TCG Feature API (FAPI) Specification

Version 0.94
Revision 04
September 25, 2019

Contact: admin@trustedcomputinggroup.org

Work in Progress

This document is an intermediate draft for
comment only and is subject to change without
notice. Readers should not design products based
on this document.

PUBLIC REVIEW

ZO0——4>0O0—T—0mowm

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

mailto:admin@trustedcomputinggroup.org

DISCLAIMERS, NOTICES, AND LICENSE TERMS

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights, relating to use
of information in this specification and to the implementation of this specification, and TCG disclaims all liability for
cost of procurement of substitute goods or services, lost profits, loss of use, loss of data or any incidental,
consequential, direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any
way out of use or reliance upon this specification or any information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is granted
herein other than as follows: You may not copy or reproduce the document or distribute it to others without written
permission from TCG, except that you may freely do so for the purposes of (a) examining or implementing TCG
specifications or (b) developing, testing, or promoting information technology standards and best practices, so long
as you distribute the document with these disclaimers, notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification licensing
through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

NORMATIVE-INFORMATIVE LANGUAGE

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,”
‘RECOMMENDED,” “MAY,” and “OPTIONAL” in this document’s normative statements are to be interpreted as
described in RFC-2119, Key words for use in RFCs to Indicate Requirement Levels.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

STATEMENT TYPE

Please note a very important distinction between different sections of text throughout this document. There are two
distinctive kinds of text: informative comment and normative statements. Because most of the text in this specification
will be of the kind normative statements, the authors have informally defined it as the default and, as such, have
specifically called out text of the kind informative comment. They have done this by flagging the beginning and end of
each informative comment and highlighting its text in gray. This means that unless text is specifically marked as of
the kind informative comment, it can be considered a kind of normative statements.

EXAMPLE: Start of informative comment

This is the first paragraph of 1-n paragraphs containing text of the kind informative comment ...
This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TCG specification the user must read the specification. (This use of MUST does not require any
action).

End of informative comment

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

ACKNOWLEDGEMENTS
TCG and the TSS Work Group would like to thank the following people for their work on this specification:

Will Arthur
Brenda Baggaley
Dave Challener
Mike Cox

Paul England
Andreas Fuchs
Ken Goldman
Pauline Homolle
Peter Huewe
James Nguyen
Jirgen Repp
William Roberts
Philip Tricca

Lee Wilson

Raytheon

Security Innovation (OnBoard Security)
Johns Hopkins University

Security Innovation (OnBoard Security)
Microsoft

Fraunhofer SIT

IBM

Infineon Technologies AG

Infineon Technologies AG

Wave

Fraunhofer SIT

Intel

Intel

Security Innovation (OnBoard Security)

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW

© TCG 2019

TCG Feature API (FAPI) Specification

CHANGE HISTORY

REVISION

DATE

DESCRIPTION

0.92r01

0.92r04

0.94r01

0.94r02

0.94r03

0.94r04

June 28, 2019

August 09, 2019

August 13, 2019
September 24, 2019
September 24,2019

September 25, 2019

. Initial Rewrite

. Many minor changes to parameter descriptions and Error codes
. New functions CreateSeal, CreateKey, CreateNV, Get/SetAppData
. Use of sized array for PCR lists in Quote

. Incorporated feedback from TSS-WG and Graeme
. Incorporated feedback from TC

. Incorporated feedback form TSS-WG call

. Inserted table captions
e Incorporated feedback from TC

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW

© TCG 2019

CONTENTS

DISCLAIMERS, NOTICES, AND LICENSE TERMSo 1
NORMATIVE-INFORMATIVE LANGUAGE ...ttt ettt e et e e st e e st e e anneeeneeas 2
SN I =Y 1A I I SRR 3
ACKNOWLEDGEMENTS ...ttt ettt ettt ettt e et e e eae e e e be e e s mbe e e emeeeeabeeeambeeeneeesmbeeesmteeeaneeesnbeeesnteeeaneeean 4
(O N N (T o 1S O] PR 5
1 InfOrmation ANd DOCUMENT SCOPEiiiiiiiiie ittt e e ettt e ettt e e e ettt e e e s abe e e e e aabeeeaeasbeeeeeanbeeeesansbaeeeaanbeeeasansnneaeanns 9
1.1 Scope Of thiS SPECIFICALION.oiiiiiiie it e e et e e e e abe e e e e bt e e e e abeeeeeenreeeeeannees 9
el (0111 0 11U TP T PUPPPPPPPP 9
1.3 TCG Software Stack 2.0 (TSS 2.0) Specification StrUCIUMEccoivuiiiiiiiiiie e 9
R < (=T £ (o7 = S OO PP PR PPPPRN 10
P22 [117 To [¥ [ox 1] o U PP U TSP PRI 11
2.1 Asynchronous iNVOCALION MOUEIcuuiiiiiiiieiie e e e e e e e e e s e e e e e e e e s nsaaeeeeeeeeeensnnrannneaeeeas 11
3 SHUCLUIES ANA ALA LYPES. . eiiiie i it iiiiiiii e e e e et e e e e e s st er et e e e e sassssnaeseeeeeeeaassssseeeeeaaeeaainsssaaneeaeeesannnsnnennnaeeesannnnes 13
B.L FAPT CONTEXT Loutittitttttttiiiutiueeetetas s s 13
B T 1120 .= L SRR 13
B TR I @] o1 Tor B 1Y o 1= RS 14
R @1 g/ o1 (e To | =T o] a1l o] 0] {1 1= TS SRR 14
3.5 Policies and policy templates €NCOUINGccouvuriiiieee e eee e e e e e e e e e s rereaeessssnsrrareeeaeeeennnnsaeeees 15
R JL Ol o d oo (=To I8 =) V= oo To 1T SRR 15
R T O =Y 1T o oo I =T T T[] T SR 15
R 78 = 2@ 0T} (=1 [0 JN=T o [¥o T[] o SRRSO 16
ORI =1 g1/ o (=To e ol vz W =] g ToTo Lo 1o PSPPSR 16
N @0 1 1 (= U Vo 1o o RSP 18
I = o T 01> VT RS RR 18
A Yo T 1 0 F= 1= SRS R 19
e B = o T = USSP 19
= T o T 1= 1) (o S REPRR 19
I C 1T a1 | U 0 Tox 1 o] o PSPPI 21
L0 I =Y o T e (01771 SR 21
5.2 Fapi_GetPlatformMCertifiCALES.cu ittt ettt b e et e b s e e be e e snb e e e nree e 22
R =T oI €1 12 = 1o (o] o TSP 23
L =T o T [0 0] oo ST SUR 23
LRSI = o £ SO SURR 24
LT =T o T =1 (SRS 25
LT =Y o T3 1 =g o = AN U)o SRS 26

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

R = VoIS (1B LT Yol] o] 1 o] o FO PR STR 26

o e Vo TR C 1 1B =TT ol] o i o o ORI 27
5.10 T IS T VY o] o] B - | - F U TP 28
5.11 (= o T C 1o 7Y o] o] I - | - SRS 29
5.12 FaPi_GeITPMBIODSeiiiiiiii et e e e e e e e e e e e e e s e e e e e e s e annnsrneeeaeeeeas 29
T (=Y {1 o 1o U SERR 31
T A = o T O £ 1= () SRR 31
V2 = o T o [SRR 32
O I = Vo TRV =T 114V T To £ P 0L RS 33
T = o T =t o] Y/ o) SRR 34
SR o= o T B LT 0/ o SRR 35
I = o IS = (O = 4 1o (SO PEEE 36
R = o T =T (=5 o | SRR 36
RS = oI = o T T 1= SR 37
A S 1= Y- U el 1010 0 F=Tg o S PP U TP PRI 39
A = Lo T O (==L L=3 T | TR 39
A2 == o TS L T | SRR 40
ST o] o {1 od T o LSRR 41
o0 I = T o T = o To | o o SRR 41
o T = Y o T AU 11 0T 4= o] o VSR 41
TR =Y o T (=Y AU 11 0o T =] N Y EERP 42
S B N 11153 2 L[] o I 10T 1o S PSP PRPRTI 44
LS 200 I = Yo T o == o SRS 44
LS I e o T o =T 1= o o SR 44
LSRG = o T 1 [0 (= SR 45
Lo Vo TV A= T 117 1N (o) (= SR 47
0T NV {1 Vo 1o SRS SRRUTPRR 49
10.1 FAPI_CrEALENY ...ttt ettt e e et e e e e bttt e s e abe e e e e eabbeeeeeanbeeeeeanbaeeaeanns 49
10.2 Fapi_NVREAM ... ettt e et e e s e abe e e e e abaeea e anes 50
10.3 L= T o T NN YA (SRS 50
10.4 (= T o T NN LY/ =4 1= 2 o SRR 51
10.5 FaPi_INVINCIEMENT......oiiiiiiiie e ettt sttt e e bt e eab e e e st e e e e e e ennee 52
10.6 FAPI_INVSEEBILScoiiiieiiiie ittt st e bt e e ebe e e sab e e e ann e e e 53
B o I = |07 Vo USSR 55
111 FAPI_SELAULNCBottt sttt e e abe e e e be e e st e e e e e 55
11.2 (= o TS 1112 = o o 10 P PER 56

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

11.3 FaPI_SELSIGNCB..... . ittt ettt e e ettt e e e aabe e e e s anb e e e e enbeeeeeanbeeeeeanreeaeann 57
APPENIX: HEADER FILE ...ttt ettt ettt e e ekttt e e e st e e e e e a bt e e e e e bt e e e e eanbeeeeanbaeeeeanbeeeessnnteeaeeannees 59

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

1 Information and Document Scope

1.1 Scope of this Specification
This specification defines an application programming interface (API) for interacting with a TPM 2.0 [11] on an
abstract level.

1.2 Acronyms
For definitions of the acronyms used in the TSS 2.0 specifications please see the TCG TSS 2.0 Overview and
Common Structures Specification [22}.

1.3 TCG Software Stack 2.0 (TSS 2.0) Specification Structure
At the time of writing, the documents that specify the TSS 2.0 are:

[1] TCG TSS 2.0 Overview and Common Structures Specification

[2] TCG TSS 2.0 TPM Command Transmission Interface (TCTI) APl Specification
[3] TCG TSS 2.0 Marshaling/Unmarshaling (MU) API Specification

[4] TCG TSS 2.0 System API (SAPI) Specification

[5] TCG TSS 2.0 Enhanced System API (ESAPI) Specification

[6] TCG TSS 2.0 Feature API (FAPI) Specification

[7] TCG TSS 2.0 TAB and Resource Manager Specification

[8] TCG TSS 2.0 TSS Response Code (RC) API Specification

[9] TCG TSS 2.0 JSON Data Type and Policy Language Specification (Draft)

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

TCG Software Stack 2.0 (TSS
2.0) Specification Structure

TCG TSS 2.0 Feature API
(FAPI) Specification

TCG TSS 2.0 Enhanced
System API (ESAPI)
Specification

TCG TSS 2.0 System API
(SAPI) Specification

TCG TSS 2.0 TPM Command
Transmission Interface
(TCTI) API Specification

TCG TSS 2.0 Overview
and Common

Structures
Specification

TCG TSS 2.0
Marshaling/Unmarshaling

APl (MUAPI) Specification

Note: This document describes

the overall library structure and TCG TSS 2.0 Tab and
how the subcomponents work Resource Manager
together. Specification

Figure 1: TSS 2.0 Specification Structure

1.4 References
Most references for the TSS 2.0 specifications are provided in the TCG TSS 2.0 Overview and Common Structures
Specification [1].

The following additional references are used by this specification. The numbering continues from section 1.3:
[10] 1SO C99 standard

[11] Trusted Platform Module Library Part 1: Architecture Family “2.0”

[12] Trusted Platform Module Library Part 2: Structures Family “2.0”

[13] TCG Registry of reserved TPM 2.0 handles and localities Version 1.0 Revision 1

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

2 Introduction
Start of informative comment

This TSS 2.0 Feature API is meant to be a very high-level API, aimed at providing 80% of programmers who write a
program using the TPM with everything they require. The remaining 20% of programmers will have to supplement
this set of APIs with the Extended System API (ESAPI) [5] or System API (SAPI) [4].

This specification is intended to make programming with the TPM as simple as possible — but no simpler. The
cognitive load for a new programmer using this APl is meant to be as low as possible. Because of this, a number of
design considerations have been made, including:

e Cryptographic profiles determine the cryptographic algorithms and parameters for all keys and operations of
a specific TPM interaction. One of these profiles is deemed the default profile of the platform and used if the
application does not specify a profile for an operation.

o Key types with a reduced set of attributes; i.e. not all attributes that the TPM supports are exposed to the
application.

o Objects associated with either an authentication value (password) or with a policy written in JSON. Upon
access to an object these policies are executed automatically.

o Atool for editing these JSON policies is not included

o Callbacks to the application are performed whenever necessary during policy evaluation, e.g. when
deciding which OR branch of a policy to follow.

e All communication with the TPM is performed in salted HMAC sessions and parameter encryption is enabled
wherever applicable.

e Akey and policy metadata store stores all necessary data on the platform’s storage medium.
e PCR logs are supported in all operations, including Attestation generation and verification.

e The host platform’s TPM is the default TPM for all FAPI interactions and the key and policy store are stored
on the local filesystem.

End of informative comment

All prototype definitions, function parameters and return values in this document are REQUIRED.

