is missing. A fast retransmit of the missing data is performed, followed by
halving the CWND and continuing congestion avoiding instead of triggering slow
start.

Chapter 4

System Performance Analysis

An informal poll conducted during a rump session at the Privacy Enhancing Tech-
nologies Symposium in 2007 showed that the vast majority of attendees had pre-
viously used Tor for anonymity; however, not one of them used it for all their web
traffic. The speaker put forward that this is because of the latency in Tor: the
latency is sufficiently high so as to discourage casual usage. This claim was not a
contentious point among the audience. The goal of this thesis is to improve the
latency and throughput of the Tor network, and so an analysis of Tor’s performance
is the first step towards this end.

Our enquiry into sources of latency in Tor began with an examination of latency
in the datapath. We instrumented the source code for Tor with timing functionality
around various components of the datapath. As broad sections revealed particular
sources of latency, the instrumentation was refined to measure key areas. Of par-
ticular interest are the time taken for cell processing, the time taken to dispatch
messages, and the time data spent waiting in buffers. The current state of buffers
and connections were also logged during execution for later examination. Finally,
the packet sniffing tool tcpdump was used to report information about all internet
traffic being generated by the running tor servers.

Experimentation was initially performed on a local machine to garner an un-
derstanding of the mechanics of Tor. However, the latency introduced by local
network communications does not reflect the realities of the Internet, where hosts
are separated by physical distances whose communication delay is lower bounded by
the speed of light, and further slowed by routing computations. Moreover, packet
switching causes reordering, packet loss, and variable delay. Our local experiments
were executed through a latency proxy that simulates these realities.

To ensure that the results would generalize to Tor routers on the live Tor net-
work, we added an instrumented Tor node to the Tor network and took measure-
ments. The pragmatic approach of observing results, changing the instrumentation,
and rerunning the program would not longer work in this setting because the opera-
tor could not conjure legitimate Tor clients immediately after restarting. Moreover,
Tor nodes that maintain long uptimes are more attractive and thus encourage more

23

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 24

clients to make use of it. We designed and implemented a library for performing
run-time system performance evaluation, called libspe, to achieve the goal of per-
forming varying experiments while perserving long uptimes. After collecting data,
the results were then visualized to explore the behaviour of running Tor nodes.

This chapter describes the software that was developed for system performance
analysis. The latency proxy is used to simulate network latency and packet drop-
ping on a local network. The library libspe is used to collect timing results for
variables and monitor data structures during execution. Finally, the timing server
and clients are used to measure throughput and latency.

4.1 latency proxy: The Internet on a Loopback

Device

We intend on simulating a Tor network by performing experiments on a local net-
work. For our results to have predictive powers about the online world, we need
to simulate the negative realities of the Internet. We design and implement the
latency proxy: a small network tool to simulate latency, reordering and dropped
packets on a local network.

While sounding like a trivial network program, a simple proxy that accepted
packets on a TCP socket, occasionally dropped them, and otherwise delayed them
for a fixed duration before relaying them would be inadequate: the operating system
would acknowledge data sent to the proxy as soon as it was read. This means that
the TCP stack on the original sender would assume that the packet was promptly
delivered when the proxy summarily returned an acknowledgement. If such a proxy
intends to simulate packet dropping by failing to forward the packet, then the
sender’s TCP stack would see no reason to ever retransmit; its view was that the
data was acknowledged by the intended destination. Moreover, such a proxy would
interfere with congestion control mechanisms by having the sender believe the RTT
was significantly shorter than its intended simulated value.

Therefore we designed a proxy that would actually capture all local traffic di-
rectly off the loopback device; such a mechanism is known as a packet sniffer. Packet
sniffing allows one to see all traffic, including those belonging to other users, and so
requires root privileges to function. The sender, whose data is passing through the
proxy, would dispatch traffic to a spurious address on which no socket was directly
listening. The packet sniffer, listening to all loopback traffic, would capture traffic
destined to this address, and relay it to the intended address after some delay;
packet dropping would occur if the sniffer chose not to relay it. Packet reordering
happens naturally when we allow variance in delay intervals.

The source code for the latency proxy will be released as a free and open-source
project under the BSD license.

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 25

4.1.1 Rewriting and Relaying Packets

To relay the packet we need to infer the intended destination from the false destina-
tion. For our purposes, we use a spurious IP address for the false address, and relay
the packet, without changing the TCP port, to the loopback device. The proxy
rewrites the TCP/IP header to reflect this destination, and dispatches the result
into the system using a raw socket. (Opening a raw socket, which allows writing
arbitrary packets with preformed headers, also requires root privileges.) We observe
here that the sender’s TCP stack will be expecting replies and acknowledgements
from the false destination it provided. We must be able to capture replies intended
for the connection. Figure 4.1 illustrates an example send and reply message se-
quence for a new TCP connection between two peers, which we explain in detail in
the next two paragraphs.

Reply addresses are managed by creating a fake address space; we call these
facade addresses. When relaying messages from the connector we rewrite the packet
header’s destination to the intended destination and the source to a unique facade
address that we generate for each incoming TCP connection (i.e., upon observing a
new SYN packet). Each TCP connection that is established through our proxy has
the connector’s address and port maintained in a lookup table, mutually mapped
in a one-to-one relationship with its corresponding facade address. In effect, this is
just an implementation of network address translation (NAT).

As TCP connections use unique random ports on their connection-side address,
no two connections will share a port on the same IP. (The accepting end of the
TCP connection, however, uses the same port for every socket). This allows us
to use the address and port of a sender to associate uniquely to both a sender’s
TCP stream and its corresponding facade address. The destination will make their
replies to the facade address, where their peer is retrieved from the lookup table
and the packet is rewritten to the form expected by the sender’s TCP stack. In our
experiments, we use 192.168.0.1 as our spurious address for capturing outgoing
TCP packets and the address space 10.1.*.* for generating facade addresses. All
packets sent to the spurious address are forwarded to the local host (127.0.0.1)
on the same port, and all data send to a facade address are forwarded to the peer
in the managed lookup table.

The proxy was later augmented to relay UDP packets as well. This change was
nearly trivial to make, basically adding a clause in the packet capturing function
to consider the layout of UDP header. The proxy would observe a UDP packet
destined to the spurious IP address, and rewrite the IP of the sender to be the
spurious sender before transmitting. Figure 4.2 illustrates an example message
send and reply sequence diagram for a UDP communication between two peers.

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 26

Peer A Proxy Peer B

TCP Packet

FROM: 127.0.0.1:31103

TO: 192.168.0.1:3000

TCP Packet

FROM: 10.1.0.0:1

TO: 127.0.0.1:3000

TCP Packet

FROM: 127.0.0.1:3000

TO: 10.1.0.0:1

TCP Packet

FROM: 192.168.0.1:3000

TO: 127.0.0.1:31103

Figure 4.1: Message sequence diagram for a TCP connection over the latency proxy.

4.1.2 Experimentation

Originally, the proxy was configured to admit a fixed latency and uniform packet
dropping. However, a fixed latency ensures that all packets arrive in-order, although
delayed, which is not true on the Internet. The proxy was later augmented to take
delays and packet dropping from an exponential distribution about some variable
mean. This allows a packet drop to occur both with occasional bursts of brief
period at some times and sparsely with great period at other times.

Experiment 1 Determining RTT and packet drop rates for Tor ORs.

1: A script selected a dozen ORs whose throughput capacity exceeds 100 KB/s.
This list was refined for geographic diversity.

2: A ping flood was sent to each server, using ping -f, for 30 seconds.
3: The program reported the minimum, average, and maximum round-trip times

(RTT) and the packet drop rate.

Similarly, we use an exponential distribution for packet delay. However, the
exponential distribution discretized to the positive integers poorly models packet
delay directly: the probability of a delay value being selected is monotonically
decreasing, so a zero delay will be the most frequent value. We compute packet

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 27

Peer A Proxy Peer B

UDP Packet

FROM: 127.0.0.1:3000

TO: 192.168.0.1:3003

UDP Packet

FROM: 192.168.0.1:3000

TO: 127.0.0.1:3003

UDP Packet

FROM: 127.0.0.1:3003

TO: 192.168.0.1:3000

UDP Packet

FROM: 192.168.0.1:3003

TO: 127.0.0.1:3000

Figure 4.2: Message sequence diagram for a UDP connection over the latency proxy.

delay using two components: a minimum delay imposed on all traffic, and a variable
delay taken from an exponential distribution. This ensures that all traffic will be
delayed based on the physical distance and routing complexity, with a random
component that reflects congestion.

To determine suitable latency among Tor ORs, we performed Experiment 1.
The results from Experiment 1 are recorded in Table 4.1. We emphasize that using
a ping flood to the server results in worst-case performance for packet dropping,
and conclude that the observed 1-2% packet drop rate forms an upper bound for
the worst case drop rate among ORs. (In later experiments, we use a drop rate
of 0.1% to explore the effect of packet dropping on Tor). The average RTT is
approximately 10% greater than the minimum. This behaviour is expected: a
minimum time is required by the asynchronous packet switching network between
ORs, and an additional latency is caused by congestion along the router path
towards the destination.

We observe that 80 to 130 ms is reasonable for RTTs, and so for our experiments
we will use a unidirectional latency of 50 ms plus an exponentially distributed
random latency whose mean is 10% of the minimum latency. The long tail of the
exponential distribution also models the large maximum latencies that are observed,

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 28

Top-level Packets Minimum Average Maximum
Domain Dropped RTT RTT RTT
.uk 2 % 112 ms 132 ms 255 ms
.de 1 % 116 ms 121 ms 256 ms
.de 2 % 122 ms 128 ms 261 ms
.at 2 % 122 ms 127 ms 190 ms
.com 1 % 45 ms 46 ms 100 ms
.ca 1 % 74 ms 81 ms 148 ms
.nl 0 % 100 ms 113 ms 414 ms
.se 1 % 133 ms 141 ms 368 ms
.es 7 % 237 ms 407 ms 550 ms
.at 2 % 120 ms 122 ms 183 ms
.com 1 % 72 ms 80 ms 238 ms
.bl 2 % 168 ms 177 ms 327 ms

Table 4.1: RTT and packet dropping for selected Tor routers.

which are generally double the minimal latency. We disregard the results for the
Spanish router, as its seven percent packet dropping rate suggests some serious
connectivity problems that are either temporary or will result in an OR that is
rarely used.

4.2 libspe: A Dynamic System Performance Anal-

ysis Library

Our experiments began with a simple set of functions to perform timing of criti-
cal sections in Tor and help manage results. These experiments were done offline
using a local Tor network for experimentation. When changes in the experiment
were desired, they were made to Tor’s source code and a new version was compiled
and executed. However, this approach was undesirable for performing online ex-
periments with our public Tor node gurgle[.cs.uwaterloo.ca]. To ensure that
our Tor node provides meaningful results, we had to ensure that it need never be
restarted. A long-lived Tor node is a valuable node in the network, and therefore
would be selected by Tor’s circuit building algorithm more frequently. Our offline
experimental procedure would have necessitated restarting the router each time a
change in the experiment was required, which was deemed infeasible.

The goal is to allow the programmer to specify all the data structures that
they wanted to monitor before compiling. For instance, in Tor we want to inspect
connection objects and buffer objects, and so we want to notify our library of the
creation and deletion of these objects. At important parts of the program, such as
reading from a buffer or writing to a connection, we add a call to our monitoring
code that will call a particular callback function depending on the data structure

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 29

type. We need to be able to control whether the callback is invoked (i.e., perform an
experiment), and control the actual callback function (i.e., change the experiment):
these must both be able to be done dynamically.

The solution was to design and implement libspe: a dynamic system perfor-
mance analysis library. It allows for a program to register any number of observees :
a reference to some object that is being monitored. Each observee belongs to a
family ; for our purposes each data structure type is a family and observees in that
family are instantiations of that type. Each family has a method that is invoked for
observations, and so when an observation is made on that object, libspe invokes
the corresponding method passing the observee. To allow for dynamic changes
in the observation methods, we maintain a dictionary that maps families to their
observation methods, and allow this to be easily modified at runtime.

The source code for libspe, written in C, will be released as a free and open-
source project under the BSD license.

4.2.1 Static Data Collection

A set of static data collection variables are defined at compile time. These cor-
respond to regions of the source code under timing scrutiny, a particular line of
code whose execution period is being computed, or any particular variable whose
value the operator has decided to record. Each variable is collected under both a
family name and a subindex. For example, each buffer has a unique pointer value in
memory, and so buffer sizes were recorded under the buffer size family subindexed
by the buffer’s memory address. The subindex value of zero is used to store either
generic, amalgamated, or nonindexed variables.

The memory allocated to store the results during execution is currently con-
figured at compile time. Each variable can either be a linked list of unbounded
size, or a fixed-size array. If a variable uses a fixed-size array, then observations are
collected by accepting new measurements with a decreasing probability in order to
collect a random set of data distributed uniformly on a stream of unknown length.
Our Tor node used a fixed-sized array of 1024 observations per non-zero subindex
and 4096 observations for the zero index.

4.2.2 Interaction Socket

When initialized, libspe is provided the port number for a local interaction socket.
A thread is spawned that accepts localhost connections on that port. All runtime
aspects of libspe are controlled through this socket. Foremost, static data col-
lection can be toggled, and the cumulative distribution functions for all the static
timing variables previously collected can be output to a file. Since observations
on data structures are initially disabled, the interaction socket allows the listing
of all the observees currently being managed and the enabling or disabling of ob-
servation for specific observees or entire families, along with the filenames used for

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 30

results. Finally, the callback library used to collect data during an experiment can
be changed with a command specifying the new callback library.

4.2.3 Observers

Registration of candidate data structures for observation is made at compile time.
Each object registers itself with the spe instance when in use, and deregisters
itself from the spe instance when it is no longer being used. Tor was modified
to register objects in their constructors and deregister in their destructors. While
generic observations are made in discrete intervals, spe can also be forced to make
observations at particular places in the program (e.g., observing on a socket before
writing or observing on a buffer before an insertion). Each observee is assumed to
be in an off state when the program begins execution; libspe will not generate
any data for observers that are off, even if they force an observeration. At run-
time, through the interaction socket, the operator can turn observees on to generate
data, either individually or by family. Each enabled observer is given an open file
for outputting data, and an observation time period.

Static state is maintained between observations. Each observee has an associ-
ated state object that can be used in the observation method; the state is passed
alongside the observee when making observations. When an observee is registered,
a special invocation of the observer method indicating initialization is performed
so that state data can be initialized. Similarly, when an observer is disabled, an-
other special cleanup invocation is performed to signal that the observer must free
allocated memory. Thread safety is assured by having each observee acquire a lock
before before calling the observation method and release it after the observations
method returns.

4.2.4 Dynamic Callbacks

Dynamic callbacks are used to collect data from data structures at runtime. Since
the data the operator may wish to collect may change as the program executes and
collected data is examined, libspe allows dynamically loaded libraries of observa-
tion routines to obviate restarting the instrumented program due to a change in
experiment.

The set of callback families must be known prior to execution. Each observee
that registers specifies its family (i.e. data structure type) upon registration. Each
family is associated with a specific observation method that is invoked in the library.
Initially, there is no library and so all families are associated with a null function.
When the interaction socket loads a new library, each family’s associated function
symbol is loaded from the new library. Henceforth, all observations will now invoke
this new method.

As an example, suppose the operator wants to report the size of a buffer over
time. They compile a library with an observation function that takes a buffer as

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 31

a parameter, and writes its size to a file. The operator connects to the interaction
socket, informs libspe of its observation library, and enables observations on all
buffers. Suppose after determining the sizes of every buffer, they find one buffer
which they wish to explore in more detail. The operator then writes a new method
to report the contents of the buffer, changes in sizes over time, the memory allocated
for the buffer, etc. This new method is compiled into a new libray, and libspe is
told (via the interaction socket) to use this new library for experimental callbacks
henceforth. The operator then enables observations on the single buffer of interest,
and libspe will use their new method to report more information.

4.2.5 System Interface

The system interface for libspe contains two components: the static API used dur-
ing the instrumentation of the program, and the runtime interface used to control
experimentation while executing.

The instrumented program initializes libspe with initialize(), which config-
ures data set sizes and the local port used for the interaction socket. Data structures
that are to be inspected are registered with the register() method. The func-
tions start timing() and stop timing() are placed around code to respectively
start and stop the timer. The elapsed time is computed when stopping the clock,
and is stored locally using the data point() function. To store a single piece of
data, such as the current size of the buffer, one can call data point() directly.
Finally, period() is used in lieu of start timing() and stop timing() to mea-
sure the time elapsed before the program counter returns to the same line of code.
It computes the difference in time between now and the time it stores locally. It
replaces the stored time with the current time, and adds the computed difference
using data point(). Since there is no initially stored value, the first call is ignored
but all subsequent calls compute the period properly. Like all the other methods,
period() is indexed by both a family name and a subindex, allowing for expressive
period calculations based on the current system logic.

At runtime, an operator can connect to libspe through the interaction socket to
control its behaviour. The listening thread will spawn a new thread upon accepting
a connection, and the new thread will respond to operator demands sequentially. As
mentioned, these include changing the callback libraries, enabling observation, and
outputting the static data that has been collected. Resources are shared between
the libspe static program interface and its dynamic socket interface, and all data
access and function calls are threadsafe.

4.3 Timing Client/Server

Our enquiry into improving Tor will measure the end-to-end latency and through-
put of traffic through circuits. To reliably measure these statistics, we wrote a

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 32

simple timing client/server application to execute through Tor. The server runs
two threads: the listening thread and the writing thread. The listening thread
accepts new connections and add them to a linked list. The writing thread will
repeat sending a timestamp message to all accepted sockets that are writable. We
select() (an operating system call that takes as input a set of file descriptors
(FDs) and returns the set of FDs that are currently ready for an I/O operation) for
writeability on the list of sockets to ensure that our server application will never
block while trying to write. If no socket is writable then we sleep until one is ready.
In our experiments, the timing server always sleeps while sockets are unwritable
and so the timing server’s computations do not interfere with our results.

Sending a constant stream of data is used to measure throughput, so the timing
server also runs another listener to measure latency. When it receives a connection,
it also provides the connector its timestamp, and closes the connection immediately.
The difference in the timestamp and the time it was received is the directional
latency of the circuit.

The client will connect to the server, which then starts continually sending
timestamps. The client reads as much data possible, computes the difference be-
tween the current time and the timestamp, and then discards the read data. We
use latency from the server to determine when the system has reached steady state;
the delay for the stream of timestamps will continue to increase until it reaches its
natural value—a function of capacity and throughput.

We begin to collect data when the system reaches steady state. The client
computes throughput by counting the bytes received from the socket. The client
also measures the delay by connecting to the server that only returns a single
timestamp instead of a bulk stream. This gives the delays incurred by the network
along the return direction when the network has reached a steady state with the
data from the bulk streams. Average latency and total throughput are computed
each second, logged for later processing, and then reset for the next second interval.

Chapter 5

Latency in Tor’s Datapath

In Section 3.1 we described the operation of the PET Tor. Briefly, it is a set of
onion routers (ORs) through which circuits are built to relay Internet traffic; the
movement of data through the network aims to obfuscate the source and destination
from observers, affording the user with anonymity. The datapath for Tor refers to
the sequence of locations where data resides while travelling between the source
and destination. Figure 5.1 shows the simplified datapath; data goes from the OP,
through each OR on the circuit, to the server; replies travel back through the circuit
to the OP. This chapter closely examines the datapath for Tor, searching for sources
of latency. In particular, we explore the datapath inside each OR.

��
��
��
��
��
��
��
��
��
��
��
��

����������

����������
���
���
���
���

���
���
���

���
���
���

Input
Buffer

Output
Buffer

SocketSocket

Input
Buffer

Router

Output
Buffer

Output
Buffer

Input
Buffer

Onion Router

Input
Buffer

Router

Output
Buffer

Output
Buffer

Input
Buffer

Onion Router

Server
Socket

Onion Proxy

Proxy

Figure 5.1: A circuit datapath in Tor.

In decisions pertaining to the system, the authors of Tor seem to be concerned
that the computations involved in the operation of a Tor node results in significant
sources of latency. For instance, they omit integrity checks at each hop [16], opting
to check the integrity of the packet only at the end (ostensibly to increase the
routing speed). They also omit one unnecessary encryption operation at the client
side [16], because the additional TLS encryption at the transport layer obviates
Tor’s outermost layer of encryption. While these improvements certainly decrease
Tor’s processing time, reduce its power consumption, and improve its efficiency, it
remains to be determined if these optimizations have any significant impact on the
router’s execution time or if a different bottleneck exists that limits the throughput
of the system.

