
The ratification by IUGS of the recently defined base of
the Zanclean Stage and of the Pliocene Series brings
years of controversy to an end. The boundary-stratotype
of the stage is located in the Eraclea Minoa section on
the southern coast of Sicily (Italy), at the base of the
Trubi Formation. The age of the Zanclean and Pliocene
GSSP at the base of the stage is 5.33 Ma in the orbitally
calibrated time scale, and lies within the lowermost
reversed episode of the Gilbert Chron (C3n.4r), below
the Thvera normal subchron.

Introduction

The IUGS ratification of the Eraclea Minoa GSSP (Global boundary
Stratotype-Section and Point) for the base of the Zanclean Stage and
of the Pliocene Series completes the characterization of the Pliocene
in the Standard Chronostratigraphic Scale. With this action, the Plio-
cene Series is probably the most perfectly defined of all higher
chronostratigraphic units. All of Pliocene time, without a gap, is
physically represented in the three stages of which it is composed, in
a single demonstrably uninterrupted sequence of highly fossiliferous
Upper Cenozoic deep-water strata on the southern coast of Sicily.
From bottom to top, the Pliocene consists of the Lower Pliocene
Zanclean Stage, with a boundary-stratotype at Eraclea Minoa and a
unit-stratotype at Capo Rossello; the Middle Pliocene Piacenzian
Stage, defined at Punta Piccola (Castradori et al., 1998); and the
Upper Pliocene Gelasian Stage, defined at Monte San
Nicola near Gela (Rio et al., 1994, 1998) (Figure 1). In
addition, each bed in the sequence can be directly
dated, since the cyclically deposited strata in this
extraordinary section are also the lithologic template
for the Pliocene part of the astrochronological time
scale. 

The top of the Pliocene is defined by the base of
the Pleistocene Series, also in southern Italy. This
level was established more than a decade ago when
IUGS adopted the GSSP at Vrica, Calabria (Aguirre
and Pasini, 1985; Bassett, 1985), in accordance with
the original sense of Lyell's terms and the classic
meaning of the Lower Pleistocene Calabrian Stage
(Berggren and Van Couvering, 1979; Van Couvering,
1996). In the ensuing years, objections to the Vrica
boundary were put forward by members of the strati-
graphic community (mostly Quaternary continental
stratigraphers and palynologists) who were impressed
by the effects of pre-Pleistocene glacial episodes in

the proxy evidence of their specializations, and who argued strongly
for a "paleoclimatic" boundary equivalent to the base of the Gelasian
(e.g., Morisson and Kukla, 1998). The Vrica boundary was, how-
ever, reaffirmed in 1998 by a joint postal ballot of the Subcommis-
sion on Quaternary Stratigraphy (SQS) and the Subcommission on
Neogene Stratigraphy (SNS). 

In the present paper, we provide a concise description of the
stratotype-section of the Messinian/Zanclean (and Miocene/Plio-
cene) boundary, of the "golden spike" or physical reference point at
the boundary itself, and of the various tools available for its world-
wide correlation. More information can be found in the authors' pro-
posal (Van Couvering, et al., 1998), reported in Neogene Newsletter
No. 5, that was forwarded to IUGS after successive favorable votes
of SNS and the International Commission on Stratigraphy (ICS). 

Background 

For over a century after Lyell (1833) created the Pliocene Epoch, the
application of this term outside the Mediterranean Basin, from west-
ern Europe to Asia and the Americas, was confused by a basic mis-
correlation in which the boundary became associated with "Pontian"
mammalian faunas and the first appearance of Hipparion. This error
was conclusively exposed in an early application of K-Ar dating, in
which Van Couvering and Miller (1971) showed that Pontian mam-
mal faunas in the Mediterranean Basin, at 11 Ma, were twice as old
as planktonic microfauna in the basal Pliocene of Italy. This
advanced the credibility of the "young" Pliocene long advocated in
vain by Italian and French stratigraphers, and invited renewed atten-
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Figure 1  Location of the Eraclea Minosa section.



tion to the neglected historic origins of Cenozoic chronostratigraphy
in southern Europe. Shortly thereafter, the discovery of huge thick-
nesses of evaporites beneath the floor of the Mediterranean basin
(Hsü, Ryan and Cita, 1973) proved the complete desiccation of the
Mediterranean Basin at the end of the Miocene, vindicating the
prophetic vision of a "Messinian Salinity Crisis" put forward by the
Sicilian micropaleontologist Giuliano Ruggieri (e.g., Ruggieri,
1967) based on the remarkable exposures of Upper Cenozoic deep-
sea strata in the Sicilian nappes. 

