
GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Clarify your verifiable
system design

TrustFabric

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

This presentation contains a
series of questions for you to
answer that will help you clarify your
verifiable system design.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

The questions will help
you think through
what’s important for to log,
who relies on it and
who will verify it.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Each question has an example
answer from a Binary Transparency
scenario to help you.

Example answers for Certificate
Transparency are in the appendix.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

About Binary Transparency Example

PhoneCo are a smartphone manufacturer.

They make software updates and sign them
with their private key.

Every phone's updater app checks the
update against the known public key before
installing it.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

About Binary Transparency Example

Problem

What if someone stole PhoneCo's private
signing key?

They could create a malicious update and
quietly deliver it to targeted users.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

About Binary Transparency Example

Binary Transparency aims to discourage this
malicious activity by making it visible.

It introduces a verifiable log with an entry
for each software update.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Questions

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

What information is in each
log entry?
Break down what data is stored in an individual log entry.
Log entries are permanently recorded so it’s worth
carefully considering what data is stored.

QUESTION

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

What information is in each log entry? Example answer for Binary Transparency

The version number and hash of a
software update, signed with
PhoneCo's private key.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Who or what uses the entries in
the log and how?
There is no point in creating a log that no person or thing
will ever use or look at.

QUESTION

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Who or what uses the entries in the log and how? Example answer for Binary Transparency

Update app

Before installing a new update, the app
checks that it exists in the log and only
installs it if so.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

What types of malicious
behaviour are you considering?
There may be lots of different scenarios, that's OK. Write
them all out and pick the most important one to start with.

QUESTION

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

What types of malicious behaviour are you
considering?

Example answer for Binary Transparency

● A malicious actor stealing the manufacturer's
signing key and issuing a malicious software
update with a new version number.

● The manufacturer deliberately creating a
malicious release e.g. containing malware.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Can you define a "malicious"
log entry?
Once you've described a malicious log entry you can start
thinking about how they could be verified.

If your log entries contain lots of information, there may be
several ways a log entry could be malicious.

QUESTION

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Hash unrecognised

The hash is for a software update
that was made by someone other
than the manufacturer (assumed
to be malicious).

Duplicated version

The version number is already
present in a previous log entry.

Malicious update

The hash refers to a software
update that's malicious e.g.
contains malware.

A log entry is malicious if:

Can you define a “malicious” log entry? Example answer for Binary Transparency

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Who or what could
authoritatively verify if an
entry were malicious?
Think about who’s ultimately in a position to verify whether
an entry is good or malicious.

It may require multiple entities to verify a log entry (based
on the different ways it could be malicious). List all the
different parties that could verify and how.

QUESTION

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Hash unrecognised

The hash is for a software update
that was made by someone other
than the manufacturer (assumed
to be malicious).

↓

Only the phone manufacturer
can authoritatively say if a
particular hash in a log entry
represents a genuine release or
was made by someone else.

Duplicated version

The version number is already
present in a previous log entry.

↓

Anyone with access to log entries
can look for duplicate version
numbers. The phone updater
app verifies an entry is not a
duplicate before installing an
update.

Malicious update

The hash refers to a software
update that's malicious e.g.
contains malware.

↓

A third party security firm could
analyse software updates for
malware and other malicious
code.

Who or what could authoritatively verify if an
entry were malicious?

Example answer for Binary Transparency

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Roughly how many verifiers
are required to verify every
log entry?
There can be any number of verifiers depending
on the claim.

QUESTION

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Hash unrecognised

The hash is for a software update
that was made by someone other
than the manufacturer (assumed
to be malicious).

↓

1 verifier - the phone
manufacturer.

Duplicated version

The version number is already
present in a previous log entry.

↓

1 verifier - anyone that can see
the contents of the log.

Malicious update

The hash refers to a software
update that's malicious e.g.
contains malware.

↓

At least 1 verifier, ideally lots of
different security companies.

Roughly how many verifiers are required to
verify every log entry?

Example answer for Binary Transparency

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Are all those authoritative
verifiers continually monitoring
all entries in the log?
Ideally every authoritative verifier should check every log
entry as soon as it's logged, although that's often not
possible.

If log entries (or parts of those entries) are never logged,
anyone relying on the data in those entries is vulnerable to
malicious behaviour.