Profiling results using the tool gprof are referenced in Tor’s original design pa-
pers [16]. Profilers such as gprof allow the program to execute normally but will

33

CHAPTER 5. LATENCY IN TOR’S DATAPATH 34

pause its execution at frequent and even intervals to probe the program counter;
this observes in which function the program is currently executing. Probing pro-
vides a sample of execution time that it uses to build a report informing how much
time is spent executing each function. It also reports the call graph, which traces
function calls by their parents and records how often a function is called. Profiling
is used to diagnose slow programs and fix bugs (unexpected results often indicate
a logic error). Tor’s profiling results indicate that the majority of its execution is
spent performing encryption operations, an unsurprising result that was confirmed
with our own experiments. However, profiling metrics have limitations in system
performance evaluation, as they do not consider latency caused by inter-thread
communication and condition waiting. Examples include data queued in buffers
waiting to be processed and the communication of data between multiple programs
over a network. This limitation of profiling forms a natural entry point into our
enquiry into Tor’s latency. Instead of examining latency from the program’s per-
spective as it executes, we will examine it from the data’s perspective as it travels
through the datapath.

This chapter begins with experiments to investigate the following two hypothe-
ses:

• There is significant latency beyond transport latency in Tor.

• Cell processing, including encryption, cannot represent the largest source of
(non-transport) latency, because there are significant sources of latency inside
the datapath that are not uncovered by profiling.

Our first hypothesis is tested by contrasting the overall latency to the expected
transport latency. We use this ratio to make an estimate of the communication
latency overhead. Our second hypothesis is tested by computing the time required
for cell processing. This forms an upper bound on its processing latency. We show
that this processing latency does not represent a significant amount of the overall
latency.

The remainder of the chapter is devoted to isolating where latency occurs inside
Tor. We determine that congestion control mechanisms are responsible for latency
that is not uncovered by profiling. While we cannot circumvent congestion control
to achieve better performance, Tor uses TCP unwisely by multiplexing circuits over
a single TCP stream. This permits congestion control, packet dropping, and packet
reordering to cause undesirable cross-circuit interference.

Two machines were used for our experiments. An Intel Pentium 4 3.00 GHz dual
core with 512 MB of RAM was used for experiments performed on gurgle (our live
Tor node), running modified version of Tor 0.1.2.18. A commodity Thinkpad R60—
1.66 GHz dual core with 1 GB of RAM—was used for our local experiments. Care
was taken during experimentation to ensure that the system was never under load
sufficiently significant to influence the results. Experiments on our local machine
used a modified version of Tor 0.2.0.25-rc. The difference in versions is because our

CHAPTER 5. LATENCY IN TOR’S DATAPATH 35

local experiments occurred a year after we deployed our public Tor node, and we
wanted to be able to deploy our changes to the real Tor source code.

5.1 The Impact of Transport Latency

Transport latency is a necessary and so unavoidable component of the latency in
Tor’s datapath. Upon first consideration of the mechanics of Tor—routing one’s
traffic about the world and back—the observed latency can be speciously attributed
to the delays incurred by the additional Internet exchanges added to the client’s
datapath. Indeed, the greatest latency is mandated by our current understanding
of the physical world. We perform an experiment to determine an upper bound on
the transport latency, and contrast this to an observed latency so as to determine
the overhead latency. Experiment 2 lists the steps we followed to determine what
proportion of total latency is transport latency.

Experiment 2 Determining the overhead latency for Tor.

1: An apache webserver was initialized on gurgle to return HTTP error 404 to
requests for the root directory. This is done to ensure that HTTP replies require
only one cell in Tor to transport.

2: A public Tor node (OR) was run on gurgle for a couple days to accrue traffic.
3: A Tor client (OP) was run on gurgle. It used a circuit of length three. The

first and last nodes were selected randomly but the middle node was forced to
be the gurgle OR.

4: The client was instructed to retrieve the webpage from apache on gurgle (which
will return error 404) and the wall clock time was recorded.

5: The RTTs from gurgle to both the randomly chosen ORs in the circuit were
computed by pinging the ORs and averaging a dozen results.

6: The time to dispatch, service, and interpret a web request was computed
by retrieving the webpage from gurgle without Tor. All network latency
was removed by performing this step locally on gurgle. We call time wget

127.0.0.1 to precisely record the time required to satisfy a request. The times
for a dozen measurements were averaged.

7: The experiment was performed six times using randomly selected ORs for the
first and last hops each time.

Figure 5.2 shows the datapath for Experiment 2 and illustrates the times we are
measuring. Our experiment sends traffic to OR A, then to gurgle as the middle
node in our circuit, then to OR B, and returns to gurgle as the intended destina-
tion. The reply follows the same path in reverse. The transport time for the first
two messages, which travel from gurgle to OR A and back, will be approximately
the RTT for OR A. Similarly, the network time for the next two messages will be
equal to the RTT for OR B. Since the reply will follow the same path in reverse,
we have that the expected total time spent transporting the request and reply cells

CHAPTER 5. LATENCY IN TOR’S DATAPATH 36

BA
1 1 2

3

4

4

3

1
2

client
gurglegurgle
router httpd

gurgle
2

Total end−to−end time
HTTP response time

Round−trip−time to OR A
Round−trip−time to OR B

Figure 5.2: The datapath for Experiment 2.

between the machines is lower bounded by twice the round trip times for the first
and last nodes plus the overhead of fetching the webpage. Our hypothesis is that
the total time required to fetch the webpage over Tor will be greater than twice
the round-trip times for each OR and the service time, and that the difference
represents the additional latency introduced along the Tor datapath.

Before presenting the results, we first explain the motivation for the web-server
returning an error, along with a misconception about Tor that the above experimen-
tal design exposed. The goal was to measure, as strictly as possible, the transport
latency of various Tor circuits without concern for throughput. Both an HTTP re-
quest and the HTTP error 404 reply can fit in a single Tor cell, which is an atomic
form of data transfer in the Tor network. By ensuring only the time required to
transmit a single cell in each direction is measured, we protect our experiment from
measuring additional latency necessitated by the transfer and processing of multiple
cells. However, it was quickly apparent that network latency would never account
for a majority of the wall clock time, a counterintuitive result that suggested an
experimental error. By having the gurgle OR report its traffic over our circuit, it
was determined that each request required five cells of data. Two correspond to
the upstream and downstream flow of data, but the remaining three are used by
Tor to control circuits.

When a user makes a new TCP connection to a web server over Tor, they begin
by signalling to the exit-node on their circuit that they wish to begin their connec-
tion. The exit-node executes a TCP handshake with the server (which introduces
a single RTT of latency) and replies with the result to the client. If successful, the
client proceeds with the data request. So first a new TCP stream is initialized,
then the request is made, then the reply is sent, and a final cell indicates that the
http server has closed the connection. (The last two messages travel from server to
client in parallel.) The message sequence diagram for our experiment is presented
in Figure 5.3. We observe that if we combine the first two messages, BEGIN and
DATA, from the client to the exit node then we have an effective way to halve

CHAPTER 5. LATENCY IN TOR’S DATAPATH 37

1st Node 2nd Node Transport Total Overhead Overhead
RTT RTT Time Time Time Proportion
126 ms 44 ms 684 ms 750 ms 67.5 ms 9.0 %
126 ms 116 ms 972 ms 1100 ms 130 ms 12 %
111 ms 109 ms 884 ms 1280 ms 398 ms 31 %
119 ms 77.6 ms 790 ms 845 ms 56.5 ms 6.6 %
180 ms 186 ms 1468 ms 2100 ms 634 ms 30 %
116 ms 236 ms 1412 ms 1690 ms 280 ms 17 %

Table 5.1: Transport and overhead latency in Tor. Each row uses a different circuit.

latency whenever a new TCP stream is established. TCP streams proliferate in
casual webbrowsing since hypertext anchors are used to navigate quickly between
servers, and images and other content are often referenced from separate servers.1

Each of these operations requires a new TCP connection, which incurs a needless
doubling of latency before beginning to receive the HTTP content. We propose an
improvement based on this observation in the future work section.

Table 5.1 summarizes the results of experiment 2 to three significant digits, and
also presents the time spent in overhead both in total and as a percentage of the
total time. The webpage retrieval, a constant 1.5 ms, was included in the transport
time but omitted from the data. We note that the overhead columns are corrected
for the serialized BEGIN and DATA flows illustrated by figure 5.3.

This experiment shows us that while the transport latency caused by the slug-
gish speed of light is the most significant source of latency in Tor, we can still
improve the user’s experience by examining latency caused inside Tor routers. Our
experiment shows that the overhead is subject to high variance, a result that has
been observed by Wendolsky et al. [76]. We observe that a significant amount of
latency in Tor occurs outside of network transmission. A possibility is that the
cost of performing encryption operations and other cell processing overhead incurs
significant latency; this is refuted formally in the next section. (One can fathom
that if encryption were the source of latency then there would be less variance in
overhead since each run of the experiment executes the same number of encryption
operations on the same amount of data.) The remaining sections of this chapter
will investigate the sources of this additional latency.

1As an example, many websites include a script to have the webbrowser dutifully connect to

Google and register their access as part of their analytics project. The privacy-aware disable this

inside their webbrowser, and perhaps it would be wise for exit-nodes to prevent this needless loss

of privacy. Indeed, it might be mutually beneficial as usage patterns from Tor nodes add noise to

their analytical metrics.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 38

Tor Client

gurgle

First Hop

A

Second Hop

gurgle

Exit Node

B

httpd Server

gurgle

begin

begin

begin

TCP SYN

TCP

SYNACK

TCP ACK

began

began

began

data

[http GET]

data

data

http GET

error 404

TCP FIN

data

[error 404]

end

data

end

data

end

Figure 5.3: Message sequence diagram for Experiment 2.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 39

5.2 Latency along the Computational Datapath

We have shown that Tor introduces significant latency along the datapath beyond
the expected network latency. This section will consider the computations that
occur at each Tor router along the circuit, and determine the latency that is intro-
duced by their execution.

�
�
�
�

�
�
�
�

�
�
�
�

cell_unpack

get circuit id
circuit lookup

direction lookup

Output Buffer

Input Buffer

Socket

Connection

C
ell

C
ell

C
ell

C
ell

C
ell

C
ell

C
el

l
C

el
l

C
el

l
C

el
l

C
el

l
C

el
l

cell_pack

TLS

TLS

exit
is

no

Output Buffer

Input Buffer

Socket

Connection

C
ell

C
ell

C
ell

C
ell

C
ell

C
ell

C
el

l
C

el
l

C
el

l
C

el
l

C
el

l
C

el
l

Connections

process_cell

get cell type

receive_relay_cell

crypt payload

Onion Router

Datapath

write_cell_to_buf

yes deliver
packet

Figure 5.4: Simplified datapath for cell processing.

Tor uses fixed-sized cells as the basic object of communication. Figure 5.4
shows the processing datapath that occurs at each node, which corresponds to the
“router” step in Figure 5.1. Data is read from a socket and placed on an input
buffer. From there, cells are unmarshalled, processed, and marshalled onto an
output buffer where they are later dispatched to a socket. Our enquiry is focused
into the cell processing time for a single node. Circuit construction, which requires
expensive public-key cryptography operations, is not considered for latency since
Tor preemptively builds circuits so as to avoid impacting user experience.

Cell processing occurs entirely in a single flow of execution. First, it calls the
method cell unpack() to unmarshall a single cell from the input buffer into a

CHAPTER 5. LATENCY IN TOR’S DATAPATH 40

cell t structure. The cell t is then processed; the cell’s circuit and direction are
retrieved, and the payload is encrypted or decrypted accordingly. Finally, the cell
is marshalled onto an output buffer using the cell pack() method. A different
execution flow removes it from the output buffer and dispatches to the appropriate
socket. All the responsibility of the router on processing incoming data occurs
between the cell unpack() and cell pack() functions, particularly the circuit
lookup and adding or removing a layer of encryption. Another thread removes
data from the output buffer and writes it out to the socket over TLS.

We know from profiling that Tor spends most of its time executing AES opera-
tions during cell processing. Experiment 3 was performed to investigate the actual
time required to process a cell.

Experiment 3 Determining the processing latency for Tor.

1: The source code of Tor was instrumented for measurements with libspe and
the following modifications were made to time cell processing precisely:

• Cell structures were expanded to include a time value field.

• When a cell is unmarshalled, the current system time is stored in the cell’s
time value field.

• When a cell is marshalled, the difference between the current system time
and the stored system time is recorded.

2: The gurgle Tor node was set to run for a couple of days to build traffic.
3: Data for the processing time variable was collected for a couple hours for all

circuits.

Figure 5.5 shows the graph of the cumulative distribution function for cell pro-
cessing timing collected from Experiment 3. We emphasize that the time scale is
in microseconds, i.e. millionths of seconds. The time Tor takes to process 90% of
cells is between 8 and 10 microseconds. For a circuit of length three, we would see
six cell processing sequences for a query/response in transit and a further six AES
operations performed client-side.

The additional use of TLS to encrypt outgoing traffic between nodes will increase
the overhead. Timing results inside OpenSSL’s read and write methods indicate
that reads require 30 microseconds and writes requires 40 microseconds. These
operations, plus cell processing, yield a potential throughput for our test machine
of over 6 MB/s, more network bandwidth than the average OR is willing (or able) to
donate. Since there are three TLS links in our circuit, the use of each requires both
an encryption and decryption operation, we expect 70 microseconds of computation
per TLS link. There are six TLS links in the path, yielding 420 microseconds of
TLS latency for a cell to travel up the path and another cell to be returned in reply.

Therefore the expected computational latency along a circuit is 540 microsec-
onds for a full trip. A generous upper bound for the computation time required to
process the five cells in our experiment would be two milliseconds. This is an order

CHAPTER 5. LATENCY IN TOR’S DATAPATH 41

of magnitude briefer than either the duration we have observed or any duration
that is humanly perceptible. Experiment 3 tells us that the lion’s share of latency
exists elsewhere.

5.3 Queueing Latency along the Datapath

In the previous sections we have established that Tor introduces latency into the
datapath. We have discounted the obvious transport latency from the sum, and
eliminated computational latency as a cause. In this section we explore the Tor’s
datapath as a queueing model to determine sources of latency.

Figure 5.4 shows that there are two types of buffers associated with each con-
nection: the input buffer and the output buffer. Each connection between a pair
of routers has an input and an output buffer on both ends. When data arrives
via a connection from another router, the data is placed on the input buffer. The
cell unpack function removes the data from the buffer, and the cell pack func-
tion places the processed cell on the appropriate output buffer. Reading and writing
operations are executed on cells in a round-robin manner across input and output
sockets, with a scheduler that controls execution. When processing cells on an in-
put buffer, Tor processes all available cells before processing another connection,
but it does not perform any socket writes in the same flow—it places the processed
cells on the appropriate output buffers and indicates to the scheduler that data is
ready to write to a socket.

Writing to sockets is scheduled alongside reading from sockets, and so is per-
formed in a round-robin manner when data is available. Tor removes the data from
the output buffer, encrypts it with TLS, and dispatches it over the appropriate
socket. The time that data waits in an output buffer before being dispatched is
a potential source of latency, and in particular, a source of latency that will not
appear during profiling.

To investigate this latency, we observe each buffer’s size whenever data is added
to or removed from a buffer, along with the current time. Knowing the actual
buffer sizes over time, and that Tor buffers operate with first-in-first-out (FIFO)
semantics, we can simulate data queueing and travelling through the buffers after
execution to determine how long each byte of data spent waiting. Experiment 4
was performed to investigate the time data spends waiting in buffers.

We plot the results of this experiment—the time data spent waiting in buffers—
as a CDF and as a graph over time for every buffer. We present our results first
for input buffers, then for output buffers.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 42

Experiment 4 Determining the latency of Tor’s buffers.

1: Tor was instrumented to report both the time and the size of a buffer whenever
data was either added or removed from a buffer. This was done for every buffer
allocated in memory.

2: A public Tor node was run on gurgle for a couple of days to accrue traffic.
3: Tor was instructed to begin logging buffer sizes every time data was added or

removed.
4: A script processed the changes in buffer sizes to simulate the buffer’s queueing

model. Whenever data was added into a buffer, it was tagged with the entrance
time. When it was removed, the elapsed time was recorded.

6 8 10 12 14 16 18 20

Microseconds

0

20

40

60

80

100
Cell Processing Time (CDF)

Figure 5.5: Cell processing time reported from Experiment 3.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 43

5.3.1 Input Buffers

Input buffers are where Tor places cells it has read from the socket before they
are processed. It does this for cell-alignment purposes; the TCP stream does not
send packets aligned to cells and so partial cells will reside on the buffer until the
remainder arrives. Figure 5.6 presents the results from one particular buffer, and we
show in Figures 5.7 and 5.8 that these results are representative of all input buffers.
Figure 5.6(a) shows the latency for data in an input buffer, graphed over time.
Figure 5.6(b) shows this data as a cumulative distribution function. The waiting
time is effectively negligible for all data that entered the buffer, approximately 5
microseconds. This is easily accounted for by the time it actually takes to copy
data into and remove it from the buffer, and so we hypothesize that input buffers
are not the cause of the observed latency in Tor. Infrequently, we see spikes in the
waiting time; however, the longest delay is still less than a hundred microseconds.
Figure 5.6(c) shows the input buffer size graphed over time, and Figure 5.6(d) shows
this data as a cumulative distribution function. The occasional spikes in buffer size
occur simultaneously to spikes in Figure 5.6(a), which shows the latency introduced
in the buffer. Since Tor reads all available packets from a socket onto the input
buffer, the input buffer will surge in size but will then be emptied as the data is
processed. Despite the surges in buffer size, the associated delay is insignificant.

To prove the representative nature of the input buffer discussed above, we
present a partition plot of the distributions of over a hundred input buffers in
Figure 5.7. The X-axis corresponds to increasing percentiles; the data on the left
side of the chart are the minimum measurements and the right side of the chart are
the maximum measurements. The Y-axis corresponds to the set of all the buffers
being graphed. A vertical line segment whose length is 10% of the total height
would express that 10% of the buffers have their measurements represented in that
line. The actual data is conveyed by the partitioning lines that separate segments
in the body of the plot. The partition lines correspond to a variable crossing spe-
cific values, such as contours lines on a relief map. The height of the span between
partition lines indicate what percent of buffers have their variables’s percentile mea-
surement fall into the partition range. For input buffers, we see that effectively all
buffers for all percentiles fall into the range of waits less than 10 microseconds.
Figure 5.8 shows the data in Figure 5.7 zoomed into the high percentiles. At very
high percentiles we can see some delay on input buffers, but the size of the delay
is still negligible and their occurrence is rare since they only occur in the highest
percentiles.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 44

0 20 40 60 80 100
Time (min)

0

2

4

6

8

10

12

14

16

D
a
ta

le
n
g
th

 (
K

B
)

(c) Buffer Length over Time

0 20 40 60 80 100
Time (min)

0

10

20

30

40

50

60

70

80

W
a
it

in
g
 T

im
e
 (

m
ic

ro
s
e
c
o
n
d
s
) (a) Waiting Times over Time

0 5 10 15 20 25 30 35 40 45
Waiting Time (microseconds)

0

20

40

60

80

100

P
e
rc

e
n
ti

le

(b) Waiting Times CDF

0 2 4 6 8 10 12 14 16
Buffer Length (KB)

0

20

40

60

80

100

P
e
rc

e
n
ti

le

(d) Buffer Length CDF

Input Buffer Size and Latency

Figure 5.6: Waiting times and data sizes for a representative input buffer. (a) shows
the time that data spends waiting in the buffer over time. (b) shows the time data
spends waiting in the buffer as a cumulative distribution function. (c) shows the
buffer size over time. (d) shows the buffer size as a cumulative distribution function.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 45

0 20 40 60 80 100

Percentile of Latency Measurement

0

20

40

60

80

100

D
is

ti
n
c
t

B
u
ff

e
rs

Latency Partition over all Buffers

[100 ms, +inf ms]

[10 ms, 100 ms)

[1 ms, 10 ms)

[0.1 ms, 1 ms]

[0.01 ms, 1 ms]

[0 ms, 0.01 ms]

Partition Chart for Buffer Latency

Figure 5.7: Partition diagram for input buffer latency across many buffers. White
corresponds to buffer latencies less than 0.01 ms. Black corresponds to buffer
latencies greater than 100 ms, and each darker shade represents a ten-fold increase
in latency.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 46

80 85 90 95 100

Percentile of Latency Measurement

0

20

40

60

80

100

D
is

ti
n
c
t

B
u
ff

e
rs

Latency Partition over all Buffers

[100 ms, +inf ms]

[10 ms, 100 ms)

[1 ms, 10 ms)

[0.1 ms, 1 ms]

[0.01 ms, 1 ms]

[0 ms, 0.01 ms]

Partition Chart for Buffer Latency

Figure 5.8: Zoomed area of interest for Figure 5.7.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 47

5.3.2 Output Buffers

Output buffers are used in Tor for data that is ready to write to the socket; i.e.,
cells that have been processed and are waiting to be dispatched. Output buffers
occasionally swell with data, resulting in longer wait times before being dispatched.

In our examination of hundreds of buffers, nearly every output buffer had a
period of time where it grew significantly, however it was usually for a very brief
time. The buffer would suddenly surge in size and hence, albeit briefly, the latency
before dispatching the buffered data increased; Figure 5.9 is an example.