The rehabilitation of the Pliocene began when Cita (1975a) des-
ignated the exposures of Lower Pliocene Trubi marl at Capo
Rossello, Sicily (Cita and Gartner, 1973) as the unit-stratotype of the
Zanclean Stage. She proposed that the base of the stage, at the knife-
sharp but concordant contact with fluvio-lacustrine Arenazzolo
sands of the Messinian Stage, should be considered as the base of the
Pliocene Series. This proposal formally recognized the long-held
usage of this boundary in the Mediterranean Basin. It was also fully
consistent with Lyell's (1835) observation of the marked difference
between his Miocene and Pliocene macrofaunas in southern Europe,
to which he alluded in distinguishing these epochs. In the light of the
new deep-sea information, these epochal differences must be
ascribed to the destruction of the Miocene communities during the
Messinian Salinity Crisis. Thus, to identify the oldest Pliocene strata
with the return of open marine conditions at the base of the Zanclean
seems to be precisely consistent with Lyell's original meaning and
intent. 

Following Cita's proposal, a heated dispute erupted between
those stratigraphers who agreed that the Zanclean definition embod-
ied the historical sense of the Pliocene, unchanged throughout the
Mediterranean Basin since Lyell's time, and those who advocated an
extra-Mediterranean definition of the boundary in order to better
serve the operational requirements of modern normative stratigraphy
(Remane et al., 1996). The debate centered on the global correlata-
bility of the Messinian-Zanclean boundary, because of the lack of
fossil control below the dramatic stratigraphic discontinuity at the
base of the Trubi.

In pursuit of an extra-Mediterranean definition, an independent
GSSP for the base of the Pliocene Series was formally proposed at
Bou Regreg, on the Atlantic coast of Morocco, by a working group
of the Subcommission on Neogene Stratigraphy (SNS) organised in
1986 under the chairmanship of R.H. Benson. The proposed bound-
ary was located in an open-marine sequence at a level coincident
with the base of the Gilbert Chron (Benson and Rakic El-Bied, 1996;
see also Benson and Hodell, 1994), several hundred thousand years
older than the base of the Zanclean and unconnected with any stage
boundary. 

At the same time, studies of the Messinian and Zanclean strata
along the Capo Rossello coastline showed that the cyclic alternations
of marl and carbonate beds in the Zanclean could be precisely
aligned with mathematical projections of orbitally-forced variations
in global climate, offering a refined and reliable correlation of the
base of the stage worldwide (Zijderveld et al., 1991; Hilgen, 1991a,
b). These authors documented an exceptional section at Eraclea
Minoa where the basal Trubi is well exposed overlying a thick sec-
tion of Messinian strata, in contrast to the severely localized (and
actively eroding) exposure of the upper meter or so of the Messinian
at the base of the Trubi cliffs at Capo Rossello. In view of this,
Hilgen and Langereis (1993) suggested that a boundary-stratotype
for the Zanclean, and thus the GSSP for the base of the Pliocene,
should be located at Eraclea Minoa. 

In an effort to reconcile the historical and the practical, Suc et
al. (1997) proposed to locate the Pliocene boundary in the Bou
Regreg section, but at a level correlative with the base of the Zan-
clean within the Mediterranean Basin. These authors pointed to oxy-
gen isotope variations (see discussion below) as indicators of paleo-
ceanographic changes related to the end of the desiccation event.