2.1 Asynchronous invocation model
Start of informative comment

All functionality in the Feature API that requires 1/O operations, e.g. TPM, disk, network, are provided via three
functions. The synchronous version, without a suffix, will block until it is finished. Functions with the suffix _Async
initiate asynchronous execution. Functions with the suffix _Finish test whether asynchronous execution is finished
and return either the result or TSS2 FAPI RC TRY_AGAIN. A FAPI function will most likely return
TSS2 FAPI_RC _TRY_AGAIN multiple times independent of the time passed, if multiple 1/O steps need to be
executed, since the FAPI implementation will transition from one I/O state to the next I/O state internally. After invoking
an _Async function, a user is expected to call the corresponding _Finish function repeatedly as long as the _Finish
function returns TSS2_FAPI_RC_TRY_AGAIN

End of informative comment

Functions with the suffixes _Async or _Finish SHALL return promptly without waiting for 1/O operations to complete.
Their symmetric counterpart (i.e. without any suffix) may wait for I/0O operations to complete.

Some functions do not have an _Async and _Finish version but only a single function prototype. These functions
SHALL return promptly without waiting for 1/0 operations to complete.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/2 9 | PUBLIC REVIEW © TCG 2019

3 Structures and data types
Start of informative comment

This specification contains almost no data type definitions.

Object references are encoded as path-like strings (since they are persistent). Serialized objects are encoded as PEM
or as JSON.

End of informative comment

3.1 FAPI_CONTEXT

All functions of FAPI include a FAPI_CONTEXT as the first parameter (except for FAPI_Free()). All internal state
information of FAPI SHALL be stored inside this context object in order to allow several independent contexts to
operate in parallel within the same process environment.

typedef struct FAPI CONTEXT FAPI CONTEXT;

3.2 Entity paths

Keys, NV indices and policies are all referenced via a path. The separator between nodes in entity paths is “/”. A
leading “/” is optional, since no relative paths are supported. All paths SHALL follow the schemes defined in this
section.

The elements inside a path are composed of the characters A-Z, a-z, 0-9, _and -.

3.2.1 Key paths
A keyPath SHALL start with either:

e <cryptoprofile> followed by the next item in the list. The <cryptoprofile> always starts with “P_” followed
by the name of the profile. Examples are P_ECCP256 or P_RSASHAL. If no <cryptoprofile> is provided then
the “default profile” SHALL be used. The default profile is determined by an implementation specific
configuration mechanism not defined in this specification. Examples may be Registry entries or configuration
files.

e <hierarchy> followed by a primary object. The hierarchy SHALL be one of the following values: HE (for
endorsement), HP (for platform), HS (for storage) or HN (for null hierarchy). The hierarchy MAY be omitted
by the caller if one of the following primary objects is referenced: SRK (Storage Primary Key; implies HS),
EK (Endorsement Key; implies HE).

o ‘“lext”:A special hierarchy that contains public keys of remote TPMs that are used in Fapi_ExportKey(), for
example.

Such a keypath start is followed by a sequence of key objects. The first key object is a primary key. If any key is a
restricted storage/decrypt key then it may have child keys, otherwise it cannot have child keys.

Start of informative comment

By convention, most keys are anticipated to be children of the SRK.

By convention, a vendor or application is expected to use the form [<vendor>-]<software>-<keyname>
Examples: /SRK/tcg-fapi-attestationkey, /SRK/fapi-attestationkey

End of informative comment

3.2.2 NV paths
An nvPath is composed of three elements, separated by “/”.

An nvPath SHALL start with “/nv”.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

The second path element SHALL identify the NV handle range for the nv object (consistent with the TCG Registry of
reserved TPM 2.0 handles and localities [13]). At the time of writing this includes the following values: TPM,
Platform, Owner, Endorsement_Certificate, Platform_Certificate, Component_OEM, TPM_OEM, Platform_OEM,
PC-Client, Server, Virtualized_Platform, MPWG, Embedded.

The third path element SHALL identify the actual NV-Index using a meaningful name.

Example: /nv/Endorsement_Certificate/EK_Certificate

3.2.3 Policy Paths
A policyPath consists of two elements, separated by “/.

A policyPath SHALL start with “/policy”.

The second path element SHALL identify the policy or policy template using a meaningful name.

3.3 Object types

An object type is used during entity creation and consists of a list of comma and/or space separated keywords. If a
keyword is not present the inverse of the reference TPM attribute bits SHALL be set or cleared. These keywords
are:

e sign: Sets the sign attribute of a key.

o decrypt: Sets the decrypt attribute of a key.
If neither sign nor decrypt are provided, both attributes SHALL be set.

e restricted: Sets the restricted attribute of a key.
If restricted is set, either sign or decrypt (but not both) SHALL be set.

o exportable: Clears the fixedTPM and fixedParent attributes of a key or sealed object.

e noda: Sets the noda attribute of a key or NV index.

¢ Dbitfield: Sets the NV type to bitfield.

e counter: Sets the NV type to counter.

e pcr: Sets the NV type to pcr-like behavior.
If none of the previous three keywords is provided a regular NV index SHALL be created.

e system: Stores the data blobs and metadata for a created key or seal in the system-wide directory instead of
user’s personal directory.

¢ A hexadecimal number: Marks a key object to be made persistent and sets the persistent object handle to
this value.

If a policy is provided during creation of a key, seal or NV index, then the userWithAuth flag SHALL be CLEAR. If no
policy is provided during creation, then the userWithAuth flag SHALL be SET.

3.4 Cryptographic profiles
The cryptographic profiles are configured in an implementation specific way. The values affected by these profiles
SHALL be:

e Name hash algorithm

e Asymmetric signature algorithm, scheme and parameters (such as curve, keysize, default padding, hash,
etc)

o Asymmetric decryption algorithm, scheme and parameters (such as curve, keysize, etc)

e PCR bank selection (which PCR banks shall be extended, quoted and read)

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

3.5 Policies and policy templates encoding

Policies and policy templates throughout this specification SHALL be encoded in the JSON format defined in TCG

TSS 2.0 JSON Policy Specification [9].

3.6 Exported key encoding
The exported key data is defined in Table 1.

Table 1 TPMS_EXPORTEDKEY

TYPE FIELD DESCRIPTION

TPM2B_PRIVATE duplicate
TPM2B_ENCRYPTED_SECRET encrypted_seed
TPM2B_PUBLIC public
TPM2B_PUBLIC parent_public
string certificate

TPMS_POLICY policy

The encrypted duplicate of the
private portion of the key.

The encrypted seed required for
importing.

The public portion of the exported
key.

The public area of the new parent
object.

The PEM encoded certificate of the
exported key.

The JSON encoded policy of the
exported key.

The data type in Table 1 SHALL be encoded according to the JISON format description defined in TCG TSS 2.0

JSON Policy Specification.

Start of informative comment
Basic JSON field:
{

“duplicate”: ..,
“encrypted seed”: ..,
“public”: ..,
“public parent”: .,
“certificate: ..,
“policy”: ..

}

End of informative comment

3.7 PCR event log encoding

PCR event logs are a list (arbitrary length JSON array) of log entries. These entries are defined in Table 2.

Table 2 TPMS_EVENTLOGENTRY

UINT32 recnum Unigue record number
UINT32 pcr PCR index
TPML_DIGEST_VALUES digest The digests

. The type of event. Possible values:
string type

TPM2B_DIGEST eventDigest

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW

“‘LINUX_IMA” (legacy IMA)
Digest of the event; i.e. the digest of
the measured file

© TCG 2019

Name of the event; i.e. the name of
the measured file.

The data type in Table 2 SHALL be encoded according to the JISON format description defined in TCG TSS 2.0
JSON Policy Specification.

string eventName

Start of informative comment
Example:
{

“recnum”: ..,
Ypcr”: ..,
“digest”: ..,
“type”: ..,
“eventDigest”: ..,
“eventName”: ..

}
End of informative comment

3.8 Quotelnfo encoding
A quote info in FAPI is defined in Table 3.

Table 3 TPMS_QUOTEINFORMATION

TYPE FIELD DESCRIPTION

TPMT_SIG_SCHEME sig_scheme The signature scheme used during
the quote

TPMS_ATTEST attest The attestation information

The data type in Table 3 SHALL be encoded according to the JSON format description defined in TCG TSS 2.0
JSON Policy Specification.

Start of informative comment

Example:

{

“sig scheme”: ..,
VEATEEFEY S

}
End of informative comment

3.9 Encrypted data encoding
Encrypted data in FAPI is defined in Table 4.

Table 4 TPMS_ENCRYPTEDDATA

UINT32 type encryption type
TPM2B_NAME key name Name of the decryption key
UINTS]] cipher Ciphertext

. Private portion of the symmetric ke
TPM2B_PRIVATE sym_private TEM erﬁ’crypte 0 y y
TPM2B_PUBLIC sym_public Public portion of the symmetric key
UINT32 sym_key_size Size of the encrypted symmetric key

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

. Initialization vector for the
TPM2B_DIGEST sym_iv symmetric encryption
TPMS_POLICY policy JSON-encoded policy

The data type in Table 4 SHALL be encoded according to the JSON format description defined in TCG TSS 2.0
JSON Policy Specification.

Start of informative comment
Example:

{
“type”: ..,
“key name”: ..,
“cipher”: ..,
“sym private”: ..,
“sym public”: ..,
“sym key size”: ..,
“sym iv”:
“policy”: ..,

}

End of informative comment

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

4 Context functions

All functions presented in this section work in contexts without a TPM. Some of them might however still
communicate with the TPM.

4.1 Fapi_Initialize
Fapi_lInitialize() allocates and initializes a FAPI context and establishes a connection to a TPM. Once created
contexts can be released by calling Fapi_Finalize().

In the asynchronous version of this operation the initialization is divided between the Fapi_Initialize_Async and
Fapi_Initialize_Finish functions. The Fapi_Initialize_Async function allocates the FAPI context, initiates whatever
asynchronous operations it needs internally, and returns the partially-initialized context to the caller. The
Fapi_lInitialize_Finish function accepts the partially-initialized context as input, checks the status of the outstanding
internal operations, and either returns success (initialization complete), TSS2_FAPI_RC_TRY_AGAIN (initialization
still in progress), or some other error indicating initialization has failed.

If Fapi_Initialize() or Fapi_lInitialize_Finish() return anything other than TSS2_RC_SUCCESS or
TSS2 FAPI_RC_TRY_AGAIN the function MUST release all resources allocated during the initialization and set the
context pointer to NULL.

The uri parameter is intended to allow the caller to specify how to connect to the TPM if non-default options are
needed. A value of NULL indicates the TPM in the local machine should be accessed using whatever defaults are
used by the FAPI implementation. For this version of this specification it is an error to supply a non-NULL uri. Future
versions of this specification can make use of this parameter to determine which TPM to interact with.

After successful initialization the FAPI context can be released by calling Fapi_Finalize().

4.1.1 Prototype
TSS2 RC Fapi Initialize(
FAPI CONTEXT **context,
char const *uri);
TSS2 RC Fapi Initialize Async(
FAPI CONTEXT **context,
char const *uri);
TSS2 RC Fapi Initialize Finish(
FAPI CONTEXT **context);
4.1.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e The ‘uri’ parameter is unused in this version of the specification and MUST be NULL.

4.1.3 Return Values
e TSS2 RC_SUCCESS: if the function is successful.
e TSS2 FAPI_RC BAD_REFERENCE: if the context pointer is null.
e TSS2 FAPI_RC_BAD_VALUE: if uri is not NULL.
e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory to create the context.
e TSS2 FAPI_RC_BAD_SEQUENCE: (Finish only) if the operation is called out of sequence.
e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

4.2 Fapi_Finalize
Fapi_Finalize() closes a context by freeing all resources associated with the context. Any transient objects held in
the TPM by the context MUST be flushed by this function. The context pointer is set to NULL.

This function cannot be called while an asynchronous operation is outstanding. If this function is called while an
asynchronous operation is outstanding the behavior is undefined.

4.2.1 Prototype
void Fapi Finalize(
FAPI CONTEXT **context);
4.2.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.

4.2.3 Return Values
This function does not return any value.

4.3 Fapi_Free

Fapi_Free() frees memory that has been allocated by a FAPI function to hold output parameter values.

This function should not be used to free the context pointer itself. Applications SHALL use Fapi_Finalize() to free the
context itself.

When passed NULL this function SHALL do nothing.

4.3.1 Prototype
void Fapi Free(
void *ptr);
4.3.2 Parameters
e ptris the pointer to to be freed. ptr SHOULD NOT be NULL.

4.3.3 Return Values
This function has no return value.

4.4 Fapi_Getinfo

Fapi_GetInfo() returns a UTF-8 string identifying the version of the FAPI, the TPM, configurations and other relevant
information in a human readable format. The concrete content of this string is implementation specific.

4.4.1 Prototype

TSS2 RC Fapi GetInfo(
FAPI CONTEXT *context,
char **info);

TSS2 RC Fapi GetInfo Async(
FAPI CONTEXT *context) ;

TSS2 RC Fapi GetInfo Finish(
FAPI CONTEXT *context,
char **info);

4.4.2 Parameters

e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
¢ info returns the FAPI and TPM information. info MUST NOT be NULL.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

4.4.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if the context or info pointer is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 _FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2_FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

5 General functions

5.1 Fapi_Provision
Fapi_Provision() provisions a FAPI instance and its associated TPM. The steps taken SHALL be:

5.1.1

Retrieve the EK template, nonce and certificate, verify that they match the TPM’s EK and store them in the
key store.

Set the authValues and policies for the Owner (Storage Hierarchy), the Privacy Administrator (Endorsement
Hierarchy) and the lockout authority.

Scan the TPM’s nv indices and create entries in the metadata store. This operation MAY use a heuristic to
guess the originating programs for nv indices found and name the entries accordingly.

Create the SRK (storage primary key) inside the TPM and make it persistent if required by the FAPI
configuration and stored its metadata in the system-wide metadata store. The SRK will not have an
authorization value associated.

Note: If an authorization value is associated with the storage hierarchy, it is highly RECOMMENDED that the
SRK is created without an authorization value and is made persistent in the TPM, such that it is easily
accessible by users and applications.