Other categories of buffers have other characteristics: some have systemic con-
nection problems that result in enormous sizes and high latency, while others serve
relatively little data and are not a source of latency. These are likely due to vastly
different attributes of the connections between the two peers on either side of the
circuit. However, the buffer in Figure 5.9 is illustrative of the standard case we are
addressing—a buffer that serves a lot of data and occasionally introduces significant
latency. The periods of latency occur with varying frequency for each buffer.

Thus, we imagine an efficacy slider for buffers. At one end we have buffers
whose data is removed and dispatched immediately with arbitrarily small delays,
and on the other end we have buffers whose data must wait arbitrarily long before
being processed. Figure 5.10 visualizes the distribution of buffers based on the
time spent waiting. Each partition represents a discrete range of buffer delay,
the X-axis corresponds to increasing percentile of the buffer delay, and the Y-axis
corresponds to the space of all buffers we are examining. We emphasize that each
increasing partition represents a ten-fold increase in expected latency—partitions
are distributed logarithmically.

By observing the two ends of the graph, we see that the expected performance
of every buffer varies throughout execution. The right end of the chart (which
corresponds with the highest percentiles of wait times) indicates that all buffers
encounter some period of increased latency. The great majority of buffers experience
a data latency greater than 100 milliseconds at some point during their execution.
Similarly, most buffers have negligible delay for another period of execution, as
indicated by the leftmost part of the graph. This would be periods when data enters
the buffer and is promptly removed and dispatched to the appropriate socket.

More importantly, there are two ranges of latencies in which most buffers fall:
the range of 0.1 to 1 milliseconds and the range of 100 to 1000 milliseconds. These
two ranges, three orders of magnitude apart, account for nearly all the buffer de-
lays observed. Clearly the range of 0.1 to 1 millisecond is of no concern; these
buffers introduce negligible latency into the datapath. The other group of buffers
that introduce up to one second of latency may account for a great quantity of
the observed latency in Tor. Since the total expected RTT for delivering traffic
through the network is less than a second, a comparable latency in these buffers is
of necessary concern.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 48

One may be tempted to deduce that the two categories of buffers are related to
their relative throughput: buffers that fall into the rapid category simply transport
less traffic and so are less liable to become burdened, while the buffers that intro-
duce latency do so simply because they are overburdened with traffic. In reality,
while increased throughput results in a slight tendency towards slower buffers (as
would be expected) any conclusive partitioning of buffer latency with regards to
throughput is specious; Figure 5.11 substantiates this argument. Figure 5.11(a) is
a partitioning of all buffers, and the remaining subplots correspond to the latency-
based partition of buffers only for particular average throughput ranges. Specif-
ically, Figure 5.11(b) is the partitioning for buffers whose average throughput is
less than 1 KB/s, Figure 5.11(c) is the same for average throughput between 1 and
5 KB/s, and Figure 5.11(c) for buffers whose throughput exceeds 5 KB/s. Ob-
serve that all four graphs reveal that the composite cumulative distributions have
the same shape since the partitioning contour lines all have the same form. Thus
we can confirm that despite the variance in how much data travels through the
buffers, the categories of slow and fast buffers remain three orders of magnitude
apart. As expected, buffers that see less data are slightly faster than the average,
i.e., the contour curve that separate fast and slow buffers is slightly above the aver-
age, and this partition falls below average (meaning slightly slower buffers) as the
throughput increases. When buffers transport more data, the number of buffers
that respond exceptionally fast (i.e., less than 100 microseconds), is subsumed by
the category of faster buffers. These buffers are likely never empty, even if they are
being continually emptied. This trend, however, is slight and the most important
observation is that the existence of slow buffers is a systemic problem that occurs
regardless of their utilization to transport data.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 49

0 2 4 6 8 10
Time (min)

0

2

4

6

8

10

12

14

16

D
a
ta

le
n
g
th

 (
K

B
)

(c) Buffer Length over Time

0 2 4 6 8 10
Time (min)

0

50

100

150

200

250

300

W
a
it

in
g
 T

im
e
 (

m
il
li
s
e
c
o
n
d
s
)

(a) Waiting Times over Time

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Waiting Time (milliseconds)

0

20

40

60

80

100

P
e
rc

e
n
ti

le

(b) Waiting Times CDF

0 2 4 6 8 10 12 14 16
Buffer Length (KB)

0

20

40

60

80

100

P
e
rc

e
n
ti

le

(d) Buffer Length CDF

Output Buffer Size and Latency

Figure 5.9: Waiting times and data sizes for a representative output buffer. (a)
shows the time that data spends waiting in the buffer over time. (b) shows the time
data spends waiting in the buffer as a cumulative distribution function. (c) shows
the buffer size over time. (d) shows the buffer size as a cumulative distribution
function.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 50

0 20 40 60 80 100

Percentile of Latency Measurement

0

20

40

60

80

100

D
is

ti
n
c
t

B
u
ff

e
rs

All Buffers

[1 s, +inf]

[100 ms, 1s)

[10 ms, 100 ms)

[1 ms, 10 ms]

[0.1 ms, 1 ms]

[0 ms, 0.1 ms]

Partition Chart for Buffer Latency

Figure 5.10: Partition diagram for output buffer latency across many buffers. White
corresponds to buffer latencies less than 0.1 ms. Black corresponds to buffer la-
tencies greater than 1 s, and each darker shade represents a ten-fold increase in
latency.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 51

0 20 40 60 80 100
0

20

40

60

80

100
(b) [0, 1) KB/s

0 20 40 60 80 100

Percentile of Latency Measurement

0

20

40

60

80

100

D
is

ti
n
c
t

B
u
ff

e
rs

(c) [1, 10) KB/s

0 20 40 60 80 100

Percentile of Latency Measurement

0

20

40

60

80

100
(d) [10,+inf] KB/s

0 20 40 60 80 100
0

20

40

60

80

100

D
is

ti
n
c
t

B
u
ff

e
rs

(a) All Buffers

Partition Chart for Buffer Latency sorted by Median Throughput

Figure 5.11: Partition diagram for output buffer latency sorted by throughput. (a)
is the partitioning of all buffers. (b) is the partitions of buffers whose throughput is
less than 1 KB/s. (c) is the partitioning of buffers whose throughput is between 1
and 10 KB/s. (d) is the partitioning of buffers whose throughput is greater than 10
KB/s. White corresponds to buffer latencies less than 0.1 ms. Black corresponds
to buffer latencies greater than 1 s, and each darker shade represents a ten-fold
increase in latency.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 52

5.4 Thread Model for Reading and Writing

The observation of the previous section is that data is often available to dispatch
but the function to actually perform the write is not being invoked. Our enquiry
informs us to examine the component responsible for the invocation of writing. The
threading model of Tor uses a single thread that handles all the reads, writes, and
processing for every connection. Reading data from the socket into an input buffer,
then processing available cells from the input buffer and placing the result on the
output buffer is done as atomic operation. Taking data from the output buffer and
dispatching to the network is also done as atomic operation. The single thread uses
a round-robin scheduling semantics to perform work: reading when data is available
on the socket, processing when data is available on a buffer, and dispatching when
the socket is writable. All work is done serially.

The asynchronous callback library libevent manages this thread of execution.
This library is designed to manage many file descriptors (FDs) concurrently and
invoke callback functions when the file descriptor is ready for input/output (I/O);
i.e., when the operation will not block. Tor uses libevent to manage all the
socket connections to other routers, and so libevent is responsible for bridging the
connection between socket file descriptions and the input and output buffers used
by Tor. This execution model ensures that Tor will not block due to performing
I/O operations on an unready file descriptor.

Tor informs libevent of every socket used for interrouter communication. Lib-
event is told to always manage read events when a socket has incoming data;
write events are enabled only when there is data waiting on the buffer ready to be
sent. Libevent wraps over a select() call to poll all FDs for I/O readiness and
round-robins between the FDs with a single execution thread. This thread calls
the appropriate callback method and only executes other I/O operations when it
returns. This behaviour was confirmed by registering a callback method with an
infinite loop; once the loop was called it ceased the invocation of all other callbacks,
including timers, for the remainder of execution. Thus, the duration of one callback
method can affect the latency of other callbacks. In particular, if a write to one
socket stalls, then all other output buffers used by Tor will be unable to send data.

Since libevent is responsible for invoking the method that removes data from
the buffer, and we witnessed that it is failing to do so in some circumstances, there
are three hypotheses. First, libevent could be thrashing—when it returns from
one callback it promply invokes another. As a queueing model, this would mean
that Tor’s service time (output) is unable to keep up with arrival rate (input),
which results in an unsteady state. Second, callbacks could consume sufficient time
so as to introduce unnecessary delays in other threads. Finally, the socket could
be unwritable and libevent is behaving properly. Experiment 5 was performed to
test the first two hypotheses, which were shown to be false.

Figure 5.12 shows the cumulative distribution function for the time that lib-

event spends waiting between callback invocations. It shows that for half of the

CHAPTER 5. LATENCY IN TOR’S DATAPATH 53

Experiment 5 Determing if libevent is thrashing or consuming great time in
callbacks.
1: Libevent was instrumented to report the period between invocations of a call-

back, the name of the callback, and the time elapsed in the callback.
2: Tor was linked with the instrumented libevent.
3: A public Tor node gurgle was left running for a couple of days to accrue traffic.
4: Libevent was instructed to begin logging data.

time it waits for a few microseconds (likely consumed by the instrumentation code
and the polling function instead of an actual wait). The other half of the time it
sleeps for dozens of milliseconds without work. Tor uses the libevent callback to
perform all the core functionality of routing traffic, and so this delay indicates that
our node has no routing work to do during this time.

The lack of any pause between the majority of invocations of libevent may,
at first glance, indicate that is thrashing the majority of the time, the following
thought exercise produces a more likely hypothesis. The expected well-functioning
behaviour of Tor is the following: libevent triggers the read callback, a cell is
read into the system from a socket, this cell is promply processed by Tor in a
matter of microseconds, put on the output queue, and control returns to libevent.
Upon successful polling of the output socket, libevent will promptly invoke the
write callback without any delay. If this is the case, then the lower 50 percentiles
represent the read/write behaviour of Tor, and the upper 50 percentiles indicate
the delays while waiting for data to arrive. To prove our hypothesis, we reperform
Experiment 5 to annotate each delay measurement with the respective callback
function that it executed after waiting and inspect the results to observe that
longer delays occur before read events, collated with brief delays before write events.
Figure 5.13 shows that libevent is not thrashing; it plots the percent of time (over
intervals of a second) that libevent spends sleeping while waiting for work. It is
clear that libevent, and therefore Tor, spends approximately 90% of its execution
time in an idle state.

Figure 5.14 shows the cumulative distribution function for the time that libevent
spends inside callback methods. It shows that nearly 80% of callbacks execute in
fewer than 100 microseconds, which represents all relay and cell processing oper-
ations performed by Tor. Moreover, the maximum time reported was less than 7
milliseconds. This negligible time suggests that libevent functions properly, i.e. it
only executes reads and writes callbacks when it knows that they will not block.

The long tail end occurs because some events triggered by libevent are for
housekeeping and other tasks. A special timer callback expires every second and
is used to multiplex a variety of timers that expire in multiples of second intervals.
Figure 5.15 shows the CDF for the duration of the second elapsed callback function.
We see that this function is also rapid for the most part, but the long tail appears at
a smaller percentile. The maximum time reported was still a mere 9 milliseconds,
and so we conclude that the housekeeping callback is not a significant source of

CHAPTER 5. LATENCY IN TOR’S DATAPATH 54

latency.

Our first two hypotheses are both false. Libevent is neither thrashing nor are
cells ready for service being subjected to large delays while waiting to be serviced
by the single I/O thread. The logical conclusion is that libevent is functioning
properly, and data is being buffered because the socket is simply not writable. We
explore socket writability in the next section.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 55

0 20 40 60 80 100 120 140

Time (Milliseconds)

0

20

40

60

80

100

P
e
rc

e
n
ti

le

Libevent Callback Period (CDF)

Figure 5.12: Distribution of waiting intervals in libevent (CDF).

0 100 200 300 400 500 600 700 800

System Time (Seconds)

0

20

40

60

80

100

S
le

e
p
in

g
 T

im
e
 (

P
e
rc

e
n
t

d
u
ri

n
g
 1

 s
 I
n
te

rv
a
l)

Tor Idle Time (in libevent)

Figure 5.13: Idle time as a percent of 1 s intervals in Tor.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 56

0 1000 2000 3000 4000 5000 6000 7000

Duration (Microseconds)

0

20

40

60

80

100

P
e
rc

e
n
ti

le

Callback Duration for Libevent (CDF)

Figure 5.14: Duration for the execution of libevent’s event callbacks.

0 1 2 3 4 5 6 7 8 9

Duration (Milliseconds)

0

20

40

60

80

100

P
e
rc

e
n
ti

le

Second Elapsed Callback Duration (CDF)

Figure 5.15: Duration for the second elapsed callback.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 57

5.5 Unwritable Connections

As earlier described, buffers often swell when the write callback is not being invoked.
We have ruled out a poorly functioning libevent as the reason for this behaviour—
libevent often sleeps waiting for work. The problem is that the socket itself is
unwritable. There are a couple of intuitive reasons for this to be the case. The
other end of the TCP connection could return a window of size zero, indicating
that they are currently unwilling to accept any more data. Alternatively, the other
end of the connection may not have acknowledged much of the recently sent data,
and the TCP buffer that maintains all sent-but-unacknowledged data is full. As we
will show, the latter theory holds, as unwritable sockets occur precisely when the
TCP buffer is nearly full.

5.5.1 TCP Window Sizes

The TCP window is a value included in the header of every TCP packet used for
congestion control, which is discussed in section 3.2.2. The TCP specifications state
that when a peer receives a TCP window size of zero it must immediately stop send-
ing data. Since Tor occasionally fails to dispatch data, we perform Experiment 6 to
determine if the window size ever drops to 0. This would result in the invocation
of flow control based on the receiver’s inability to read more data.

Experiment 6 Determining TCP window sizes over time.

1: A public Tor node gurgle was left running for a couple of days to accrue traffic.
2: gurgle was instructed to begin logging data about connection destination and

writability over time.
3: tcpdump was used to capture packet header data; in particular, the destination

and window size over time.
4: Data was collected for ten minutes.

Parsing logs from tcpdump show that the window size for all connections never
drops to zero. Figure 5.16 is an example that is representative of all connections.
The Y-axis corresponds to the window size in KB, and the X-axis corresponds
to time in seconds. The series of vertical bars indicate periods of time when the
socket is unwritable. We conclude that the window sizes vary between 65 KB and
that value minus a segment size, depending on when the acknowledgement is sent.
Window size is independent of sporadic periods of when the socket is unwritable.
Occasionally the window size drops slightly; one such occurrence was before a
retransmission was sent. This corresponds to out-of-order data that must sit on
the TCP input buffer, consuming buffer space formerly available for new data, until
the appropriate missing data arrives. We will explore this as a potential source of
latency in Section 5.6.2.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 58

5.5.2 TCP Output Buffer Sizes

The TCP output buffer is where TCP maintains a perfect record of all unacknowl-
edged data. This record is used to generate retransmission messages if a packet is
dropped. If the peer acknowledges data slowly, even if the data was sent properly,
then the TCP output buffer will swell until acknowledgements are received. We
hypothesize that the buffer size grows to a point where more memory cannot be
allocated, and consequently the operating system reports the socket as unwritable.
We perform Experiment 7 to explore the TCP output buffer size.

Experiment 7 Exploring the relationship between TCP output buffer size,
writability, and unacknowledged packets.

1: A public Tor node gurgle was left running for a couple of days to accrue traffic.
2: gurgle was instructed to begin logging data about connection destination,

writability, TCP output buffer size, the number of unacknowledged packets,
and Tor’s output buffer size, all over time.

3: Data was collected for ten minutes.

Figure 5.17 shows the output buffer size for a socket in Tor. The X-axis corre-
sponds to time and the Y-axis corresponds to the size of data on the output buffer.
We annotate this chart by using noughts for observations made when the socket is
writable and crosses when the socket is unwritable. It shows that the socket be-
comes unwritable when its size grows beyond what its buffer can hold. Any writes
at this point must cause the socket to block since there is no room to put more
data. This causes the socket to report that it is unwritable.

TCP records the data that has been sent but not acknowledged to be able to
retransmit lost packets. When data is acknowledged the duplicate copy is removed
from the buffer. Figure 5.18 shows the relationship between unacknowledged mes-
sages and the output buffer size. The background line plot graphs the size of the
output buffer over time. Crosses at the top of the chart occur when the socket
reports it is unwritable. The horizontal line at the top indicates the socket’s adver-
tised output buffer capacity. Circles specify the number of unacknowledged packets
over time, i.e. packets in flight. These values are scaled by the maximum segment
size to get an approximate size of the outstanding data in bytes.

Figure 5.18 illustrates a number of things concisely. First, unwritable sockets
occur when the remaining capacity in an output buffer is too small to accept new
data. This in turn occurs because there is already too much data in the buffer,
which is because there is too much unacknowledged data in flight and throttled data
waiting to be sent. Data is throttled when the congestion window is reached; this
is approximately a dozen or so packets for our example. Once congestion throttles
sending, the data queues up until either packets are acknowledged or the buffer is
full. Interestingly, despite having often a dozen packets in flight at any point in
time, the socket reported only a single packet drop during the observation period. It
occurred during the valley around 400 seconds when the number of unacknowledged

CHAPTER 5. LATENCY IN TOR’S DATAPATH 59

packets dropped; this behaviour suggests the fast retransmit function activated by
halving the congestion window and starting congestion avoidance, which grows
the congestion window over time to a capacious 18 packets. The RTT for this
connection was 260 ms, and so plenty of data is sent during a RTT to account for
its latency.

We have identified that latency in buffers, both in Tor and in the operating
system, contribute to the observed latency beyond the round trip times between
hosts. While data is delayed because of congestion control (but not flow control), it
is foolhardy to attempt to circumvent congestion control as a means of improving
Tor’s latency. There is hope, however, as the next section details a problem in Tor’s
use of TCP that may contribute unnecessarily to latency.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 60

0 100 200 300 400 500 600 700

Time (s)

0

10

20

30

40

50

60

70

W
in

d
o
w

 S
iz

e
 (

K
B

)

Advertised Window Size over Time

Figure 5.16: TCP window size over time.

0 50 100 150 200 250

Time (seconds)

0

2

4

6

8

10

12

14

16

18

S
o
c
k
e
t

O
u
tp

u
t

B
u
ff

e
r

S
iz

e
 (

K
B

)

TCP Socket Output Buffer Size over Time

Socket writable
Socket unwritable

Figure 5.17: TCP socket output buffer size over time.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 61

0 100 200 300 400 500 600

Time (seconds)

0

5

10

15

20

25

30

35

40

S
o
c
k
e
t

O
u
tp

u
t

B
u
ff

e
r

S
iz

e
 (

K
B

)

Socket Output Buffer Size and Unacknowledged Packets

Socket Output Buffer Size

Unacknowledged Packets

Unwritable Socket

Figure 5.18: TCP socket output buffer size, writability, and unacknowledged pack-
ets over time.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 62

5.6 TCP Multiplexing Problem

In this chapter we have first shown that computational complexity is not a signifi-
cant source of latency, and have then shown that network conditions can result in
significant latency while data waits in buffers. The reason data remains in buffers
is due to congestion control mechanisms in TCP that reduce throughput. We must
not impede congestion control to improve throughput—TCP congestion control is
thoroughly researched to maximize throughput while avoiding packet drops. De-
spite this, we have a hypothesis about how TCP is used in Tor in a way that is
degrading performance.

Tor’s circuits are multiplexed over TCP connections; i.e., a single TCP con-
nection between two routers is used for multiple circuits. When a circuit is built
through a pair of unconnected routers, then a new TCP connection is established.
However, if a circuit is built through already connected routers, then the existing
TCP stream will carry both the existing circuits and the new circuit. This is true
for all circuits built in either direction between the ORs.

In this section we explore how congestion control affects multiplexed circuits
and how packet dropping and reordering can cause interference across circuits. We
show that TCP was not intended to multiplex circuits in this manner, and briefly
propose an alternate transport to which we devote the next chapter.

5.6.1 Unfair Congestion Control

Motivated by results we observed in the data generated by our Tor node, we believe
that multiplexing TCP streams over a single TCP connection results in the im-
proper application of TCP’s congestion control protocol. In particular, the nature
of TCP’s congestion control mechanism results in multiple data streams competing
to send data over a TCP stream that gives priority to circuits that send more data
(i.e., it gives each byte of data the same priority regardless of its source). A busy
stream that triggers congestion control will cause low-bandwidth streams to strug-
gle to have their data sent. Figure 5.19 shows a demultiplexed buffer throughput
graph for a real connection over Tor. Time increases along the X-axis, and data in-
creases along the Y-axis. The two series correspond to two different streams which
show when data is sent over time. The periods that swell indicate that Tor’s inter-
nal output buffer has swelled; the left edge grows when data enters the buffer, and
the right edge grows when data leaves the buffer. This results in the appearance of
a line when the buffer is well-functioning, and a triangular or parallelogram shape
when data arrives too rapidly or the connection is troubled. Additionally, we strike
a vertical line across the graph whenever a packet is dropped.

