
40    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

SYSADMINPostmortem Action Items
Plan the Work and Work the Plan

J O H N L U N N E Y , S U E L U E D E R , A N D B E T S Y B E Y E R

In the 2016 O’Reilly book Site Reliability Engineering, Google described
our culture of blameless postmortems and recommended that opera-
tionally focused teams and organizations institute a similar culture

of postmortems in their approach to production incidents. A postmortem
is a written record of an incident that details its impact, the actions taken
to mitigate or resolve it, the root cause(s), and the follow-up actions taken
to prevent the incident from recurring. The chapter “Postmortem Culture:
Learning from Failure” describes criteria for deciding when to conduct post-
mortems, some best practices around postmortems, and advice on how to
cultivate a postmortem culture based upon the experience we’ve gained over
the years.

We write postmortems to ensure we achieve a few primary goals:

◆◆ We understand all contributing root causes.

◆◆ The incident is documented for future reference and pattern discovery.

◆◆ We enact effective preventive actions to reduce the likelihood and/or impact (i.e., duration
and/or scope) of recurrence.

We refer to the preventive actions identified during root cause analysis as postmortem action
items, which in aggregate form the postmortem action item plan.

This article addresses the challenges in designing an appropriate action item plan and then
executing that plan. We discuss best practices for developing high-quality action items (AIs)
for a postmortem, plus methods of ensuring these AIs actually get implemented. If the AIs
are not closed out, you are implicitly agreeing that it is acceptable to suffer the exact same
outage again. Furthermore, if you are successful as a service, the outage will be larger the
next time around.

It’s worth noting that Google teams are by no means perfect at formulating and executing
postmortem action items. We still have a lot to learn in this challenging area and are sharing
our approach to give a starting point for discussion throughout the industry.

Action Item Best Practices
Successful AIs require careful thought at both ends of their life cycle: formulation and
follow-through. The following sections detail best practices we’ve cultivated as we continu-
ally refine our methods.

Enacting AIs
Classifying Action Items for Full Coverage
We classify action items by category (Investigate, Mitigate, Repair, Detect, Prevent) to make
sure that the action item plan covers both very short-term and longer-term fixes. Making
sure to consider AIs for each category can inspire simple but effective changes, particularly
around detection (as early detection is often the best way to reduce time to resolution).

John Lunney is a Senior Site
Reliability Engineer at Google
Zürich. His team manages
G Suite, productivity apps
for Enterprise customers. He

holds a degree in computational linguistics
from Trinity College in Dublin, Ireland. Before
Google, he worked on several lexicography
projects for the Irish language.
lunney@google.com

Sue Lueder is a Site Reliability
Program Manager in Google’s
Mountain View office. She’s
part of the team responsible for
disaster testing and readiness,

incident management processes and tools,
and incident analysis. Before Google, Sue
worked as a Systems Engineer in the wireless
and smart energy industries. She has an MS
in organization development from Pepperdine
University and a BS in physics from UCSD.
slueder@google.com

Betsy Beyer is a Technical
Writer for Google Site
Reliability Engineering in NYC.
She has previously provided
documentation for Google

Data Center and Hardware Operations
teams. Before moving to New York, Betsy
was a lecturer in technical writing at Stanford
University. She holds degrees from Stanford
and Tulane. bbeyer@google.com

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  41

SYSADMIN
Postmortem Action Items: Plan the Work and Work the Plan

When an outage has multiple contributing causes, you need a
multi-dimensional action item plan that will address each root
cause and all systems that contributed to the outage.

At a minimum, your postmortem must include AIs to Mitigate
and Prevent future incidents, but it should also include all other
relevant categories listed below. Note that many teams initi-
ate incident investigation and mitigation (bullets one and two)
before conducting the postmortem.