Prototype

TSS2 RC Fapi Provision
FAPI CONTEXT *context,
char const *policyPathEh,

char const *authValueEh,
char const *policyPathSh,
char const *authValueSh,

char const *authValueLockout) ;
TSS2 RC Fapi Provision Async(

FAPI CONTEXT *context,

char const *policyPathkh,

char const *authValueEh,

char const *policyPathSh,

char const *authValueSh,

char const *authValueLockout) ;
TSS2 RC Fapi Provision Finish (

FAPI CONTEXT *context) ;

5.1.2

Parameters

context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
policyPathEh is a policy to be set for the Privacy Administrator, i.e. the endorsement hierarchy. policyPathEh
MAY be NULL.

authValueEh is the authorization value for the Privacy Administrator, i.e. the endorsement hierarchy.
authValueEh MAY be NULL.

policyPathSh is a policy to be set for the owner, i.e. the storage hierarchy. policyPathSh SHOULD be NULL.
authValueSh is the authorization value for the owner, i.e. the storage hierarchy. authValueSh SHOULD be
NULL.

authValueLockout is the authorization value for the lockout authorization. authValueLockout SHOULD NOT
be NULL.

Return Values
TSS2 RC_SUCCESS: if the function call was a success.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

e TSS2 FAPI_RC_BAD_REFERENCE: if the context is NULL.

e TSS2 FAPI_RC BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_BAD_PATH: if policyPathEh or policyPathSh do not map to a FAPI policy.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2_FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

5.2 Fapi_GetPlatformCertificates

Fapi_GetPlatformCertificates() returns the set of Platform certificates concatenated in a continuous buffer if the
platform provides platform certificates. Platform certificates for TPM 2.0 can consist not only of a single certificate
but also a series of so-called delta certificates.

If no platform certificates are available, the certificatesSize SHALL be set to 0.

5.2.1 Prototype
TSS2 RC Fapi GetPlatformCertificates(
FAPI CONTEXT *context,
uint8 t **certificates,
size t *certificatesSize);
TSS2 RC Fapi GetPlatformCertificates Async(
FAPI CONTEXT *context);
TSS2 RC Fapi GetPlatformCertificates Finish(
FAPI CONTEXT *context,
uint8 t **certificates,
size t *certificatesSize);

5.2.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
o certificates returns a continuous buffer containing the concatenated platform certificates. certificates MUST
NOT be NULL.
e certificatesSize returns the size of the buffer returned by certificates. certificatesSize MAY be NULL.

5.2.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if the context or certificates pointer are NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

5.3 Fapi_GetRandom

Fapi_GetRandom() uses the TPM to create an array of random bytes. This function may perform multiple calls to
the TPM if the number of bytes requested by the caller is larger than the maximum number of bytes that the TPM
will return per call.

5.3.1 Prototype

TSS2 RC Fapi GetRandom (

FAPI CONTEXT *context,
size t numBytes,
uint8 t **data) ;

TSS2 RC Fapi GetRandom Async (
FAPI CONTEXT *context,
size t numBytes) ;

TSS2 RC Fapi GetRandom Finish (
FAPI CONTEXT *context,
uint8 t **data) ;

5.3.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
¢ numBytes is the number of bytes requested by the caller
e datais the array of random bytes. data MUST NOT be NULL.

5.3.3 Return Codes

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC _BAD_REFERENCE: if context or data is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_BAD_VALUE: if numBytes is O.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

5.4 Fapi_Import

Fapi_Import() imports a JSON encoded policy or policy template encoded according to TCG TSS 2.0 JSON Policy
Language Specification and stores it under the provided path or imports a JSON encoded key under the provided
path.

5.4.1 Prototype
TSS2 RC Fapi Import(
FAPI CONTEXT *context,
char const *path,
char const *importData) ;
TSS2 RC Fapi_ Import Async(
FAPI CONTEXT *context,
char const *path,
char const *importData) ;

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TSS2 RC Fapi Import Finish(
FAPI CONTEXT *context);
5.4.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e path is the path of the new object. path MUST NOT be NULL.
e importData is the data to be imported. importData MUST NOT be NULL.

5.4.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context or path is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2_FAPI_RC_BAD_PATH: if path does not map to a FAPI policy or key.

e TSS2 FAPI_RC_PATH_ALREADY_EXISTS: if a policy at path already exists.

e TSS2 FAPI_RC_BAD_VALUE: if importData contains invalid data.

e TSS2_FAPI_RC_STORAGE_ERROR: if the FAPI storage cannot be updated.

e TSS2_FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

5.5 Fapi_List

Fapi_List() enumerates all objects in the metadata store in a given path. The returned list SHALL consist of
complete paths from the root (not relative paths from the search path), such that they can be directly used in another
guery. The values in this list SHALL be colon-separated.

551 Prototype
TSS2 RC Fapi_ List(
FAPI CONTEXT *context,
char const *searchPath,
char **pathList);
TSS2 RC Fapi List Async(
FAPI CONTEXT *context,
char char *searchPath) ;
TSS2 RC Fapi List Finish(
FAPI CONTEXT *context,
char **pathList);

5.5.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.

e searchPath is the path identifying the root of the search. searchPath MUST NOT be NULL.
e pathList returns colon-separated list of paths. pathList MUST NOT be NULL.

5.5.3 Return Values
e TSS2 RC_SUCCESS: if the function call was a success.
e TSS2 FAPI_RC_BAD_REFERENCE: if context, searchPath or pathList is NULL.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_BAD_PATH: if searchPath does not map to a FAPI entity.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2_FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

5.6 Fapi_Delete

Fapi_Delete deletes the given key, policy or NV from the system. Depending on the entity type, one of the following
actions SHALL be taken:

e Non-persistent key: Flush from TPM (if loaded) and delete public and private blobs from keystore.
e Persistent keys: Evict from TPM and delete public and private blobs from keystore

e Primary keys: Flush from TPM and delete public blobs from keystore

o NV index: Undefine NV index from TPM and delete public blob from metadata store

e Policies: Delete entry from policy store

e Hierarchy, PCR: Return TSS2_FAPI_RC_NOT_DELETABLE

e Special keys EK, SRK: Return TSS2_FAPI_RC_NOT_DELETABLE

5.6.1 Prototype
TSS2 RC Fapi Delete(
FAPI CONTEXT *context,
char const *path);
TSS2 RC Fapi Delete Async(
FAPI CONTEXT *context,
char const *path);
TSS2 RC Fapi Delete Finish(
FAPI CONTEXT *context);

5.6.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e path is the path to the entity to delete. path MUST NOT be NULL.

5.6.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC _BAD_REFERENCE: if context or path is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2_FAPI_RC_BAD_PATH: if path does not map to a FAPI entity.

e TSS2 FAPI_RC_NOT_DELETABLE: if the entity is not deletable or the path is read-only.

e TSS2 FAPI_RC_STORAGE_ERROR: if the FAPI storage cannot be updated for any other reason.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2_FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

5.7 Fapi_ChangeAuth

Fapi_ChangeAuth changes the authorization data of an entity referenced by the path.

The authValue is a UTF-8 password. If the length of the password is larger than the digest size of the entity's
nameAlg (which is stored internally as part of its meta data) then the FAPI should hash the password, in accordance
with the TPM specification, part 1 rev 138, section 19.6.4.3 "Authorization Size Convention."

5.7.1 Prototype

TSS2 RC Fapi ChangeAuth (
FAPI CONTEXT *context,
char const *entityPath,
char const *authValue);

TSS2 RC Fapi ChangeAuth Async(
FAPI CONTEXT *context,
char const *entityPath,
char const *authValue);

TSS2 RC Fapi ChangeAuth Finish(
FAPI CONTEXT *context);

5.7.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e entityPath is the path identifying the entity to modify. entityPath MUST NOT be NULL.
e authValue is the new O-terminated password. authValue MAY be NULL. If authValue is NULL then the
password is set to the empty string.

5.7.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context, entityPath, or authValue is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_BAD_PATH: if entityPath does not map to a FAPI entity.

e TSS2 FAPI_RC_STORAGE_ERROR: if the updated data cannot be saved.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC _BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

5.8 Fapi_SetDescription

Fapi_SetDescription() allows an application to assign a human readable description to an object in the metadata
store. Previously stored descriptions SHALL be overwritten by this function. If NULL is passed in, any stored
description SHALL be deleted.

5.8.1 Prototype

TSS2 RC Fapi SetDescription (
FAPI CONTEXT *context,
const char *path,
char const *description);

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TSS2 RC Fapi SetDescription Async (
FAPI CONTEXT *context,
const char *path,
char const *description);
TSS2 RC Fapi SetDescription Finish (
FAPTI CONTEXT *context) ;

5.8.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e path is the path of the object for which the appData will be stored. path MUST NOT be NULL.
e description is the date to be stored. description MAY be NULL.

5.8.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context or path is NULL or if appData is NULL whilst appDataSize
is not zero.

e TSS2_FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_BAD_PATH: if entityPath does not map to a FAPI entity.

e TSS2 FAPI_RC_STORAGE_ERROR: if the updated data cannot be saved.

e TSS2_FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2_FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

5.9 Fapi_GetDescription
Fapi_GetDescription() returns the previously stored application data for an object. If no description is present,
description SHALL be set to an empty string.

5.9.1 Prototype
TSS2 RC Fapi GetDescription (
FAPI CONTEXT *context,
const char *path,
char **description) ;
TSS2 RC Fapi GetDescription Async(
FAPI CONTEXT *context,
const char *path) ;
TSS2 RC Fapi GetDescription Finish (
FAPI CONTEXT *context,
char **description);

5.9.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.

e path is the path of the object for which the appData will be loaded. path MUST NOT be NULL.
e description returns the stored description. description MUST NOT be NULL.

5.9.3 Return Values
e TSS2 RC_SUCCESS: if the function call was a success.
e TSS2 FAPI_RC_BAD_REFERENCE: if context or path is NULL.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_BAD_PATH: if entityPath does not map to a FAPI entity.

e TSS2 FAPI_RC_STORAGE_ERROR: if the updated data cannot be loaded.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2_FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

5.10Fapi_SetAppData

Fapi_SetAppData() allows an application to associate an arbitrary data blob with a given object. The data SHALL be
stored and the same data SHALL be returned upon Fapi_GetAppData. Previously stored data SHALL be overwritten
by this function. If NULL is passed in, stored data SHALL be deleted.

5.10.1 Prototype
TSS2 RC Fapi SetAppData (
FAPI CONTEXT *context,

const char *path,
uint8 t const *appData,
size t appDataSize);

TSS2 RC Fapi SetAppData Async(
FAPI CONTEXT *context,

const char *path,
uint8 t const *appData,
size t appDataSize) ;

TSS2 RC Fapi SetAppData Finish(
FAPI CONTEXT *context) ;

5.10.2 Parameters
e contextis a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e path is the path of the object for which the appData will be stored. path MUST NOT be NULL.
e appData is the data to be stored. appData MAY be NULL.
e appDataSize is the size of appData.

5.10.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC _BAD_REFERENCE: if context or path is NULL or if appData is NULL whilst appDataSize
is not zero.

e TSS2_FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2_FAPI_RC_BAD_PATH: if entityPath does not map to a FAPI entity.

e TSS2 FAPI_RC_STORAGE_ERROR: if the updated data cannot be saved.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2_FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

5.11Fapi_GetAppData
Fapi_GetAppData() returns the previously stored application data for an object. If no application data is present,
then appDataSize SHALL be 0.

5.11.1 Prototype
TSS2 RC Fapi GetAppData (
FAPI CONTEXT *context,

const char *path,
uint8 t **appData,
size t *appDataSize) ;

TSS2 RC Fapi GetAppData Async(
FAPI CONTEXT *context,
const char *path) ;
TSS2 RC Fapi GetAppData Finish(
FAPI CONTEXT *context,
uint8 t **appData,
size t *appDataSize) ;
5.11.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e path is the path of the object for which the appData will be loaded. path MUST NOT be NULL.
e appData returns a copy of the stored data. appData MAY be NULL.
o appDataSize returns the size of appData. appDataSize MAY be NULL.

5.11.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 _FAPI_RC_BAD_REFERENCE: if context or path is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_BAD_PATH: if entityPath does not map to a FAPI entity.

e TSS2 FAPI_RC _STORAGE_ERROR: if the updated data cannot be loaded.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC _BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

5.12Fapi_GetTpmBlobs

Fapi_GetTpmBIlobs() returns the public and private blobs of an object, such that they could be loaded by a low-level
API (e.g. ESAPI). It also returns the policy associated with these blobs in JISON format.

5.12.1 Prototype
TSS2 RC Fapi_ GetTpmBlobs (
FAPI CONTEXT *context,

const char *path,

uint8 t **tpm2bPublic,
size t *tpm2bPublicSize,
uint8 t **tpm2bPrivate,

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

size t *tpmZ2bPrivateSize,
char **policy) ;

TSS2 RC Fapi GetTpmBlobs Async(
FAPI CONTEXT *context,
const char *path) ;

TSS2 RC Fapi GetTpmBlobs Finish (
FAPI CONTEXT *context,

uint8 t **tpm2bPublic,

size t *tpm2bPublicSize,
uint8 t **tpm2bPrivate,
size t *tpmZ2bPrivateSize,
char **policy) ;

5.12.2 Parameters

e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.

e path is the path of the object for which the blobs will be returned. path MUST NOT be NULL.

e tpm2bPublic is the returned public area of the object as a marshalled TPM2B_PUBLIC. tpm2bPublic MAY
be NULL.

o tpm2bPublicSize is the size of tpm2bPublic. tpm2bPublicSize MAY be NULL.

o tpm2bPrivate is the returned private area of the object as a marshalled TPM2B_PRIVATE. tpm2bPrivate
MAY be NULL.

o tpm2bPrivateSize is the size of tpm2bPrivate. tpm2bPrivateSize MAY be NULL.

e policy is the returned policy associated with the object, encoded in JSON. policy MAY be NULL.