In spring 1997, a majority of SNS considered the opposing con-
cepts and voted to retain the base of the Pliocene coincident with the
base of the Zanclean Stage, as defined at Eraclea Minoa. A formal
proposal to this effect, prepared by the authors in 1998, was over-

whelmingly approved by SNS (24 in favor, 3 against, two absten-
tions) and forwarded to ICS in November 1998.  Following a postal
ballot, ICS accepted the Eraclea Minoa proposal in March 1999 and
forwarded it for final ratification by the Executive Committee of
IUGS.

Motivation

To the extent that the base of the Zanclean Stage, which in turn
defines the base of the Pliocene Series, is marked by lithologic and
above all by paleontologic changes, it deviates from the recommen-
dation that a chronostratigraphic boundary should be defined in a
marine section with a continuous record above and below the bound-
ary (Remane et al., 1996; Salvador, 1994), as its critics have pointed
out. On the other hand, the basin-wide discontinuity itself has been
the sole criterion for the base of the Zanclean Stage for more than a
century (cf. Roda, 1971). To locate the base of the Zanclean at any
other level—higher in the Trubi, for instance, or down within the
Messinian section (see below)—would violate the more compelling
recommendation (e.g., Salvador, 1994, p. 24) that a boundary should
not be defined in a way that conflicts with established and accepted
usage. Moreover, in regard to the fundamental objective of all pro-
mulgated international guidelines (Hedberg, 1976; Cowie et al.,
1986; Salvador, 1994; Remane et al., 1996), recent research demon-
strates that in this case the historically justified boundary horizon can
be correlated by multiple lines of evidence with reliable precision, as
well as if it were in a fully continuous sequence. 

Remane et al. (1996) clearly state that not all the requirements
of a perfect GSSP "... can be fulfilled in every case, but the fact that
all GSSPs are voted by ICS in accordance with the present Guide-
lines insures that flexibility will not degenerate to arbitrariness." We
believe that the Zanclean GSSP, as reported here, is a case history of
the circumstances under which a careful and fully informed excep-
tion to stratigraphic continuity across a boundary is justified, in order
to conserve a clearly recognized and widely used (and useful) defin-
ition. The information gathered by the opponents to this proposal
also contributed significantly to knowledge of the stratigraphy and
history of the interval that frames the GSSP. 

The Zanclean Stage

The Zanclean Stage was defined by Seguenza (1868) as the lower
part of the Pliocene, to complement Mayer's Astian Stage in the
upper Pliocene (see also Vai, 1997, for a review). The term was first
mentioned, however, the year before by Mayer (1867) in his original
definition of the Messinian Stage, which he designated as a unit
encompassing the entire interval between Tortonian and Astian. The
name derives from Zanclea, the classical name of Messina, and the
archetypal Zanclean strata crop out in the Gravitelli valley, 4 km NW
of the center of that city. The lower part of the sequence, identified
by Seguenza as "marnes blanches à foraminifères", is overlain by
sands also rich in microfossils but with abundant macrofossils.
These sands are now considered to belong to the Piacenzian, leaving
the white marls to exemplify the true Zanclean. At Gravitelli the
white marls, some 10 to 15 m thick (Roda, 1971), rest on a "puis-
sante formation de sables sans fossiles", which after Seguenza's revi-
sion became the uppermost levels of a more restricted Messinian. A
collection of Late Miocene mammal fossils noted by Seguenza
(1907) in the lower part of the Messinian at Gravitelli has since been
lost. 

The white marls of the Gravitelli section belong to the Trubi
Formation, a rhythmically bedded foraminiferal pelagic ooze widely
exposed in the Upper Cenozoic nappes of Sicily and Calabria, and
encountered in cores from many different parts of the Mediterranean
Basin (Figure 2). This facies has been considered the quintessential
manifestation of the Zanclean for over a century (Roda, 1971).
Because the Gravitelli exposures are now largely inaccessible, a
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Zanclean stratotype was formally designated and described by Cita
and Gartner (1973; see also Cita, 1975a) in sea cliffs at Capo
Rossello, on the southern coast of Sicily west of Agrigento, where
the Trubi exceeds 100 m in thickness and is presumably more com-
plete than at Gravitelli. In this section, as at Gravitelli, the base of the
Trubi marls is in conformable contact with dark, sandy clays of the
Upper Messinian "Arenazzolo", an alluvial unit deposited under
shallow nonmarine conditions, and which is seen elsewhere (i.e., at
Eraclea Minoa) to rest on thick "Gessoso-solfifera" gypsum-anhy-
drite deposits that represent the final stages of marine desiccation in
the basin. 