What we learn from this buffer is that it serves two circuits. One circuit serves
one MB over ten minutes, and sends cells evenly. The other circuit is inactive for
the most part, but three times over execution it suddenly serves 200 KB of cells
very quickly. We can see that each time this happens, the buffer swells with data

CHAPTER 5. LATENCY IN TOR’S DATAPATH 63

0 100 200 300 400 500 600 700

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
a
ta

 (
M

B
)

Buffer Sizes across Circuits

Figure 5.19: Example of congestion on multiple streams.

incurring a significant delay. Importantly, the other circuit is affected despite the
fact that it did not change its behaviour. Congestion control mechanisms that
throttle the TCP connection will give preference to the burst of writes because it
simply provides more data, while the latency for low-bandwidth application such
as ssh increases unfairly.

Since the main goal of Tor is interactive low-latency web-browsing, it is natu-
rally of interest to consider whether large transfers are apt to interfere with this
goal. Research has indicated that while only 3% of Tor circuits are used for BitTor-
rent (a protocol that indulges in large bulk transfers), it accounts for 40% of the
transported data in Tor [41]. Clients who attempt to transport their interactive
sessions alongside BitTorrent transports that become heavily congested will suffer
increased latency as a consequence. In the next chapter, we will implement a sys-
tem that separates the TCP streams for each circuit to avoid this problem, and
our experimentation will show that it improves latency. For the remainder of this
section, we will perform experiments that quantify the effects of packet dropping
and packet reordering on multiplexed circuits using a local Tor network.

5.6.2 Cross-Circuit Interference

Multiplexing multiple streams of data over a single TCP stream ensures that the
received data will appear in the precise order in which the component streams were

CHAPTER 5. LATENCY IN TOR’S DATAPATH 64

multiplexed. When packets are dropped or reordered, the TCP stack will buffer
available data on input buffers until the missing in-order component is available. We
hypothesize that when active circuits are multiplexed over a single TCP connection,
Tor suffers an unreasonable performance reduction when either packet dropping or
packet reordering occur. Cells may be available in-order for one particular circuit
but are being delayed due to missing cells for another circuit. Ideally, multiplexed
streams in TCP would be sent over the same connection using different channels,
where in-order guarantees were only made for data sent over the same channel.
However TCP sends all data over the same channel and so it is only readable in the
order it was dispatched. Packet loss or reordering will cause the socket to indicate
that no data is available to read even if other circuits have their sequential cells
available in buffers. In the next chapter, we will present a UDP-based solution
to demultiplex circuits from TCP streams and assuage the interference of packet
dropping and reordering across circuits.

Figure 5.20 illustrates the dropped-packet hypothesis; cells for distinct circuits
are represented by shades and a missing packet is represented with a cross. In the
remainder of this section we perform experiments to determine how packet dropping
and reordering affect a local Tor network, and emphasize that whenever this delay
occurs it is unnecessary.

OROR

TCP Stream (over network)

Readable

Kernel TCP
Buffered / Waiting

Figure 5.20: TCP correlated streams. Shades correspond to cells for different
circuits.

Packet Dropping

The hypothesis on the cross-circuit interference of packet dropping is that missing
packets from one circuit will result in delays for other circuits multiplexed over the
same stream.

We will verify our hypothesis in two parts: First, in this section we show that
packet drops on a shared link degrades throughput much worse than drops over
unshared links. Second, in Chapter 7, we will show that this is not the case with
our UDP implementation.

Experiment 8 was performed to investigate the effect of packet dropping on
circuit multiplexing.

There is an important caveat in step 3: there is a difference between the fre-
quency of traffic for the two sets of connections in our experiment (and all other

CHAPTER 5. LATENCY IN TOR’S DATAPATH 65

Experiment 8 Determining the effect of packet dropping on circuit multiplexing.

1: A Tor network of six routers on a single host was configured to communicate
through the latency proxy to control packet dropping. The latency was set to
50 milliseconds for all experiments. Packet reordering was disabled.

2: Eight clients built circuits that were fixed so that the second and third ORs
were the same for each client, but the first hop was evenly distributed among
the remaining routers. Figure 5.21 illustrates this setup.

3: There were three runs of the experiment. The first did not drop any packets.
The second dropped 0.1% of packets on the shared link, and the third dropped
0.1% of packets on the remaining links.

4: The ORs were initialized and then the clients were run until circuits were es-
tablished.

5: Timing clients running on the local machine connected to each OP and used
Tor to tunnel their connection to a timing server running on the local machine.

6: Data was collected for over a minute.

Timing
Client

Timing
Client

Timing
Client

Timing
Client

Timing
Client

Timing
Client

Timing
Client

Timing
Client

Timing
Server

OR OR

OR

OR

OR

OR

OP

OP

OP

OP

OP

OP

OP

OP

Shared
Link

Remaining Links

Figure 5.21: Setup for Experiments 8, 9, and 12. The first two columns of links
constitute the remaining links, in contrast to the shared linked. The splay of links
between the final OR and the timing server are each a separate TCP connection
per circuit, and are not implemented through the latency proxy.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 66

Network Circuit Throughput Effective
Configuration Throughput Throughput Degradation Drop

(KB/s) (KB/s) Rate
No dropping 221 ± 6.6 36.9 ± 1.1 0 % 0 %
0.1 % (remaining) 208 ± 14 34.7 ± 2.3 6 % 0.08 %
0.1 % (shared) 184 ± 17 30.8 ± 2.8 17 % 0.03 %

Table 5.2: Throughput for different dropping configurations. Network throughput
is the total data sent along all the circuits.

Average Latency Effective
Configuration Latency Degradation Drop Rate
No dropping 933 ± 260 ms 0 % 0 %
0.1 % (remaining) 983 ± 666 ms 5.4 % 0.08 %
0.1 % (shared) 1053 ± 409 ms 12.9 % 0.03 %

Table 5.3: Latency for different dropping configurations.

experiments set up like Figure 5.21). Traffic for separate circuits that are multi-
plexed over a single connection can be sent together in a single TCP packet. Hence,
the shared link may transport one packet that will scaffold multiple packets to send
to the next router. Moreover, the remaining links span two hops along each circuit
whereas the shared link spans only one. This means that each packet will be eligible
to be dropped twice as often in the remaining links than the shared link. We elu-
cidate this disparity by explicitly providing the effective drop rate, i.e. the ratio of
packets dropped to the total number of packets as reported by the latency proxy.

The results of Experiment 8 are shown in Tables 5.2 and 5.3. The average
results for throughput and delay were accumulated over half a dozen executions
of the experiment, and the mean intervals for the variates are computed using
Student’s T distribution to 95% confidence.

These results confirm our hypothesis. The throughput degrades nearly three-
fold when packets are dropped on the shared link instead of the remaining links.
This is despite a significantly lower overall drop rate. The behaviour of one TCP
connection can adversely affect all correlated circuits, even if those circuits are used
to transport less data.

Table 5.3 informs us that latency increases when packet dropping occurs. La-
tency is measured by the time required for a single cell to travel alongside a con-
gested circuit, and so we average a few dozen such probes. It is unlikely that any
of these probes are specifically dropped, so the increasing trend reflects the added
delay on a TCP connection after a packet drop occurs. Again we see that dropping
on the shared link more adversely affects the observed delay despite a reduced drop
rate.

CHAPTER 5. LATENCY IN TOR’S DATAPATH 67

Network Circuit Throughput
Configuration Throughput Throughput Degradation

(KB/s) (KB/s)
No reordering 221 ± 6.6 36.9 ± 1.1 0 %
Reorder (remaining) 219 ± 19 36.6 ± 3.2 0.8 %
Reorder (shared) 175 ± 8.4 29.3 ± 1.4 21 %

Table 5.4: Throughput for different reordering configurations.

Cross-Circuit Interference of Packet Reordering

The hypothesis on the cross-circuit interference of packet reordering is that (as
with packet dropping) packet reordering causes unnecessary delays for other cir-
cuits multiplexed over the same stream. We perform Experiment 9 to validate the
hypothesis.

Experiment 9 Determining the effect of packet reordering on circuit multiplexing.

1: A local Tor network of six routers on a single host was configured to commu-
nicate through the latency proxy to control packet reordering. The latency
was set to 50 milliseconds with a variable reordering component taken from
an exponential distribution with a parameterized mean. Packet dropping was
disabled.

2: Eight clients built circuits that were fixed so that the second and third ORs
were the same for each client, but the first hop was evenly distributed among
the remaining routers. Figure 5.21 illustrates this setup.

3: There were three runs of the experiment. The first used a reordering mean of
0 ms, meaning that it did not reorder any packets. The second used a mean
of 5 ms, and only reordered of packets on the shared link. The third used a
ordering mean of 5 ms, and reordered packets on the remaining links.

4: The ORs were initialized and then the clients were run until circuits were es-
tablished.

5: Timing clients running on the local machine connected to each OP and used
Tor to tunnel their connection to a timing server running on the local machine.

6: Data was collected for over a minute.

The results of experiment 9 are shown in Tables 5.4 and 5.5. The average
results for throughput and delay were output over a half dozen executions of the
experiment, and the mean intervals for the variates are computed using Student’s
T distribution to 95% confidence.

These results confirm our hypothesis. We see that throughput is nearly unaf-
fected when reordering packets on the unshared connection. This is due to the fact
that reordering packets on connections whose data is all the same circuit means
that buffered data is available for reading when the missing packet arrives. All
the available data will then be read for the same stream, and so the one second
average throughput remains relatively unaffected. However, reordering packets on

CHAPTER 5. LATENCY IN TOR’S DATAPATH 68

Average Latency
Configuration Latency Degradation
No reordering 933 ± 260 ms 0 %
Reorder (remaining) 1002 ± 450 ms 7 %
Reorder (shared) 1122 ± 351 ms 20 %

Table 5.5: Latency for different reordering configurations.

the shared link means that data for separate streams will simply stall waiting for
data that does not contribute to that stream’s throughput.

Latency increases for reordering packets. Foremost, we are increasing the la-
tency by a random exponential around a mean of 5 ms, and so expect to see
an increase in minimum latency. The larger confidence interval for reordering on
remaining links reflects the fact that we are adding random latency for two con-
nections along the circuit. This means that the remaining links see an expected
10 ms of additional latency versus 5 ms of additional latency for the experiment
where reordering was performed on the shared link. Despite the reduced additional
latency, we see that reordering on the shared link incurs a much greater cost on
latency than reordering on the single shared link.

5.7 Summary

In this chapter we have performed a system performance evaluation to determine
sources of latency in Tor. We have placed a bound on transport latency and found
that there still exists significant latency beyond that. We have determined that
computational latency is insignificant. There exists significant latency for data
waiting inside Tor’s output buffers, and we have isolated TCP congestion control
as the reason for this latency.

Multiplexing circuits over a single connection is a potential source of unnecessary
latency since it causes TCP’s congestion control mechanism to operate unfairly to-
wards connections with smaller demands on throughput. High bandwidth streams
that trigger congestion control result in low-bandwidth streams having their conges-
tion window reduced unfairly. Packet dropping and reordering also causes available
data for multiplexed circuits to wait needlessly in socket buffers. These effects
degrade both latency and throughput, which we have shown in experiments.

The next chapter presents a solution to this problem. Ideally, we wish to open a
separate TCP connection for every circuit, as this would be a more appropriate use
of TCP between ORs. However, exposed TCP headers will leak information about
data being sent between ORs for each circuit, which opens the traffic to attack.
Our solution is to tunnel multiple TCP streams traffic over DTLS, a UDP protocol
that provides for the confidentiality of the traffic it transports. By tunnelling TCP
over a secure protocol, we can afford both the TCP payload and the TCP headers
with the security properties of DTLS.

Chapter 6

Proposed Transport Layer

This chapter presents a new transport layer for Tor with the goal of relieving some
of the problems observed with the existing TCP transport layer. Our proposal is
for a TCP-over-DTLS tunnelling transport; such a tunnel will transport TCP/IP
packets between peers using DTLS—a secure datagram (UDP-based) transport [43].
User-level TCP stacks running inside the program will be responsible for generating
and parsing the TCP/IP packets sent over DTLS. Our solution will use a single
unconnected UDP socket to communicate with all other ORs externally, and have
a separate TCP connection for each circuit internally. This decorrelates circuits
from the same TCP stream which we have shown to be a source of unnecessary
latency, while at the same time protecting the TCP headers for separate streams
from being sent in plaintext. Moreover, it reduces the number of sockets needed
in kernel space, which is known to be a problem that prevents some Windows
computers from volunteering as ORs. Figure 6.1 shows the design of our proposed
transport layer.

Our design uses TCP at each hop between ORs. This contrasts with another
proposal to use UDP as the transport layer and TCP at the end-points [75]. Middle
nodes only forward UDP packets in their proposal. We explore this proposal further
in Section 8.1.8, including its benefits, weaknesses, and how it could be added to
our system. A key difference is that our proposal does not require a synchronized
update of the entire Tor network.

OROR

UDP Stream (over network) Kernel UDP

RXed Packets

User TCP
Buffered/Waiting

Readablem
Readable

Figure 6.1: Proposed TCP-over-DTLS Transport showing decorrelated streams.
Shades correspond to cells for different circuits (cf. Figure 5.20).

69

CHAPTER 6. PROPOSED TRANSPORT LAYER 70

In this chapter, we first summarize the problems with TCP, propose our TCP-
over-DTLS tunnel, and discuss our implementation design and details. This in-
cludes how our transport layer will work with the existing Tor network and how it
was integrated into Tor.

6.1 Problems with TCP

Chapter 5 has shown that in the current TCP transport layer, multiplexing circuits
over the same TCP connection contributes to observed latency:

• Congestion control mechanisms over multiplexed streams unfairly limit all
streams instead of the most active ones.

• Packet dropping or reordering over multiplexed streams causes latency for all
streams instead of the affected stream.

Unfairness in congestion control means that some streams that have large bulk
traffic, such as BitTorrent, can negatively affect the remaining streams. We wish to
assure fairness alongside privacy in anonymous routing—ensuring that interactive
web browsing circuits are not subjected to unnecessary latency when multiplexed
with bulk transfer circuits is a step towards this goal.

The interference that multiplexed circuits can have on each other during conges-
tion, dropping, and reordering is a consequence of using a single TCP connection
to transport data between each pair of ORs. We propose to use a separate TCP
connection for each circuit, which ensures that congestion or drops in one circuit
will not effect other circuits. In order to hide the details of which traffic belongs to
which circuit, and provide the necessary confidentiality and security of the trans-
ported cells, we use DTLS—secure datagram transport.

6.2 TCP-over-DTLS Tunnel

DTLS [43] is the datagram equivalent to the ubiquitous TLS protocol that secures
web traffic. We chose DTLS for our application due to its acceptance as a standard
and its existing implementation in the OpenSSL library which is already being used
in Tor. A TCP-over-DTLS transport, known as a tunnel in the networking litera-
ture [50], means that the DTLS protocol will be used to transport data for another
protocol (in this case the TCP protocol). We would take a prepared TCP/IP packet
that was meant to be sent by the system, remove the unnecessary IP header, and
encapsulate the TCP packet inside a DTLS packet that is then sent in a UDP/IP
datagram. The receiving system will remove the UDP/IP header when receiving
data from the socket, decrypt the DTLS payload to obtain a TCP packet, translate
it into a TCP/IP packet, which is then forwarded to the user-level TCP stack that

CHAPTER 6. PROPOSED TRANSPORT LAYER 71

processes the packet. A second read from the user-level TCP stack will provide the
packet data to our system.

In our system, the TCP sockets will reside in user space, and the UDP sockets
will reside in kernel space. The use of TCP-over-DTLS affords us the great utility
of TCP: guaranteed in-order delivery and congestion control. The user-level TCP
stack controls provides the functionality of TCP, and the kernel-level UDP stack is
used simply to transmit packets. The secured DTLS transport allows us to protect
the TCP header from forgery and effect a reduced number of kernel-level sockets.

ORs require opening many sockets, and so our user-level TCP stack must be
able to handle many concurrent sockets, instead of relying on the operating sys-
tem’s TCP implementation which varies from system to system. In particular,
some discount versions of Windows artificially limit the number of sockets the user
can open, and so we use Linux’s free, open-source, and high-performance TCP im-
plementation inside user space. Even Windows users will be able to benefit from
an improved TCP implementation, and thus any user of an operating system sup-
ported by Tor will be able to volunteer their computer as an OR if they so choose.
We state here (and explore further in the experimentation and future work sections)
that our user-level implementation does not currently permit opening thousands of
sockets, but it is straightforward to resolve before deployment.

UDP allows sockets to operate in an unconnected state. Each time a datagram
is to be sent over the Internet, the destination for the packet is also provided. Only
one socket is needed to send data to every OR in the Tor network. Similarly, when
data is read from the socket, the sender’s address is also provided alongside the
data. This allows a single socket to be used for reading from all ORs; all connec-
tions and circuits will be multiplexed over the same socket. When reading, the
sender’s address can be used to demultiplex the packet to determine the appropri-
ate connection for which it is bound. What follows is that a single UDP socket can
be used to communicate with as many ORs as necessary; the number of kernel-level
sockets is constant for arbitrarily many ORs with whom a connection is established.

Tor currently uses TLS to secure the payload of its TCP messages; we will

Application Payload

TCPIP

IP DTLS

Application PayloadTLS

UDP

(a)

(b)

TORTP

Figure 6.2: Packets for TCP Tor and our TCP-over-DTLS improved Tor. En-
crypted and authenticated components of the packet are shaded in grey. (a) shows
the packet format for TCP Tor. (b) shows the packet format for our TCP-over-
DTLS Tor. TORTP is a compressed form of the IP and TCP headers, and will be
discussed in Section 6.4.2.

CHAPTER 6. PROPOSED TRANSPORT LAYER 72

use Datagram TLS (DTLS) to secure the payload of our UDP packets. Observe
that the payload of our UDP packets includes the TCP header. Our TCP-over-
DTLS allows each circuit to manage a unique TCP connection while providing
confidentiality to the TCP header to prevent details of each circuit per connection
from being revealed an observer. Protecting the header also prevents the TCP
censorship attack that involves forging TCP headers, because the TCP header will
now be secured inside the UDP payload. Figure 6.2(a) shows the packet format
for TCP Tor, and Figure 6.2(b) shows the packet format for our TCP-over-DTLS
Tor, which has expanded the encrypted payload to include the TCP/IP headers
generated by the user-level TCP stack. The remainder of this chapter will discuss
how we designed, implemented, and integrated these changes into Tor.

6.3 Backwards Compatibility

Our goal is to improve Tor to allow TCP communication using UDP in the transport
layer. While the original ORs transported cells between themselves, our proposal is
to transport, using UDP, both TCP headers and cells between ORs. The ORs will
provide the TCP/IP packets to a TCP stack that will generate both the appropriate
stream of cells and a TCP/IP packet containing a TCP acknowledgement to be
returned.

The integration of this transport layer into Tor has two main objectives. First
is that of interoperability; it is essential that the improved Tor is backwards com-
patible with the TCP version of Tor so as to be easily accepted into the existing
codebase. Recall that Tor has thousands of ORs and has not experienced any
downtime since it launched in 2003. We cannot insist that the userbase upgrades
simultaneously to integrate our changes. A subset of nodes that upgrade and can
take advantage of UDP, henceforth called “UDP nodes”, which then provide evi-
dence of TCP-over-DTLS’s improvement for the user experience, is the preferred
path to acceptance. Our second objective is to minimize the changes required into
the existing Tor codebase. We must add UDP connections into the existing data-
path by reusing as much existing code as possible. This permits future developers
to continue to improve Tor’s datapath without having to consider two classes of
communication. Moreover, it encourages the changes to quickly be usurped into
the main branch of the source code. While it will come with a performance cost for
doing unnecessary operations, we will perform timing analysis to ensure that the
resulting datapath latency remains negligible.

For interoperability we let older nodes communicate with the improved nodes
using TCP. The listeners for TCP remain unchanged but newer nodes can advertise
a UDP port for TCP-over-DTLS connections. When the OR is instructed to make
a connection (for example, when forming a circuit to a previously unconnected
node) the connecting OR first checks if the destination OR offers a UDP service
and uses it if available. Thus, two UDP nodes will automatically communicate
using UDP without disrupting the remaining nodes; their UDP connection will be

CHAPTER 6. PROPOSED TRANSPORT LAYER 73

inconspicuous even among ORs involved in a circuit that uses that link. Traffic can
switch between transport mechanisms in a node, since all traffic flows over a single
connection between two nodes. All traffic that travels between a pair of UDP nodes
will then travel over a UDP link.

Clients of Tor will not need to upgrade their software to obtain the benefits of
UDP transport. In fact, it is important that they continue to choose their circuit
randomly among the ORs: intentionally choosing circuits consisting of UDP nodes
when there are only a few such nodes decreases the privacy afforded to the client by
rendering their circuit choices predictable. However, when two neighbouring ORs
are instructed to form a connection, and they both can communicate over UDP,
then they will automatically use it to improve the user’s experience.