5.12.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 _FAPI_RC_BAD_REFERENCE: if context or path is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_BAD_PATH: if path does not map to a FAPI entity.

e TSS2 FAPI_RC _STORAGE_ERROR: if the updated data cannot be saved.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC _BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

6 Key functions
6.1 Fapi_CreateKey

Fapi_CreateKey() creates a key inside the TPM and stores it in the FAPI metadata store and if requested
persistently inside the TPM.

6.1.1

Prototype

TSS2 RC Fapi Create(
FAPI CONTEXT *context,

char const *path,
char const *type,
char const *policyPath,
char const *authValue);

TSS2 RC Fapi Create Async(
FAPI CONTEXT *context,

char const *path,
char const *type,
char const *policyPath,
char const *authValue);

TSS2 RC Fapi Create Finish(
FAPI CONTEXT *context);

6.1.2

Parameters

context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
path is the path to the new key. path MUST NOT be NULL.

type identifies the intended usage, see section 3.3. type MAY be NULL.

policyPath identifies the policy to be associated with the new key. policyPath MAY be NULL. If policyPath is
NULL then no policy will be associated with the key.

authValue is the new authorization value for the key. authValue MAY be NULL. If authValue is NULL then
the authorization value will be the empty string.

Return Values

TSS2 RC_SUCCESS: if the function call was a success.

TSS2_FAPI_RC_BAD_REFERENCE: if context or path is NULL.

TSS2_FAPI_RC_BAD_CONTEXT: if context corruption is detected.

TSS2 FAPI_RC_KEY_NOT_FOUND: if the parent specified in path does not map to a FAPI key.
TSS2_FAPI_RC_BAD_PATH: if policyPath is non-NULL and does not map to a FAPI policy.
TSS2_FAPI_RC_PATH_ALREADY_EXISTS: if path already exists.

TSS2 FAPI_RC_BAD_VALUE: if type is non-NULL and invalid.

TSS2_FAPI_RC_STORAGE_ERROR: if the FAPI storage cannot be updated.

TSS2 FAPI_RC _|IO_ERROR: if the data cannot be saved.

TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

TSS2_FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

6.2 Fapi_Sign
Fapi_Sign() uses a key inside the TPM to sign a digest value.
6.2.1 Prototype

TSS2 RC Fapi Sign(
FAPI CONTEXT *context,

char const *keyPath,

char const *padding,
uint8 t const *digest,

size t digestSize,
uint8 t **signature,
size t *signatureSize,
uint8 t **publicKey,
uint8 t **certificate);

TSS2 RC Fapi Sign Async(
FAPI CONTEXT *context,

char const *keyPath,
uint8 t const *digest,
size t digestSize);

TSS2 RC Fapi Sign Finish(
FAPI CONTEXT *context,

uint8 t **signature,
size t *signatureSize,
uint8 t **publicKey,
uint8 t **certificate);

6.2.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
o keyPath is the path to the signing key. keyPath MUST NOT be NULL.
e padding is the padding algorithm used. Possible values are “RSA_SSA’, “RSA_PPS” (case insensitive).
padding MAY be NULL.
o digest is the data to be signed, already hashed. digest MUST NOT be NULL.
o digestSize is the number of bytes in digest.
e signature returns the signature in binary form. signature MUST NOT be NULL.
e signatureSize is the number of bytes in signature. signatureSize MAY be NULL
e publicKey is the public key associated with keyPath in PEM format. publickey MAY be NULL.
e cetrtificate is the certificate associated with keyPath in PEM format. certificate MAY be NULL.

6.2.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context, keyPath, digest, signature or signatureSize is NULL.

e TSS2_FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_KEY_NOT_FOUND: if keyPath does not map to a FAPI object.

e TSS2 FAPI_RC_BAD_KEY: if the object at keyPath is not a key, or is a key that is unsuitable for the
requested operation.

e TSS2_FAPI_RC_BAD_VALUE: if digestSize is 0.

e TSS2_FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2_FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

6.3 Fapi_VerifySignature
Fapi_VerifySignature() verifies a signature using a public key found in a keyPath. This function MAY or MAY NOT
use the TPM for this operation.

6.3.1 Prototype
TSS2 RC Fapi VerifySignature (
FAPI CONTEXT *context,
char const *keyPath,
uint8 t const *digest,
size t digestsize,
uint8 t const *signature,
size t signatureSize) ;
TSS2 RC Fapi VerifySignature Async(
FAPI CONTEXT *context,
char const *keyPath,
uint8 t const *digest,
size t digestsize,
uint8 t const *signature,
size t signatureSize);
TSS2 RC Fapi VerifySignature Finish(
FAPI CONTEXT *context);
6.3.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
o KkeyPath is the path to the verification public key. keyPath MUST NOT be NULL.
o digestis the data that was signed, already hashed. digest MUST NOT be NULL.
o digestSize is the number of bytes in digest.
e signature is the signature to be verified. signature MUST NOT be NULL.
e signatureSize is the number of bytes in signature.

6.3.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context, keyPath signature or digest is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_KEY_NOT_FOUND: if publicKkeyPath does not map to a FAPI object.

e TSS2 _FAPI_RC_BAD_KEY: if the object at publicKeyPath is not a key, or is a key that is unsuitable for the
requested operation.

e TSS2 FAPI_RC_BAD_VALUE: if digestSize is 0.

e TSS2 FAPI_RC_SIGNATURE_VERIFICATION_FAILED: if the signature verification fails.

e TSS2 FAPI _RC_IO_ERROR: if the data cannot be saved.

e TSS2_FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2_FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

6.4 Fapi_Encrypt
Fapi_Encrypt() encrypts the provided data for a target key.

If keypath is an asymmetric key and a plaintext with size >= TPM2_MAX_SYM_SIZE is provided, Fapi_Encrypt() will
bulk-encrypt the plaintext with an intermediate symmetric key and then “seal” this intermediate symmetric key with
keyPath as a KEYEDHASH TPM object. This keyPath may refer to the local TPM or to a public key of a remote
TPM where the KEYEDHASH can be imported. A following decrypt operation would perform a TPM2_Unseal.
ciphertext output contains a reference to the decryption key, the sealed symmetric key (if any), the policy instance,
and the encrypted plaintext.

If plaintext has a size <= TPM2_MAX_SYM_SIZE the plaintext is sealed directly to keyPath.

If encrypting for the local TPM (if keyPath is not from the external hierarchy), a storage key (symmetric or
asymmetric) is required as keyPath (aka parent key) and the data intermediate symmetric key is created using
TPM2_Create() as a KEYEDHASH object.

If encrypting for a remote TPM, an asymmetric storage key is required as keyPath (aka parent key), and the
data/intermediate symmetric key is encrypted such that it can be used in a TPM2_Import operation.

The format of the cipherText is described in Section 3.9.

6.4.1 Prototype
TSS2 RC Fapi Encrypt (
FAPI CONTEXT *context,

char const *keyPath,

char const *policyPath,
uint8 t const *plainText,
size t plainTextSize,
char **cipherText) ;

TSS2 RC Fapi Encrypt Async(
FAPI CONTEXT *context,

char const *keyPath,

char const *policyPath,
uint8 t const *plainText,

size t plaintextSize);

TSS2 RC Fapi Encrypt Finish (
FAPI CONTEXT *context,
uint8 t **cipherText) ;

6.4.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
o keyPath identifies the encryption key. keyPath MUST NOT be NULL.
e policyPath identifies the policy to be associated with the sealed data. policyPath MAY be NULL. If policyPath
is NULL then the sealed data will have no policy.
e plainText is the data to be encrypted. plaintext MUST NOT be NULL.
e plainTextSize is the number of bytes in plaintext.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

e cipherText returns the JSON-encoded ciphertext. cipherText MUST NOT be NULL.

6.4.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2_FAPI_RC_BAD_REFERENCE: if context, keyPath, plainText, or cipherText is NULL.

e TSS2 FAPI_RC BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_KEY_NOT_FOUND: if keyPath does not map to a FAPI entity.

e TSS2 FAPI_RC_BAD_KEY: if the entity at keyPath is not a key, or is a key that is unsuitable for the
requested operation.

e TSS2_FAPI_RC_BAD_VALUE: if plainTextSize is 0.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2_FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

6.5 Fapi_Decrypt
Fapi_Decrypt() decrypts data that was encrypted using Fapi_Encrypt(). The method is described in section 6.4.

6.5.1 Prototype
TSS2 RC Fapi Decrypt (
FAPI CONTEXT *context,

char const *cipherText,
uint8 t **plainText,
size t *plainTextSize) ;

TSS2 RC Fapi Decrypt Async(

FAPI CONTEXT *context,

char const *cipherText) ;
TSS2 RC Fapi Decrypt Finish (

FAPI CONTEXT *context,

uint8 t **plainText,

size t *plainTextSize);

6.5.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e cipherText is the JISON-encoded cipherText. cipherText MUST NOT be NULL.
e plainText returns the decrypted data. plainText MAY be NULL.
e plainTextSize returns the number of bytes in plainText. plainTextSize MAY be NULL.

6.5.3 Return Values
e TSS2 RC_SUCCESS: if the function call was a success.
e TSS2 FAPI_RC _BAD_REFERENCE: if context, newPathName, or importedData is NULL.
e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.
e TSS2 FAPI_RC_KEY_NOT_FOUND: if the decryption key cannot be found.
e TSS2_FAPI_RC_BAD_KEY: if the decryption key is unsuitable for the requested operation.
e TSS2 FAPI_RC_BAD_VALUE: if the decryption fails.
e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2_FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

6.6 Fapi_SetCertificate
Fapi_SetCertificate() stores an x509 certificate in PEM encoding with the key referred to by path.

6.6.1 Prototype
TSS2 RC Fapi SetCertificate(
FAPI CONTEXT *context,
char const *path,
char const *x509certData) ;
TSS2 RC Fapi SetCertificate Async(
FAPI CONTEXT *context,
char const *path,
char const *x509certData) ;
TSS2 RC Fapi SetCertificate Finish(
FAPI CONTEXT *context);

6.6.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e path identifies the entity to be associated with the certificate. path MUST NOT be NULL.
e x509certData is the PEM encoded certificate. x509certData MAY be NULL. If x509certData is NULL then the
stored x509 certificate SHALL be removed.

6.6.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context, path or xX509certData is NULL.

e TSS2 FAPI RC BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_KEY_NOT_FOUND: if the path does not map to a FAPI entity.

e TSS2 FAPI_RC_BAD_KEY: if the parent of path is not a key.

e TSS2 FAPI_RC_STORAGE_ERROR: if the FAPI storage cannot be updated.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC _BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

6.7 Fapi_GetCertificate
Fapi_GetCertificate() returns the PEM encoded X.509 certificate associated with the key at path.

6.7.1 Prototype

TSS2 RC Fapi GetCertificate(
FAPI CONTEXT *context,
char const *path,
char **x%509certData) ;

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TSS2 RC Fapi GetCertificate Async(
FAPI CONTEXT *context,
char const *path);

TSS2 RC Fapi GetCertificate Finish(
FAPI CONTEXT *context,
char **x509certData) ;

6.7.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e path is the entity whose certificate is requested. path MUST NOT be NULL.
e x509certData returns the PEM encoded certificate. x509certData MUST NOT be NULL. If no certificate is
stored, then an empty string is returned.

6.7.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC _BAD_REFERENCE: if context, path or x509certData is NULL.

e TSS2_FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_KEY_NOT_FOUND: if path does not map to a FAPI entity.

e TSS2 FAPI_RC_BAD_KEY: if the entity at path is not a key, or is a key that is unsuitable for the requested
operation.

e TSS2 FAPI_RC_NO_CERTIFICATE: if there is no certificate associated with the key at path.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2_FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

6.8 Fapi_ExportKey

Fapi_ExportKey() will duplicate a key and encrypt it using the public key of a new parent. The exported data will
contain the re-wrapped key pointed to by pathOfKeyToDuplicate and then the JSON encoded policy. The exported
data SHALL be encoded according to Section 3.6.

6.8.1 Prototype
TSS2 RC Fapi ExportKey (
FAPI CONTEXT *context,
char const *pathOfKeyToDuplicate,
char const *pathToPublicKeyOfNewParent,
uint8 t **exportedData) ;
TSS2 RC Fapi ExportKey Async(
FAPI CONTEXT *context,
char const *pathOfKeyToDuplicate,
char const *pathToPublicKeyOfNewParent) ;
TSS2 RC Fapi ExportKey Finish (
FAPI CONTEXT *context,
uint8 t **exportedData) ;

6.8.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

o pathOfKeyToDuplicate is the path to the root of the subtree to export. pathOfKeyToDuplicate MUST NOT be
NULL.

o pathToPublicKeyOfNewParent is the path to the public key of the new parent. This path MAY reference
external public key paths starting with “/ext”. pathToPublicKkeyOfNewParent MUST NOT be NULL.

e exportedData returns the exported subtree. exportedData MUST NOT be NULL.

6.8.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2_FAPI_RC_BAD_REFERENCE: if context, pathOfKeyToDuplicate, pathToPublicKeyOfParent, or
exportedData is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_KEY_NOT_FOUND: if pathOfKeyToDuplicate or pathToPublicKkeyOfNewParent does not
map to a FAPI object.

e TSS2 FAPI_RC _BAD_KEY: if the object at pathToPublicKkeyOfNewParent is not a key, or is a key that is
unsuitable for the requested operation.

e TSS2 FAPI_RC_KEY_NOT_DUPLICABLE: if the key at pathOfKeyToDuplicate is not a duplicable key.

e TSS2 FAPI_RC_I0O_ERROR: if internal data cannot be loaded.

e TSS2_FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2_FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

7 Seal commands
7.1 Fapi_CreateSeal

Fapi_CreateSeal() creates a sealed object and stores it in the FAPI metadata store. If no data is provided (i.e. a
NULL-pointer) then the TPM generates random data and fills the sealed object.