QUESTION

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Hash unrecognised

The hash is for a software update
that was made by someone other
than the manufacturer (assumed
to be malicious).

↓

Yes, the security team at the
phone manufacturer
automatically verify that every log
entry hash is present in the build
team's release log.

Duplicated version

The version number is already
present in a previous log entry.

↓

Yes, in effect, the phone updater
app only installs an update after
verifying its log entry is not a
duplicate.

The security team also continually
monitors for duplicate versions.

Malicious update

The hash refers to a software
update that's malicious e.g.
contains malware.

↓

No. Occasionally a security
company audits a software
update for malicious code, but it's
a manual, time consuming
process. Not all versions are
inspected.

Are all those authoritative verifiers continually
monitoring all entries in the log?

Example answer for Binary Transparency

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

If all entries are not continually
verified, how might they be in
the future?
Even if entries aren't fully verified now, it's good to think
about whether it would be possible in the future.

QUESTION

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Hash unrecognised

The hash is for a software update
that was made by someone other
than the manufacturer (assumed
to be malicious).

Duplicated version

The version number is already
present in a previous log entry.

Malicious update

The hash refers to a software
update that's malicious e.g.
contains malware.

↓

Someone (manufacturer?
Competitor? Regulator?) could
pay one or more security
companies to audit every
software update.

If all entries are not continually verified, how
might they be in the future?

Example answer for Binary Transparency

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

What happens if the verifiers
discover a malicious entry?

QUESTION

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Hash unrecognised

The hash is for a software update
that was made by someone other
than the manufacturer (assumed
to be malicious).

↓

The security team concludes their
private key has been
compromised in order to sign a
malicious update.

Duplicated version

The version number is already
present in a previous log entry.

↓

The phone updater app ignores
any entries with a duplicate
version number.

The security team investigates
how the duplicate version log
entry occurred.

Malicious update

The hash refers to a software
update that's malicious e.g.
contains malware.

↓

The third party security company
contacts the manufacturer and
starts an investigation into how
the malicious code got into the
update.

What happens if the verifiers discover a
malicious entry?

Example answer for Binary Transparency

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

What action could be taken as
a result of a malicious entry?
If a malicious entry were discovered, there must be some
sort of recourse in order to disincentivise malicious
behaviour in the first place.

Additionally, sometimes it's also possible to prevent those
using the log from relying on the malicious action.

QUESTION

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Hash unrecognised

The hash is for a software update
that was made by someone other
than the manufacturer (assumed
to be malicious).

↓

The security team follows an
incident response procedure,
including rotating their private
keys.

They use an out-of-band channel
to blacklist the update. The
updater app skips the update.

Duplicated version

The version number is already
present in a previous log entry.

↓

If the security team's
investigation concludes their
private key was stolen, they follow
an incident response procedure.

Malicious update

The hash refers to a software
update that's malicious e.g.
contains malware.

↓

The security company publishes
an article about the malicious
code it found in the software. The
manufacturer gets a bad
reputation and people stop
buying its phones.

What action could be taken as a result of a
malicious entry?

Example answer for Binary Transparency

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Why does the fact that an
entry is in the log make it more
trustworthy?
Consider why storing data in a log gives more confidence
to those that rely on it in your scenario.

QUESTION

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Hash unrecognised

The hash is for a software update
that was made by someone other
than the manufacturer (assumed
to be malicious).

↓

As all entries are in the log, the
security team can see and verify
them. This gives confidence they
would spot a bad log entry and
prevent installation.

Duplicated version

The version number is already
present in a previous log entry.

← ditto

Malicious update

The hash refers to a software
update that's malicious e.g.
contains malware.

↓

The log means there's a
permanent record, so the
manufacturer is unlikely to risk
making a malicious update and
having that discovered.

Why does the fact that an entry is in the log
make it more trustworthy?

Example answer for Binary Transparency

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

If an entry is in the log and all entries are
actively verified, and there's some recourse
in the event of a malicious entry, that gives
confidence in the log entry itself.

If either condition is absent, it doesn't give
any confidence.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

You’ve finished 🎉
Answering these questions should
have helped you clarify the design of
your tamper-evident log and
verifiable system.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Next try completing a formal analysis
using the Claimant Model
framework.

http://x

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Appendix

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

About Certificate Transparency

Certificate Authorities (CAs) issue
certificates to domain owners.