6.4 User-level TCP Stack

If we simply replaced the TCP transport layer in Tor with a UDP transport layer,
our inter-OR communication would then lack the critical features of TCP: guaran-
teed, in-order transmission of streams; and the most well-studied congestion control
mechanism ever devised. We wish to remove some of the unnecessary guarantees
of TCP for the sake of latency, i.e. we do not need cells from separate circuits over
the same connection to arrive in the order they were dispatched. However, we must
still be able to reconstruct the streams of each individual circuit at both ends of
the connection. We use a TCP implemention in user-space (instead of inside the
operating system) to accommodate us; a user-level TCP stack provides the imple-
mentation of the TCP protocols [31] as part of our program. User-level socket file
descriptors and their associated data structures and buffers are accessible only in
user-space and so are visible and relevant only to Tor. We use the UDP transport
layer and DTLS to transport TCP/IP packets between the UDP peers. Only part
of the TCP/IP packet is transmitted; the details will be discussed in section 6.4.2,
but it serves our purposes now to conceptualize the two nodes as transporting full
TCP/IP packets as the UDP datagram’s payload. Upon receiving a UDP datagram,
the kernel will remove the UDP header and provide Tor with a TCP/IP packet;
Tor decrypts the DTLS payload and presents the result (a TCP/IP packet) to its
user-level TCP stack. Similarly, when the user-level TCP stack presents a packet
for transmission, the node will forward the packet to the kernel which then writes
it to the intended destination over UDP. The stack also performs retransmission
and acknowledgements of TCP data that is integral to TCP’s reliability; these are
forwarded over UDP in the same manner.

A user-level TCP stack provides an implementation of the suite of socket func-
tion calls, such as socket(), send(), and recv(). These reimplementations exist in
harmony with the proper set of operating system commands, allowing both a user-
level and kernel-level network layer. Thus, data structures and file descriptors
created by calls to the user-level stack are visible and relevant only to the parent
process; the operating system manages its sockets separately. The user-level stack

CHAPTER 6. PROPOSED TRANSPORT LAYER 74

responds to socket calls by generating packets interally for dispatching as dictated
by the TCP protocol [31].

It may seem cumbersome to include an entire TCP implementation as a core
component of Tor. In particular, patching the kernel’s implementation of TCP to
support our features would take significantly less effort. However, Tor relies on
volunteers to route traffic; complicated installation procedures are an immediate
roadblock towards the ubiquitous use of Tor. The diverse operating systems Tor
aims to support and the diverse skill level of its users prevent its installation from
requiring external procedures or super-user privileges.

6.4.1 Daytona: A User-Level TCP Stack

Daytona [52] is a user-level TCP stack that we chose for our purposes. It was
created by researchers studying network analysis, and consists of the implementa-
tion of Linux’s TCP stack and the reimplementations of user-level socket functions.
Additionally, it uses libpcap (as we did for the latency proxy) to sniff packets
straight from the ethernet device and a raw socket to write generated packets,
including headers, onto the network. A system diagram of Daytona is shown in
figure 6.3. Daytona was designed to operate over actual networks while still giving
user-level access to the network implementation. In particular, it allowed the re-
searchers to tune the implementation while performing intrusive measurements. A
caveat—there are licensing issues for Daytona’s use in Tor. As a result, the deploy-
ment of this transport layer into the real Tor network may use a different user-level
TCP stack. Our design uses Daytona as a replaceable component and its selection
as a user-level TCP stack was out of availability.

Sockets
TCPTCP

Buffers

Program
User’s

Kernel Space

raw

rx()

tx()

ethernet

device

Daytona

TCP
Re/Transmit

Thread

Application

Socket FDs
socket()
send()
recv()
etc.

User Space

socket

packet
sniffer

Figure 6.3: Daytona User-Level TCP Stack System Diagram.

However, Daytona’s integration with a live network is more functionality than
necessary for our purposes. We simply need the user-level stack to manage the
multiplexing of many TCP streams over a single UDP connection. As Tor obtains
packets over UDP, it forwards them to the user-level stack, which then adds it to
the appropriate socket. If the packet contains data that is relevant for immediate
reading, Tor will read from the appropriate socket to withdraw the fresh cells from

CHAPTER 6. PROPOSED TRANSPORT LAYER 75

the user-level stream. Conversely, when Tor would previously send a cell over a
socket, it instead uses the user-level send function. The user-level stack generates a
packet to dispatch containing header information and the cell. It may also contain
an acknowledgement for previous data and perhaps a retransmission of unsent data,
as dictated by the TCP protocol. The generated packets need to be given to Tor,
where it can route them to the appropriate OR over UDP, encrypted using the
negotiated DTLS session.

6.4.2 UTCP: Our Tor-Daytona Interface

Our requirements for a user-level TCP stack are to create properly formatted pack-
ets, including TCP retransmissions, and to sort incoming TCP/IP packets into data
streams: a black box that converts between streams and packets. For our purpose,
all notions of routing, ethernet devices, and interactions with a live network are
unnecessary. To access the receiving and transmitting of packets, we commandeer
the rx() (receive) and tx() (transmit) methods of Daytona to instead interface di-
rectly with reading and writing to connections in Tor. The new system diagram for
our user-level TCP stack, which we call the UTCP Interface, is shown in Figure 6.4.

cell_unpack
Sockets

TCPTCP
Buffers

Daytona

TCP
Re/Transmit

Thread

UTCP Interface

cell_pack

Tor Interface

connection_read

connection_write

Processing
Tor

UDP
Socket tx()

rx()

recv()

send()

Packets

Streams

Figure 6.4: User-Level TCP Stack System Diagram.

UTCP is an abstraction layer for the Daytona TCP stack used as an interface
for the stack by Tor. Each UDP connection between ORs has a UTCP-connection
object that maintains information needed by our stack, such as the set of circuits
between those peers and the socket that listens for new connections. Each circuit
has a UTCP-circuit object for similar purposes, such as the local and remote port
numbers that we have assigned this connection.

As mentioned earlier, only part of the TCP header is transmitted using Tor.
We do this simply to optimize network traffic, as much of the information in the
40 byte TCP/IP header is provided by the necessary UDP/IP header. The source
and destination addresses and ports can be replaced with a numerical identifier
that uniquely identifies the circuit for the connection. Since a UDP/IP header is
transmitted over the actual network, Tor is capable of performing a connection look
up based on the address of the packet sender. (Recall that in connectionless socket

CHAPTER 6. PROPOSED TRANSPORT LAYER 76

semantics, the sender’s address is returned along with the packet data.) With the
appropriate connection, and a circuit identifier, the interface to Daytona is capable
of generating the TCP/IP headers such that Daytona will accept the packet to the
appropriate TCP stream.

The following header data needs to be transmitted: sequence, acknowledgement,
and window size numbers for reliability and congestion control, an identifier for
demultiplexing the packet to the proper circuit, and some TCP flags to control
connections. We send the sequence and acknowledgement numbers intact, the TCP
flags we need, and replace the pair of IP addresses and TCP ports with a single
port ID and a connector flag. The port ID is used in a map to retrieve the circuit,
and is selected incrementally based on the number of opened circuits between the
hosts. The connector flag indicates which peer selected the port ID, so each peer
manages two maps of port IDs to circuits. Transmission of the header information
is secured at the transport level by DTLS, so an external eavesdropper cannot learn
the number of open circuits or precise distribution of data transfer among circuits
by observing traffic. Figure 6.5 shows the layout of the TORTP header.

F = Finish Flag
S = Synchronization Flag
R = Reset Flag
P = Push Flag
A = Acknowledgement Flag
Resv = Reserved/Alignment
C = Connector Flag

CResv
Acknowledgement of Sequence Number

[0] [8] [16] [32][24]

Ack’ment (con’t)
Window (con’t)

Sequence (con’t)
Port ID

Sequence Number

Window Size

F S R P A

Figure 6.5: Layout of the TORTP header.

When the UTCP interface receives a new packet, it uses local data and the
TORTP headers to create the corresponding TCP/IP header. The resulting packet
is then injected into the TCP stack. When Daytona’s TCP stack emits a new
packet, a generic tx() method is invoked, passing only the packet and its length.
We look up the corresponding UTCP circuit using the addresses and ports of the
emitted TCP/IP header, and translate the TCP/IP header to our TORTP header
and copy the TCP payload. This prepared TORTP packet is then sent to Tor,
along with a reference to the appropriate circuit, and Tor sends the packet to the
destination OR over the appropriate connection. The next section will describe
both of these processes in more detail.

CHAPTER 6. PROPOSED TRANSPORT LAYER 77

6.5 Integration of UDP Transport into Tor

In this section we describe how we integrated our TCP-over-DTLS transport layer
as an optional transport layer for use in the Tor network.

Our goal is to replace TCP sockets with user-level TCP sockets when possible
(i.e., whenever the peer is a UDP node), and replace all kernel-level socket calls with
their equivalent user-level calls. Additionally, we also want to create a new socket
for each circuit in Tor when the peer is a UDP node, and use the existing transport
in Tor otherwise. Sending a CREATE cell was formerly sufficient to create a new
circuit, but now we must perform user-level TCP handshaking, and then send the
CREATE cell as the first data segment. This is further confounded by our goal of
complete interoperability with the existing Tor network. It was necessary to make
some larger changes to the operation of Tor itself: how UDP connections are estab-
lished between ORs, and how circuits are established. This section describes the
changes we made and describes our new algorithms for transmitting and receiving
messages.

6.5.1 Establishing a Connection

Each pair of connected ORs in Tor manages a connection object at each endpoint.
The connection object wraps a TLS object that secures all data sent over the con-
nection against a variety of network-level attacks. The encryption used for TCP
sockets in TLS is stream based, necessitating reliable, in-order delivery for the en-
crypted messages to be properly decrypted. Since we will use a UDP model of
communication, we need a cipher that can decrypt datagrams without any guar-
antees of delivery or delivery order. The popular OpenSSL library provides an
implementation of DTLS, a mechanism exactly for securing UDP socket connec-
tions. Where TCP connections wrapped a TLS object, our UDP connections will
now each manage a DTLS object for securing their traffic. The existing datapath
in Tor is preserved, and we change functions that operate on connections to use
our UDP extensions when appropriate.

Limitations on the number of available file descriptors that prevent Windows
computers from volunteering as ORs can be resolved with our UDP implementa-
tion: each OR opens a single UDP socket, operating in unconnected mode, which
accepts and sends all traffic between ORs. Unfortunately, OpenSSL’s DTLS imple-
mentation follows the stream paradigm of TCP. When a client begins a handshake,
it forces the underlying UDP socket to enter into a connected state and hence will
not accept traffic from any other destination. This restricts our ability to use a sin-
gle UDP socket to accept data from all connections and use the peer’s address for
demultiplexing. We resolved this problem by providing our own layer of indirection
between the socket and OpenSSL.

Before we explain the solution, it is useful to understand the mechanics of
OpenSSL. The main data type in OpenSSL is the ssl t. Socket level functions such

CHAPTER 6. PROPOSED TRANSPORT LAYER 78

as connect and close, have equivalents in SSL, generally named by prepending an
SSL (i.e. SSL connect and SSL close) and passing an ssl t instead of a socket
as the first argument. These objects wrap over a buffered input/output (BIO)
layer. BIOs themselves wrap over a file descriptor, such as a socket. The BIO
layer is aware of the semantics for reading and writing to a file descriptor, and can
be easily replaced with a customized BIO layer that wraps a different kind of file
descriptor. Our custom BIO layer manages a unconnected socket by maintaining
a reference to the peer with whom it shares a key and only sends and receives
data from that peer. A single unconnected socket is shared by each instantiated
BIO layer in our system. This socket is called the multiplexing socket because it
exists in a one-to-many relationship with the ORs to which it has established DTLS
connections. This permits each OR to use a constant number of kernel-level sockets
independent of the number of communicating ORs. Handshaking still occurs in a
connected context, but the socket is migrated to the shared UDP multiplexing
socket immediately afterwards.

UDP-enabled ORs will now advertise both a UDP listening address and a UDP
multiplexing address in their router description, and open a UDP socket for listening
on both those address. The connecting OR will initiate a DTLS handshake from
a new UDP socket and the listener will begin their communication by completing
the DTLS handshake. After handshaking, both the connector and the acceptor will
look up their peer’s multiplexing address in their copy of the public directory of Tor
nodes. They both silently migrate the underlying file descriptor for the SSL to the
multiplexing address and set the peer address to the multiplexing address. Hence,
when data is sent to the ssl t, it will use the sendto method on the multiplexing
socket using their peer’s address. The multiplexing socket is in a one-to-many
relationship with the BIO objects; each distinct BIO object maintains the peer’s
address for the sendto call on the multiplexing socket. After migrating to the
multiplexing socket, the connector closes its connecting socket.

If the connector is an OP, then the acceptor will not be able to authenticate its
peer or get its multiplexing address. In this case, the OP will use a separate UDP
socket for each connection, and the OR will migrate its socket to the multiplexing
socket without changing the peer’s address. This is not a concern for proliferation
of sockets, however, because OPs need only one socket for each of their circuits,
which will be in the order of the number of sockets they intend to open and tunnel
through Tor.

When data arrives on the multiplexing socket, we peek at the peer’s address
(without removing the datagram from the socket) in order to look up the connec-
tion object from which the datagram was sent. This gives us the correct ssl t to
use when reading the packet sitting on the buffer. However, this tacitly assumes
a one-to-one relationship between peer OR addresses and the corresponding con-
nection objects, which we use to uniquely demultiplex the incoming packets. This
is incorrect, however, since pairs of ORs may have multiple connections between
them: they connect simultaneously, they prepare a new connection to rotate keys,
or one side restarts Tor ungracefully. Each connection object maintains a pointer

CHAPTER 6. PROPOSED TRANSPORT LAYER 79

to another connection to the same OR, and Tor manages this ad-hoc linked list
whenever connections are added or removed. In the current Tor implementation,
each connection object has a unique pair of TCP ports and associated sockets, and
thus this is of no concern since incoming data is uniquely tied to a single connection.
However, we multiplex all data from the same OR over a single UDP connection
and we rely on the UDP/IP packet’s source address and port to uniquely identify
the connection.

Our solution is to further customize our DTLS BIO layer to prepend a DTLS
ID to each packet. When we peek at the sender’s address for data that has arrived
on the multiplexing socket, we now also peek at the first four bytes of the packet.
Both the address and the DTLS ID are used to retrieve the proper connection
object. While an active adversary can modify the DTLS ID, doing so will result in
the packet failing to decrypt, which has the same effect as modifying any bit of the
encrypted payload without the DTLS ID.

6.5.2 Establishing a Circuit

Recall the semantics for establishing circuits in Tor, presented in section 3.1. When
an OR wishes to establish or extend a circuit to another OR, it first checks to see if
there is an existing TCP connection to that OR. It establishes a connection only if
there is no existing connection, and reuses the existing one if possible. The circuit
building OR then sends a CREATE cell along the connection to the next OR in the
circuit. When a CREATE cell is received, the handshaking involved in establishing
encryptions keys is performed and the result is returned in a CREATED cell. Both
ends of the circuit hop now have a circuit ID that is used for all future cells bound
to the circuit. Our goal is to demultiplex circuits from using a TCP connection for
their data, and so we create UTCP sockets for each circuit.

Each TCP-over-DTLS circuit in Tor will now be associated with a UTCP circuit
object which wraps a UTCP socket. This UTCP circuit maintains its UTCP socket,
its parent connection, and port information used during TORTP and TCP/IP
header generation and translation. Each TCP-over-DTLS connection is similarly
mapped to a UTCP connection object. The UTCP connection object manages the
set of UTCP sockets that are virtually bound between the ORs at the ends of the
connection: the set of all circuits that are built over this connection, a listening
socket to accept new connections, a special circuit for inter-OR communications,
and counters used in port allocation for new circuits.

Figure 6.6 shows the message sequence to establish circuits. When the initial
DTLS connection is created between two ORs, each end creates a UTCP listening
socket that is used to accept circuits from its peer. When the connector processes
the CREATE cell, it first establishes a new UTCP connection to its peer. This
causes its UTCP connection object to generate a new port ID (unique among those
shared between those two particular hosts). The user-level connect call is made, and
the stack emits a TCP/IP packet with its SYN flag set. This packet is translated

CHAPTER 6. PROPOSED TRANSPORT LAYER 80

into a TORTP packet, and the port ID that was generated is placed in the TORTP
header, which is then sent to the peer over DTLS. The receiving peer checks for a
set SYN flag before injecting each packet; if the SYN flag is set then it will call the
user-level TCP accept function to get a socket for the new UTCP circuit after it
injects the SYN packet. The new UTCP circuit object is added to a list of accepted
UTCP circuits that have not yet been bound to a Tor circuit. After the connector
finishes establishing its UTCP connection, it sends the CREATE cell as the first
packet of data. The receiver retrieves the previously accepted circuit by the port
ID, and annotates it with the circuit ID specified in the CREATE cell. When Tor
later processes the CREATE cell, it knows that the connection from which it came
is a UTCP connection, and retrieves the appropriate UTCP circuit from the UTCP
connection object using only the circuit ID.

Tor occasionally sends cells with a circuit ID set to 0. This includes keep-alive
messages designed to ensure that established but inactive connections do not get
dismantled. We create a base circuit (with circuit ID 0) to accommodate such
messages. All traffic that is sent over the connection without a particular circuit is
now mapped to our base circuit.

6.5.3 Sending and Receiving Data

TCP Tor reads cells from a kernel-level TCP socket and places them on a single
input buffer. Our modified Tor uses separate user-level TCP sockets for each circuit,
but all cells that are read (across all circuits that share a connection) are placed
onto the same input buffer (that TCP Tor would use) so as to not interfere with
the remaining datapath. Similarly, data that is written to the socket in TCP Tor
is instead written to a user-level socket in our version. We add the additional
functionality to forward the packets that our TCP-stack generates to the circuit
queues that hold data that is ready to dispatch on the network. Figure 6.7 shows
the sequence of sends and receives for the processing and relaying of a cell for
TCP-over-DTLS Tor.

When the UDP multiplexing socket provides UTCP with a packet, the peer
address and DTLS ID are used to retrieve the appropriate DTLS object for decryp-
tion. The resulting TORTP packet is forwarded to the rx() method, which uses
the TORTP header to retrieve the appropriate UTCP circuit object bound to the
current UTCP connection object. The circuit contains the information needed to
generate the corresponding TCP/IP packet, which is then injected into the stack.
After injecting, the user-level socket may now be readable (if the packet contains
in-order data), and so a read attempt is made. If data is available, it is placed
onto the the input buffer for the connection, and Tor’s processing of the cells is
performed as usual.

When Tor would formerly write data to the network, it now writes it to the
user-level stack. Cells being written to a TCP-over-DTLS connection will instead
use the user-level write function on their circuits specific socket. The user-level

CHAPTER 6. PROPOSED TRANSPORT LAYER 81

stack will then emit TCP/IP packets via the tx() method. The tx method uses
the TCP ports in generated header to determine the UTCP circuit, performs the
TCP/IP to TORTP translation, and encrypts the packet with the DTLS object that
corresponds with its destination. Finally, DTLS sends the packet to the intended
destination over the UDP multiplexing socket.

CHAPTER 6. PROPOSED TRANSPORT LAYER 82

UTCP

A

OR

A

OR

B

UTCP

B

connect(OR B)

TCP/IP[syn]

TORTP[syn]

TCP/IP[syn]

TCP/IP[synack]

TORTP[synack]

TCP/IP[synack]

TCP/IP[ack]

TORTP[ack]

TCP/IP[ack]cell create

TCP/IP[cell]

TORTP[cell]

TCP/IP[cell]

TCP/IP[ack]

TORTP[ack]

TCP/IP[ack] cell create

process cell cell created

TCP/IP[cell]

TORTP[cell]

TORTP[cell]

TCP/IP[ack]

TCP/IP[created]

Figure 6.6: Message sequence diagram for establishing a new circuit between UDP
ORs. The two columns labelled A correspond to a single machine, and the two
columns labelled B correspond to a separate machine. The messages sent between
the middle columns represent data sent over the network, whereas the remaining
messages are local process calls. The outer columns are the user-level TCP stack
and the inner columns are the ORs.

CHAPTER 6. PROPOSED TRANSPORT LAYER 83

Socket OR UTCP

Readable

Peek

Peer Address

DTLS ID

Demux Conn

DTLS Read

<TORTP Packet>

RX <TORTP Packet>

TORTP to TCP/IP

Inject TCP/IP

Read

<Cell>

Process Send <Cell>

TX <TCP/IP Packet>

TCP/IP to TORTP

Circuit Queue Append

DTLS Write

Figure 6.7: Message sequence diagram for sending and receiving data in TCP-
over-UDP Tor. Socket corresponds to communication with the multiplexing UDP
socket. OR corresponds to the main thread of execution in Tor that handles reads
and writes. UTCP corresponds to the user-level TCP stack.