7.1.1 Prototype
TSS2 RC Fapi CreateSeal (
FAPI CONTEXT *context,

char const *path,
char const *type,
size t size,
char const *policyPath,
char const *authValue,

uint8 t const *data);
TSS2 RC Fapi CreateSeal Async(
FAPI CONTEXT *context,

char const *path,
char const “*type,
size t size,
char const *policyPath,
char const *authValue,

uint8 t const *data);
TSS2 RC Fapi CreateSeal Finish(
FAPI CONTEXT *context);

7.1.2 Parameters

e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.

e path is the path to the new key. path MUST NOT be NULL.

o type identifies the intended usage, see Section 3.3. type MAY be NULL.

¢ size defines the size of the sealed object. size MUST NOT be zero.

¢ policyPath identifies the policy to be associated with the new key. policyPath MAY be NULL. If policyPath is
NULL then no policy will be associated with the key.

e authValue is the new authorization value for the key. authValue MAY be NULL. If authValue is NULL then
the authorization value will be the empty string.

e data is the data to be sealed by the TPM. data MAY be NULL.

7.1.3 Return Values
e TSS2 RC_SUCCESS: if the function call was a success.
e TSS2 FAPI_RC_BAD_REFERENCE: if context or path is NULL.
e TSS2 _FAPI_RC_BAD_CONTEXT: if context corruption is detected.
e TSS2 FAPI_RC_KEY_NOT_FOUND: if the parent specified in path does not map to a FAPI key.
e TSS2 FAPI_RC _BAD_PATH: if policyPath is non-NULL and does not map to a FAPI policy.
e TSS2_FAPI_RC_PATH_ALREADY_EXISTS: if path already exists.
e TSS2 FAPI_RC_BAD_VALUE: if type is non-NULL and invalid or size is zero.
e TSS2 FAPI_RC_STORAGE_ERROR: if the FAPI storage cannot be updated.
e TSS2 FAPI_RC_I0_ERROR: if the data cannot be saved.
e TSS2_FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2_FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

7.2 Fapi_Unseal

Fapi_Unseal() unseals data from a sealed object created by Fapi_CreateSeal in the FAPI meta data store.

7.2.1 Prototype
TSS2 RC Fapi Unseal (
FAPI CONTEXT *context,

char const *path,
uint8 t **data,
size t *size);

TSS2 RC Fapi Unseal Async(
FAPI CONTEXT *context,
char const *path);
TSS2 RC Fapi Unseal Finish(
FAPI CONTEXT *context,
uint8 t **data,
size t *size);
7.2.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e path is the path to the sealed data. path MUST NOT be NULL.
e datais the decrypted data after unsealing. data MAY be NULL.
e size is the size of the decrypted data after unsealing. size MAY be NULL.

7.2.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context or path is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC _BAD_PATH: if path does not point to a sealed data object.

e TSS2 FAPI_RC_STORAGE_ERROR: if the FAPI storage cannot be accessed.

e TSS2 FAPI_RC_IO_ERROR: if the data cannot be saved.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

8 Policy functions

8.1 Fapi_ExportPolicy
Fapi_ExportPolicy() exports a policy referred to by a path in JSON encoding. The exported policy SHALL be
encoded according to TCG TSS 2.0 JSON Policy Language Specification.

8.1.1 Prototype
TSS2 RC Fapi ExportPolicy (
FAPI CONTEXT *context,
char const *path,
char **jsonPolicy) ;
TSS2 RC Fapi ExportPolicy Async(
FAPI CONTEXT *context,
char const *path);
TSS2 RC Fapi ExportPolicy Finish(
FAPI CONTEXT *context,
char **jsonPolicy);

8.1.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e path is the path of the new policy. path MUST NOT be NULL.
e jsonPolicy returns the JSON-encoded policy. jsonPolicy MUST NOT be NULL.

8.1.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context or path is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 _FAPI_RC_BAD_PATH: if path does not map to a FAPI policy.

e TSS2 _FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

8.2 Fapi_AuthorizePolicy
Fapi_AuthorizePolicy() signs a given policy with a given key such that the policy can be referenced from other
policies that contain corresponding PolicyAuthorize elements.

8.2.1 Prototype
TSS2 RC Fapi AuthorizePolicy (
FAPI CONTEXT *context,

char const *policyPath,
char const *keyPath,
uint8 t const *policyRef,

size t policyRefSize);

TSS2 RC Fapi AuthorizePolicy Async(
FAPI CONTEXT *context,
char const *policyPath,

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

char const *keyPath,

uint8 t const *policyRef,

size t policyRefSize) ;
TSS2 RC Fapi AuthorizePolicy Finish(

FAPI CONTEXT *context);

8.2.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e policyPath is the path of the new policy. policyPath MUST NOT be NULL.
o KkeyPath is the path of the signing key. keyPath MUST NOT be NULL.
e policyRef is a byte buffer to be included in the signature. policyRef MAY be NULL if policyRefSize is O.
e policyRefSize is the size of policyRef.

8.2.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context or path is NULL.

e TSS2_FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2_FAPI_RC_BAD_PATH: if policyPath or keyPath do not map to a FAPI policy or key, respectively.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2_FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

8.3 Fapi_WriteAuthorizeNv

FapiWriteAuthorizeNv() writes the digest value of a policy to an NV index such that this policy can be used in other
policies containing a corresponding PolicyAuthorizeNv element. The nameAlg property of the NV index defines the
digest algorithm for the policy.

8.3.1 Prototype
TSS2 RC Fapi WriteAuthorizeNv (
FAPI CONTEXT *context,
char const *nvPath,
char const *policyPath);
TSS2 RC Fapi WriteAuthorizeNv Async (
FAPI CONTEXT *context,
char const *nvPath,
char const *policyPath);
TSS2 RC Fapi WriteAuthorizeNv Finish (
FAPI CONTEXT *context) ;

8.3.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.

e nvPath is the path of the NV index. nvPath MUST NOT be NULL.
e policyPath is the path of the new policy. policyPath MUST NOT be NULL.

8.3.3 Return Values
e TSS2 RC_SUCCESS: if the function call was a success.
e TSS2 FAPI_RC_BAD_REFERENCE: if context, nvPath, or policyPath is NULL.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC _BAD_PATH: if nvPath, or policyPath do not map to a FAPI nv index or policy, respectively.

e TSS2_FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

9 Attestation functions

9.1 Fapi_PcrRead

Fapi_PcrRead() provides a PCR value and corresponding Event log. The PCR bank of the provided PCR index is
selected in the cryptographic profile.

9.1.1 Prototype
TSS2 RC Fapi PcrRead(
FAPI CONTEXT *context,

uint32 t pcrindex,
uint8 t **pcrValue,
size t *pcrValueSize,
char **pcrLog) ;

TSS2 RC Fapi PcrRead Async(
FAPI CONTEXT *context,
uint32 t pcrindex,) ;

TSS2 RC Fapi PcrRead Finish(
FAPI CONTEXT *context,

uint8 t **pcrValue,
size t *pcrvValueSize,
char **pcrLog) ;

9.1.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e pcrindex identifies the PCR to read.
e pcrValue returns PCR digest. pcrValue MAY be NULL.
e pcrValueSize returns the number of bytes in pcrValue. pcrValueSize MAY be NULL.
e pcrLog returns the PCR log for that PCR in the format defined in Section 3.7. pcrLog MAY be NULL.

9.1.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2_FAPI_RC_BAD_REFERENCE: if context is NULL.

e TSS2 FAPI_RC _BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_BAD_VALUE: if pcrindex is out of range for the TPM.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 _FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

9.2 Fapi_PcrExtend

Fapi_PcrExtend() extends the data into the PCR listed. The parameter logData is extended into the PCR log. If the
logData is NULL, only the PCR extend takes place. All PCRs currently active in the TPM are extended, see
TPM2_PCR_Event.

9.2.1 Prototype
TSS2 RC Fapi_ PcrExtend(
FAPI CONTEXT *context,

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

uint32 t pcr,
uint8 t const *data,
size t datasize,
char const *logData);
TSS2 RC Fapi PcrExtend Async(
FAPI CONTEXT *context,

uint32 t pcr,
uint8 t const *data,
size t datasize,
char const *logData);

TSS2 RC Fapi PcrExtend Finish(
FAPTI CONTEXT *context);

9.2.2 Parameters

e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.

e pcridentifies the PCR to extend.

e datais the event data. This data will be hashed using the respective PCR’s hash algorithm. See the
TPM2_PCR_Event function of the TPM specification [11]. data MUST NOT be NULL.

e dataSize is the number of bytes in eventData. dataSize MUST NOT be 0.

e |ogData contains a JSON representation of data to be written to the PCR’s event log. logData MAY be
NULL.

9.2.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context or data is NULL.

e TSS2 FAPI_RC _BAD_CONTEXT: if context corruption is detected.

e TSS2_FAPI_RC_NO_PCR: if no such PCR exists on this TPM.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 _FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

9.3 Fapi_Quote

Fapi_Quote() performs an attestation using the TPM. The PCR bank of each provided PCR index is set in the
cryptographic profile.

9.3.1 Prototype
TSS2 RC FAPI Quote (
FAPI CONTEXT *context,

uint32 t *pcrlist,

size t pcrListSize,

char const *keyPath,

char const *quoteType,

uint8 t const *qualifyingData,
size t qualifyingDataSize,
char **quotelInfo,

uint8 t **signature,

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

size t *signatureSize,

char **pcrlLog,

char **certificate);
TSS2 RC FAPI Quote Async(

FAPI CONTEXT *context,

uint32 t *pcrlList,

size t pcrListSize,

char const *keyPath,

char const *quoteType,

uint8 t const *qualifyingData,

size t qualifyingDataSize);

TSS2 RC FAPI Quote Finish(
FAPI CONTEXT *context,

char **quotelInfo,
uint8 t **signature,
size t *signatureSize,
char **pcrlLog,

char **certificate) ;

9.3.2 Parameters

e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.

e pcrListis an array holding the PCR indices to quote against. pcrList MUST NOT be NULL.

e pcrListSize is the size of pcrList.

e keyPath identifies the signing key. keyPath MUST NOT be NULL.

e quoteType identifies the type of attestation to be performed. quoteType MUST be NULL (which implies
“quote”) or “quote” (case insensitive). Note: Future versions may allow other values for other types
ofattestations.

e qualifyingData is a nonce provided by the caller to ensure freshness of the signature. qualifyingData MAY be
NULL if qualifyingDataSize is 0.

o qualifyingDataSize is the number of bytes in qualifyingData.

e quotelnfo returns a JSON-encoded structure holding the inputs to the quote operation. This includes the
digest value and PCR values. quotelnfo MUST NOT be NULL.

e signature returns the signature over the quoted material. signature MUST NOT be NULL.

e signatureSize returns the number of bytes in signature. signatureSize MAY be NULL.

e pcrLog returns the PCR log for the chosen PCR in the format defined in Section 3.7. pcrLog MAY be NULL.

e cetrtificate is the certificate associated with keyPath in PEM format. certificate MAY be NULL.

9.3.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC _BAD_REFERENCE: if context, pcrlList, keyPath, quotelnfo, or signature is NULL.

e TSS2_FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2_FAPI_RC_KEY_NOT_FOUND: if path does not map to a FAPI entity.

e TSS2 FAPI_RC_BAD_KEY: if the entity at path is not a key, or is a key that is unsuitable for the requested
operation.

e TSS2_FAPI_RC_BAD_VALUE: if qualifyingData is invalid or qualifyingDataSize is O.

e TSS2_FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2_FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

9.4 Fapi_VerifyQuote
Fapi_VerifyQuote() verifies that the data returned by a quote is valid. This includes
e Reconstructing the quotelnfo’s PCR values from the eventLog (if an eventLog was provided)
o Verifying the quotelnfo using the signature and the publicKeyPath
An application using Fapi_VerifyQuote() will further have to
e Assess the publicKey’s trustworthiness
o Assess the eventLog entries’ trustworthiness

9.4.1 Prototype
TSS2 RC Fapi VerifyQuote (
FAPI CONTEXT *context,

char const *publicKeyPath,
uint8 t const *qualifyingData,
size t qualifyingDataSize,
char const *quotelnfo,

uint8 t const *signature,

size t signatureSize,

char const *pcrlLog) ;

TSS2 RC Fapi VerifyQuote Async(
FAPI CONTEXT *context,

char const *publicKeyPath,
uint8 t const *qualifyingData,
size t qualifyingDataSize,
char const *quotelInfo,

uint8 t const *signature,

size t signatureSize,

char const *pcrlog);

TSS2 RC Fapi VerifyQuote Finish (
FAPI CONTEXT *context);
9.4.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e publicKeyPath identifies the signing key. publicKkeyPath MUST NOT be NULL. publicKkeyPath MAY be a
path to the public key hierarchy /ext.
e qualifyingData is a nonce provided by the caller to ensure freshness of the signature. qualifyingData MAY be
NULL if qualifyingDataSize is 0.
¢ qualifyingDataSize is the number of bytes in qualifyingData.
e quotelnfo the JISON-encoded structure holding the inputs to the quote operation. This includes the digest
value and PCR values. quotelnfo MUST NOT be NULL.
e signature the signature over the quoted material. signature MUST NOT be NULL.
e signatureSize is the number of bytes in signature.
e pcrLog returns the PCR log for the chosen PCR in the format defined in Section 3.7. pcrLog MAY be NULL.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

9.4.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context, publicKeyPath, quotelnfo or signature is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_KEY_NOT_FOUND: if path does not map to a FAPI entity.

e TSS2_FAPI_RC_BAD_KEY: if the entity at path is not a key, or is a key that is unsuitable for the requested
operation.

e TSS2 FAPI_RC_BAD_VALUE: if qualifyingData is invalid or qualifyingDataSize is 0.

e TSS2 _FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

10 NV functions
10.1Fapi_CreateNv

Fapi_CreateNv creates an NV index in the TPM. The path is constructed as described in section 3.2.2. The type
field is described in section 3.3.