The criteria for correlation of the base of the Zanclean as a
global standard stage are different outside the Mediterranean Basin
than within it. The sharp physical transition from shallow water to
deep-water deposits at the end of the Messinian Salinity Crisis in the
Mediterranean is not seen, as such, in other ocean basins. Therefore,
the position of the base of the Zanclean with respect to as many
stratigraphic parameters as possible must be precisely assessed to
allow for the extra-Mediterranean recognition and traceability of the
boundary.

During the last decade, detailed field work on the rhythmites of
the Trubi and the overlying Monte Narbone formation in southern
Sicily has built up a sequence of lithologic cycles that correspond
with orbitally forced climate change from the base of the Pliocene to
the middle Pleistocene (e.g., Hilgen, 1987, 1990, 1991a, b; Lan-
gereis and Hilgen, 1991; Zijderveld et al., 1991; Lourens et al. 1996;
Lourens et al., 1996; Lourens et al., 1997). The cyclic limestone-
marl and marl-sapropel alternations of this succession record every
single fluctuation of the Earth's precessional parameter, in turn mod-
ulated by orbital eccentricity, within this time interval. Citing this
control, Hilgen (1991a, b) presented a continuous astrochronologic

calibration of the lithostratigraphic record for the Upper Cenozoic.
Later on, the influence of obliquity was also recognized in the litho-
logic record and the astronomical calibration was slightly adjusted
and improved (Lourens et al., 1996). 

It is within this astrocyclostratigraphic framework that the nan-
nofossil and foraminifer biostratigraphy (e.g., Rio et al., 1990;
Sprovieri, 1992, 1993) and the magnetostratigraphy (e.g., Zachari-
asse et al., 1989, 1990; Zijderveld et al., 1991; Langereis & Hilgen,
1991) of the Mediterranean Plio-Pleistocene are calibrated in time.
In this context, the base of the Pliocene, as defined, can be recog-
nized and correlated worldwide.

Description of the boundary

The Eraclea Minoa section (lat. 37˚23'30''N, long. 13˚16'50''E) is the
basal segment of the Rossello Composite Section (Langereis &
Hilgen, 1991), which continues in overlapping sections to the east in
sea cliffs at Capo Rossello, Punta di Maiata, Punta Grande and Punta
Piccola. This composite section constitutes the Lower and Middle
Pliocene part of the stratigraphic reference for the Astronomical
Polarity Time Scale or APTS (Hilgen, 1991a, 1991b; Lourens et al.,
1996). The stratotype-section is represented on the Carta
Topografica d'Italia in the 1:25,000 series, Foglio 266 (Sciacca),
Quadrante II, Tavoletta S.O. Capo Bianco. 

The Eraclea Minoa section crops out continuously in a steep
wave-cut bluff, approximately 30 m high and 500 m long, that rises
behind the summer home community of Eraclea Minoa (Figures 1,
3). The bluff is parallel with, and about 500 m inland from, the mod-
ern beach. The basal Zanclean contact, adopted as GSSP, is very
well exposed where white Trubi marl rests on dark brown Arenaz-
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Figure 2   Geological sketch map of the central-southern Sicily showing the distribution of Pliocene and Pleistocene sediments across 
the thrust-belt ("Caltanissetta Basin")  and the adjacent foredeep.  Inset: location of Sicily in the Apenninic-Maghrebian thrust belt.
H—Hyblean plateau. (after Butler et al., 1995; modified by Cita et al., 1996).



zolo sands and marls approximately 75 m from the west end of the
exposed section. 