Chapter 7

Experimental Results

In this chapter we explore the experimental results of our proposed TCP-over-
DTLS implementation. We first perform static profiling and timing experiments to
ensure that our modifications are not contributing large unnecessary latency. We
then perform an experiment with a single bulk data stream to determine an upper
bound on throughput and latency. Finally, we contrast the throughput and latency
of our modified Tor with the TCP version of Tor for packet-dropping experiments.
Due to a bug in OpenSSL’s DTLS implementation that translates reordered packets
into dropped packets, we omit results for packet reordering.

7.1 Profiling and Timing Results

Our UDP implementation expands the datapath of Tor by adding new methods for
managing user-level TCP streams and UDP connections. We profile our modified
Tor and perform static timing analysis to ensure that our new methods do not
degrade the datapath unnecessarily. Experiment 10 was performed to profile our
new version of Tor.

Profiling results showed the expected results: AES encryption and DTLS hand-
shaking consume the vast majority of operations. Alarmingly, it was found that
the socket creation method user socket takes a few milliseconds in the best case
and upwards of an entire second in the worst cases. After tracing through, the
poorly implemented component is a Daytona method that creates a linked list of
memory yet needlessly allocates it as a giant contiguous chunk. A comment in the
code indicates this is not desirable and is left as future work to repair. It will be
repaired before entering into the Tor source code, but since it only effects allocation
of sockets we disregarded it for our experiments.

Profiling also indicated that Daytona’s implementation of user poll was flawed,
as it was taking an unreasonable amount of time to execute. We used user poll

only to determine if a socket for which we just provided a packet is now readable.
Since the sockets were set to be non-blocking, we replaced the logic of polling for

84

CHAPTER 7. EXPERIMENTAL RESULTS 85

Experiment 10 Timing analysis of our modified TCP-over-DTLS datapath.

1: TCP-over-DTLS Tor was modified to use libspe to time the following aspects
of the datapath:

• demultiplexing of a new UDP packet,

• injection of a new packet,

• emission of a new packet,

• the TCP timer function, and

• the entire datapath from reading a packet on a UDP socket, demultiplexing
the result, injecting the packet, reading the stream, processing the cell,
writing the result, and transmitting the generated packet.

2: Our UDP Tor was modified to compile with gprof.
3: The timing server was initialized.
4: The latency proxy was initialized with a latency of 50 ms and a drop rate of

0%.
5: The local network was configured to use the latency proxy.
6: The timing client connected to the timing server through a single OR.
7: Data travelled through the network for several minutes.
8: The profiling result for an active OR (i.e. on the active circuit) along with its

libspe report was saved.

readability and reading if successful with simply attempting to read from the socket
and expecting failures to be common.

The remainder of this section details the results for each timed component. The
scale on the figures vary depending on the reported values.

7.1.1 Demultiplexing

Figure 7.1 shows the results for demultiplexing a UDP packet. This part of the
datapath includes peeking at the DTLS ID and the sender’s address, and retriev-
ing it from a lookup table. Our experiments had a small number of peers, so it
would be useful to re-examine its speed once deployed in the Tor network when
managing thousands of peers. Our results indicate that demultiplexing takes a few
microseconds to perform.

7.1.2 Receiving

Figure 7.2 shows the results for injecting a new TCP packet. This part of the data-
path includes DTLS decryption, preprocessing, injecting the packet, and possibly
invoking the transmit method to send an acknowledgement. There are four trends
in the CDF, appearing at the 1st, 55th, 80th, and 95th percentiles. These corre-
spond to receive operations that require different amounts of time to process. For

CHAPTER 7. EXPERIMENTAL RESULTS 86

0 2 4 6 8 10 12

Execution Time (Microseconds)

0

20

40

60

80

100

P
e
rc

e
n
ti

le

Demultiplexing

Figure 7.1: Time to demultiplex a UDP packet (CDF).

instance, operations that trigger sending acknowledgements in return will require
significantly more time to encrypt the acknowledgement then simply processing a
single TCP packet, and so these would be represented by the 80 to 95th percentiles.
At the tail end, we see rare but lengthy durations; these likely correspond to pro-
cessing synchronization packets as they require allocating memory for a new socket.

7.1.3 Transmitting

Figure 7.3 shows the results for transmitting a new TCP packet. This part of
the datapath includes header translation for the packet, DTLS encryption, and
dispatching it over the wire. Here we see three trends in the CDF, appearing at
the 1st, 35th, and 50th percentiles. These correspond to transmitting packets of
different sizes (e.g. ACKs, single cell packets, and full frames)—larger packets
require longer encryption operations.

7.1.4 TCP Timer

Figure 7.4 shows the CDF for the TCP timer. The timer is not part of the main
datapath, but is invoked every 10 milliseconds to perform some timer-based TCP
operations: retransmission, delayed acknowledgements, etc. It increments the clock,
checks for assigned work, and possibly invokes the transmission function. It only

CHAPTER 7. EXPERIMENTAL RESULTS 87

0 100 200 300 400 500 600

Execution Time (Microseconds)

0

20

40

60

80

100

P
e
rc

e
n
ti

le

Packet RX

Figure 7.2: Time to inject a packet (CDF).

performs transmissions less than one percent of the time, which makes for a CDF
that would indicate how long it takes to increment a counter. Therefore we create
this CDF with measurements of the timer function only when it actually performs
work, which amortizes to once per second. It shows a normal distribution with a
timespan between 60 and 120 microseconds, which is the expected duration of a
call to the TX function.

7.1.5 Datapath

Figure 7.5 shows the CDF for the duration of the entire UDP datapath. This is
the end-to-end operation: demultiplexing a UDP packet, injecting (and possibly
acknowledging), reading from the user-level TCP stream, processing the read cells,
writing the result to the socket, and possible emitting a packet to the next hop. It
shows five trends at the 1st, 15th, 35th, 70th, and 95th percentiles. As we have
seen, these correspond with different execution flows that take different times in
expectation. The quickest performance occurs when receiving an ACK that requires
neither processing nor any transmission. The slowest performance occurs when
receiving a SYN that requires allocating memory using the poor implementation of
user socket.

CHAPTER 7. EXPERIMENTAL RESULTS 88

0 20 40 60 80 100 120

Execution Time (Microseconds)

0

20

40

60

80

100

P
e
rc

e
n
ti

le

Packet TX

Figure 7.3: Time to emit a packet (CDF).

7.1.6 Summary

The performance results indicate that our modifications to Tor are not going to
contribute significantly to latency. The TCP timer is negligible. We have increased
the datapath latency to an expected value of 250 microseconds per OR, or 1.5
milliseconds along a circuit of length three and back. This is still an order of
magnitude briefer than the round-trip times between ORs on a circuit (assuming
geopolitically diverse circuit selection). Assuming each packet is the size of a cell (a
conservative estimate as our experiments have packets that carry full dataframes)
we have an upper bound on throughput of 4000 cells per second or 2 MB/s. While
this is a reasonable speed that will likely not form a bottleneck, Tor ORs that are
willing to denote more than 2 MB/s of bandwidth may require better hardware
than the Thinkpad R60 used in our experiments.

7.2 Basic Throughput and TCP Tuning

TCP tuning is an art in its own right, and producing the optimal TCP stack suited
for Tor’s purposes is left as substantial future work. However, initial experiments
comparing basic throughput for a single client connecting through UDP Tor showed
that our modified version operated with half the efficiency of the TCP version of
Tor. Since the OS used the same TCP stack as our user-level stack, this observation
necessitated deep and thorough inspection into the cause for this severe performance

CHAPTER 7. EXPERIMENTAL RESULTS 89

0 20 40 60 80 100 120 140 160 180

Execution Time (Microseconds)

0

20

40

60

80

100

P
e
rc

e
n
ti

le

TCP Timer

Figure 7.4: Time to perform a TCP timer task (CDF).

degradation. A number of mistakenly implemented features were uncovered, mainly
dealing with how congestion control variables were incremented. These do not
correspond with current TCP bugs inside the Linux TCP implementation; they
occurred in the reimplementation of some system calls in user-space, or have since
been resolved since Daytona’s creation.

Another problem occurred with retransmissions; they were being sent too fre-
quently. When a retransmission occurred, the congestion window dropped to one,
meaning only one packet is sent in the next RTT. While slow-start gets data mov-
ing along again, unnecessary retransmissions are costly to the throughput. It was
uncovered that the retransmission timeout (RTO), which is the time the TCP stack
waits before retransmitting, was not being computed according to the specification
in RFC 2988 [48]. Specifications mandate that it is set to the smoothed RTT plus
four times its standard deviation, whereas the Linux implementation uses only one
times the standard deviation. Worse, this is based on transmitting data to a peer
whose operating system manages the TCP stream. Since the data enters into a
UDP buffer where it is then processed internally by Tor, acknowledgements might
be delayed variably by potential latency and congestion in Tor. The standard de-
viation becomes more relevant in this setting, and so we changed the computation
of the RTO to reflect RFC 2988, and observed an increase in performance.

We perform Experiment 11 to compare the basic throughput and latency of
our modification to Tor, the results of which are shown in Table 7.1. We can see
that the UDP version of Tor has significantly slower throughput. As mentioned,
negotiating the throughput up to this value took large amounts of TCP tuning and

CHAPTER 7. EXPERIMENTAL RESULTS 90

Experiment 11 Basic throughput and delay for TCP and TCP-over-DTLS ver-
sions of Tor.
1: A local Tor network running six routers on a local host was configured to com-

municate through the latency proxy. The latency was set to 50 milliseconds.
Packet reordering was disabled. Packet dropping was disabled.

2: The local network uses first the original TCP version of Tor, and then our
modified TCP-over-DTLS version of Tor.

3: Two OPs are configured to connect to the Tor network using the latency proxy

along a fixed, shared circuit.
4: A delay timing client connects through one OP to a timing server to sporadically

request the time to measure latency. The results indicate the base latency
imposed by the latency proxy, as there is no other data being sent through
the network.

5: A throughput timing client connects through one OP to a timing server to begin
a bulk stream transfer to measure throughput.

6: Measurements for delay were collected in the presense of other traffic, and
recorded separately from those of step 4.

7: Data was collected for over a minute, and each configuration was run a half
dozen times to obtain confidence intervals.

Network Circuit Base
Configuration Throughput Delay Delay
TCP Tor 176 ± 24.9 KB/s 1026 ± 418 ms 281 ± 12 ms
TCP-over-DTLS Tor 111 ± 10.4 KB/s 273 ± 31 ms 260 ± 1 ms

Table 7.1: Throughput and delay for different reordering configurations. The base
delay figures are measurements taken in the absence of other traffic, while the
circuit delay figures are the measurements while bulk data transfer is occurring on
another circuit.

CHAPTER 7. EXPERIMENTAL RESULTS 91

0 200 400 600 800 1000 1200 1400

Execution Time (Microseconds)

0

20

40

60

80

100

P
e
rc

e
n
ti

le

UDP Datapath

Figure 7.5: UDP Datapath Duration (CDF).

debugging the user-level TCP stack. In particular, errors were uncovered in Day-
tona’s congestion control implementation. While there may be slight degradation in
performace when executing TCP operations in user-space instead of kernel-space,
both implementations of TCP are based on the same Linux TCP implementation.
We would expect comparable throughputs as a result, and predict that with more
effort to resolve outstanding bugs, or the integration of a user-level TCP stack
heavily optimized for Tor’s needs, the disparity in throughputs will vanish. We
discuss this further in the future work section.

The circuit delay for a second stream over the same circuit indicates that our
UDP version of Tor vastly improves latency in the presence of a high-bandwidth
circuit. When one stream triggers the congestion control mechanism, it does not
cause the low-bandwidth client to suffer great latency as a consequence. In fact, the
latency observed for TCP-over-DTLS is reflected by the base latency imposed by
the latency proxy. TCP Tor, in contrast, shows a three-and-a-half fold increase
in latency when the circuit that it multiplexes with the bulk stream is burdened
with traffic. The disparity in latency for the TCP version means that information
is leaked: the link between the last two nodes is witnessing bulk transfer. This can
be used as a reconnaissance technique; an entry node, witnessing a bulk transfer
from an client and knowing its next hop, can probe potential exit-nodes with small
data requests to learn congestion information. We discuss this further in the future
work section.

We conclude that our TCP-over-DTLS, while currently suffering lower through-
put, has successfully addressed latency introduced by the improper use of the con-

CHAPTER 7. EXPERIMENTAL RESULTS 92

Network Circuit Thrput Effective
Version Configuration Throughput Thrput Degr. Drop

(KB/s) (KB/s) Rate
TCP- No dropping 284 ± 35 47.3 ± 5.8 0 % 0 %
over- 0.1 % (remain.) 261 ± 42 43.5 ± 7.0 8 % 0.08 %
DTLS 0.1 % (shared) 270 ± 34 45.2 ± 5.6 4 % 0.03 %

No dropping 221 ± 6.6 36.9 ± 1.1 0 % 0 %
TCP 0.1 % (remain.) 208 ± 14 34.7 ± 2.3 6 % 0.08 %

0.1 % (shared) 184 ± 17 30.8 ± 2.8 17 % 0.03 %

Table 7.2: Throughput for different dropping configurations. “Thrput” stands for
throughput. “Degr” stands for degradation.

gestion control mechanism. We expect that once perfected, the user-level TCP
stack will have nearly the same throughput as the equivalent TCP implementa-
tion in the kernel. The response latency for circuits in our improved Tor is nearly
independent of throughput on existing Tor circuits travelling over the same connec-
tions; this improves Tor’s usability and decreases the ability for one circuit to leak
information about another circuit using the same connection through interference.

7.3 Multiplexed Circuit with Packet Dropping

Packet dropping occurs when a packet is lost while being routed through the In-
ternet. Packet dropping, along with packet reordering, are consequences of the
implementation of packet switching networks and are the prime reason for the in-
vention of the TCP protocol. In this section, we perform an experiment to contrast
the effect of packet dropping on the original version of Tor and our improved version.

We hoped also to include results for packet reordering in addition to packet
dropping. Unfortunately the DTLS library currently does not behave properly in
the event of a reordered packet. A bona fide attempt to repair DTLS was made,
but it proved cumbersome (and tangential to the content of this thesis) and so a
bug report was made to the OpenSSL project. As such, all reordered packets in
TCP-over-DTLS have the same effect as a dropped packet making experimental
quantification meaningless. This is a significant limitation with DTLS for our pur-
poses1, which will postpone deployment of our proposed TCP-over-DTLS transport
layer until resolved.

We performed Experiment 12 to investigate the effect of packet dropping. The
results are presented in Tables 7.2 and 7.3. We reproduce our results from Tables 5.2
and 5.3 to contrast the old (TCP) and new (TCP-over-DTLS) transports.

1Any packet reordering triggers congestion control throttling inappropriately, as the TCP stack

falsely believes it has congested the network to the point where packets are dropping.

CHAPTER 7. EXPERIMENTAL RESULTS 93

Experiment 12 Determining the effect of packet dropping on circuit multiplexing
for TCP-over-DTLS Tor.
1: A local TCP-over-DTLS Tor network of six routers on a single host was config-

ured to communicate through the latency proxy to control packet dropping.
The latency was set to 50 milliseconds for all experiments. Packet reordering
was disabled.

2: Eight clients built circuits that were fixed so that the second and third ORs
were the same for each client, but the first hop was evenly distributed among
the remaining ORs. Figure 5.21 illustrates this setup.

3: There were three runs of the experiment. The first did not drop any packets.
The second dropped 0.1% of packets on the shared link, and the third dropped
0.1% of packets on the remaining links. As with Experiment 8, this creates a
disparity between effective drop rates, which we report.

4: The ORs were initialized and then the clients were run until circuits were es-
tablished.

5: Timing clients connected to each OP and used Tor to tunnel their connection
to a timing server running on the local machine.

6: Data was collected for over a minute.

Interestingly, throughput is much superior for the TCP-over-DTLS version of
Tor. This is likely because the TCP congestion control mechanism has less impact
on throttling when each TCP stream is separated. One may back off, but the others
will continue sending, which results in a greater throughput over the bottleneck
connection. This is reasonable behaviour since TCP was designed for separate
streams to function over the same route. If congestion is a serious problem then
multiple streams will be forced to back off and find the appropriate congestion
window. Importantly, the streams that send a small amount of data are much less
likely to need to back off, so their small traffic will not have to compete unfairly
for room inside a small congestion window intended to throttle a noisy connection.
The benefits of this is clearly visible in the latency: cells can travel through the
network considerably faster in the TCP-over-DTLS version of Tor.

The TCP-over-DTLS version has its observed throughput and latency affected
proportionally to packet drop rate. It did not matter if the drop was happening

Average Latency Effective
Version Configuration Latency Degradation Drop Rate
TCP- No dropping 428 ± 221 ms 0 % 0 %
over- 0.1 % (remaining) 510 ± 377 ms 20 % 0.08 %
DTLS 0.1 % (shared) 461 ± 356 ms 7 % 0.03 %

No dropping 933 ± 260 ms 0 % 0 %
TCP 0.1 % (remaining) 983 ± 666 ms 5.4 % 0.08 %

0.1 % (shared) 1053 ± 409 ms 12.9 % 0.03 %

Table 7.3: Latency for different dropping configurations.

CHAPTER 7. EXPERIMENTAL RESULTS 94

on the shared link or the remaining link, since the shared link is not a single TCP
connection that multiplexes all traffic. Missing cells for different circuits no longer
cause unnecessary waiting, and so the only effect on latency and throughput is the
effect of actually dropping cells along circuits.

7.4 TCP Censorship Attack

For a final experiment, we performed the TCP censorship attack on the TCP version
of Tor. This experiment is done somewhat for fun, as there is no evidence that
this attack is currently being mounted against traffic between ORs. However, the
Chinese government does censor broad segments of the Internet, including Tor’s
webpage [39], using this technique. Ostensibly, one of Tor’s raisons d’être is to
fight exactly this censorship.

The Chinese government performs this attack by sending spurious TCP packets
with the reset flag set [11]. We perform this attack by modifying the latency proxy

to occasionally set the reset flag. Our TCP-over-DTLS implementation removes this
attack vector by securing the important components of the TCP header along with
the TCP payload—an adversary cannot create, modify, or replay a TCP header in
our system. We admit that a censorship attack on encrypted traffic is still possible if
the adversary controls the router: they simply fail to forward the traffic, or perturb
the payload so that the decryption fails. However the reset attack is employed
because it can function using only a sample of the traffic. When a connection is
reset, then the peers’ data flow is impeded for some time after, whereas blocking
UDP traffic requires finding and censoring every packet being sent.

We perform Experiment 13 to examine the effect of false TCP resets between
ORs in TCP Tor.

Experiment 13 Determining the behaviour of Tor during a censorship attack using
the reset flag attack vector.

1: The latency proxy was modified to set the reset flag in TCP headers on packets
destined for a specific OR port. They would set the flag after 1000 successful
packet deliveries.

2: The latency proxy was initialized with a latency of 50 ms and a drop rate of
0%.

3: The local network was configured to use the latency proxy and run until circuits
are established.

4: Six clients formed circuits with a common link between a pair of ORs. This
shared link is the link being subjected to the censorship attack.

5: Each client begins a bulk data transfer from a timing server.

Our experiment revealed that the TCP version of Tor is not robust against this
attack. Data would flow successfully until the reset packet was injected, at which
point the connection was removed and all circuits along the path stalled. The TCP

CHAPTER 7. EXPERIMENTAL RESULTS 95

connection being tunnelled through did not seem to resume on its own, and data
only resumed being transferred when the client application was restarted. This
attack cannot succeed in the UDP version of Tor: any UDP packet that is success-
fully decrypted will make forward progress in the tunnelled TCP connection, and
the adversary is unable to make modifications to the encrypted and authenticated
payload.

7.5 Summary

In this chapter we performed experiments to explore our new TCP-over-DTLS
transport layer for Tor. We performed a static timing analysis of our modified
datapath and determined that it will neither form a bottleneck nor contribute no-
ticeably to latency. We compared throughput and latency for our modified Tor with
the existing Tor, and found that latency is improved substantially with our modi-
fied version when a low-bandwidth client communicates alongside a high-bandwidth
client. Throughput is worse for bulk transfer for a single circuit in our modified
version, but we suspect that it can be improved further with tuning. We found that
many multiplexed circuits had much better throughput in our modified version than
TCP Tor, and unlike TCP Tor, our version had no cross-circuit interference when
packets were dropped on highly multiplexed streams.

Chapter 8

Conclusions

The final chapter of this thesis presents a number of directions for future work,
including steps that are needed to be done before our TCP-over-DTLS transport
can be deployed. This is followed by concluding remarks about our contributions.

8.1 Future Work

The Tor network is already an area of active research. This thesis adds future
research directions, which we present in this section. In particular, we discuss
the need for real-world experiments for our deployment, emphasize the need to
improve OpenSSL’s DTLS implementation, and consider various optimizations of
our extensions. We also consider the feasibility of an obvious extension: using
TCP stacks only at the end points of a circuit and using UDP to forward all traffic
otherwise.