◆◆ Investigate this incident: what happened to cause this incident
and why? Determining the root causes is your ultimate goal.
Examples: logs analysis, diagramming the request path, review-
ing heapdumps

◆◆ Mitigate this incident: what immediate actions can we take to
resolve and manage this specific event?
Examples: rolling back, cherry-picking, pushing configs, commu-
nicating with affected users

◆◆ Repair damage from this incident: how can we resolve imme-
diate or collateral damage from this incident?
Examples: restoring data, fixing machines, removing traffic
re-routes

◆◆ Detect future incidents: how can we decrease the time to
accurately detect a similar failure?
Examples: monitoring, alerting, plausibility checks on input/
output

◆◆ Mitigate future incidents: how can we decrease the sever-
ity and/or duration of future incidents like this? how can we
reduce the percent of users affected by this class of failure the
next time it happens?
Examples: graceful degradation; dropping non-critical results;
failing open; augmenting current practices with dashboards,
playbooks, incident management protocols, and/or war rooms

◆◆ Prevent future incidents: how can we prevent a recurrence of
this sort of failure?
Examples: stability improvements in the code base, more
thorough unit tests, input validation and robustness to error
conditions, provisioning changes‑

When filing issues or bugs for these action items, make sure
to use the appropriate classification (bug vs. feature request).
Although this differentiation may seem subjective, in our view,
a bug is a deviation from required behavior, while a feature
request is new required behavior. Typically, you should use the
type your team tracks most strictly (see the later section “Priori-
tizing Action Items “ for more details).

Wording Action Items
The right wording for an AI can make the difference between
easy completion and indefinite delay due to infeasibility and/or
procrastination. A well-crafted AI should manifest the following
properties:

◆◆ Actionable: Phrase each AI as a sentence starting with a verb.
The action should result in a useful outcome, not a process. For
example, “Enumerate the list of critical dependencies” is a good
AI, while “Investigate dependencies” is not.

◆◆ Specific: Define each AI’s scope as narrowly as possible, mak-
ing clear what is and what is not included in the work.

◆◆ Bounded: Word each AI to indicate how to tell when it is fin-
ished, as opposed to leaving the AI open-ended or ongoing.

Table 1 provides examples of poorly worded vs. well-crafted AIs.

Poorly Worded Better

Investigate monitoring for
this scenario.

(Actionable) Add alerting for
all cases where this service
returns >1% errors.

Fix the issue that caused the
outage.

(Specific) Handle invalid
postal code in user address
form input safely.

Make sure engineer checks
that database schema can be
parsed before updating.

(Bounded) Add automated
presubmit check for schema
changes.

Table 1: Examples of action items

We recommend implementing automated fixes when possible, as
opposed to prevention/mitigation that requires ongoing manual
intervention.

Consider grouping AIs either by theme or by team. In addition to
providing a clear organizational or responsibility-focused struc-
ture, this categorization may also help you spot an unbalanced
AI plan (see “Unbalanced Action Item Plans”).

After the post-incident dust settles, don’t be afraid to update a
poorly worded AI to make it more tractable.

Prioritizing Action Items
It’s crucial to properly prioritize action items because the prior-
ity guides future attention each AI will receive. At Google, we
use the following priority levels, based on estimated risk:

◆◆ P0: High risk of unmitigated recurrence of the incident if this AI is
not resolved. Resolving this AI will directly address a root cause.
Resolution will either completely prevent such incidents from
recurring or greatly reduce their impact to a negligible level.

◆◆ P1: Medium risk of unmitigated recurrence of the incident if
this AI is not resolved. Resolving this AI will directly address
the root cause. Resolution will either significantly mitigate the
impact of a recurrence or have a high chance of preventing a
recurrence.

42    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

SYSADMIN
Postmortem Action Items: Plan the Work and Work the Plan

◆◆ P2: Low risk of unmitigated recurrence of the incident if this AI
is not resolved. Resolving this action item will only superficially
mitigate a recurrence of this issue or will address only periph-
eral contributing conditions.

◆◆ P3: Trivial risk of unmitigated recurrence of a similar incident if
this AI is not resolved.

We require every postmortem stemming from a user-visible
event to have at least one P0 or P1 action item. If the outage was
bad enough to disrupt users, it’s important enough to require
high priority follow-up work to avoid or mitigate recurrence.

Figure 1 shows that on average, high priority actions are closed
more quickly than low priority AIs. However, when it comes
to AIs that are still open, priority doesn’t significantly influ-
ence their age—on average, outstanding P1 AIs have been open
almost as long as outstanding P3 AIs. We use this data to imple-
ment initiatives to bring more attention to open actions from
postmortems.