10.1.1 Prototype
TSS2 RC Fapi CreateNv (
FAPI CONTEXT *context,

char const *path,
char const *type,
size t size,
char const *policyPath,
char const *authValue);

TSS2 RC Fapi CreateNv_ Async (
FAPI CONTEXT *context,

char const *path,
char const *type,
size t size,
char const *policyPath,
char const *authValue);

TSS2 RC Fapi CreateNv Finish(
FAPI CONTEXT *context);

10.1.2 Parameters

e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.

e path is the path to the new key. path MUST NOT be NULL.

o type identifies the intended usage, see Section 3.3. type MAY be NULL.

e size is the size in bytes of the NV index to be created. size MAY be zero if the size is determined by the
type; e.g. an NV index of type counter has a size of 8 bytes.

e policyPath identifies the policy to be associated with the new key. policyPath MAY be NULL. If policyPath is
NULL then no policy will be associated with the key.

e authValue is the new authorization value for the key. authValue MAY be NULL. If authValue is NULL then
the authorization value will be the empty string.

10.1.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC BAD_REFERENCE: if context or path is NULL.

e TSS2_FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC _BAD_PATH: if policyPath is non-NULL and does not map to a FAPI policy or if path does
not refer to a valid NV index path.

e TSS2 FAPI_RC_PATH_ALREADY_EXISTS: if path already exists.

e TSS2 FAPI_RC_BAD_VALUE: if type is non-NULL and invalid or does not match the size.

e TSS2 FAPI_RC_STORAGE_ERROR: if the FAPI storage cannot be updated.

e TSS2 FAPI_RC_IO_ERROR: if the data cannot be saved.

e TSS2_FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC _BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

e TSS2_FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

10.2Fapi_NvRead

Fapi_NvRead() reads the entire data from an NV index of the TPM. The FAPI will automatically perform multiple
read operations with the TPM if the NV index is larger than the TPM's TPM2_MAX_NV_BUFFER_SIZE.

10.2.1 Prototype
TSS2 RC Fapi NvRead (
FAPI CONTEXT *context,

char const *nvPath,
uint8 t **data,
size t *size,
char **logData) ;

TSS2 RC Fapi NvRead Async(
FAPI CONTEXT *context,
char const *nvPath);

TSS2 RC Fapi NvRead Finish(
FAPI CONTEXT *context,

uint8 t **data,
size t *size,
char **logDhata) ;

10.2.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
o nvPath identifies the NV space to read. nvPath MUST NOT be NULL.
e data returns the value read from the NV space. data MUST NOT be NULL.
e size returns the number of bytes read. size MAY be NULL.
o logData returns the JSON encoded log, if the NV index is of type “extend” and an empty string otherwise.
logData MAY be NULL.

10.2.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC _BAD_REFERENCE: if context, nvPath or data is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 _FAPI_RC_BAD_PATH: if nvPath is not found.

e TSS2 FAPI_RC_AUTHORIZATION_FAILED: if authorization fails.

e TSS2 FAPI_RC_AUTHORIZATION_ UNKNOWN: if the authentication method could not be identified.

e TSS2 FAPI_RC_NV_NOT_READABLE: if the NV is not a readable index.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC _BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

10.3Fapi_NvWrite

Fapi_NvWrite() writes data to a “regular” (not pin, extend or counter) NV index. Only the full index can be written.
Partial writes are not supported. If the provided data is smaller than the NV index’s size, then it is padded up with

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

zero bytes at the end. The FAPI will automatically perform multiple write operations with the TPM if the input buffer
is larger than the TPM's TPM2_MAX_NV_BUFFER_SIZE.

10.3.1 Prototype
TSS2 RC Fapi NvWrite (
FAPI CONTEXT *context,

char const *nvPath,
uint8 t const *data,
size t size);

TSS2 RC Fapi NvWrite Async(
FAPI CONTEXT *context,

char const *nvPath,
uint8 t const *data,
size t size);

TSS2 RC Fapi NvWrite Finish(
FAPI CONTEXT *context);
10.3.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e nvPath identifies the NV space to write. nvPath MUST NOT be NULL.
e datais the data to write to the NV space. data MUST NOT be NULL.
e size is the size of the data buffer in bytes.

10.3.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context, nvPath, or data is NULL.

e TSS2 FAPI_RC _BAD_CONTEXT: if context corruption is detected.

e TSS2_FAPI_RC_BAD_PATH: if nvPath is not found.

e TSS2 FAPI_RC_NV_EXCEEDED: if the NV index is not large enough for the data to be written.

e TSS2 FAPI_RC_NV_WRONG_TYPE: if the NV index is an extendable index.

e TSS2 FAPI_RC NV_NOT_WRITEABLE: if the NV index is not a writeable index.

e TSS2_FAPI_RC_POLICY_UNKNOWN: if the policy is unknown.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 _FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

10.4Fapi_NvExtend

Fapi_NvExtend() performs an extend options on an NV index of type extend (i.e. an NV index that behaves similarly
to a PCR).

10.4.1 Prototype

TSS2 RC Fapi NvExtend(
FAPI CONTEXT *context,
char const *nvPath,
uint8 t const *data,

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

size t dataSize,

char const *logData);
TSS2 RC Fapi NvExtend Async(

FAPI CONTEXT *context,

char const *nvPath,
uint8 t const *data,
size t datasSize,
char const *logData);

TSS2 RC Fapi NvExtend Finish(
FAPI CONTEXT *context);

10.4.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e nvPath identifies the NV space to write. nvPath MUST NOT be NULL.
e datais the data to be extended into the NV space. data MUST NOT be NULL.
e dataSize is the size of the data buffer in bytes. dataSize MUST be smaller or equal to 1024 bytes.
¢ logData contains a JSON representation of data to be written to the PCR’s event log. logData MAY be
NULL.

10.4.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context, nvPath, or data is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2_FAPI_RC_BAD_PATH: if nvPath is not found.

e TSS2 FAPI_RC_NV_WRONG_TYPE: if the NV is not an extendable index. The NV index type must be pcr
(which maps to TPM_NT_EXTEND).

e TSS2 FAPI_RC_POLICY_UNKNOWN: if the policy is unknown.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

10.5Fapi_Nvincrement
Fapi_Nvincrement() increments by 1 an NV index that is of type counter.

10.5.1 Prototype

TSS2 RC Fapi NvIncrement (
FAPI CONTEXT *context,
char const *nvPath);

TSS2 RC Fapi NvIncrement Async(
FAPI CONTEXT *context,
char const *nvPath);

TSS2 RC Fapi NvIncrement Finish (
FAPI CONTEXT *context) ;

10.5.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e nvPath identifies the NV space to increment. nvPath MUST NOT be NULL.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

10.5.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC _BAD REFERENCE: if context or nvPath is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2_FAPI_RC_BAD_PATH: if nvPath is not found.

e TSS2 FAPI_RC_NV_WRONG_TYPE: if the NV is not a counter index. The NV index type MUST be of type
“counter” (which maps to TPM_NT_COUNTER).

e TSS2 FAPI_RC _NV_NOT _WRITEABLE: if the NV is not a writeable index.

e TSS2_FAPI_RC_POLICY_UNKNOWN: if the policy is unknown.

e TSS2 _FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC_BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

10.6 Fapi_NvSetBits

Fapi_NvSetBits() sets bits in an NV Index that was created as a bit field. Any number of bits from 0 to 64 may be
SET. The contents of bitmap are ORed with the current contents of the NV Index.

10.6.1 Prototype

TSS2 RC Fapi NvSetBits (
FAPI CONTEXT *context,
char const *nvPath,
uint64 t bitmap) ;

TSS2 RC Fapi NvSetBits Async(
FAPI CONTEXT *context,
char const *nvPath,
uint64 t bitmap) ;

TSS2 RC Fapi NvSetBits Finish (
FAPI CONTEXT *context) ;

10.6.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e nvPath identifies the NV space to write. nvPath MUST NOT be NULL.
e bitmap is a mask indicating which bits to set in the NV space.

10.6.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI RC BAD_ REFERENCE: if context or nvPath is NULL.

e TSS2 FAPI_RC _BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_BAD_PATH: if nvPath is not found.

e TSS2 FAPI_RC_NV_WRONG_TYPE: if the NV is not a bitmap index. The NV index type must be
TPM2_NT_BITS.

e TSS2 FAPI_RC_NV_NOT_WRITEABLE: if the NV is not a writeable index.

e TSS2 FAPI_RC_POLICY_UNKNOWN: if the policy is unknown.

e TSS2_FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

e TSS2 FAPI_RC BAD_SEQUENCE: if the synchronous or Async functions are called while the context has
another asynchronous operation outstanding, or the Finish function is called while the context does not have
an appropriate asynchronous operation outstanding.

e TSS2 FAPI_RC_TRY_AGAIN: (Finish only) if the asynchronous operation is incomplete and the Finish
should be re-executed later to check for the final result.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

11 FAPI Callbacks
11.1Fapi_SetAuthCB

Fapi_SetAuthCB() registers an application-defined function as a callback to allow the TSS to get authorization
values from the application. The callback and user data pointers are saved within the context and the callback is
invoked whenever an authorization value is needed. The userData parameter is a pointer to application-defined data
that will be passed to the callback each time it is invoked. The userData is intended to hold application-specific state
as needed, and may be NULL if no such state is required. The callback is cleared if the callback function pointer is
NULL, and any attempt to use a policy that requires user-supplied authorization will fail.

11.1.1 Prototype

TSS2 RC Fapi SetAuthCB (
FAPI CONTEXT *context,
Fapi CB Auth callback,
void *userData) ;

11.1.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
o callback is the pointer to the callback function for auth values. callback MUST NOT be NULL.
e userData is a pointer that is provided to all callback invocations. userData MAY be NULL.

11.1.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context or callback is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC_BAD_SEQUENCE: if this function is called while the context has another asynchronous
operation outstanding.

11.1.4 Fapi_CB_Auth

The Fapi_CB_Auth type describes a callback function prototype that will return an authValue from the application to
FAPI when invoced. The programmer is responsible for allocating memory for the auth buffer, but it is the
responsibility of FAPI to free it. The FAPI is responsible for creating the HMAC value from the authValue to provide
authentication to the TPM.

11.1.4.1 Prototype
typedef TSS2 RC (*Fapi CB_Auth) (
FAPI CONTEXT *context,

char const *description,
char **auth,
void *userData) ;

11.1.4.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e description is a user readable description of the authorization value requested. description MUST NOT be
NULL.

e auth is the authorization value. auth MUST NOT be NULL.
e userData is the same pointer passed in the userData parameter during Fapi_SetAuthCB.

11.1.4.3 Return Values
e TSS2 RC_SUCCESS: if the function call was a success.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

e TSS2 FAPI_RC_TRY_AGAIN: if the function needs to be invoked again.
e TSS2 FAPI_RC_CB_FAILURE: if the authorization failed.

11.2Fapi_SetBranchCB

Fapi_SetBranchCB() registers a callback that will be invoked whenever the FAPI has to decide which branch of a
Policy-OR policy to use to authorize a particular FAPI operation. Since the FAPI does not know which branch is
appropriate, the application-defined callback is used to make the choice for the FAPI. The callback and user data
pointers are associated with the context. The userData parameter is a pointer to application-defined data that will be
passed to the callback each time it is invoked. The userData is intended to hold application-specific state as needed,
and may be NULL if no such state is required. The callback is cleared if the callback function pointer is NULL, and
any attempt to use a policy that includes an OR branch MAY fail.

11.2.1 Prototype

TSS2 RC Fapi_ SetBranchCB (
FAPI CONTEXT *context,
Fapi CB Branch callback,
void *userData) ;

11.2.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL
e callback is the pointer to the callback function for branch selection. callback MUST NOT be NULL.
e userData is a pointer that is provided to all callback invocations. userData MAY be NULL.

11.2.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC_BAD_REFERENCE: if context or callback is NULL.

e TSS2 FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2 FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC_BAD_SEQUENCE: if this function is called while the context has another asynchronous
operation outstanding.

11.2.4 Fapi_CB_Branch

The Fapi_CB_Branch type describes a callback function prototype that returns a branch choice during policy
evaluation. Such choices take place when a policy contains a PolicyOR (with more than one branch), or a
PolicyAuthorize (which has more than one approved policy).

FAPI will invoke the callback with the following information:

¢ An arbitrary pointer supplied by the application when the callback was registered
e The number of policies/branches to choose from

e The names associated with those policies/branches

e The description of the entity being authorized

The selectedBranch returned is the index within the branchName array and starts with 0.

11.2.4.1 Prototype
typedef TSS2 RC (*Fapi CB Branch) (
FAPI CONTEXT *context,

char const *description,
char const **branchNames,
size t numBranches,

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

size t *selectedBranch,
void *userData) ;
11.2.4.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
e description is a human readable description from the PolicyOR statement. description MUST NOT be NULL.
e branchName is a list of pointers to human readable names for the branches as from the PolicyOR
statement. branchName MUST NOT be NULL.
e numBranches is the number of branches.
e selectedBranch returns the index of the selected branch. selectedBranch MUST NOT be NULL.
e userData is the same pointer passed in the userData parameter during Fapi_SetAuthCB.

11.2.4.3 Return Values
e TSS2 RC_SUCCESS: if the function call was a success.
e TSS2_FAPI_RC_TRY_AGAIN: if the function needs to be invoked again.
e TSS2 FAPI_RC_CB_FAILURE: if the branch selection failed.

11.3Fapi_SetSignCB

Fapi_SetSignCB() registers an application-defined function as a callback to allow the FAPI to get signatures
authorizing use of TPM objects. The callback and user data pointers are saved within the context and the callback is
invoked whenever a signature-based policy is used to authorize a TPM command. The userData parameter is a
pointer to application-defined data that will be passed to the callback each time it is invoked. The userData is
intended to hold application-specific state as needed, and may be NULL if no such state is required. The callback is
cleared if the callback function pointer is NULL, and any attempt to use a policy that requires a signature-based
authorization will fail.