8.1.1 Real-World Benefits

We hope that our TCP-over-DTLS transport layer results in tangible improvements
for the real Tor network, but we must begin to use it in the real-world to test our
hypothesis. Our changes require intrusive and thorough testing to ensure they
function indefinitely without failing, and are resilient to all network problems and
attacks. Then our transport layer can be introduced into the stock Tor release and
encourage Tor node operators to update. Once a majority of users begin to use
UDP connections, research can explore whether our proposal has been a benefit to
the Tor network. It will be difficult to isolate all the variables with the live Tor
network (such as the number of ORs and the ratio of users to ORs), but hopefully
the trend will be sufficiently significant to ascertain a conclusion. Additionally,
once most ORs use UDP, then we can determine if the reduced demand on open
sockets solves the problem of socket proliferation on some operating systems.

96

CHAPTER 8. CONCLUSIONS 97

8.1.2 Improving DTLS

A number of bugs with OpenSSL’s deployed DTLS implementation have been un-
covered in the process of implementing our TCP-over-DTLS transport layer. They
have been reported to the OpenSSL team, but remain unresolved. Most notable
is the packet reordering flaw that prevents our improvement from being deployed
in the real world; a functional and secure UDP transport layer is necessary for our
purposes.

Moreover, it would be good to standardize the concept of a single UDP port
multiplexing many DTLS connections. We implemented our own BIO layer that
included a stream ID before the actual data. This was used in Tor to choose which
TLS object will attempt to decrypt the received data. It would be useful if DTLS
could manage all TLS objects that are being shared over the same port internally,
as multiplexing data for UDP sockets is a fundamental application of UDP. (The
authors of DTLS argue that DTLS is worthwhile to use for applications that would
otherwise require opening a great many sockets, but provide no automatic support
for this multiplexing.)

We also must encrypt each acknowledgement header using DTLS. This pro-
cess automatically increases the size of an acknowledgement message by a few fold.
Some of this increase is necessary padding to allow a 128-bit block cipher to op-
erate. Since this is currently unutilized data, it might be useful to have a special
acknowledgement packet that contains acknowledgements for each different TCP
circuit multiplexed over the same connection. This would reduce the number of
acknowledgements that need to be sent by amalgamating them all onto the same
packet, but would require modifying the TCP stack to be aware that different
streams are being acknowledged in order to prevent redundant acknowledgements.

8.1.3 Optimized TCP Stack

Our TCP-over-DTLS makes use of a user-level TCP stack that is almost entirely
Linux’s TCP implementation. It is expected that such a general-purpose TCP im-
plementation is not optimized for any particular application, and it is conceivable
that Tor’s use of TCP has unique characteristics that may make certain optimiza-
tions worthwhile. For example, all reads and writes occur for fixed-size cells. Con-
sidering that the stack is used uniquely for Tor’s own sockets, we can make changes
to the TCP stack without impacting interoperability with other applications. For
instance, we can save bandwidth by representing sequence and acknowledgement
numbers in terms of cells and not bytes (provided packets contain cell-aligned pay-
loads). Direct access to the TCP stack allows us to experiment with a great number
of TCP tuning parameters to improve performance. We uncovered a couple of mis-
takes in the implementation while simply making the user-level TCP stack perform
comparably to the kernel’s implementation—it is likely possible to optimize the
user-level stack further.

CHAPTER 8. CONCLUSIONS 98

Another obvious optimization is based on the observation that, in our applica-
tion, TCP sockets are read from immediately after inserting a new packet. It should
be a straightforward modification to use a return value from the packet injection
routine to indicate if the TCP payload in the packet is exactly the data that would
be returned from a read operation. TCP would use the header to update state,
compute metrics, generate acknowledgements, etc., but it would not actually copy
the payload into its own buffers. The calling function that injected the packet, af-
ter receiving an indication from the TCP stack that the payload contains in-order
data, would then simply use the TCP payload of the packet it injected instead of
performing a subsequent read call.

8.1.4 TCP Stack Memory Management

Another limitation to which we briefly alluded was the memory requirements in
creating new sockets. This is often a slow operation due to its sub-optimal imple-
mentation of acquiring a large contiguous block of memory. In its current state,
memory management is a significant problem—each user-level socket consumes
nearly 10 MB of memory. This means that opening one thousand sockets will re-
sult in failed memory allocations. Even if it were possible, memory thrashing and
power consumption become unnecessary burdens. Therefore we must address and
repair the memory management before we can deploy user-level TCP stacks. We
know that we will be needing thousands of sockets to buffer fixed-size cells of data,
but data is only buffered when it arrives out-of-order or has not been acknowledged.

It is reasonable to believe we can achieve this goal using less than 10 MB per
socket using dynamic memory management, such as a shared cell pool. Data needs
to be buffered when it arrives out-of-order, and when it is waiting to be acknowl-
edged. If we assume data is read immediately after arriving, does not arrive out
of order, and is not dropped, then a Tor node that is willing to volunteer 1 GB/s
over (on average) 200 ms round-trip links, would need to buffer 200 MB of unac-
knowledged data—equivalent in memory consumption to 20 open sockets in our
implementation. Clearly, 1 GB/s and 200 ms are exaggerated values, and so we
conclude that the ability to open many sockets without requiring 10 MB per socket
is a reasonable goal. While packet dropping, congestion control, and out-of-order
delivery will increase memory requirements, these factors are unlikely to be a sud-
den problem for all sockets simultaneously (unless the computer loses its Internet
connection in which case no new data will be arriving).

Another goal would be the unification of cell memory throughout Tor. Instead
of copying cells from various buffers, each cell that enters Tor can be given a unique
cell from the cell pool for its memory until it is no longer needed. A state indicates
where this cell currently exists: input TCP buffer, input Tor buffer, in processing,
output Tor buffer, output TCP buffer. This ensures that buffers are not allocated
to store empty data, which reduces the overall memory requirements. Moreover it
localizes memory for cells that enter the system at the same time—this will result

CHAPTER 8. CONCLUSIONS 99

in less paging when accessing data for different sockets. Since ORs are routers, they
need to continually access the memory for different sockets and so spreading them
widely across memory pages is inefficient. Each cell also keeps track of its socket
number, and its position in the linked list of cells for that socket. While each socket
must still manage data such as its state and metrics for congestion control, this is
insignificant as compared to the current memory requirements. This permits an
arbitrary number of sockets, for all operating systems, and helps Tor’s scalability
if the number of ORs increases by orders of magnitude.

This approach results in the memory requirements of Tor being a function of
the number of cells it must manage at any time, independent of the number of open
sockets. Since the memory requirements are inextricably tied to the throughput
Tor offers, the user can parameterize memory requirements in Tor’s configuration
just as they parameterize throughput. A client willing to denote more throughput
than its associated memory requirements will have its contribution throttled as a
result. If network conditions result in a surge of memory required for Tor, then it
can simply stop reading from the UDP multiplexing socket. The TCP stacks that
sent this unread data will assume there exists network congestion and consequently
throttle their sending. More usefully, we can use the window size in the TORTP
header to reflect the size of our cell pool. Doing this in such a way that does not
admit a trickle-flood attack may not be possible—at the very least, granular values
such as empty and full, will be necessary.

8.1.5 Stream Control Transmission Protocol

The Stream Control Transmission Protocol (SCTP) is a message-based transport
protocol. It provides similar features to TCP: connection-oriented reliable delivery
with congestion control. However, it adds the ability to automatically deliminate
messages instead of requiring the receiving application to manage its own delimiters.
The interface is based on sending and receiving messages, which is appropriate for
Tor’s cell-based transport.

SCTP also adds a feature well-suited to our purposes—multiple streams over
the same connection. SCTP allows multiple independent ordered streams to be
sent over the same socket. We can use this feature to send cells from different
circuits on different streams. The in-order delivery guarantee is only provided for
messages sent on the same stream, which is exactly the behaviour we want for cell
from different circuits.

While SCTP is not as widely deployed as TCP, the concept of using a user-
level SCTP stack suited for Tor remains feasible. Experimentation must be done
to determine if SCTP’s congestion control mechanism, which shares metrics and
computations across all streams, acts fairly towards streams that send little data
when compared to the streams that invoked congestion control.

CHAPTER 8. CONCLUSIONS 100

8.1.6 Optimize Demultiplexing of Circuits

Demultiplexing occurs three times within Tor: DTLS ID and address for retrieving
the DTLS objects for decryption, Port ID for retrieving the UTCP circuit for
TORTP to TCP/IP translation, and the circuit ID within the cell itself for Tor’s
purposes. While DTLS ID indicates the connection and is specified outside the
encrypted TLS payload, the remaining two contain redundant information that
identifies the circuit on the connection. It would be preferable to streamline these
identifiers into a single identifier that specifies all this information, however this
complicates the logic. Indeed, we re-multiplex the circuit’s cells back onto the
connection’s buffer, where they are later demultiplexed by circuit ID, simply to
reuse Tor’s existing datapath as much as possible. TORTP packets carry a Port
ID that implies the circuit ID for all cells they carry. Tor could remove circuit IDs
from the cells when they write them to the user-level socket, and insert circuit IDs
back onto cells when reading from the user-level socket.

8.1.7 Probing Attack

The observation of TCP stream correlation motivates a privacy-degrading attack
against Tor. We observed that a bulk transfer effects the delay of a timing probe
along shared circits. This leaks information about the congestion along a link. It
may be possible to probe a number of routers to determine which are experiencing
a congested link that might correspond to the stream that we know we are relaying
to an OP. Reducing the anonymity set for an anonymous OR is a privacy concern.

Tor rotates its circuits every ten minutes. Suppose the entrance node notices a
bulk transfer when it begins, and probes various ORs to determine the set of possible
third ORs. It could further reduce this set by re-probing after nine minutes, after
which time most of the confounding circuits would have rotated to new links.

It would be interesting to see how feasible this attack is in the wild. Perhaps
probing more than a hundred nodes is infeasible, however it does give a 10% chance
of success that can be increased by performing this attack whenever possible. If it is
a feasible attack, then it would give an impetus to upgrade the Tor network to our
TCP-over-DTLS transport, which reduces cross-circuit interference. The feasibility
of this attack on our improved Tor would then be useful to examine.

This is similar to the trickle-flood attack of Murdoch et al. [46]. In their attack,
they observe a circuit in Tor (the trickle), and selectively perform a denial-of-service
attack against every OR out-of-band (the flood). This results in observable latency
on the Tor circuit when the correct OR is flooded, revealing the final node. Our
attack is more discreet to perform but less generic in the circuits it targets. The
flood is the bulk transfer that is being performed by the client, and the trickle is
our in-band probing of circuit latency for each OR.

CHAPTER 8. CONCLUSIONS 101

8.1.8 UDP Forwarding

One extension to our TCP-over-DTLS transport would be to use user-level TCP
stacks at the endpoints of a circuit, and have middle nodes only forward the UDP
payload (i.e. the TCP packet) without providing it to its local TCP stack. The
middle node would inspect the payload to retrieve the cell, determine the circuit
for which it is destined, fetch the onion key, perform the encryption/decryption
operation, and finally forward the TCP packet to the last hop. This datapath will
perform the operations on the TCP/IP payload directly. The next hop will provide
it to its TCP stack, which generates an acknowledgement message that will also
be forwarded by the middle node back to the first node. The first hop will be
responsible for resending data if a packet drops, which will be again sent through
the middle node. This was the mechanism used by the Freedom Network [26] and
has also been suggested for Tor [75].

Theoretical Benefits

This strategy has a number of benefits in computational complexity and network
behaviour. Computationally, it saves the middle node from performing unneces-
sary operations: packet injection, stream read, stream write, packet generation,
and packet emission. It also removes the responsibility of the middle node to han-
dle retransmissions, which means a reduction in their memory requirements. The
initial endpoint of communication will be responsible to retransmit the message if
necessary. We have shown that computational latency is insignificant in Tor, so
this is simply an incidental benefit.

The tangible benefit of UDP forwarding is to improve the network by allowing
the ORs to function more exactly like routers. When cells arrive out of order at the
middle node, they will be forwarded regardless, instead of waiting in input buffers
until the missing cell arrives. Since the middle node does not need the cells in
order, this delay is unnecessary. Moreover, by having the sender’s TCP stack view
both hops as a single network, we alleviate problems introduced by disparity in
network performance. Currently, congestion control mechanisms are applied along
each hop, meaning that an OR in the middle of two connections with different
performance metrics will need to buffer data to send over the slower connection.
The middle node’s TCP stack will perform congestion control properly, but the
original sender will continue sending rapidly as they view the connection as high-
bandwidth. Tor provides its own congestion control mechanism, but does not have
the sophistication of TCP’s congestion control due to the inability to control kernel-
level TCP variables. By using ORs to forward UDP packets end-to-end, the path
through Tor will be viewed as a single pipe with congestion control applied based on
its aggregate performance. TCP is designed to operate optimally in this manner,
which motivates the hypothesis that network performance will improve with UDP
forwarding.

CHAPTER 8. CONCLUSIONS 102

Theoretical Concerns

We require experimentation to determine if this proposal is actually beneficial.
Previous research has stated that this results in a reduced memory requirement for
middle nodes [75]. However, the endpoints will each have increased delay before
messages are acknowledged, which means that data will be buffered in TCP for a
longer time. The capacity of the TCP connection between the end points, measured
by its bandwidth-delay product, will increase. We expect an equilibrium for total
system memory requirements. Worse, the memory requirements shift from being
evenly distributed to occurring only on exit-nodes—who are already burdened with
extra responsibilities. Since a significant fraction of Tor nodes volunteer only to
forward traffic, it is reasonable to use their memory to ease the burden of exit-
nodes. Additionally, reordered packets will no longer cause delay at middle nodes.
However, any out-of-order packets must be reordered before the data can be read,
and so the performance benefit may be negligible.

The increased round-trip time of the circuits require employing TCP exten-
sions for long-delay paths [34]. Circuits with long delays will also suffer reduced
throughput, and so using congestion control on as short a path as possible will
optimize performance. If a packet is dropped along the circuit, the end point must
now generate the retransmission message, possibly duplicating routing effort during
redelivery. Since OR bandwidth is a limitation, it may be the case that increas-
ing retransmission bandwidth is actually worse than using TCP at each hop and
perfecting Tor’s own congestion control mechanism. Tor’s congestion control was
limited by the fact that it cannot set the congestion window inside the operat-
ing system from user space—our user-level TCP stack in Tor allows direct access
of TCP variables. It may be more efficient to have nodes along a circuit return
their CWND for the next hop, and have each node use the minimum between their
CWND and the next hop’s CWND. Each node then optimizes their sending while
throttling their receiving.

Implementation

To implement UDP forwarding for a Tor circuit, the middle node will have a con-
nection from the first node created using a CREATE cell, and will then be told to
connect to the next OR using an EXTEND cell. The middle node will establish
a new user-level TCP connection to the third OR, and associate the two connec-
tions for the circuit in memory. Later, when data arrives that will be relayed, the
node performs the circuit and onion key look ups and then performs the encryp-
tion/decryption operation inside the packet. The node then changes the sequence
and acknowledgement numbers to reflect the next data segment expected by the
next node.

To access the circuit ID, we will need to ensure that packets always contain
payloads that are cell-aligned. Careful reckoning of sequence and acknowledgement
numbers will be needed since not all cells are forwarded down the circuit but are

CHAPTER 8. CONCLUSIONS 103

instead delivered locally. Cell-aligned payloads have been successfully implemented
with our UTCP stack: we simply set the maximum segment size (MSS) of the
user-level connection to be exactly the size of the maximum number of entire cells
that can be sent over the actual link. The user-level TCP stack will never emit
a packet that contains more payload data than the MSS. Since the payload will
arrive either intact or not at all, we have that acknowledgements will always be for
multiples of entire cells, and so any retransmission must also be cell-aligned. The
TCP stack generated packets by adding unacknowledged data to the payload until
the next addition will exceed the MSS. Since all the data buffers are cell-aligned,
and the MSS is cell-aligned, our TCP stack will either have insufficient data or
exactly fill an MSS; either way ensures that cells do not fragment. We observe that
the TCP probe function will violate this principle of buffering cell-aligned data, and
so another mechanism will have to be implemented in our TCP stack. This is a
reasonable change to make because our stack will only interact with other instances
of Tor running our stack. With payloads that are guaranteed to be cell-aligned, we
can now use fewer bits for sequence and acknowledgement numbers sent over the
wire by expressing them as multiples of cell sizes.

ORs that intend on using this system must have an maximum transmittable
unit (MTU) at least the size of a cell plus TORTP and DTLS headers to avoid
fragmentation. Fragmentation obviates all improvements of UDP forwarding since
an entire cell must be available to perform AES and the circuit look up operations
at every OR, even if they will just be quickly forwarded. It is unreasonable to frag-
ment and assemble half a cell for the link that is intending on simply performing
UDP forwarding; it would require performing nearly the same logic that is already
handled by the TCP implementation. Moreover, it would interfere with the TCP
statistics pertaining to the round trip time metrics if some partial cells are buffered
while their missing piece is forwarded soon after arrival. If the MTU between two
ORs is slightly less than two full cells plus the TORTP and DTLS overhead, then
packets will waste a large amount of available bandwidth. This is likely signifi-
cantly less efficient than using TCP-over-UDP at each hop without the restrictions
imposed on the MSS. SCTP may find some application here—we can use SCTP’s
unordered delivery of entire cells as the transport mechanism to maximize usage of
packets without reimplementing logic, and use TCP at the end points for stream
assembly and congestion control.

Low-cost Privacy Attack

UDP forwarding may introduce an attack that permits a hostile entrance node to
determine the final node in a circuit. Previously each OR could only compute TCP
metrics for ORs with whom they were directly communicating. The new system
would have the sender’s TCP stack communicate indirectly with an anonymous
OR. Connection attributes, such as congestion and delay, are now known for the
longer connection between the first and last nodes in a circuit. The first node can
determine the RTT for traffic to the final node. It can also reliably compute the

CHAPTER 8. CONCLUSIONS 104

RTT for its connection to the middle node. By using techniques to estimate the
RTT between the second node and performing an experiment to determine the
RTT to every other UDP node in the Tor network, the adversary may be able to
eliminate large numbers of ORs from the anonymity set deemed incapable of being
the final node. If it can reduce the set of possible final hops, other reconnaissance
techniques can be applied, such as selectively flooding each OR outside of Tor and
attempting to observe an increased latency inside Tor [46]. By extention, all metrics
that TCP computes can be amalgamated to form a privacy-devastating connection
fingerprint: congestion window, slow-start threshhold, occurrence of congestion over
time, standard deviation in round-trip times, etc. These can each be computed over
time and as a distribution. The OR can also determine connection attributes for
each UDP OR in the network and match the observed metrics to its collection of
metrics. If a TCP stack is used starting with the OP, then the middle node can use
the TORTP headers to simulate the TCP stack. Since they know both adjacent
ORs, then connection metrics will known except for the network behaviour from
the OP to the first OR. The observed RTT that is unaccounted for by the sum
of the RTTs to known ORs indicates the geographic distance between the OP is
and the first OR. Other connection metrics are based on last-kilometer network
behaviour, which may elucidate the OP’s ISP.

This privacy degradation in the all-UDP possible future network is hypothesized
but remains untested. An analysis of the feasibility of this attack is necessary before
applying UDP forwarding to the Tor network. If an entrance node can determine
the exit node based on the set of TCP attributes then privacy degrades to a two-
node circuit—where UDP forwarding has no purpose. Alternatives include adding
more nodes to the circuit; this would create additional degrees of freedom in the
connection metrics that would add noise to the data collected. However, adding an
extra OR is almost certainly slower than any transport benefits of UDP forwarding.
Another option is to have the middle node interfere with the connection to ensure
that any metrics that are computed are sufficiently inaccurate so as to increase
the anonymity set of possible final nodes. Since TCP collects and relies on these
metrics to ensure that the connection behaves optimally, it is likely that destroying
their accuracy will be much less efficient than simply using TCP along each hop at
peak efficiency.

TCP Fingerprinting

TCP fingerprinting is a reconnaissance technique that uses variations in the imple-
mentation of TCP to determine the operating system of the peer; this is a potential
loss of privacy in Tor. While TCP fingerprinting is not a concern for single-hop
TCP (since any entity can perform TCP fingerprinting out-of-band knowing the
IP address), the use of UDP forwarding permitted TCP fingerprinting to be done
on ORs for whom the IP address is hidden. This can allow a privacy disclosure to
happen between ORs that are meant to remain anonymous. Since each OR pub-
lishes their precise operating system in the network status, learning the OS of an

CHAPTER 8. CONCLUSIONS 105

anonymous OR will reduce its anonymity set.

While TCP fingerprinting may be a concern for some implementations of UDP
forwarding, it is not a concern for our TCP-over-UDP tunnel. This is because
the user-level TCP implementation will be identical for all ORs, preventing this
reconnaissance technique from reducing the anonymity set of the final hop. To
ensure this is true, however, all TCP tuning and optimization discussed in this
chapter must completed before deploying our improved Tor. If we permit different
versions of Tor to have fingerprintable TCP stacks, then ORs that are separated
will have their version of Tor fingerprintable. Each OR publishes their version, and
so an adversary that can fingerprint the version of an anonymous entity can reduce
its anonymity set. This is only an issue with UDP forwarding—TCP tuning and
optimization can evolve iteratively in the current form without concern.