CAs should never issue a certificate without
the domain owner's consent.

Browsers trust any certificate that's issued
by a trusted CA.

This is fundamental to the security
of HTTPS.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

About Certificate Transparency

Problem

What if someone stole a CA's private signing key?

What is a CA made a mistake, or acted
maliciously?

An attacker could create a fake certificate and
quietly deliver it to targeted users, allowing them
to perform a man-in-the-middle attack.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

About Certificate Transparency

Certificate Transparency aims to
discourage this malicious activity by making
it visible.

It introduces a verifiable log with an entry
for every certificate issued by a CA.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

What information is in each log entry? Example answer for Certificate Transparency

The newly issued certificate, signed by the
Certificate Authority.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Who or what uses the entries in the log and how? Example answer for Certificate Transparency

Browsers

When a browser receives a certificate, it
checks that it exists* in one of a list of logs
that it already knows about.

*Technically it checks a promise from the
log that it will be entered, but it amounts to
the same thing.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

What types of malicious behaviour are you
considering?

Example answer for

● A Certificate Authority deliberately issuing a
certificate for a domain without the domain
owner's consent.

● A malicious actor stealing a CA's signing key and
issuing a bad certificate in the name of the CA.

Certificate Transparency

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Can you define a "malicious" log entry? Example answer for Certificate Transparency

A log entry is malicious if the certificate was
issued without the consent of the domain
owner.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Who or what could authoritatively verify whether
an entry were malicious?

Example answer for Certificate Transparency

A log entry is malicious if the certificate was
issued without the consent of the domain
owner.

Only the domain owner can authoritatively
confirm whether they asked for a certificate
to be issued for their domain. They compare it
against the certificates they generate
themselves.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Roughly how many verifiers are required to verify
every log entry?

Example answer for Certificate Transparency

A log entry is malicious if the certificate was
issued without the consent of the domain
owner.

In a perfect world, millions (every domain
owner). In reality, fewer if domain owners
delegated to another party e.g. their hosting
provider.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Are all those authoritative verifiers continually
monitoring all entries in the log?

Example answer for Certificate Transparency

A log entry is malicious if the certificate was
issued without the consent of the domain
owner.

No, in general. Most domain owners don't
monitor the logs to check for certificates that
they didn't request. Some people use services
such as CertSpotter, Google Domains.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

If all entries are not continually verified, how
might they be in the future?

Example answer for Certificate Transparency

A log entry is malicious if the certificate was
issued without the consent of the domain
owner.

● Companies could start running their own
infrastructure to verify CT logs (Facebook
and a few others currently do)

● Domain owners could start using services
like crt.sh, CertSpotter.

● For less technical domain owners, hosting
companies that offer domains and
certificates could start checking CT logs
on behalf of their clients.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

What happens if the verifiers discover a
malicious entry?

Example answer for Certificate Transparency

A log entry is malicious if the certificate was
issued without the consent of the domain
owner.

● The domain owner tells the browser
security teams that they did not authorize
a particular certificate to be issued.

● The domain owner might tell a journalist
about the CA misbehaving.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

What action could be taken as a result of a
malicious entry?

Example answer for Certificate Transparency

A log entry is malicious if the certificate was
issued without the consent of the domain
owner.

The browser security team decides on a case
by case basis. They could take actions against
the CA:

● In the extreme, remove them from the
browser's certificate store.

● Require the CA to undergo a security audit.

● Require the CA to rotate its signing keys and
reissue all certificates.

This doesn't help the user who already trusted
the malicious certificate, but does make
malicious certificates overall less likely.

Further, a journalist could publish a damaging
article about the CA which would harm their
reputation.

GOOGLE TRUSTFABRIC | THE CLAIMANT MODEL

Why does the fact that an entry is in the log make
it more trustworthy?

Example answer for Certificate Transparency

A log entry is malicious if the certificate was
issued without the consent of the domain
owner.

A browser has more confidence that a
certificate is not malicious since the certificate
is available for all to see. The rationale is that a
CA is less likely to issue a malicious certificate
since they're more likely to get caught
(providing someone noticed the bad log entry.)