11.3.1 Prototype
TSS2 RC Fapi SetSignCB(
FAPI CONTEXT *context,
Fapi CB Sign callback,
void *userData) ;
11.3.2 Parameters
e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL.
o callback is the pointer to the callback function for signature based authentication. callback MUST NOT be
NULL.
e userData is a pointer that is provided to all callback invocations. userData MAY be NULL.

11.3.3 Return Values

e TSS2 RC_SUCCESS: if the function call was a success.

e TSS2 FAPI_RC _BAD_REFERENCE: if context or callback is NULL.

e TSS2_FAPI_RC_BAD_CONTEXT: if context corruption is detected.

e TSS2_FAPI_RC_MEMORY: if the FAPI cannot allocate enough memory for internal operations or return
parameters.

e TSS2 FAPI_RC _BAD_SEQUENCE: if this function is called while the context has another asynchronous
operation outstanding.

11.3.4 Fapi_CB_Sign
The Fapi_CB_Branch type describes a callback function prototype that returns a signature from the application to
the FAPI. The purpose of this signature is to authorize a policy execution containing a PolicySigned element.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

The publicKey is the name of the public key. The publicKeyHint is a human readable string from the policy, which
helps the user to identify the correct key to be used.

11.3.4.1 Prototype
typedef TSS2 RC (*Fapi CB Sign) (
FAPI CONTEXT *context,

char const *description,
uint8 t const *publicKey,

char const *publicKeyHint,
uint32 t hashAlg,
uint8 t const *dataToSign,
size t dataToSignSize,
uint8 t **signature,

size t *signatureSize,
void *userData) ;

11.3.4.2 Parameters

e context is a pointer to the opaque context blob currently being operated on. context MUST NOT be NULL

e publicKey is the public key that will be used by the TPM to verify the signature in PEM encoding. publicKey
MUST NOT be NULL.

¢ publicKeyHint is human readable information, regarding the public key to be used. publicKeyHint MAY be
NULL.

e hashAlg is the hash algorithm to be used during signing.

o dataToSign is the data to be hashed and signed by the application. dataToSign MUST NOT be NULL.

e dataToSignSize is the size of dataToSign.

e signature returns the signature over dataToSign. signature MUST NOT be NULL.

e signatureSize returns the size of signature. signatureSize MUST NOT be NULL.

e userData is the same pointer passed in the userData parameter during Fapi_SetAuthCB.

11.3.4.3 Return Values
e TSS2 RC_SUCCESS: if the function call was a success.
e TSS2 FAPI_RC_TRY_AGAIN: if the function needs to be invoked again.
e TSS2 FAPI_RC_CB_FAILURE: if the signature operation failed.

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

Appendix: HEADER FILE

/* SPDX-License-Identifier: BSD-2 */

/***

* Copyright 2017-2018, Fraunhofer SIT sponsored by Infineon Technologies AG

* All rights reserved.
***/

#ifndef TSS2 FAPI H
#define TSS2 FAPI H

#include "tss2 esys.h"

#ifdef cplusplus
extern "C" {
#endif

/* Type definitions */
typedef struct FAPI CONTEXT FAPI CONTEXT;
/* Context functions */

TSS2 RC Fapi Initialize(
FAPI CONTEXT **context,
char const *uri);

TSS2 RC Fapi Initialize Async(
FAPI CONTEXT **context,
char const *uri);

TSS2 RC Fapi Initialize Finish(
FAPI CONTEXT **context);

void Fapi Finalize(
FAPI CONTEXT **context);

void Fapi Free (
void *ptr);

TSS2 RC Fapi GetInfo(
FAPI CONTEXT *context,
char **info);

TSS2 RC Fapi GetInfo Async(
FAPI CONTEXT *context);

TSS2 RC Fapi GetInfo Finish(
FAPI CONTEXT *context,
char **info) ;

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

/* General functions */

TSS2 RC Fapi Provision
FAPTI CONTEXT *context,

char const *policyPathEh,

char const *authValuekh,

char const *policyPathSh,

char const *authValueSh,

char const *authValuelockout) ;

TSS2 RC Fapi Provision Async(
FAPTI CONTEXT *context,

char const *policyPathEh,
char const *authValueEh,
char const *policyPathSh,
char const *authValueSh,
char const *authValueLockout) ;

TSS2 RC Fapi Provision Finish(
FAPI CONTEXT *context) ;

TSS2 RC Fapi GetPlatformCertificates
FAPI CONTEXT *context,
uint8 t **certificates,
size t *certificatesSize);

TSS2 RC Fapi GetPlatformCertificates Async(
FAPI CONTEXT *context) ;

TSS2 RC Fapi GetPlatformCertificates Finish(
FAPI CONTEXT *context,
uint8 t **certificates,
size t *certificatesSize);

TSS2 RC Fapi TPM GetRandom/(
FAPI CONTEXT *context,
size t numBytes,
uint8 t **data) ;

TSS2 RC Fapi TPM GetRandom Async (
FAPI CONTEXT *context,
size t numBytes) ;

TSS2 RC Fapi TPM GetRandom Finish(
FAPI CONTEXT *context,
uint8 t **data) ;

TSS2 RC Fapi Import(
FAPTI CONTEXT *context,
char const *path,

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW

© TCG 2019

TCG Feature API (FAPI) Specification

char const *importData) ;

TSS2 RC Fapi Import Async(
FAPTI CONTEXT *context,
char const *path,
char const *importData);

TSS2 RC Fapi Import Finish(
FAPI CONTEXT *context) ;

TSS2 RC Fapi List(
FAPTI CONTEXT *context,
char const *searchPath,
char **pathList) ;

TSS2 RC Fapi List Async(
FAPI CONTEXT *context,
char const *searchPath);

TSS2 RC Fapi List Finish(
FAPI CONTEXT *context,
char **pathlist);

TSS2 RC Fapi Delete(
FAPI CONTEXT *context,
char const *path);

TSS2 RC Fapi Delete Async(
FAPI CONTEXT *context,
char const *path);

TSS2 RC Fapi Delete Finish(
FAPI CONTEXT *context) ;

TSS2 RC Fapi_ ChangeAuth (
FAPI CONTEXT *context,
char const *entityPath,
char const *authValue);

TSS2 RC Fapi ChangeAuth Async(
FAPI CONTEXT *context,
char const *entityPath,
char const *authValue):;

TSS2 RC Fapi_ ChangeAuth Finish(
FAPI CONTEXT *context) ;

TSS2 RC Fapi SetDescription(
FAPI CONTEXT *context,
char const *path,

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW

© TCG 2019

TCG Feature API (FAPI) Specification

char const *description);

TSS2 RC Fapi SetDescription Async(
FAPTI CONTEXT *context,
char const *path,
char const *description);

TSS2 RC Fapi SetDescription Finish (
FAPI CONTEXT *context) ;

TSS2 RC Fapi GetDescription (
FAPTI CONTEXT *context,
char const *path,
char **description);

TSS2 RC Fapi GetDescription Async(
FAPI CONTEXT *context,
char const *path);

TSS2 RC Fapi GetDescription Finish(
FAPI CONTEXT *context,
char **description);

TSS2 RC Fapi SetAppData (
FAPI CONTEXT *context,

char const *path,
uint8 t const *appData,
size t appDataSize) ;

TSS2 RC Fapi SetAppData Async (
FAPI CONTEXT *context,

char const *path,
uint8 t const *appData,
size t appDataSize) ;

TSS2 RC Fapi SetAppData Finish(
FAPI CONTEXT *context) ;

TSS2 RC Fapi_ GetAppData (
FAPI CONTEXT *context,

char const *path,
uint8 t **appData,
size t *appDataSize) ;

TSS2 RC Fapi GetAppData Async (
FAPI CONTEXT *context,
char const *path);

TSS2 RC Fapi GetAppData Finish(
FAPI CONTEXT *context,

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW

© TCG 2019

TCG Feature API (FAPI) Specification

uint8 t
size t

**appDbata,
*appDbataSize);

TSS2 RC Fapi GetTPMBlobs (

FAPI CONTEXT
char const
uint8 t

size t

uint8 t

size t

char

*context,

*path,
**tpm2bPublic,

*tpm2bPublicSize,
**tpm2bPrivate,

*tpm2bPrivateSize
**policy);

TSS2 RC Fapi GetTPMBlobs Async(

FAP I_CONTEXT
char const

*context,
*path) ;

TSS2 RC Fapi GetTPMBlobs Finish (

FAPI CONTEXT
uint8 t
size t
uint8 t
size t

char

/* Key functions *

*context,
**tpm2bPublic,

*tpm2bPublicSize,
**tpm2bPrivate,

*tpm2bPrivateSize,
**policy);

/

TSS2 RC Fapi CreateKey (

FAPI CONTEXT

char const
char const
char const
char const

*context,
*keyPath,
*type,
*policyPath,
*authvalue) ;

TSS2 RC Fapi CreateKey Async(

FAPI CONTEXT

char const
char const
char const
char const

*context,
*keyPath,
*type,
*policyPath,
*authvalue) ;

TSS2 RC Fapi CreateKey Finish (

FAPI CONTEXT

TSS2 RC Fapi_ Sign(

FAPI CONTEXT
char const
char const
uint8 t const
size t

uint8 t

TCG Feature API (FAPI) Specification |

*context) ;

*context,
*keyPath,
*padding,
*digest,
digestSize,
**signature,

Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW

© TCG 2019

TCG Feature API (FAPI) Specification

size t *signatureSize,
char **publicKey,
char **certificate);

TSS2 RC Fapi Sign Async(
FAPTI CONTEXT *context,

char const *keyPath,
uint8 t const *digest,
size t digestSize);

TSS2 RC Fapi Sign Finish(
FAPTI CONTEXT *context,

uint8 t **signature,
size t *signatureSize,
char **publicKey,
char **certificate);

TSS2 RC Fapi VerifySignature (
FAPI CONTEXT *context,

char const *keyPath,
uint8 t const *signature,
size t signatureSize,
uint8 t const *digest,

size t digestSize);

TSS2 RC Fapi VerifySignature Async(
FAPI CONTEXT *context,

char const *keyPath,
uint8 t const *signature,
size t signatureSize,
uint8 t const *digest,

size t digestSize);

TSS2 RC Fapi VerifySignature Finish(
FAPI CONTEXT *context) ;

TSS2 RC Fapi Encrypt(
FAPI CONTEXT *context,

char const *keyPath,

char const *policyPath,
uint8 t const *plaintext,
size t plaintextSize,
char **cipherText) ;

TSS2 RC Fapi Encrypt Async(
FAPI CONTEXT *context,

char const *keyPath,

char const *policyPath,
uint8 t const *plaintext,

size t plaintextSize);

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

TSS2 RC Fapi Encrypt Finish(
FAPI CONTEXT *context,
char **cipherText) ;

TSS2 RC Fapi Decrypt (
FAPI CONTEXT *context,

char const *cipherText,
uint8 t **plainText,
size t *plainTextSize);

TSS2 RC Fapi Decrypt Async(
FAPI CONTEXT *context,
char const *cipherText);

TSS2 RC Fapi Decrypt Finish(
FAPI CONTEXT *context,
uint8 t **plainText,
size t *plainTextSize);

TSS2 RC Fapi SetCertificate(
FAPI CONTEXT *context,
char const *path,
char const *x509certData) ;

TSS2 RC Fapi SetCertificate Async(
FAPI CONTEXT *context,
char const *path,
char const *x509certData) ;

TSS2 RC Fapi_ SetCertificate Finish(

FAPI CONTEXT *context) ;

TSS2 RC Fapi GetCertificate(
FAPI CONTEXT *context,
char const *path,
char **x509certData) ;

TSS2 RC Fapi GetCertificate Async(
FAPI CONTEXT *context,
char const *path);

TSS2 RC Fapi GetCertificate Finish(
FAPI CONTEXT *context,
char **x509certData) ;

TSS2 RC Fapi ExportKey (
FAPI CONTEXT *context,
char const *pathOfKeyToDuplicate,
char const *pathToPublicKeyOfNewParent,

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW

© TCG 2019

TCG Feature API (FAPI) Specification

char **exportedData) ;

TSS2 RC Fapi ExportKey Async(
FAPTI CONTEXT *context,
char const *pathOfKeyToDuplicate,
char const *pathToPublicKeyOfNewParent) ;

TSS2 RC Fapi ExportKey Finish(
FAPI CONTEXT *context,
char **exportedData) ;

/* Seal functions */

TSS2 RC Fapi CreateSeal (
FAPI CONTEXT *context,

char const *path,
char const *type,
size t size,
char const *policyPath,
char const *authValue,

uint8 t const *data);

TSS2 RC Fapi CreateSeal Async(
FAPI CONTEXT *context,

char const *path,
char const *type,
size t size,
char const *policyPath,
char const *authValue,

uint8 t const *data);

TSS2 RC Fapi CreateSeal Finish(
FAPI CONTEXT *context) ;

TSS2 RC Fapi Unseal (
FAPI CONTEXT *context,

char const *path,
uint8 t **data,
size t *size) ;

TSS2 RC Fapi Unseal Async(
FAPI CONTEXT *context,
char const *path);

TSS2 RC Fapi Unseal Finish(
FAPI CONTEXT *context,
uint8 t **data,
size t *size);

/* Policy functions */

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW

© TCG 2019

TCG Feature API (FAPI) Specification

TSS2 RC Fapi PolicyExport (
FAPI CONTEXT *context,
char const *path,
char **9JsonPolicy);

TSS2 RC Fapi PolicyExport Async(
FAPTI CONTEXT *context,
char const *path);

TSS2 RC Fapi PolicyExport Finish(
FAPTI CONTEXT *context,
char **9JsonPolicy);