8.1.9 Windows ORs and Reputation

Our work permits Windows computers to volunteer as ORs. However, this comes
with a caveat: Windows machines are vastly more prone to malware and com-
promise than stalwart Unix-based machines. Most OR private keys are stored in
plaintext on the host, which means that Windows ORs are inherently more prone
to having their keys compromised than Unix-based machines. Additionally, large
numbers of Windows computers are involved in various botnets. An adversary who
controls a botnet could now have each computer in the botnet volunteer as a hos-
tile OR and remove any privacy for circuits are built entirely through machines
they control. Reputation systems and research in countering Sybil attacks [78] will
mitigate this risk, but it is important to mention its existence.

8.1.10 Web Browsing Mode for Tor

Tor’s primary use is for web browsing, and this is the application that has seen the
most effort towards developing usability tools for end-users [18]. Latency is critical
for interactive web browsing; most people who do not require Tor to circumvent
censorship tend not to use Tor if it introduces noticeable latency. We identified
in Section 5.1 that all HTTP GET requests require twice the necessary latency
when performed through Tor—a TCP connection is first established, the result is
returned, and then the HTTP GET is posted. This can be streamlined into a single
operation without destroying Tor’s ability to anonymize TCP traffic in general.

Moreover, when clients make an HTTP request to a server, they are likely to
make a few more requests soon after—HTML pages encode other resources such as
images which must then be loaded. Given that these requests will, with high proba-
bility, soon be made by the client, it may be useful if the exit-node performs all the
work necessary to load the webpage, compresses it to preserve bandwidth (HTML is
highly compressable), and sends the result as a package which is interpreted by the

CHAPTER 8. CONCLUSIONS 106

client. This technique is likely to save a great deal of latency for interactive web-
browsing, and encourage greater adoption of Tor by casual users. We have shown
in Section 5.2 that computational latency is insignificant, and so the addition of a
compression operation should not be detrimental. The reduced data size, resulting
in faster AES and network operations, may even compensate for the compression
step. Techniques much like this were performed by early graphical web browsers
for wireless handheld devices like the Palm Pilot [20]. The Freedom network also
used this technique to improve performance for anonymous web browsing [26].

8.2 Summary

Anonymous web browsing is an important step in the development of the Internet,
particularly as its grows ever more inextricable from daily life. The Internet is
a highly democratic, participatory, inclusive, and collective medium, creating the
global village of which McLuhan imagined [42]. The ability for anyone to begin
publishing as they will, and for anyone else to choose to absorb as they will, has
made the Internet a medium unlike any other. The Internet also provides its users
with the ability to be unseen as they publish their remarks. This has given rise
to a fallacious belief that the Internet affords privacy, and many independent jour-
nalists have painfully learned that limits to their freedom of expression in other
media extend to the Internet as well. Fortunately, not all computers on the Inter-
net geographically reside in authoritarian nations with strict bans on government
criticism. Thousands of citizens, living in countries with a strong commitment to
the principles of freedom of expression, have volunteered their computers to relay
the Internet traffic on behalf those whose nations would imprison them for express-
ing their beliefs. Tor is a PET that provides Internet anonymity using volunteers to
relay traffic, and using multiple relays in series to ensure that no entity (other than
the client) in the system is aware of both the source and destination of messages.

Relaying messages increases latency since traffic must travel a longer distance
before it is delivered. Latency becomes an immediate disincentive to use Tor among
those who have less to fear by losing their privacy. To improve the usability of Tor,
we examined where this latency occurs. An initial experiment observed the total
end-to-end latency, and discounted transport latency. We learned that a substantial
delay exists that is not transport latency. Further exploration determined that
computational latency along the datapath is not a concern, but instead latency
occurred when data sat idly in buffers due to congestion control. Since multiple Tor
circuits are multiplexed over a single TCP connection between routers, we observed
cross-circuit interference due to the nature of TCP’s in-order, reliable delivery and
its congestion control mechanisms. We wanted to demultiplex individual circuits,
so that each has a unique TCP connection—but we also want to continue hiding
details about traffic along each circuit from observers, and moreover we want to
reduce the number of sockets that need to be opened to address scalability issues
and known problems on some operating systems.

CHAPTER 8. CONCLUSIONS 107

Our solution was the design and implementation of a TCP-over-DTLS transport
between ORs. Each circuit was given a unique TCP connection, but the TCP
packets themselves were sent over the DTLS protocol, which provides confidentiality
and security to the message header. The TCP implementation is provided in user-
space, where it acts like a black box that translates between data streams and
TCP/IP packets. TCP/IP packets that are emitted are sent over DTLS to the peer
using a single UDP socket in the operating system—this single socket multiplexes
all data connections to all peer ORs. Packets that are received from this socket
are forwarded to the user-level TCP stack, and the corresponding user-level sockets
become readable.

We performed experiments on our implemented version using a local experiment-
ation network and showed that the observed cross-circuit interference has vanished.
We observed that one circuit using a lot of bandwidth no longer caused large la-
tency for multiplexed circuits that need only a tiny bandwidth. This is because in
our new version, these Tor circuits no longer shared a single TCP stream compet-
ing for bandwidth inside the congestion window. We also showed that dropping
packets on TCP connections shared by many circuits significantly affects through-
put and latency for the TCP version of Tor, but this no longer occurred with our
TCP-over-DTLS version.

We detailed future work that this thesis motivates. Of particular interest were
the need to make some improvements to DTLS, the need to overhaul the memory
management of our user-level TCP stack, and the possibility of employing UDP
forwarding in our TCP-over-DTLS system. OpenSSL’s DTLS implementation has a
few outstanding problems that we uncovered during our experimentation, and these
must be fixed prior to any deployment. We briefly described why the limited number
of sockets that can be opened is an artificial problem. We suggest a new memory
management structure for the user-level TCP stack and Tor that will permit an
arbitrary number of sockets and improve performance through the localization of
cells on memory pages. Finally we provide a discussion of the possibility of UDP
forwarding, where middle ORs on a circuit only forward the TCP/IP packets instead
of inserting them into their TCP stack. We cautioned that this approach leaks more
details about connection metrics to each system, which may admit devastating
privacy attacks. We proposed that these concerns must be studied before any
deployment of UDP forwarding can be given to individuals who use Tor to protect
their privacy and their freedom.

Bibliography

[1] Adium. A free instant messaging application for Mac OS X.
http://www.adiumx.com/.

[2] AN.ON Anonymity.Online. About Jondo.
http://anon.inf.tu-dresden.de/help/jap help/en/help/about.html.

[3] Anonymizer, Inc. Anonymizer FAQ.
http://www.anonymizer.com/company/about/anonymizer-faq.html.

[4] Randal Archibold. A 17-Year Nightmare of Identity Theft Finally Results in
Criminal Charges. New York Times, 2007.

[5] Ask.com. About AskEraser.
http://sp.ask.com/en/docs/about/askeraser.shtml, 2008.

[6] BBC News. Massacre in Tiananmen Square.
http://news.bbc.co.uk/onthisday/hi/dates/stories/june/4/newsid 2496000/
2496277.stm, 1989.

[7] N. Borisov, I. Goldberg, and E. Brewer. Off-the-Record Communication, or,
Why Not To Use PGP. Workshop on Privacy in the Electronic Society, 2004.

[8] CBC News. 45% of Canadians rebuff retailers’ requests for personal info:
survey.
http://www.cbc.ca/consumer/story/2008/07/04/retail-privacy.html?ref=rss,
2008.

[9] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 1981.

[10] Thomas Claburn. Digg Yields To The Wrath Of The Crowd.
http://www.informationweek.com/news/internet/
showArticle.jhtml?articleID=199203167, 2007.

[11] Richard Clayton, Steven J. Murdoch, and Robert N. M. Watson. Ignoring
the Great Firewall of China. In Privacy Enhancing Technologies, pages
20–35, 2006.

108

BIBLIOGRAPHY 109

[12] CNN. YouTube ordered to reveal its viewers.
http://www.cnn.com/2008/TECH/biztech/07/03/youtubelawsuit.ap/
index.html, 2008.

[13] Cross Country Checkup. Was China the right choice for the Olympics?
http://www.cbc.ca/checkup/archive/2008/080803CC.mp3, August 2008.

[14] cuil. Your Privacy. http://www.cuil.com/info/privacy/, 2008.

[15] G. Danezis, R. Dingledine, D. Hopwood, and N. Mathewson. Mixminion:
Design of a Type III Anonymous Remailer Protocol, 2002.

[16] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation
Onion Router. Proceedings of the 13th USENIX Security Symposium, 2004.

[17] Express India. Gurgaon techie held for posting derogatory messages against
Sonia Gandhi on Orkut.
http://www.expressindia.com/latest-news/Gurgaon-techie-held-for-posting-
derogatory-messages-against-Sonia-Gandhi-on-Orkut/311070/,
2008.

[18] Firefox Add-ons. Torbutton 1.2.0.
https://addons.mozilla.org/en-US/firefox/addon/2275, 2008.

[19] Glenn Fleishman. Cartoon Captures Spirit of the Internet.
http://www.nytimes.com/2000/12/14/technology/
14DOGG.html?ei=5070&en=cb70a7f40e8c6c87&ex=1219636800, 2000.

[20] Armando Fox, Ian Goldberg, Steven D. Gribble, David C. Lee, Anthony
Polito, and Eric A. Brewer. Experience with top gun wingman: A
proxy-based graphical web browser for the 3com palmpilot. In Proceedings of
Middleware ’98, Lake District, 1998.

[21] Chris Gaither. Ending tussle, Google adds privacy link to home page.
http://latimesblogs.latimes.com/technology/2008/07/google-privacy.html,
July 2008.

[22] Michael Geist. Face to Face with the Great Firewall of China.
http://www.michaelgeist.ca/resc/html bkup/may22005.html, 2005.

[23] Ian Goldberg. A Pseudonymous Communications Infrastructure for the
Internet. PhD thesis, University of California, Berkeley, 2000.

[24] Ian Goldberg. Privacy-enhancing Technologies for the Internet, II: Five Years
Later. In Workshop on Privacy Enhancing Technologies, 2002.

[25] Ian Goldberg. Privacy-Enancing Technologies for the Internet III: Ten Years
Later, chapter 1 of Digital Privacy: Theory, Technologies, and Practices,
pages 3–18. Auerbach, December 2007.

BIBLIOGRAPHY 110

[26] Ian Goldberg and Adam Shostack. Freedom Network 1.0 Architecture and
Protocols, 2001.

[27] Ian Goldberg, David Wagner, and Eric A. Brewer. Privacy-enhancing
Technologies for the Internet. In IEEE COMPCON, 1997.

[28] Amy Harmon. Verizon to Reveal Customers in Piracy Case. New York
Times, 2003.

[29] P. Howard. WIA: Blogger Arrests Around the World.
http://www.wiareport.org/wp-content/uploads/wiar 2008 final.pdf, 2008.

[30] Human Rights Watch. “Race to the Bottom” Corporate Complicity in
Chinese Internet Censorship. http://www.hrw.org/reports/2006/china0806/,
2006.

[31] Information Sciences Institute. RFC793 - Transmission Control Protocol.
http://www.faqs.org/rfcs/rfc793.html, 1981.

[32] Internet Engineering Task Force. RFC1122 - Requirements for Internet Hosts
- Communication Layers. http://www.faqs.org/rfcs/rfc1122.html, 1989.

[33] Andrew Jacobs. IOC agrees to Internet blocking at the Games. International
Herald Tribune, 2008.

[34] V. Jacobson and R. Braden. RFC1072 - TCP Extensions for Long-Delay
Paths. http://www.faqs.org/rfcs/rfc1072.html, 1981.

[35] Leslie John, Alessandro Acquisti, and George Loewenstein. Inconsistent
Preferences for Privacy. In Behavioral Decision Research in Management
Conference, 2008.

[36] Alan Kay. STEPS Toward The Reinvention Of Programming. Distinguished
Lecture Series, 2008.

[37] Donald Kerr. Remarks and Q&A by the Principal Deputy Director of
National Intelligence. GEOINT Symposium, 2007.

[38] Jemima Kiss. Cisco investor highlights human rights issue. guardian.co.uk,
2006.

[39] Isaac Mao. Torproject.org Blocked by GFW in China: Sooner or Later?
https://blog.torproject.org/blog/torproject.org-blocked-gfw-china:-sooner-or-
later

[40] Mike Masnick. Since When Is It Illegal To Just Mention A Trademark
Online? http://www.techdirt.com/articles/20050105/0132239.shtml, January
2005.

BIBLIOGRAPHY 111

[41] Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and Douglas
Sicker. Shining Light in Dark Places: Understanding the Tor Network. In
Privacy Enhancing Technologies, 2008.

[42] Marshall McLuhan. Understanding Media: The Extensions of Man. The
MIT Press, 1994.

[43] N Modadugu and E Rescorla. The Design and Implementation of Datagram
TLS. Network and Distributed System Security Symposium, 2004.

[44] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmaster
Protocol — Version 2. IETF Internet Draft, 2003.

[45] Jonathan Montpetit. Banks not reporting cybercrime, police say.
http://www.theglobeandmail.com/servlet/story/
RTGAM.20080529.wgtcybercrime0529/BNStory/Technology/, 2008.

[46] Steven J. Murdoch and George Danezis. Low-Cost Traffic Analysis of Tor. In
IEEE Symposium on Security and Privacy, pages 183–195, 2005.

[47] Pangea Day. About Pangea Day.
http://www.pangeaday.org/aboutPangeaDay.php.

[48] V. Paxson. RFC2988 - Computing TCP’s Retransmission Timer.
http://www.faqs.org/rfcs/rfc2988.html, 2000.

[49] Robert Paxton. Europe in the Twentieth Century. Wadsworth Publishing,
2006.

[50] C. Pfleeger and S. Pfleeger. Security in Computing. Prentice Hall, 2003.

[51] Ponemon Institute. Airport Insecurity: The Case of Missing & Lost Laptops.
http://www.dell.com/downloads/global/services/dell lost laptop study.pdf,
2008.

[52] P. Pradhan, S. Kandula, W. Xu, A. Shaikh, and E. Nahum. Daytona: A
User-Level TCP Stack. http://nms.lcs.mit.edu/ kandula/data/daytona.pdf.

[53] Privacy Commissioner of Canada. Identity Theft: What it is and what you
can do about it. http://www.privcom.gc.ca/fs-fi/02 05 d 10 e.asp, 2003.

[54] Privacy International. Leading surveillance societies in the EU and the
World.
http://www.privacyinternational.org/article.shtml?cmd[347]=x-347-545269,
2006.

[55] Privacy Rights Clearinghouse. A Chronology of Data Breaches.
http://www.privacyrights.org/ar/ChronDataBreaches.htm, 2008.

BIBLIOGRAPHY 112

[56] Privacy Rights Clearinghouse. Consumer and Privacy Groups Urge Google
to Post a Link to Its Privacy Policy from Its Home Page.
http://www.privacyrights.org/ar/Google-HomePage-Alert-080603.htm, June
2008.

[57] Reporters without Borders. Information supplied by Yahoo! helped
journalist Shi Tao get 10 years in prison.
http://www.rsf.org/article.php3?id article=14884, 2005.

[58] Reporters without Borders. Another cyberdissident imprisoned because of
data provided by Yahoo. http://www.rsf.org/article.php3?id article=16402,
2006.

[59] Reporters without Borders. Still no reaction from Yahoo! after fourth case of
collaboration with chinese police uncovered.
http://www.rsf.org/article.php3?id article=17509, 2006.

[60] Reporters without Borders. Yahoo! implicated in third cyberdissident trial.
http://www.rsf.org/article.php3?id article=17180, 2006.

[61] John Ribeiro. Google Defends Helping Police Nab Defamer. IDG News
Service, 2008.

[62] Royal Canadian Mounted Police. Identity Theft.
http://www.rcmp-grc.gc.ca/scams/identity theft e.htm, 2004.

[63] Maggie Shiels. Google accused on privacy views. BBC News, 2008.

[64] David Simon and Edward Burns. The Corner: A Year in the Life of an
Inner-City Neighborhood. Broadway, 1998.

[65] W. Stevens. RFC2001 - TCP Slow Start, Congestion Avoidance, Fast
Retransmit. http://www.faqs.org/rfcs/rfc2001.html, 1997.

[66] Sarah Stirland. Cisco Leak: ‘Great Firewall’ of China Was a Chance to Sell
More Routers.
http://blog.wired.com/27bstroke6/2008/05/leaked-cisco-do.html, 2008.

[67] Jennifer Stoddart. Letter to Mr. David C. Drummond, Senior Vice President,
Corporate Development and Chief Legal Officer, Google, regarding 3D online
mapping technology.
http://www.privcom.gc.ca/media/let/let 070911 01 e.asp, August 2007.

[68] Paul Syverson, Michael Reed, and David Goldschlag. Onion Routing access
configurations. In Proceedings of the DARPA Information Survivability
Conference and Exposition (DISCEX 2000), volume 1, pages 34–40. IEEE CS
Press, 2000.

BIBLIOGRAPHY 113

[69] Richard Taylor. The great firewall of China.
http://news.bbc.co.uk/2/hi/programmes/click online/4587622.stm, 2006.

[70] The Russia Journal. St Petersburg witnesses anti-Putin flash mob.
http://www.russiajournal.com/node/17338, March 2004.

[71] TorStatus. Tor Network Status. http://torstatus.kgprog.com/.

[72] United Nations. Universal Declaration of Human Rights.
http://www.unhchr.ch/udhr/lang/eng.htm.

[73] U.S. House of Representatives Committee on Foreign Affairs. Statement of
Chairman Lantos at hearing, Yahoo! Inc.’s Provision of False Information to
Congress. http://foreignaffairs.house.gov/press display.asp?id=446.

[74] U.S. House of Representatives, Committee on International Relations. The
Internet in China: A Tool for Freedom or Suppression?
http://www.foreignaffairs.house.gov/archives/109/26075.pdf, February 2006.

[75] Camilo Viecco. UDP-OR: A Fair Onion Transport Design.
http://www.petsymposium.org/2008/hotpets/udp-tor.pdf, 2008.

[76] R. Wendolsky, D. Herrmann, and H. Federrath. Performance Comparison of
Low-Latency Anonymisation Services from a User Perspective. In Privacy
Enhancing Technologies, pages 233–253, 2007.

[77] Alma Whitten. Google Public Policy Blog: Are IP addresses personal?
http://googlepublicpolicy.blogspot.com/2008/02/are-ip-addresses-
personal.html,
2008.

[78] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham Flaxman.
SybilGuard: Defending against Sybil Attacks via Social Networks. In
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, pages 267–278, 2006.

	List of Tables
	List of Figures
	Introduction
	Privacy
	Perceptions of Privacy
	The Nymity Slider
	Internet Privacy
	Privacy Enhancing Technologies
	Modern Challenges
	Political Dissidence and Human Rights
	Internet Censorship
	Identity Theft and the Dossier Effect

	The Network Architecture of Tor
	Tor
	Threat Model
	Basic Operation
	Alternative Approaches

	Transport Protocols
	User Datagram Protocol (UDP)
	Transmission Control Protocol (TCP)

	System Performance Analysis
	latency_proxy: The Internet on a Loopback Device
	Rewriting and Relaying Packets
	Experimentation

	libspe: A Dynamic System Performance Analysis Library
	Static Data Collection
	Interaction Socket
	Observers
	Dynamic Callbacks
	System Interface

	Timing Client/Server

	Latency in Tor's Datapath
	The Impact of Transport Latency
	Latency along the Computational Datapath
	Queueing Latency along the Datapath
	Input Buffers
	Output Buffers

	Thread Model for Reading and Writing
	Unwritable Connections
	TCP Window Sizes
	TCP Output Buffer Sizes

	TCP Multiplexing Problem
	Unfair Congestion Control
	Cross-Circuit Interference

	Summary

	Proposed Transport Layer
	Problems with TCP
	TCP-over-DTLS Tunnel
	Backwards Compatibility
	User-level TCP Stack
	Daytona: A User-Level TCP Stack
	UTCP: Our Tor-Daytona Interface

	Integration of UDP Transport into Tor
	Establishing a Connection
	Establishing a Circuit
	Sending and Receiving Data

	Experimental Results
	Profiling and Timing Results
	Demultiplexing
	Receiving
	Transmitting
	TCP Timer
	Datapath
	Summary

	Basic Throughput and TCP Tuning
	Multiplexed Circuit with Packet Dropping
	TCP Censorship Attack
	Summary

	Conclusions
	Future Work
	Real-World Benefits
	Improving DTLS
	Optimized TCP Stack
	TCP Stack Memory Management
	Stream Control Transmission Protocol
	Optimize Demultiplexing of Circuits
	Probing Attack
	UDP Forwarding
	Windows ORs and Reputation
	Web Browsing Mode for Tor

	Summary

	Bibliography