Stratigraphically below the contact, about 10 m of nonmarine
Arenazzolo sands and marls are seen above a 200-m section of gyp-
siferous strata representing the upper hypersaline facies, or Gessoso-
Solfifera, of the Messinian (Cita et al., 1978; Schreiber, 1997). The
upper contact of the Trubi with Middle Pliocene strata is obscured by
Pleistocene terrace to the west.

Access to the main face of the exposure is unrestricted, in all
seasons. The exposure can be reached via informal paths between
the houses along its foot, and also via public land at its far western
end, at the point where the frontage road turns sharply towards the
beach.

The Rossello Composite Section is situated in the Caltanissetta
Basin, part of a major tectonic element known as Gela nappe or Gela
thrust system (Ogniben, 1969; Butler et al., 1995). The paleodeposi-
tional setting is inferred to be an open marine slope-basin (Brolsma,
1978), and the benthic assemblage suggests a water depth of about
600–800 m (Sgarrella et al., 1997, and references therein). 

The stratigraphic characteristics of the lower Zanclean Stage,
detailed in exposures all along the southern coast of Sicily and Ion-
ian Calabria (Figures 4, 5) and including bed-by-bed cyclostratigra-
phy as well as detailed magnetostratigraphy and biostratigraphy (e.g.
Cita and Gartner, 1973; Cita, 1975b; Rio et al., 1984; Zijderveld et
al., 1986, 1991; Hilgen, 1987; Hilgen and Langereis, 1988; Zachari-
asse et al., 1989, 1990; Langereis and Hilgen, 1991; Sprovieri, 1992,
1993; Di Stefano et al., 1996) are completely represented in the
Trubi marls at Eraclea Minoa. In particular, the recognition here of
the base of the Thvera magnetic event (C3n.4n) in association with
precession cycle 5, just above the base of the Zanclean, is of para-
mount importance. 

It has been assumed that the base-Zanclean discontinuity,
which is recognized throughout the Mediterranean Basin in one con-
text or another, was created in a sudden, catastrophic flooding of the
basin in a dramatic end to the Messinian Desiccation Event (Hsü,
Ryan and Cita, 1973). The worldwide potential for correlating the

effects of such a rapid redistribution of the global watermass is an
important reason for retaining this level as the Pliocene Series
boundary. We must be confident, therefore, that the basin refilled as
rapidly as has been supposed, and for this it should be sufficient to
demonstrate that the boundary is in fact synchronous at different
paleoelevations in the basin. 

In the type exposure, the Messinian evaporites and Zanclean
marls in the Eraclea Minoa section, according to paleoenvironmen-
tal estimates (see above), were not deposited on the Mediterranean
abyssal floor, but on a basin slope at a water depth of 800 m or less.
In fact, Butler and others (1995) have suggested that the Caltanisetta
Basin may have been tectonically isolated within the developing
Gela Nappe, with a depositional history unrelated to that of the main
basin. The recent coring in ODP Legs 160 and 161 appears, how-
ever, to suggest that the reestablishment of open marine conditions
on the abyssal floor of the basin was at the same time as in the Zan-
clean of the Caltanisetta basin. In particular, Iaccarino et al. (1999)
clearly show how the same stratigraphic signatures, in the same rel-
ative order as in the Eraclea Minoa stratotype, are recorded in the
basal Zanclean along a W-E transect from the Alboran Sea to the
Eratosthenes Seamount. The lack of measurable diachrony supports
the assumption that the base of the Zanclean is an isochronous hori-
zon generated during a geologically instantaneous refilling of the
main basin.

Definition, age and correlation of the
physical reference point

The beginning of the Pliocene, so defined, is readily correlated out-
side the Mediterranean (contra Benson and Hodell, 1994; Benson
and Rakic-El Bied, 1996). The base of the carbonate bed marking the
small-scale stratigraphic cycle 1 (Hilgen, 1987; Hilgen and Lan-
gereis, 1988; Langereis and Hilgen, 1991) at the base of the Zan-
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Figure 3   A view of the Eraclea Minoa section, GSSP of the Zanclean
Stage and of the Pliocene Series.



clean Stage in the Eraclea Minoa section corresponds to insolation
cycle 510 counted from the present, with an astrochronologic age of
5.33 Ma (Lourens et al., 1996). This exact level can be lithostrati-
graphically documented in the cyclic sequences of climate-sensitive
depositional settings (i.e., high-productivity basins, abyssal floors),
as well as by the orbitally-forced geochemical and isotopic varia-
tions exemplified in many ODP Sites drilled in recent years (e.g.
Leg 138: Shackleton et al., 1995; Leg 154: Shackleton and
Crowhurst, 1997; Backman and Raffi, 1997).