TSS2 RC Fapi Policy AuthorizePolicy(
FAPI CONTEXT *context,

char const *policyPath,
char const *keyPath,
uint8 t const *policyRef,

size t policyRefSize);

TSS2 RC Fapi Policy AuthorizePolicy Async(
FAPI CONTEXT *context,

char const *policyPath,
char const *keyPath,
uint8 t const *policyRef,

size t policyRefSize);

TSS2 RC Fapi Policy AuthorizePolicy Finish(
FAPI CONTEXT *context) ;

TSS2 RC Fapi WriteAuthorizeNv (
FAPI CONTEXT *context,
char const *nvPath,
char const *policyPath);

TSS2 RC Fapi WriteAuthorizeNv_ Async (
FAPI CONTEXT *context,
char const *nvPath,
char const *policyPath);

TSS2 RC Fapi WriteAuthorizeNv Finish(
FAPI CONTEXT *context);

/* Attestation functions */

TSS2 RC Fapi_ PcrRead(
FAPI CONTEXT *context,
uint32 t pcrindex,
uint8 t **pcrValue,

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW

© TCG 2019

TCG Feature API (FAPI) Specification

size t *pcrValueSize,
char **pcrLog) ;

TSS2 RC Fapi PcrRead Async(
FAPI CONTEXT *context,
uint32 t pcrindex) ;

TSS2 RC Fapi PcrRead Finish(
FAPI CONTEXT *context,

uint8 t **pcrValue,
size t *pcrValueSize,
char **pcrLog) ;

TSS2 RC Fapi PcrExtend(
FAPI CONTEXT *context,

uint32 t pcriIndex,
uint8 t const *data,

size t dataSize,
char const *logData);

TSS2 RC Fapi PcrExtend Async(
FAPI CONTEXT *context,

uint32 t pcriIndex,
uint8 t const *data,

size t dataSize,
char const *logData) ;

TSS2 RC Fapi PcrExtend Finish (
FAPI CONTEXT *context) ;

TSS2 RC Fapi_Quote (
FAPI CONTEXT *context,

uint32 t *pcrlList,

size t pcrListSize,
char const *keyPath,

char const *quoteType,
uint8 t const *qualifyingData,
size t qualifyingDataSize,
char **quoteInfo,
uint8 t **signature,

size t *signatureSize,
char **pcrlLog,

char *certificate);

TSS2 RC Fapi_ Quote Async(
FAPI CONTEXT *context,

uint32 t *pcrlist,
size t pcrListSize,
char const *keyPath,
char const *quoteType,

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW

© TCG 2019

TCG Feature API (FAPI) Specification

uint8 t const *qualifyingData,
size t qualifyingDataSize);

TSS2 RC Fapi Quote Finish(
FAPI CONTEXT *context,

char **quotelInfo,
uint8 t **signature,
size t *signatureSize,
char **pcrEventLog,
char *certificate);

TSS2 RC Fapi VerifyQuote (
FAPI CONTEXT *context,

char const *publicKeyPath,
uint8 t const *qualifyingData,
size t qualifyingDataSize,
char const *quotelnfo,

uint8 t const *signature,

size t signatureSize,

char const *pcrlogqg) ;

TSS2 RC Fapi VerifyQuote Async(
FAPI CONTEXT *context,

char const *publicKeyPath,
uint8 t const *qualifyingData,
size t qualifyingDataSize,
char const *quotelnfo,

uint8 t const *signature,

size t signatureSize,

char const *pcrlogqg) ;

TSS2 RC Fapi VerifyQuote Finish (
FAPI CONTEXT *context) ;

/* NV functions */

TSS2 RC Fapi CreateNv (
FAPI CONTEXT *context,

char const *path,
char const *type,
size t size,
char const *policyPath,
char const *authValue):;

TSS2 RC Fapi CreateNv_ Async (
FAPI CONTEXT *context,

char const *path,
size t size,
char const *policyPath,
char const *authValue):;

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

TSS2 RC Fapi CreateNv Finish(
FAPI CONTEXT *context) ;

TSS2 RC Fapi NvRead(
FAPTI CONTEXT *context,

char const *path,
uint8 t **data,
size t *size,
char **logDhata) ;

TSS2 RC Fapi NvRead Async(
FAPI CONTEXT *context,
char const *path);

TSS2 RC Fapi NvRead Finish(
FAPI CONTEXT *context,

uint8 t **data,
size t *size,
char **logDbata) ;

TSS2 RC Fapi NvWrite(
FAPI CONTEXT *context,

char const *path,
uint8 t const *data,
size t size);

TSS2 RC Fapi NvWrite Async(
FAPI CONTEXT *context,

char const *path,
uint8 t const *data,
size t size);

TSS2 RC Fapi NvWrite Finish (
FAPI CONTEXT *context) ;

TSS2 RC Fapi NvExtend(
FAPI CONTEXT *context,

char const *path,
uint8 t const *data,
size t size,
char const *logData);

TSS2 RC Fapi NvExtend Async (
FAPI CONTEXT *context,

char const *path,
uint8 t const *data,
size t size,
char const *logData);

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

TCG Feature API (FAPI) Specification

TSS2 RC Fapi NvExtend Finish(
FAPI CONTEXT *context);

TSS2 RC Fapi NvIncrement (
FAPI CONTEXT *context,
char const *path);

TSS2 RC Fapi NvIncrement Async(
FAPI CONTEXT *context,
char const *path);

TSS2 RC Fapi NvIncrement Finish (
FAPI CONTEXT *context) ;

TSS2 RC Fapi NvSetBits (
FAPI CONTEXT *context,
char const *path,
uint64 t bitmap) ;

TSS2 RC Fapi NvSetBits Async(
FAPI CONTEXT *context,
char const *path,
uint64 t bitmap) ;

TSS2 RC Fapi NvSetBits Finish (
FAPI CONTEXT *context) ;

typedef TSS2 RC (*Fapi CB Auth) (
FAPI CONTEXT *context,

char const *description,
char **auth,
void *userData) ;

TSS2 RC Fapi SetAuthCB(
FAPI CONTEXT *context,
Fapi CB Auth callback,
void *userData) ;

typedef TSS2 RC (*Fapi CB Branch) (
FAPI_CONTEXT *context,

char const *description,
char const **branchNames,
size t numBranches,
size t *selectedBranch,
void *userData) ;

TSS2 RC Fapi_SetBranchCB (
FAPI CONTEXT *context,
Fapi CB Branch callback,
void *userData) ;

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW

© TCG 2019

TCG Feature API (FAPI) Specification

typedef TSS2 RC (*Fapi CB Sign) (
FAPI CONTEXT *context,

char const *description,
char const *publicKey,

char const *publicKeyHint,
uint32 t hashAlg,
uint8 t const *dataToSign,
size t dataToSignSize,
uint8 t **signature,

size t *signatureSize,
void *userData) ;

TSS2 RC Fapi SetSignCB(
FAPI CONTEXT *context,
Fapi CB Sign callback,
void *userData) ;

#ifdef cplusplus
}
#endif

#endif /* TSS2 FAPI H */

TCG Feature API (FAPI) Specification | Version 0.94 | Revision 04 | 9/25/2019 | PUBLIC REVIEW © TCG 2019

	CONTENTS
	1 Information and Document Scope
	1.1 Scope of this Specification
	1.2 Acronyms
	1.3 TCG Software Stack 2.0 (TSS 2.0) Specification Structure
	1.4 References

	2 Introduction
	2.1 Asynchronous invocation model

	3 Structures and data types
	3.1 FAPI_CONTEXT
	3.2 Entity paths
	3.2.1 Key paths
	3.2.2 NV paths
	3.2.3 Policy Paths

	3.3 Object types
	3.4 Cryptographic profiles
	3.5 Policies and policy templates encoding
	3.6 Exported key encoding
	3.7 PCR event log encoding
	3.8 QuoteInfo encoding
	3.9 Encrypted data encoding

	4 Context functions
	4.1 Fapi_Initialize
	4.1.1 Prototype
	4.1.2 Parameters
	4.1.3 Return Values

	4.2 Fapi_Finalize
	4.2.1 Prototype
	4.2.2 Parameters
	4.2.3 Return Values

	4.3 Fapi_Free
	4.3.1 Prototype
	4.3.2 Parameters
	4.3.3 Return Values

	4.4 Fapi_GetInfo
	4.4.1 Prototype
	4.4.2 Parameters
	4.4.3 Return Values

	5 General functions
	5.1 Fapi_Provision
	5.1.1 Prototype
	5.1.2 Parameters
	5.1.3 Return Values

	5.2 Fapi_GetPlatformCertificates
	5.2.1 Prototype
	5.2.2 Parameters
	5.2.3 Return Values

	5.3 Fapi_GetRandom
	5.3.1 Prototype
	5.3.2 Parameters
	5.3.3 Return Codes

	5.4 Fapi_Import
	5.4.1 Prototype
	5.4.2 Parameters
	5.4.3 Return Values

	5.5 Fapi_List
	5.5.1 Prototype
	5.5.2 Parameters
	5.5.3 Return Values

	5.6 Fapi_Delete
	5.6.1 Prototype
	5.6.2 Parameters
	5.6.3 Return Values

	5.7 Fapi_ChangeAuth
	5.7.1 Prototype
	5.7.2 Parameters
	5.7.3 Return Values

	5.8 Fapi_SetDescription
	5.8.1 Prototype
	5.8.2 Parameters
	5.8.3 Return Values

	5.9 Fapi_GetDescription
	5.9.1 Prototype
	5.9.2 Parameters
	5.9.3 Return Values

	5.10 Fapi_SetAppData
	5.10.1 Prototype
	5.10.2 Parameters
	5.10.3 Return Values

	5.11 Fapi_GetAppData
	5.11.1 Prototype
	5.11.2 Parameters
	5.11.3 Return Values

	5.12 Fapi_GetTpmBlobs
	5.12.1 Prototype
	5.12.2 Parameters
	5.12.3 Return Values

	6 Key functions
	6.1 Fapi_CreateKey
	6.1.1 Prototype
	6.1.2 Parameters
	6.1.3 Return Values

	6.2 Fapi_Sign
	6.2.1 Prototype
	6.2.2 Parameters
	6.2.3 Return Values

	6.3 Fapi_VerifySignature
	6.3.1 Prototype
	6.3.2 Parameters
	6.3.3 Return Values

	6.4 Fapi_Encrypt
	6.4.1 Prototype
	6.4.2 Parameters
	6.4.3 Return Values

	6.5 Fapi_Decrypt
	6.5.1 Prototype
	6.5.2 Parameters
	6.5.3 Return Values

	6.6 Fapi_SetCertificate
	6.6.1 Prototype
	6.6.2 Parameters
	6.6.3 Return Values

	6.7 Fapi_GetCertificate
	6.7.1 Prototype
	6.7.2 Parameters
	6.7.3 Return Values

	6.8 Fapi_ExportKey
	6.8.1 Prototype
	6.8.2 Parameters
	6.8.3 Return Values

	7 Seal commands
	7.1 Fapi_CreateSeal
	7.1.1 Prototype
	7.1.2 Parameters
	7.1.3 Return Values

	7.2 Fapi_Unseal
	7.2.1 Prototype
	7.2.2 Parameters
	7.2.3 Return Values

	8 Policy functions
	8.1 Fapi_ExportPolicy
	8.1.1 Prototype
	8.1.2 Parameters
	8.1.3 Return Values

	8.2 Fapi_AuthorizePolicy
	8.2.1 Prototype
	8.2.2 Parameters
	8.2.3 Return Values

	8.3 Fapi_WriteAuthorizeNv
	8.3.1 Prototype
	8.3.2 Parameters
	8.3.3 Return Values

	9 Attestation functions
	9.1 Fapi_PcrRead
	9.1.1 Prototype
	9.1.2 Parameters
	9.1.3 Return Values

	9.2 Fapi_PcrExtend
	9.2.1 Prototype
	9.2.2 Parameters
	9.2.3 Return Values

	9.3 Fapi_Quote
	9.3.1 Prototype
	9.3.2 Parameters
	9.3.3 Return Values

	9.4 Fapi_VerifyQuote
	9.4.1 Prototype
	9.4.2 Parameters
	9.4.3 Return Values

	10 NV functions
	10.1 Fapi_CreateNv
	10.1.1 Prototype
	10.1.2 Parameters
	10.1.3 Return Values

	10.2 Fapi_NvRead
	10.2.1 Prototype
	10.2.2 Parameters
	10.2.3 Return Values

	10.3 Fapi_NvWrite
	10.3.1 Prototype
	10.3.2 Parameters
	10.3.3 Return Values

	10.4 Fapi_NvExtend
	10.4.1 Prototype
	10.4.2 Parameters
	10.4.3 Return Values

	10.5 Fapi_NvIncrement
	10.5.1 Prototype
	10.5.2 Parameters
	10.5.3 Return Values

	10.6 Fapi_NvSetBits
	10.6.1 Prototype
	10.6.2 Parameters
	10.6.3 Return Values

	11 FAPI Callbacks
	11.1 Fapi_SetAuthCB
	11.1.1 Prototype
	11.1.2 Parameters
	11.1.3 Return Values
	11.1.4 Fapi_CB_Auth
	11.1.4.1 Prototype
	11.1.4.2 Parameters
	11.1.4.3 Return Values

	11.2 Fapi_SetBranchCB
	11.2.1 Prototype
	11.2.2 Parameters
	11.2.3 Return Values
	11.2.4 Fapi_CB_Branch
	11.2.4.1 Prototype
	11.2.4.2 Parameters
	11.2.4.3 Return Values

	11.3 Fapi_SetSignCB
	11.3.1 Prototype
	11.3.2 Parameters
	11.3.3 Return Values
	11.3.4 Fapi_CB_Sign
	11.3.4.1 Prototype
	11.3.4.2 Parameters
	11.3.4.3 Return Values

	Appendix: HEADER FILE