Following Up on AIs
Postmortem Reviews
Many teams at Google that participate in incident response
conduct postmortem review sessions. These reviews are helpful
in bringing key parties together to ensure that the postmortem is
complete and that the action item plan covers required catego-
ries and avoids anti-patterns. Most postmortem reviews have
the following general format:

◆◆ Walkthrough of incident timeline, impact, and root cause:
Include clarifications and address open discussion threads.

◆◆ Review of lessons learned: Discuss updates, additions, and
mappings to action items.

◆◆ Review of action items: Review the checklist (see the Appen-
dix) to make sure AIs have owners, wordings are clear, priori-
ties make sense, and that no category (Investigate, Mitigate,
Repair, Detect, Prevent) is missing.

These reviews should happen soon after an incident so that the
parties involved remember what happened. You can hold reviews
on a small scale with just the impacted team(s), or on a large
scale with many parties and observers.

Action Item Closure Tracking
Encourage action item owners to close AIs that you’ll never have
time to address—don’t keep them around forever. If an AI is
obsolete or infeasible, it just distracts you from the AIs that still
need work.

It’s a good idea to provide periodic visibility into team progress
towards reducing the technical debt identified in postmortems.
Consider adding postmortem action item burndown progress
(that is, AI follow-through) to your regular service or team
reporting. For example, you might build postmortem AI reports
in your bug/issue-tracking system and track these issues against
a closure-time objective, following up with outliers.

In many cases, an action item requires considerable effort and
must fit in with work that’s already scheduled. Keeping an eye
on how long it takes to close out action items on average helps us
identify where slow action item closure leads to additional risk
to reliability.

We actively monitor bug burndown over time. There are multiple
ways to visualize this data. Figure 2 shows how we might track
burndown for a single postmortem. In this example, the team
planned out an action item completion schedule for all 20 actions
to be completed over 21 days. They monitored progress until the
final action item was complete on the 25th day.

Figure 3 shows how we might track AIs across any part of the
organization by measuring the number of postmortem AIs cre-
ated vs. closed by day. The widening distance between the two
lines indicates accumulating technical debt over time, a pattern
that you should seek to avoid.

Figure 1: Time to close out action items

Figure 2: AI burndown for a single postmortem

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  43

SYSADMIN
Postmortem Action Items: Plan the Work and Work the Plan

Executive Focus
You can further shine light on postmortem AI follow-up through
close attention from senior leaders in your organization. We
regularly review postmortems with VPs and Directors to ensure
that high priority postmortems and action items receive the
attention they deserve.

Action Item Anti-Patterns
In reviewing the thousands of postmortems we’ve conducted
at Google over the years, we’ve identified a number of common
deficiencies when it comes to both constructing and handling
action items. The most common shortcoming is lack of follow-up
(and many of our best practices aim to mitigate this problem).

The following section presents several other anti-patterns,
which relate to how we structure or enact postmortem action
items. Our experience shows that if either of these steps goes
wrong, no amount of follow-up will help because vague or mis-
leading AIs can’t be completed.

Structuring AIs
Unbalanced Action Item Plan
If your postmortem action item plan contains only long-term,
unrealistic, or infeasible actions, it’s likely that you won’t resolve
any AIs before the next outage hits. On the other hand, a plan
that only includes tactical items and never explores better ways
to architect a more robust system is a missed opportunity to
increase reliability.

Mitigation: Create a balanced action item plan that includes
both:

◆◆ Near-term fixes to prevent/mitigate a similar outage

◆◆ Strategic improvements to the design of implicated systems to
increase reliability

Strike a healthy balance between local/incremental/Band-Aid
solutions and loftier long-term improvements. Covering all the
categories in “Classifying action items” helps in this effort.

Tossing Work “Over the Wall”
An action item plan often requires work from partner
teams in other parts of the organization. Don’t draft and file
action items against other teams without some discussion
with the team that owns the component. Without this dis-
cussion, you’re essentially throwing work over the wall and
hoping that it gets done.