A second, highly reliable criterion is the base of the Thvera
magnetic event (C3n.4n of Cande and Kent, 1992, 1995), dated to
5.236 Ma (Lourens et al., 1996), and only 96 kyrs (5 precession
cycles) younger than the proposed GSSP. This is a useful guide to
the boundary in continental, igneous and non-cyclic marine
deposits, as well as being a good anchor point for cyclostratigraphic
or isotopic calibration of the boundary itself.

Calcareous nannofossils (coccoliths) afford the best marine
biostratigraphic tool for the correlation of the boundary outside the
Mediterranean. Three important biological events, recognizable on a
global scale and included in the standard zonations of Martini (1971)
and Okada and Bukry (1980), take place very close to the proposed
Zanclean (and Pliocene) GSSP. The first of these, ranked by prox-
imity to the boundary, is the first occurrence of Ceratolithus acutus,
calibrated at 5.37 Ma in the equatorial Atlantic (Backman and Raffi,
1997), just 40 kyr earlier than the proposed GSSP. It should be noted
that specimens of C. acutus have been reported down to the very
basal Zanclean of the Mediterranean area (Cita and Gartner, 1973;
Castradori, 1998). The second is the disappearance of Tri-
quetrorhabdulus rugosus, calibrated at about 5.23 Ma both in low-
ermost Zanclean beds in the Mediterranean (Di Stefano et al., 1996;
Castradori, 1998) and in the equatorial Atlantic Ocean (Backman

and Raffi, 1997). The third is the last occurrence of Discoaster quin-
queramus. Although not recorded in the Mediterranean due to the
Salinity Crisis, this event is dated outside the Mediterranean in
Chron C3r at 5.537 Ma (Backman and Raffi, 1997).

Probably of more limited (Mediterranean) applicability is the
base of a paracme of Reticulofenestra pseudoumbilicus in cycle 6
(Di Stefano et al., 1996).

In terms of planktonic foraminiferal biostratigraphy, the first
appearances of Globorotalia tumida and Globorotalia spheri-
comiozea have been calibrated in the uppermost Miocene at 5.6 Ma
by Berggren et al. (1995), with reference to tropical/subtropical and
transitional areas, respectively. Certain well-known Early Pliocene
events within the Mediterranean, such as the Sphaeroidinellopsis
Acme Zone (MPl1 of Cita, 1975b) that characterizes the first 10 pre-
cession-related lithologic cycles of the Zanclean, and the first com-
mon occurrence of Globorotalia margaritae at the top of this zone,
have been shown to be of purely local significance (Benson and
Rakic el-Bied, 1996). Two sinistral shifts of N. acostaensis have
been recently reported from cycle 2 and 3 (Di Stefano et al., 1996)
that may have more value in global correlation.

Shackleton, Hall, and Pate (1994) interpreted oxygen-isotope
variations in planktonic foraminifera from ODP Site 846 as reflec-
tions of orbitally forced Late Neogene ice volume changes. In stud-
ies of the Salé core, near Bou Regreg, Hodell et al. (1994) identified
22 cycles between the isotope peaks TG2 to TG24 (where "TG"
means "pre-Thvera", and the even-numbered peaks denote
glacioeustatic lows), in a section spanning the lowest part of Chron
C3r down to the uppermost part of Chron C4n. Suc et al. (1997) sug-
gested that the TG5 "interglacial" or highstand peak near the top of
the core could be correlated to the base of the Zanclean. At the same
time, Lourens et al. (1996) identified the TG2 and TG4 lowstand
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Figure 4   Review of the magnetostratigraphy, biostratigraphy and cyclostratigraphy of Miocene/Pliocene boundary sections of the Trubi
Formation in southern Calabria and Sicily. Numbered biostratigraphic correlation refer to (1) base Sphaeroidinellopsis acme, 
(2) top Sphaeroidinellopsis acme, and (3) first substantial increase in G. margaritae (after Hilgen and Langereis, 1993).
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Figure 5  Chronology of the Rossello Composite Section based on the correlation of small-scale carbonate cycle patterns to the La 90(1,1)
(Laskar, 1990; Laskar et al., 1993) precession and 65˚ N summer insolation curves (Hilgen, 1991b; Lourens et al., 1996a) (after Lourens
et al., 1996a).