Mitigation: Include partner teams in the postmortem
drafting process. Make sure each owner or team is satisfied
with their assigned action items before publishing the post-
mortem. You might want to discuss the action item plan in
person or via videoconference and ask for commitment to a
resolution time frame. If conflict arises, “Executive focus”
(see the best practice) may help with escalation.

Focusing on Elimination (at the Cost of Mitigation)
It can be tempting to design an action item plan that will elimi-
nate the chance of the incident from ever happening again. Of
course, you should take those actions when appropriate, but you
should also spend time evaluating how to reduce the duration
and impact of the incident—especially if such a fix will take
effect sooner than a potential “elimination fix.”

Mitigation: Take a look at how an incident unfolds and consider
writing detection and mitigation action items that address the
following:

◆◆ Could we have detected the incident sooner?

◆◆ Could we have triaged the impact sooner, leading to a more ap-
propriate incident response?

◆◆ Could we have understood the root cause sooner, leading to
faster rollback?

◆◆ Could the rollback have proceeded faster or more smoothly?

◆◆ Could we have scaled back the initial faulty rollout, thereby
impacting a smaller percentage of users?

Thinking Only of the Current Incident (Missing Patterns)
One of our colleagues appropriated Mark Twain to observe, “We
rarely repeat incidents, but we sometimes have incidents that
rhyme.” If we only consider a given incident in isolation, we may
overfit a specific solution to the incident at hand. We also might
create duplicate actions by missing information about improve-
ments that are underway as part of another postmortem action
item plan. Even worse, we might miss an opportunity to kill two
risks with one stone.

Mitigation: Review postmortems for similar incidents and their
accompanying action items. You might identify an opportunity
to add resources to an action item that’s not getting the attention
it deserves, or an opportunity to collaborate on a new action item
that would help in both types of incidents.

Figure 3: Postmortem AIs created vs. closed, by day

44    S P R I N G 20 17  VO L . 42 , N O. 1 	 www.usenix.org

SYSADMIN
Postmortem Action Items: Plan the Work and Work the Plan

Enacting AIs
Lack of Ownership
The surest way for a postmortem author to ensure that an action
item never gets completed is to leave it without an owner.

Mitigation: Always assign an owner for every action item as it
is enacted, even if that owner’s primary task is to find the best
person for the job (e.g., the Tech Lead for the team responsible
for that product or software). Your issue tracker is an appropriate
place to assign ownership.

Overly Specific Monitoring Changes
With the benefit of hindsight, it’s easy to say we should have
monitored an XYZ-specific signal, which would have alerted us
to the problem before it became a huge incident. However, this
strategy only helps if that very specific failure mode recurs in the
exact same way (which is frequently not the case).

Mitigation: Make the effort count: look for ways to improve
monitoring for a whole class of issues. Preferably, these improve-
ments should target user-focused symptoms rather than internal
metrics. Otherwise, you risk tying alerts to implementation
details.

Fixing Symptoms (Not Root Causes)
Root cause analysis (RCA) is one of the most crucial parts of
a postmortem. The outcome of this analysis should drive the
construction of the action item plan. Shallow RCA limits action
items to impermanent fixes or surface patches to problems.

Mitigation: A thorough RCA is key to defining action items that
will prevent or mitigate future incidents of this nature. Use the
five-whys RCA (or another methodology [2]) to help determine
which contributing causes in the chain your AIs should target.

Blaming Humans (Missing System Fixes)
It’s very rarely productive to think of humans as the ending
“why” in a root cause chain. During an emergency, people are
typically doing the best they can under intense pressure and
when faced with ambiguous data. As a result, what looks like an
obvious point in the cold light of day can be quite non-obvious in
the heat of the moment.

Attributing blame to a specific person or group doesn’t improve
your system or spur development of systematic defenses. The
next time there is an emergency, the hapless on-duty person will
be faced with a similarly difficult problem to solve in real time.
If you trust your engineers to make the best decision given avail-
able information, it’s more helpful to consider an error to be a
failure of the entire system, as opposed to the fault of one or more
humans.

Mitigation: Rather than finger-pointing, it’s much more helpful
to think about:

◆◆ How we can give people better information to make decisions?

◆◆ How we can make our environment, systems, tools, and pro-
cesses more immune to human fallibility?

When you feel tempted to use human error as a root cause, use
a critical eye to avoid one-off fixes. A useful stance is to believe,
“The system should not have been able to fail this way.” Ask
yourself the following questions:

◆◆ How likely is the next person to cause the same problem? Could
a new hire or sleepy SRE at 4 a.m. have made this mistake?
Why did the system let them?

◆◆ Was information flawed, misleading, or poorly presented?
Can we fix that misinformation (preferably through the use of
automation)?

◆◆ Could software have prevented/mitigated this error? Can we
automate this activity so it doesn’t require human intervention?

Fixes Late in the Software Life Cycle (Missing Earlier Chances)
It can be tempting to stop a badly behaving system from impact-
ing users by implementing a check or safeguard at the last step
before changes enter production. For example, you might imple-
ment additional checks right before a config file is pushed to
production but fail to consider adding configuration file coding
standards, automated testing, improved training, or making
sure there are fewer ways to break configuration files in the first
place. The fact that bugs are much more expensive to fix late in
the software life cycle is well understood in the industry [3].

Mitigation: When reviewing the postmortem timeline and
lessons learned, look for ways to address the root cause (and
possibly, the event trigger) as early as possible. The fix might be
the same (e.g., input validation) but applied to the first system as
opposed to the last one.

Conclusion
Years of conducting postmortems at Google have taught us that
there’s no one-size-fits-all approach to conducting this exercise
successfully. However, this accumulation of experience—what
we’ve done right, what we’ve done wrong, and how we’ve iter-
ated to improve—has led to a certain amount of insight, which
we hope can benefit other companies and organizations. We
believe that it’s very important to both construct high quality
postmortem action items and follow up on them in a timely and
comprehensive manner. Only by completing these AIs can we
hope to avoid recurrence of costly and time-consuming produc-
tion incidents.

www.usenix.org	   S P R I N G 20 17  VO L . 42 , N O. 1  45

SYSADMIN
Postmortem Action Items: Plan the Work and Work the Plan

The checklist appended to this article is a good starting point
if you’re new to conducting postmortems, or perhaps a useful
honing tool for veterans of this process. As we continue to refine
our approach to this imperfect science, we hope to learn equally
valuable lessons from others in the field.

Checklist
Structuring

	 Each lesson learned is addressed with at least one AI.

	 AI plan is balanced between near-term fixes and strategic
design improvements.

	 AIs address both prevention and decreasing resolution
time.

	 “Rhyming” incidents and their action plans have been
reviewed.

	 No work is tossed “over the wall”: all involved teams are
committed to relevant AIs.

Enacting
	 AIs cover the two most critical categories (Mitigate,

Prevent) + all other relevant categories (Investigate, Repair,
Detect).

	 AIs are worded to be actionable, specific, and bounded.

	 AIs are prioritized, with at least one P0 or P1 to avoid or
mitigate recurrence.

	 All AIs have an owner.

	 AIs aren’t overly specific (for example, could you monitor
something more general?).

	 Problem is caught as early as possible in the software life
cycle.

	 AI plan addresses a root problem (as opposed to just
patching symptoms).

	 AIs don’t blame humans (focus instead on automatic sys-
tem detection).

Follow-up
	 AI plan is shared with your team, stakeholders, and those

involved in the incident.

	 AIs are appropriately filed and tagged/tracked to appear
in your reporting system.

	 AI plan was reviewed with an executive or group of leads
for visibility.

	 Postmortem and AI plan were reviewed/approved per
team policy.

References
[1] B. Beyer, C. Jones, J. Petoff, and N. Murphy, eds., Site Reli-
ability Engineering (O’Reilly Media, 2016).

[2] More formal methodologies exist for those looking for more
rigor. For example, Ishikawa fishbone diagrams, 8Ds, fault
tree analysis, and failure mode and effects analysis (FMEA).
See https://en.wikipedia.org/wiki/Root_cause_analysis for
more ideas.

[3] J. Leon, “ The True Cost of a Software Bug: Part One,”
Celerity blog, Feb 28, 2015: http://blog.celerity.com/the-true
-cost-of-a-software-bug.