peaks in the lowermost, pre-Thvera part of the basal Trubi, and cor-
related them with the isotope stratigraphy in ODP Sites 846 and 677
(Shackleton et al., 1995). This clearly suggests that the isotopic sig-
nature of highstand stage TG5 and the sedimentary signature of inso-
lation peak 510 are genetically related, although this crucial link has
not yet been documented. Nevertheless, it is reasonable to assume
that the final breach of a steadily degrading Gibraltar barrier would
have been facilitated by a transient rise in sea level. The TG5 high-
stand may thus be considered as a nearly, and probably exactly coin-
cident marker for the base of the Pliocene worldwide, as suggested
by Suc et al.(1997). 

The re-establishment of saline reflux plumes from the Gibraltar
portal, as seen in deep Atlantic cores at about 5 Ma, has been corre-
lated by Zhang and Scott (1996) to the refilling of the Mediterranean
at the beginning of the Zanclean. Possible effects of the boundary
event are also seen in extra-Mediterranean coral reef sequences that
record sharp sea-level changes associated with the Messinian Salin-
ity Crisis. Cores from the Great Bahama Bank show an exposure sur-
face capping Messinian reefs overlain by Lower Pliocene deeper
shelf carbonates (McKenzie, Spezzaferri and Isern, 1997), suggest-
ing a sudden drawdown (Mediterranean refilling) and then recovery
of water depth on the subsiding bank. Similarly, Aharon et al. (1993)
reported that drilling on Niue atoll on the margin of the Tonga
Trench, where progressive Neogene uplift allows resolution of
closely-spaced events, shows repeated eustatic sea-level changes of
10 m amplitude culminating in at least 30 m of sea-level drop dated
to 5.26 Ma, close to and possibly (given precision margins) synchro-
nous with the Zanclean infilling. Similar stratigraphic features
reflecting the abnormally sharp change in sea level at the boundary
(Hsü, Ryan and Cita, 1973) may be sought in continuous sections
elsewhere, offering a correlation tool unique to the Zanclean GSSP.

Conclusion

The Subcommission on Neogene Stratigraphy has completed a
major step in characterizing a Global Chronostratigraphic Scale for
the Neogene, with the adoption of a formal definition of the Zan-
clean Stage as the lowest constituent of the Pliocene Series. It com-
pletes the designation of global standard Pliocene stages, following
the definition of the Upper Pliocene Gelasian Stage (Rio et al., 1998)
and the Middle Pliocene Piacenzian Stage (Castradori et al., 1998),
in a single uninterrupted deep-marine sequence that is also the global
template for the astrochronometric time scale. The base of the Zan-
clean, while represented in a regional lithological and paleontologi-
cal discontinuity, is therefore precisely dated and correlatable in
modern cyclostratigraphy and isotope stratigraphy, and is well con-
strained paleomagnetically and in terms of deep-sea micropaleontol-
ogy. As a further important attribute, the base of the Zanclean is the
historic definition for the Pliocene in the Mediterranean literature,
and corresponds faithfully to Lyell's original meaning. 

The Subcommission on Neogene Stratigraphy is now facing the
even harder task of defining boundary-stratotypes for the Miocene
stages. It is encouraging, however, to note that the Messinian Stage
boundary-stratotype, as the first of these, has been formally accepted
and ratified in the meantime. 
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